starship

faa:-airplanes-should-stay-far-away-from-spacex’s-next-starship-launch

FAA: Airplanes should stay far away from SpaceX’s next Starship launch


“The FAA is expanding the size of hazard areas both in the US and other countries.”

The Starship for SpaceX’s next test flight, known as Ship 35, on the move between the production site at Starbase (in background) and the Massey’s test facility for a static fire test. Credit: SpaceX

The Federal Aviation Administration gave the green light Thursday for SpaceX to launch the next test flight of its Starship mega-rocket as soon as next week, following two consecutive failures earlier this year.

The failures set back SpaceX’s Starship program by several months. The company aims to get the rocket’s development back on track with the upcoming launch, Starship’s ninth full-scale test flight since its debut in April 2023. Starship is central to SpaceX’s long-held ambition to send humans to Mars and is the vehicle NASA has selected to land astronauts on the Moon under the umbrella of the government’s Artemis program.

In a statement Thursday, the FAA said SpaceX is authorized to launch the next Starship test flight, known as Flight 9, after finding the company “meets all of the rigorous safety, environmental and other licensing requirements.”

SpaceX has not confirmed a target launch date for the next launch of Starship, but warning notices for pilots and mariners to steer clear of hazard areas in the Gulf of Mexico suggest the flight might happen as soon as the evening of Tuesday, May 27. The rocket will lift off from Starbase, Texas, SpaceX’s privately owned spaceport near the US-Mexico border.

This will be the third flight of SpaceX’s upgraded Block 2, or Version 2, Starship rocket. The first two flights of Starship Block 2—in January and Marchdid not go well. On both occasions, the rocket’s upper stage shut down its engines prematurely and the vehicle lost control, breaking apart in the upper atmosphere and spreading debris near the Bahamas and the Turks and Caicos Islands.

Debris from Starship falls back into the atmosphere after Starship Flight 8 in this view over Hog Cay, Bahamas. Credit: GeneDoctorB via X

Investigators determined the cause of the January failure was a series of fuel leaks and fires in the ship’s aft compartment. The leaks were most likely triggered by vibrations that were more intense than anticipated, SpaceX said before Starship’s most recent flight in March. SpaceX has not announced the cause of the March failure, although the circumstances were similar to the mishap in January.

“The FAA conducted a comprehensive safety review of the SpaceX Starship Flight 8 mishap and determined that the company has satisfactorily addressed the causes of the mishap, and therefore, the Starship vehicle can return to flight,” the agency said. “The FAA will verify SpaceX implements all corrective actions.”

Flight safety

The flight profile for the next Starship launch will largely be a repeat of what SpaceX hoped to accomplish on the ill-fated tests earlier this year. If all goes according to plan, the rocket’s upper stage, or ship, will travel halfway around the world from Starbase, reaching an altitude of more than 100 miles before reentering the atmosphere over the Indian Ocean. A little more than an hour after liftoff, the ship will aim for a controlled splashdown in the ocean northwest of Australia.

Apart from overcoming the problems that afflicted the last two launches, one of the most important objectives for this flight is to test the performance of Starship’s heat shield. Starship Block 2 includes improved heat shield materials that could do better at protecting the ship from the superheated temperatures of reentry and, ultimately, make it easier to reuse the vehicle. The problems on the last two Starship test flights prevented the rocket from reaching the point where its heat shield could be tested.

Starship Block 2 also features redesigned flaps to better control the vehicle during its descent through the atmosphere. This version of Starship also has larger propellant tanks and reconfigured fuel feed lines for the ship’s six Raptor engines.

The FAA’s approval for Starship Flight 9 comes with some stipulations. The agency is expanding the size of hazard areas in the United States and in other countries based on an updated “flight safety analysis” from SpaceX and because SpaceX will reuse a previously flown first-stage booster—called Super Heavy—for the first time.

The aircraft hazard area for Starship Flight 9 extends approximately 1,600 nautical miles to the east from Starbase, Texas. Credit: Federal Aviation Administration

This flight-safety analysis takes into account the outcomes of previous flights, including accidents, population exposure risk, the probability of vehicle failure, and debris propagation and behavior, among other considerations. “The FAA uses this and other data to determine and implement measures to mitigate public risk,” the agency said.

All of this culminated in the FAA’s “return to flight determination,” which the agency says is based on public safety. The FAA’s primary concern with commercial space activity is ensuring rocket launches don’t endanger third parties. The agency also requires that SpaceX maintain at least $500 million in liability insurance to cover claims resulting from the launch and flight of Starship Flight 9, the same requirement the FAA levied for previous Starship test flights.

For the next launch, the FAA will establish an aircraft hazard area covering approximately 1,600 nautical miles extending eastward from Starbase, Texas, and through the Straits of Florida, including the Bahamas and the Turks and Caicos Islands. This is an extension of the 885-nautical-mile hazard area the FAA established for the test flight in March. In order to minimize disruption to commercial and private air traffic, the FAA is requiring the launch window for Starship Flight 9 to be scheduled during “non-peak transit periods.”

The size of FAA-mandated airspace closures can expand or shrink based on the reliability of the launch vehicle. The failures of Starship earlier this year raised the probability of vehicle failure in the flight-safety analysis for Starship Flight 9, according to the FAA.

The expanded hazard area will force the closure of more than 70 established air routes across the Gulf of Mexico and now includes the Bahamas and the Turks and Caicos Islands. The FAA anticipates this will affect more than 175 flights, almost all of them on international connecting routes. For airline passengers traveling through this region, this will mean an average flight delay of approximately 40 minutes, and potentially up to two hours, the FAA said.

If SpaceX can reel off a series of successful Starship flights, the hazard areas will likely shrink in size. This will be important as SpaceX ramps up the Starship launch cadence. The FAA recently approved SpaceX to increase its Starship flight rate from five per year to 25 per year.

The agency said it is in “close contact and collaboration” with other nations with territory along or near Starship’s flight path, including the United Kingdom, Turks and Caicos, the Bahamas, Mexico, and Cuba.

Status report

Meanwhile, SpaceX’s hardware for Starship Flight 9 appears to be moving closer to launch. Engineers test-fired the Super Heavy booster, which SpaceX previously launched and recovered in January, last month on the launch pad in South Texas. On May 12, SpaceX fired the ship’s six Raptor engines for 60 seconds on a test stand near Starbase.

After the test-firing, ground crews rolled the ship back to the Starship production site a few miles away, only to return the vehicle to the test stand Wednesday for unspecified testing. SpaceX is expected to roll the ship back to the production site again before the end of the week.

The final steps before launch will involve separately transporting the Super Heavy booster and Starship upper stage from the production site to the launch pad. There, SpaceX will stack the ship on top of the booster. Once the two pieces are stacked together, the rocket will stand 404 feet (123.1 meters) tall.

If SpaceX moves forward with a launch attempt next Tuesday evening, the long-range outlook from the National Weather Service calls for a 30 percent chance of showers and thunderstorms.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

FAA: Airplanes should stay far away from SpaceX’s next Starship launch Read More »

after-back-to-back-failures,-spacex-tests-its-fixes-on-the-next-starship

After back-to-back failures, SpaceX tests its fixes on the next Starship

But that didn’t solve the problem. Once again, Starship’s engines cut off too early, and the rocket broke apart before falling to Earth. SpaceX said “an energetic event” in the aft portion of Starship resulted in the loss of several Raptor engines, followed by a loss of attitude control and a loss of communications with the ship.

The similarities between the two failures suggest a likely design issue with the upgraded “Block 2” version of Starship, which debuted in January and flew again in March. Starship Block 2 is slightly taller than the ship SpaceX used on the rocket’s first six flights, with redesigned flaps, improved batteries and avionics, and notably, a new fuel feed line system for the ship’s Raptor vacuum engines.

SpaceX has not released the results of the investigation into the Flight 8 failure, and the FAA hasn’t yet issued a launch license for Flight 9. Likewise, SpaceX hasn’t released any information on the changes it made to Starship for next week’s flight.

What we do know about the Starship vehicle for Flight 9—designated Ship 35—is that it took a few tries to complete a full-duration test-firing. SpaceX completed a single-engine static fire on April 30, simulating the restart of a Raptor engine in space. Then, on May 1, SpaceX aborted a six-engine test-firing before reaching its planned 60-second duration. Videos captured by media observing the test showed a flash in the engine plume, and at least one piece of debris was seen careening out of the flame trench below the ship.

SpaceX ground crews returned Ship 35 to the production site a couple of miles away, perhaps to replace a damaged engine, before rolling Starship back to the test stand over the weekend for Monday’s successful engine firing.

Now, the ship will head back to the Starbase build site, where technicians will make final preparations for Flight 9. These final tasks may include loading mock-up Starlink broadband satellites into the ship’s payload bay and touchups to the rocket’s heat shield.

These are two elements of Starship that SpaceX engineers are eager to demonstrate on Flight 9, beyond just fixing the problems from the last two missions. Those failures prevented Starship from testing its satellite deployer and an upgraded heat shield designed to better withstand scorching temperatures up to 2,600° Fahrenheit (1,430° Celsius) during reentry.

After back-to-back failures, SpaceX tests its fixes on the next Starship Read More »

rocket-report:-rocket-lab-to-demo-cargo-delivery;-america’s-new-icbm-in-trouble

Rocket Report: Rocket Lab to demo cargo delivery; America’s new ICBM in trouble


SpaceX’s plan to turn Starbase into Texas’ newest city won the approval of voters—err, employees.

A decommissioned Titan II intercontinental ballistic missile inside a silo at a museum in Green Valley, Arizona.

Welcome to Edition 7.43 of the Rocket Report! There’s been a lot of recent news in hypersonic testing. We cover some of that in this week’s newsletter, but it’s just a taste of the US military’s appetite for fielding its own hypersonic weapons, and conversely, the Pentagon’s emphasis on the detection and destruction of an enemy’s hypersonic missiles. China has already declared its first hypersonic weapons operational, and Russia claims to have them, too. Now, the Pentagon is finally close to placing hypersonic missiles with combat units. Many US rocket companies believe the hypersonics sector is a lucrative business. Some companies have enough confidence in this emerging market—or lack of faith in the traditional space launch market—to pivot entirely toward hypersonics. I’m interested in seeing if their bets pay off.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Stratolaunch tests reusable hypersonic rocket plane. Stratolaunch has finally found a use for the world’s largest airplane. Twice in the last five months, the company launched a hypersonic vehicle over the Pacific Ocean, accelerated it to more than five times the speed of sound, and autonomously landed at Vandenberg Space Force Base in California, Ars reports. Stratolaunch used the same Talon-A vehicle for both flights, demonstrating its reusability, a characteristic that sets it apart from competitors. Zachary Krevor, Stratolaunch’s president and CEO, said his team aims to ramp up to monthly flights by the end of the year.

A 21st century X-15 … This is the first time anyone in the United States has flown a reusable hypersonic rocket plane since the last flight of the X-15, the iconic rocket-powered aircraft that pushed the envelope of high-altitude, high-speed flight 60 years ago. Like the Talon-A, the X-15 released from a carrier jet and ignited a rocket engine to soar into the uppermost layers of the atmosphere. But the X-15 had a pilot in command, while the Talon-A flies on autopilot. Stratolaunch is one of several companies participating in a US military program to test parts and technologies for use on future hypersonic weapons. “Why the autonomous flight matters is because hypersonic systems are now pushing the envelope in terms of maneuvering capability, maneuvering beyond what can be done by the human body,” Krevor said.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

New details about another recent hypersonic test. A hypersonic missile test on April 25 validated the launch mechanism for the US Navy Conventional Prompt Strike (CPS) weapon program, the Defense Department said on May 2. The CPS missile, the Navy’s name for what the US Army calls the Long Range Hypersonic Weapon (LRHW), launched from Cape Canaveral Space Force Station, Florida, Aviation Week & Space Technology Reports. While the Army and Navy versions use the same hypersonic glide vehicle and missile, they use different launch mechanisms. Last year, the Army tested its version of the hypersonic missile launcher. Now, the Navy has validated the cold-gas launch mechanism it will install on guided missile destroyers.

Deploying soon … “The cold-gas approach allows the Navy to eject the missile from the platform and achieve a safe distance above the ship prior to first stage ignition,” said Vice Adm Johnny R. Wolfe Jr., director of the Navy’s Strategic Systems Programs, which is the lead designer of the common hypersonic missile. The Army plans to field its Long Range Hypersonic Weaponalso called “Dark Eagle”with a combat unit later this year, while the Navy’s version won’t be ready for testing at sea until 2027 or 2028. Both missiles are designed for conventional (non-nuclear) strikes. The Army’s Dark Eagle will be the US military’s first operational hypersonic weapon.

Sentinel needs new silos. The Air Force will have to dig entirely new nuclear missile silos for the LGM-35A Sentinel, creating another complication for a troubled program that is already facing future cost and schedule overruns, Defense News reports. The Air Force originally hoped the existing silos that have housed Minuteman III intercontinental ballistic missiles could be adapted to launch Sentinel missiles, which would be more efficient than digging entirely new silos. But a test project at Vandenberg Space Force Base in California showed that approach would be fraught with further problems and cause the program to run even further behind and over budget, the service said.

Rising costs … Sentinel, developed by Northrop Grumman, will replace the Air Force’s fleet of Minuteman III ICBMs, which entered service in 1970, as the land-based leg of the military’s nuclear triad. It was originally expected to cost $77.7 billion, but projected future costs ran so severely over budget that in January 2024, it triggered a review process known as a critical Nunn-McCurdy breach. After that review, the Pentagon last year concluded Sentinel was too critical to national security to abandon, but ordered the Air Force to restructure it to bring its costs under control. Further studies of the program are now showing more potential problems.

Gilmour says it (hopefully) will wait no more. The Australian launch startup Gilmour Space Technologies has been given approval by Australia’s Civil Aviation Safety Authority for the debut launch of its Eris orbital rocket, InnovationAus.com reports. There is still one final regulatory hurdle, a final sign-off from the Australian Space Agency. If that happens in the next few days, Gilmour’s launch window will open May 15. The company has announced tentative launch schedules before, only to be thwarted by technical issues, regulatory hangups, or bad weather. Most recently, Gilmour got within six days of its targeted launch date in March before regulatory queries and the impact of a tropical cyclone forced a delay.

Stand by for history … The launch of Gilmour’s three-stage Eris rocket will be historic. If successful, the 82-foot-tall (25-meter) rocket will be Australia’s first homegrown orbital launcher. Eris is capable of hauling cargoes up to 672 pounds (305 kilograms) to orbit, according to Gilmour. The company has dispatched a small team from its Gold Coast headquarters to the launch site in Queensland, on Australia’s northeastern coast, to perform testing on the vehicle after it remained dormant for weeks. (submitted by trainticket)

Fresh insights into one of SpaceX’s worst days. When a Falcon 9 rocket exploded on its launch pad nearly nine years ago, SpaceX officials initially struggled to explain how it could have happened. The lack of a concrete explanation for the failure led SpaceX engineers to pursue hundreds of theories. One was the possibility that an outside “sniper” had shot the rocket. This theory appealed to SpaceX founder Elon Musk. A building leased by SpaceX’s main competitor in launch, United Launch Alliance, lay just a mile away from the Falcon 9 launch pad, and a video around the time of the explosion indicated a flash on its roof. Ars has now obtained a letter sent to SpaceX by the Federal Aviation Administration more than a month after the explosion, indicating the matter was elevated to the FBI. The bureau looked into it, and what did they find? Nothing, apparently.

Investigation terminated … “The FBI has informed us that based upon a thorough and coordinated review by the appropriate Federal criminal and security investigative authorities, there were no indications to suggest that sabotage or any other criminal activity played a role in the September 1 Falcon 9 explosion,” an FAA official wrote in the letter to SpaceX. Ultimately, engineers determined the explosion was caused by the sudden failure of a high-pressure helium tank on the Falcon 9’s upper stage.

Eric Schmidt’s motivations become clearer. In the nearly two months since former Google chief executive Eric Schmidt acquired Relativity Space, the billionaire has not said much publicly about his plans for the launch company. However, his intentions for Relativity now appear to be increasingly clear: He wants to have the capability to launch a significant amount of computing infrastructure into space, Ars reports. During a congressional hearing last month, Schmidt discussed the need more electricity to power data centers that will facilitate the computing needs for AI development and applications.

How big this crisis is … “People are planning 10 gigawatt data centers,” Schmidt said at the hearing. “Gives you a sense of how big this crisis is.” In an exchange with my colleague Eric Berger on X, Schmidt seemed to confirm he bought Relativity Space as a means to support the development of data centers in space. Such data centers, ideally, would be powered by solar panels and be able to radiate heat into the vacuum of space. Relativity’s Terran R rocket, still in development, is well-sized to play a role in launching the infrastructure for data centers in space. But several big questions remain: How big would these data centers be? Where would they go within an increasingly cluttered low-Earth orbit? Could space-based solar power meet their energy needs? Can all of this heat be radiated away efficiently in space? Economically, would any of this make sense?

Rocket Lab, meet Rocket Cargo. Rocket Lab’s next-generation Neutron rocket has been selected for an experimental US Air Force mission to test rapid global cargo delivery capabilities, a milestone for the company as it pushes further into the national security launch market, Space News reports. The mission, slated for no earlier than 2026, will fall under the Air Force Research Laboratory’s (AFRL) “Rocket Cargo” program, which explores how commercial launch vehicles might one day deliver materiel to any point on Earth within hours—a vision akin to airlift logistics via spaceflight.

A new mission for Neutron … Peter Beck, Rocket Lab’s founder and CEO, said the Rocket Cargo contract from AFRL represents an “experimental phase” of the program. “It’ll be interesting to see if that turns into a full requirement for an operational capability,” he said Thursday. Neutron is expected to carry a payload that will reenter Earth’s atmosphere, demonstrating the rocket’s ability to safely transport and deploy cargo. SpaceX’s Starship, with roughly 10 times more payload lift capacity than Neutron, is also on contract with AFRL for demonstrations for the Rocket Cargo program. Meanwhile, Beck said Neutron remains on schedule for its inaugural launch from Wallops Island, Virginia, later this year.

Trump calls for canceling the Space Launch System. The Trump administration released its “skinny” budget proposal earlier this week. Overall, NASA is asked to take a 25 percent cut in its budget, from about $25 billion to $18.8 billion. There are also significant changes proposed in NASA’s biggest-ticket exploration programs. The budget would cancel the Lunar Gateway that NASA has started developing and end the Space Launch System rocket and Orion spacecraft after two more flights, Artemis II and Artemis III, Ars reports. A statement from the White House calls the SLS rocket “grossly expensive” with projected costs of $4 billion per launch.

If not SLS, then what? … “The budget funds a program to replace SLS and Orion flights to the Moon with more cost-effective commercial systems that would support more ambitious subsequent lunar missions,” the Trump administration wrote. There are no further details about those commercial systems. NASA has contracted with SpaceX and Blue Origin to develop reusable landers for the Moon, and both of these systems include vehicles to move from Earth orbit to the Moon. In the budget proposal, the White House sets a priority for a human expedition to Mars to follow the Artemis program’s lunar landing.

FAA unlocks SpaceX launch cadence. Although we are still waiting for SpaceX to signal when it will fly the Starship rocket again, the company got some good news from the Federal Aviation Administration on Tuesday, Ars reports. After a lengthy review, the federal agency agreed to allow SpaceX to substantially increase the number of annual launches from its Starbase launch site in South Texas. Previously, the company was limited to five launches, but now it will be able to conduct up to 25 Starship launches and landings during a calendar year.

Waiting for clearance … Although the new finding permits SpaceX to significantly increase its flight rate from South Texas, the company still has work to do before it can fly Starship again. The company’s engineers are still working to get the massive rocket back to flight after its eighth mission broke apart off the coast of Florida on March 6. This was the second time, in two consecutive missions, that the Starship upper stage failed during its initial phase of flight. After two consecutive failures, there will be a lot riding on the next test flight of Starship. It will also be the first time the company attempts to fly a first stage of the rocket for a second time. According to some sources, if additional testing of this upper stage goes well, Starship could launch as early as May 19. This date is also supported by a notice to mariners, but it should be taken as notional rather than something to be confident in.

SpaceX adds to its dominion. Elon Musk’s wish to create his own city just came true, the Texas Tribune reports. On Saturday, voters living around SpaceX’s Starship rocket testing and launch facility in South Texas approved a measure to incorporate the area as a new city. Unofficial results later Saturday night showed the election was a landslide: 212 voted in favor; 6 opposed. After the county certifies the results, the new city will be official.

Elections have consequences … Only 283 people, those who live within the boundaries of the proposed city, were eligible to vote in the election. A Texas Newsroom analysis of the voter rolls showed two-thirds of them either work for SpaceX or had already indicated their support. The three unopposed people who ran to lead the city also have ties to SpaceX. It’s not clear if Musk, whose primary residence is at Starbase, cast a ballot. The vote clears the way for Musk to try to capture more control over the nearby public beach, which must be closed for launches.

Next three launches

May 10: Falcon 9 | Starlink 15-3 | Vandenberg Space Force Base, California | 00: 00 UTC

May 10: Falcon 9 | Starlink 6-91 | Cape Canaveral Space Force Station, Florida | 06: 28 UTC

May 11: Falcon 9 | Starlink 6-83 | Kennedy Space Center, Florida | 04: 24 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Rocket Lab to demo cargo delivery; America’s new ICBM in trouble Read More »

faa-green-lights-starship-launches-every-other-week-from-starbase

FAA green-lights Starship launches every other week from Starbase

Although we are still waiting for SpaceX to signal when it will fly the Starship rocket again, the company got some good news from the Federal Aviation Administration on Tuesday.

After a lengthy review, the federal agency agreed to allow SpaceX to substantially increase the number of annual launches from its Starbase launch site in South Texas. Previously, the company was limited to five launches, but now it will be able to conduct up to 25 Starship launches and landings during a calendar year.

“The FAA has determined that modifying SpaceX’s vehicle operator license supporting the increased launch and landing cadence of the Starship/Super Heavy launch vehicle would not significantly impact the quality of the human environment,” states the document, known as a Mitigated Finding of No Significant Impact. This finding was signed by Daniel P. Murray, executive director of the FAA’s Office of Operational Safety.

This ruling follows a draft finding issued six months ago that indicated this would be the final outcome.

Assessing all of the impacts

Among the impacts considered were increased trucking operations to deliver water and various propellants needed to support Starship launches. An earlier analysis by the FAA found that, to support a cadence of 25 launches a year, the vehicle presence on State Highway 4 to Boca Chica Beach will grow from an estimated 6,000 trucks a year to 23,771 trucks annually.

Because of this, the FAA is requiring SpaceX to undertake dozens of mitigating actions. For example, for trucks, it has sought to reduce employee miles driven on the primary artery leading to the Starbase launch site.

“The Proposed Action would increase annual truck traffic, but mitigation measures like employee shuttles and limiting water truck deliveries to daytime hours would help reduce traffic impacts to wildlife,” the FAA document states.

FAA green-lights Starship launches every other week from Starbase Read More »

spacex-just-took-a-big-step-toward-reusing-starship’s-super-heavy-booster

SpaceX just took a big step toward reusing Starship’s Super Heavy booster

SpaceX is having trouble with Starship’s upper stage after back-to-back failures, but engineers are making remarkable progress with the rocket’s enormous booster.

The most visible sign of SpaceX making headway with Starship’s first stage—called Super Heavycame at 9: 40 am local time (10: 40 am EDT; 14: 40 UTC) Thursday at the company’s Starbase launch site in South Texas. With an unmistakable blast of orange exhaust, SpaceX fired up a Super Heavy booster that has already flown to the edge of space. The burn lasted approximately eight seconds.

This was the first time SpaceX has test-fired a “flight-proven” Super Heavy booster, and it paves the way for this particular rocket—designated Booster 14—to fly again soon. SpaceX confirmed a reflight of Booster 14, which previously launched and returned to Earth in January, will happen on next Starship launch With Thursday’s static fire test, Booster 14 appears to be closer to flight readiness than any of the boosters in SpaceX’s factory, which is a short distance from the launch site.

SpaceX said 29 of the booster’s 33 methane-fueled Raptor engines are flight-proven. “The first Super Heavy reuse will be a step towards our goal of zero-touch reflight,” SpaceX wrote on X.

A successful reflight of the Super Heavy booster would be an important milestone for the Starship program, while engineers struggle with problems on the rocket’s upper stage, known simply as the ship.

What a difference

Super Heavy’s engines are capable of producing nearly 17 million pounds of thrust, twice the power of NASA’s Saturn V rocket that sent astronauts toward the Moon. Super Heavy is perhaps the most complex rocket booster ever built. It’s certainly the largest. To get a sense of how big this booster is, imagine the fuselage of a Boeing 747 jumbo jet standing on end.

SpaceX has now launched eight full-scale test flights of Starship, with a Super Heavy booster and Starship’s upper stage stacked together to form a rocket that towers 404 feet (123.1 meters) tall. The booster portion of the rocket has performed well so far, with seven consecutive successful launches since a failure on Starship’s debut flight.

Booster 14 comes in for the catch after flying to the edge of space on January 16. Credit: SpaceX

Most recently, SpaceX has recovered three Super Heavy boosters in four attempts. SpaceX has a wealth of experience with recovering and reusing Falcon 9 boosters. The total number of Falcon rocket landings is now 426.

SpaceX reused a Falcon 9 booster for the first time in March 2017. This was an operational flight with a communications satellite on a mission valued at several hundred million dollars.

Ahead of the milestone Falcon 9 reflight eight years ago, SpaceX spent nearly a year refurbishing and retesting the rocket after it returned from its first mission. The rocket racked up more mileage on the ground than it did in flight, first returning to its Florida launch base on a SpaceX drone ship and then moving by truck to SpaceX’s headquarters in Hawthorne, California, for thorough inspections and refurbishment.

SpaceX just took a big step toward reusing Starship’s Super Heavy booster Read More »

what’s-behind-the-recent-string-of-failures-and-delays-at-spacex?

What’s behind the recent string of failures and delays at SpaceX?


SpaceX has long had a hard-charging culture. Is it now charging too hard?

File photo of a Falcon 9 launch from Vandenberg Space Force Base, California. Credit: SpaceX

It has been an uncharacteristically messy start to the year for the world’s leading spaceflight company, SpaceX.

Let’s start with the company’s most recent delay. The latest launch date for a NASA mission to survey the sky and better understand the early evolution of the Universe comes Monday night. The launch window for this SPHEREx mission opened on February 28, but a series of problems with integrating the rocket and payloads have delayed the mission nearly two weeks.

Then there are the Falcon 9 first stage issues. Last week, a Falcon 9 rocket launched nearly two dozen Starlink satellites into low-Earth orbit. However, one of the rocket’s nine engines suffered a fuel leak during ascent. Due to a lack of oxygen in the thinning atmosphere, the fuel leak did not preclude the satellites from reaching orbit. But when the first stage returned to Earth, it caught fire after landing on a droneship, toppling over. This followed a similar issue in August, when there was a fire in the engine compartment. After nearly three years without a Falcon 9 landing failure, SpaceX had two in six months.

SpaceX has also experienced recent and recurring problems with the Falcon 9 rocket’s expendable upper stage. On February 1, a second stage deorbit burn failed after a Starlink launch. This led to propellant tanks from the stage crashing into western Poland, causing property damage but harming no one. It was the third time in six months that SpaceX had encountered an issue with the Falcon 9 second stage.

Finally, and most publicly, the company’s massive Starship has failed on its last two test flights.

Although the vehicle’s first stage performed nominally during test flights in January and March, returning safely to its launch site, the Starship upper stage exploded spectacularly in flight twice. On both occasions, a fire developed in the engine section of Starship, and the vehicle rained fiery debris trails over the Bahamas and other nearby islands. Air traffic controllers diverted or delayed dozens of commercial airline flights flying through the debris footprint.

Putting this into perspective

These issues have occurred against the backdrop of a largely successful and unprecedented launch performance.

For all of the problems described earlier, the company’s only operational payload loss was its own Starlink satellites in July 2024 due to a second stage issue. Before that, SpaceX had not lost a payload with the Falcon 9 in nearly a decade. So SpaceX has been delivering for its customers in a big way.

SpaceX has achieved a launch cadence with the Falcon 9 rocket that’s unmatched by any previous rocket—or even nation—in history. If the SPHEREx mission launches tonight, as anticipated, it would be the company’s 27th mission of this year. The rest of the world combined, including China and its growing space activity, will have a total of 19 orbital launch attempts.

In the United States, SpaceX’s historic launch competitor, United Launch Alliance, has yet to fly a single rocket this year. In fact, the company has not launched in 156 days. During that time, SpaceX has launched 64 Falcon 9 rockets. So yes, SpaceX has had some technical issues. But it is also flying circles around its competition.

The recent failures are also unlikely to jeopardize, at least in the near term, SpaceX’s globally dominant position. The company provides the Western world’s only human access to orbit, and that’s unlikely to change for a while. SpaceX launches the vast majority of NASA’s science missions, and until United Launch Alliance’s Vulcan rocket becomes certified, it remains the US military’s only way to get larger payloads into space. The company also operates a global Internet network with more than 5 million users, and that number is growing rapidly.

All the same, these recent failures may be telling us something about SpaceX.

What is causing this

Without being inside SpaceX, it is impossible to put a fine point on what precisely is happening to cause these technical issues.

Probably the most significant factor is the company’s ever-present pressure to accelerate, even while taking on more and more challenging tasks. No country or private company ever launched as many times as SpaceX did in 2024. By way of comparison, NASA launched the Space Shuttle 135 times, a comparable number to the total of Falcon 9 launches last year (132), over a 30-year period.

At the same time, the company has been attempting to move its talented engineering team off the Falcon 9 and Dragon programs and onto Starship to keep that ambitious program moving forward.

To put it succinctly, SpaceX is balancing a lot of spinning plates, and the company’s leadership is telling its employees to spin the plates faster and faster.

Multiple sources have indicated that the Starship engineering team was under immense pressure after the January 16 failure to identify the cause of a “harmonic response” in the vehicle’s upper stage that contributed to its loss. The goal was to find and fix the problem as quickly as possible.

Let’s step back and appreciate that Starship is an experimental system, by far the largest and most powerful rocket ever flown, and it catastrophically failed in January. During a span of just seven weeks, the Starship team had to study the failure, address any problems, and prepare new hardware.

How much of this is on SpaceX founder Elon Musk? Some have suggested his deep involvement in the 2024 presidential election, oversight of the Department of Government Efficiency, excessive social media activity, and more—like picking fights with US senators— have distracted him from the problems of SpaceX. And there’s no doubt that Musk has been focused on things other than SpaceX for the last half-year or longer.

However, in Musk’s absence, he has capable lieutenants such as Mark Juncosa leading the way. SpaceX has long had a hard-charging culture instilled by Musk since the founding of the company. Musk’s modus operandi is to push his teams to reach some ambitious goal, and when they do, he sets a new, even more audacious target. It may be not so much Musk’s absence that is causing these issues but rather the company’s relentless culture.

It seems possible that, at least for now, SpaceX has reached the speed limit for commercial spaceflight. When you’re launching 150 times a year and building two second stages a week, it’s hard to escape the possibility that some details are slipping through the cracks. And it’s not just the launches. SpaceX is operating a constellation of more than 7,000 satellites, flying humans into space regularly, and developing an unprecedented rocket like Starship.

The recent failures may be signs of cracks in the foundation.

What are the implications

So far, the consequences of these failures have not been lethal. But space remains a difficult, hazardous game. Reentering debris from a Falcon 9 upper stage could have struck someone in Poland. God forbid, a second stage could fail early in a crewed mission.

The risks of serious problems with Starlink should not be understated, either. There have been unconfirmed rumors in recent months of near misses between Starlink satellites and objects in low-Earth orbit. Additional debris in this increasingly cluttered space would be disastrous.

To date, the Falcon 9 rocket program has not been slowed down by these issues. It’s perhaps not fully appreciated how utterly reliant NASA’s human spaceflight activities are on the Falcon 9. It currently launches the only crew-capable vehicle in Dragon. However, a Cargo version of Dragon also flies on the Falcon 9, and this is NASA’s only way to get scientific experiments back to Earth. And for at least the next year, the only other US cargo vehicle, Northrop Grumman’s Cygnus, also must launch on the Falcon 9.

Not just NASA, but every other space station partner outside of Russia, depends on the Falcon 9 for human spaceflight activities. The rocket must fly, and fly safely, or the West will be grounded.

With Starship, the recent failures are a significant setback. Although there will no doubt be pressure from SpaceX leadership to rapidly move forward, there appears to be a debilitating design flaw in the upgraded version of Starship. It will be important to understand and address this. Another launch before this summer seems unlikely. A third consecutive catastrophic failure would be really, really bad.

For the space agency’s Artemis program to return humans to the Moon, Starship’s problems spell more delays. Musk had already signaled in late February that a critical refueling demonstration will now not happen this year. This test is an essential milestone on the path to the Moon, and its delay all but ensures the first lunar landing will not happen in 2027 as currently envisioned.

Most likely, the back-to-back Starship failures will also cement the path forward for Artemis II and Artemis III to fly as planned, with crews flying on the Space Launch System rocket and Orion spacecraft.

As for Mars, the red planet remains in the far distance, waiting for SpaceX to address its red flags here on Earth.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

What’s behind the recent string of failures and delays at SpaceX? Read More »

the-starship-program-hits-another-speed-bump-with-second-consecutive-failure

The Starship program hits another speed bump with second consecutive failure

The flight plan going into Thursday’s mission called for sending Starship on a journey halfway around the world from Texas, culminating in a controlled reentry over the Indian Ocean before splashing down northwest of Australia.

The test flight was supposed to be a do-over of the previous Starship flight on January 16, when the rocket’s upper stage—itself known as Starship, or ship—succumbed to fires fueled by leaking propellants in its engine bay. Engineers determined the most likely cause of the propellant leak was a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected.

The Super Heavy booster returned to Starbase in Texas to be caught back at the launch pad. Credit: SpaceX

Engineers test-fired the Starship vehicle earlier this month for this week’s test flight, validating changes to propellant temperatures, operating thrust, and the ship’s fuel feed lines leading to its six Raptor engines.

But engineers missed something. On Thursday, the Raptor engines began shutting down on Starship about eight minutes into the flight, and the rocket started tumbling 90 miles (146 kilometers) over the southeastern Gulf of Mexico. SpaceX ground controllers lost all contact with the rocket about nine-and-a-half minutes after liftoff.

“Prior to the end of the ascent burn, an energetic event in the aft portion of Starship resulted in the loss of several Raptor engines,” SpaceX wrote on X. “This in turn led to a loss of attitude control and ultimately a loss of communications with Starship.”

Just like in January, residents and tourists across the Florida peninsula, the Bahamas, and the Turks and Caicos Islands shared videos of fiery debris trails appearing in the twilight sky. Air traffic controllers diverted or delayed dozens of commercial airline flights flying through the debris footprint, just as they did in response to the January incident.

There were no immediate reports Thursday of any Starship wreckage falling over populated areas. In January, residents in the Turks and Caicos Islands recovered small debris fragments, including one piece that caused minor damage when it struck a car. The debris field from Thursday’s failed flight appeared to fall west of the areas where debris fell after Starship Flight 7.

A spokesperson for the Federal Aviation Administration said the regulatory agency will require SpaceX to perform an investigation into Thursday’s Starship failure.

The Starship program hits another speed bump with second consecutive failure Read More »

spacex-readies-a-redo-of-last-month’s-ill-fated-starship-test-flight

SpaceX readies a redo of last month’s ill-fated Starship test flight


The FAA has cleared SpaceX to launch Starship’s eighth test flight as soon as Monday.

Ship 34, destined to launch on the next Starship test flight, test-fired its engines in South Texas on February 12. Credit: SpaceX

SpaceX plans to launch the eighth full-scale test flight of its enormous Starship rocket as soon as Monday after receiving regulatory approval from the Federal Aviation Administration.

The test flight will be a repeat of what SpaceX hoped to achieve on the previous Starship launch in January, when the rocket broke apart and showered debris over the Atlantic Ocean and Turks and Caicos Islands. The accident prevented SpaceX from completing many of the flight’s goals, such as testing Starship’s satellite deployment mechanism and new types of heat shield material.

Those things are high on the to-do list for Flight 8, set to lift off at 5: 30 pm CST (6: 30 pm EST; 23: 30 UTC) Monday from SpaceX’s Starbase launch facility on the Texas Gulf Coast. Over the weekend, SpaceX plans to mount the rocket’s Starship upper stage atop the Super Heavy booster already in position on the launch pad.

The fully stacked rocket will tower 404 feet (123.1 meters) tall. Like the test flight on January 16, this launch will use a second-generation, Block 2, version of Starship with larger propellant tanks with 25 percent more volume than previous vehicle iterations. The payload compartment near the ship’s top is somewhat smaller than the payload bay on Block 1 Starships.

This block upgrade moves SpaceX closer to attempting more challenging things with Starship, such as returning the ship, or upper stage, back to the launch site from orbit. It will be caught with the launch tower at Starbase, just like SpaceX accomplished last year with the Super Heavy booster. Officials also want to bring Starship into service to launch Starlink Internet satellites and demonstrate in-orbit refueling, an enabling capability for future Starship flights to the Moon and Mars.

NASA has contracts with SpaceX worth more than $4 billion to develop a Starship spinoff as a human-rated Moon lander for the Artemis lunar program. The mega-rocket is central to Elon Musk’s ambition to create a human settlement on Mars.

Another shot at glory

Other changes introduced on Starship Version 2 include redesigned forward flaps, which are smaller and closer to the tip of the ship’s nose to better protect them from the scorching heat of reentry. Technicians also removed some of the ship’s thermal protection tiles to “stress-test vulnerable areas” of the vehicle during descent. SpaceX is experimenting with metallic tile designs, including one with active cooling, that might be less brittle than the ceramic tiles used elsewhere on the ship.

Engineers also installed rudimentary catch fittings on the ship to evaluate how they respond to the heat of reentry, when temperatures outside the vehicle climb to 2,600° Fahrenheit (1,430° Celsius). Read more about Starship Version in this previous story from Ars.

It will take about 1 hour and 6 minutes for Starship to fly from the launch pad in South Texas to a splashdown zone in the Indian Ocean northwest of Australia. The rocket’s Super Heavy booster will fire 33 methane-fueled Raptor engines for two-and-a-half minutes as it climbs east from the Texas coastline, then jettison from the Starship upper stage and reverse course to return to Starbase for another catch with mechanical arms on the launch tower.

Meanwhile, Starship will ignite six Raptor engines and accelerate to a speed just shy of orbital velocity, putting the ship on a trajectory to reenter the atmosphere after soaring about halfway around the world.

Booster 15 perched on the launch mount at Starbase, Texas. Credit: SpaceX

If you’ve watched the last few Starship flights, this profile probably sounds familiar. SpaceX achieved successful splashdowns after three Starship test flights last year, and hoped to do it again before the premature end of Flight 7 in January. Instead, the accident was the most significant technical setback for the Starship program since the first full-scale test flight in 2023, which damaged the launch pad before the rocket spun out of control in the upper atmosphere.

Now, SpaceX hopes to get back on track. At the end of last year, company officials said they targeted as many as 25 Starship flights in 2025. Two months in, SpaceX is about to launch its second Starship of the year.

The breakup of Starship last month prevented SpaceX from evaluating the performance of the ship’s Pez-like satellite deployer and upgraded heat shield. Engineers are eager to see how those perform on Monday’s flight. Once in space, the ship will release four simulators replicating the approximate size and mass of SpaceX’s next-generation Starlink Internet satellites. They will follow the same suborbital trajectory as Starship and reenter the atmosphere over the Indian Ocean.

That will be followed by a restart of a Raptor engine on Starship in space, repeating a feat first achieved on Flight 6 in November. Officials want to ensure Raptor engines can reignite reliably in space before actually launching Starship into a stable orbit, where the ship must burn an engine to guide itself back into the atmosphere for a controlled reentry. With another suborbital flight on tap Monday, the engine relight is purely a confidence-building demonstration and not critical for a safe return to Earth.

The flight plan for Starship’s next launch includes another attempt to catch the Super Heavy booster with the launch tower, a satellite deployment demonstration, and an important test of its heat shield. Credit: SpaceX

Then, about 47 minutes into the mission, Starship will plunge back into the atmosphere. If this flight is like the previous few, expect to see live high-definition video streaming back from Starship as super-heated plasma envelops the vehicle in a cloak of pink and orange. Finally, air resistance will slow the ship below the speed of sound, and just 20 seconds before reaching the ocean, the rocket will flip to a vertical orientation and reignite its Raptor engines again to brake for splashdown.

This is where SpaceX hopes Starship Version 2 will shine. Although three Starships have made it to the ocean intact, the scorching temperatures of reentry damaged parts of their heat shields and flaps. That won’t do for SpaceX’s vision of rapidly reusing Starship with minimal or no refurbishment. Heat shield repairs slowed down the turnaround time between NASA’s space shuttle missions, and officials hope the upgraded heat shield on Starship Version 2 will decrease the downtime.

FAA’s green light

The FAA confirmed Friday it issued a launch license earlier this week for Starship Flight 8.

“The FAA determined SpaceX met all safety, environmental and other licensing requirements for the suborbital test flight,” an FAA spokesperson said in a statement.

The federal regulator oversaw a SpaceX-led investigation into the failure of Flight 7. SpaceX said NASA, the National Transportation Safety Board, and the US Space Force also participated in the investigation, which determined that propellant leaks and fires in an aft compartment, or attic, of Starship led to the shutdown of its engines and eventual breakup.

Engineers concluded the leaks were most likely caused by a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected from ground testing.

Earlier this month, SpaceX completed an extended-duration static fire of the next Starship upper stage to test hardware modifications at multiple engine thrust levels. According to SpaceX, findings from the static fire informed changes to the fuel feed lines to Starship’s Raptor engines, adjustments to propellant temperatures, and a new operating thrust for the next test flight.

“To address flammability potential in the attic section on Starship, additional vents and a new purge system utilizing gaseous nitrogen are being added to the current generation of ships to make the area more robust to propellant leakage,” SpaceX said. “Future upgrades to Starship will introduce the Raptor 3 engine, reducing the attic volume and eliminating the majority of joints that can leak into this volume.”

FAA officials were apparently satisfied with all of this. The agency’s commercial spaceflight division completed a “comprehensive safety review” and determined Starship can return to flight operations while the investigation into the Flight 7 failure remains open. This isn’t new. The FAA also used this safety determination to expedite SpaceX launch license approvals last year as officials investigated mishaps on Starship and Falcon 9 rocket flights.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX readies a redo of last month’s ill-fated Starship test flight Read More »

rocket-report:-another-hiccup-with-spacex-upper-stage;-japan’s-h3-starts-strong

Rocket Report: Another hiccup with SpaceX upper stage; Japan’s H3 starts strong


Vast’s schedule for deploying a mini-space station in low-Earth orbit was always ambitious.

A stack of 21 Starlink Internet satellites arrives in orbit Tuesday following launch on a Falcon 9 rocket. Credit: SpaceX

Welcome to Edition 7.30 of the Rocket Report! The US government relies on SpaceX for a lot of missions. These include launching national security satellites, putting astronauts on the Moon, and global broadband communications. But there are hurdles—technical and, increasingly, political—on the road ahead. To put it generously, Elon Musk, without whom much of what SpaceX does wouldn’t be possible, is one of the most divisive figures in American life today.

Now, a Democratic lawmaker in Congress has introduced a bill that would end federal contracts for special government employees (like Musk), citing conflict-of-interest concerns. The bill will go nowhere with Republicans in control of Congress, but it is enough to make me pause and think. When the Trump era passes and a new administration takes the White House, how will they view Musk? Will there be an appetite to reduce the government’s reliance on SpaceX? To answer this question, you must first ask if the government will even have a choice. What if, as is the case in many areas today, there’s no viable replacement for the services offered by SpaceX?

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Blue Origin flight focuses on lunar research. For the first time, Jeff Bezos’ Blue Origin space venture has put its New Shepard suborbital rocket ship through a couple of minutes’ worth of Moon-level gravity, GeekWire reports. The uncrewed mission, known as NS-29, sent 30 research payloads on a 10-minute trip from Blue Origin’s Launch Site One in West Texas. For this trip, the crew capsule was spun up to 11 revolutions per minute, as opposed to the typical half-revolution per minute. The resulting centrifugal force was equivalent to one-sixth of Earth’s gravity, which is what would be felt on the Moon.

Gee, that’s cool … The experiments aboard Blue Origin’s space capsule examined how to process lunar soil to extract resources and how to manufacture solar cells on the Moon for Blue Origin’s Blue Alchemist project. Another investigated how moondust gets electrically charged and levitated when exposed to ultraviolet light. These types of experiments in partial gravity can be done on parabolic airplane flights, but those only provide a few seconds of the right conditions to simulate the Moon’s gravity. (submitted by EllPeaTea)

Orbex announces two-launch deal with D-Orbit. UK-based rocket builder Orbex announced Monday that it has signed a two-launch deal with Italian in-orbit logistics provider D-Orbit, European Spaceflight reports. The deal includes capacity aboard two launches on Orbex’s Prime rocket over the next three years. D-Orbit aggregates small payloads on rideshare missions (primarily on SpaceX rockets so far) and has an orbital transfer vehicle for ferrying satellites to different altitudes after separation from a launch vehicle. Orbex’s Prime rocket is sized for the small satellite industry, and the company aims to debut it later this year.

Thanks to fresh funding? … Orbex has provided only sparse updates on its progress toward launching the Prime rocket. What we do know is that Orbex suspended plans to develop a spaceport in Scotland to focus its resources on the Prime rocket itself. Despite little evidence of any significant accomplishments, Orbex last month secured a $25 million investment from the UK government. The timing of the launch agreement with D-Orbit begs the question of whether the UK government’s backing helped seal the deal. As Andrew Parsonson of European Spaceflight writes: “Is this a clear indication of how important strong institutional backing is for the growth of privately developed launch systems in Europe?” (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Falcon 9’s upper stage misfires again. The second stage of a SpaceX Falcon 9 rocket remained in orbit following a launch Saturday from Vandenberg Space Force Base, California. The rocket successfully deployed a new batch of Starlink Internet satellites but was supposed to reignite its engine for a braking maneuver to head for a destructive reentry over the Pacific Ocean. While airspace warning notices from the FAA showed a reentry zone over the eastern Pacific Ocean, publicly available US military tracking continued to show the upper stage in orbit this week. Sources also told Ars that SpaceX delayed two Falcon 9 launches this week by a day to allow time for engineers to evaluate the problem.

3 in 6 months … This is the third time since last July that the Falcon 9’s upper stage has encountered a problem in flight. On one occasion, the upper stage failed to reach its targeted orbit, leading to the destruction of 20 Starlink satellites. Then, an upper stage misfired during a deorbit burn after an otherwise successful launch in September, causing debris to fall outside of the pre-approved danger area. After both events, the FAA briefly grounded the Falcon 9 rocket while SpaceX conducted an investigation. This time, an FAA spokesperson said the agency won’t require an investigation. “All flight events occurred within the scope of SpaceX’s licensed activities,” the spokesperson told Ars.

Vast tests hardware for commercial space station. Vast Space has started testing a qualification model of its first commercial space station but has pushed back the launch of that station into 2026, Space News reports. In an announcement Thursday, Vast said it completed a proof test of the primary structure of a test version of its Haven-1 space station habitat at a facility in Mojave, California. During the testing, Vast pumped up the pressure inside the structure to 1.8 times its normal level and conducted a leak test. “On the first try we passed that critical test,” Max Haot, chief executive of Vast, told Space News.

Not this year … It’s encouraging to see Vast making tangible progress in developing its commercial space station. The privately held company is one of several seeking to develop a commercial outpost in low-Earth orbit to replace the International Space Station after its scheduled retirement in 2030. NASA is providing funding to two industrial teams led by Blue Origin and Voyager Space, which are working on different space station concepts. But so far, Vast’s work has been funded primarily through private capital. The launch of the Haven-1 outpost, which Vast previously said could happen this year, is now scheduled no earlier than May 2026. The spacecraft will launch in one piece on a Falcon 9 rocket, and the first astronaut crew to visit Haven-1 could launch a month later. Haven-1 is a pathfinder for a larger commercial station called Haven-2, which Vast intends to propose to NASA. (submitted by EllPeaTea)

H3 deploys Japanese navigation satellite. Japan successfully launched a flagship H3 rocket Sunday and put into orbit a Quasi-Zenith Satellite (QZS), aiming to improve the accuracy of global positioning data for various applications, Kyodo News reports. After separation from the H3 rocket, the Michibiki 6 satellite will climb into geostationary orbit, where it will supplement navigation signals from GPS satellites to provide more accurate positioning data to users in Japan and surrounding regions, particularly in mountainous terrain and amid high-rise buildings in large cities. The new satellite joins a network of four QZS spacecraft launched by Japan beginning in 2010. Two more Quasi-Zenith Satellites are under construction, and Japan’s government is expected to begin development of an additional four regional navigation satellites this year.

A good start … After a failed inaugural flight in 2023, Japan’s new H3 rocket has reeled off four consecutive successful launches in less than a year. This may not sound like a lot, but the H3 has achieved its first four successful flights faster than any other rocket since 2000. SpaceX’s Falcon 9 rocket completed its first four successful flights in a little more than two years, and United Launch Alliance’s Atlas V logged its fourth flight in a similar timeframe. More than 14 months elapsed between the first and fourth successful flight of Rocket Lab’s Electron rocket. The H3 is an expendable rocket with no roadmap to reusability, so its service life and commercial potential are likely limited. But the rocket is shaping up to provide reliable access to space for Japan’s space agency and military, while some of its peers in Europe and the United States struggle to ramp up to a steady launch cadence. (submitted by EllPeaTea)

Europe really doesn’t like relying on Elon Musk. Europe’s space industry has struggled to keep up with SpaceX for a decade. The writing was on the wall when SpaceX landed a Falcon 9 booster for the first time. Now, European officials are wary of becoming too reliant on SpaceX, and there’s broad agreement on the continent that Europe should have the capability to launch its own satellites. In this way, access to space is a strategic imperative for Europe. The problem is, Europe’s new Ariane 6 rocket is just not competitive with SpaceX’s Falcon 9, and there’s no concrete plan to counter SpaceX’s dominance.

So here’s another terrible idea … Airbus, Europe’s largest aerospace contractor with a 50 percent stake in the Ariane 6 program, has enlisted Goldman Sachs for advice on how to forge a new European space and satellite company to better compete with SpaceX. France-based Thales and the Italian company Leonardo are part of the talks, with Bank of America also advising on the initiative. The idea that some bankers from Goldman and Bank of America will go into the guts of some of Europe’s largest institutional space companies and emerge with a lean, competitive entity seems far-fetched, to put it mildly, Ars reports.

The FAA still has some bite. We’re now three weeks removed from the most recent test flight of SpaceX’s Starship rocket, which ended with the failure of the vehicle’s upper stage in the final moments of its launch sequence. The accident rained debris over the Atlantic Ocean and the Turks and Caicos Islands. Unsurprisingly, the Federal Aviation Administration grounded Starship and ordered an investigation into the accident on the day after the launch. This decision came three days before the inauguration of President Donald Trump, who counts Musk as one of his top allies. So far, the FAA hasn’t budged on its requirement for an investigation, an agency spokesperson told Ars.

Debris field … In the hours and days after the failed Starship launch, residents and tourists in the Turks and Caicos shared images of debris scattered across the islands and washing up onshore. The good news is there were no injuries or reports of significant damage from the wreckage, but the FAA confirmed one report of minor damage to a vehicle located in South Caicos. It’s rare for debris from US rockets to fall over land during a launch. This would typically only happen if a launch failed at certain parts of the flight. Before now, there has been no public record of any claims of third-party property damage in the era of commercial spaceflight.

DOD eager to reap the benefits of Starship. A Defense Department unit is examining how SpaceX’s Starship vehicle could be used to support a broader architecture of in-space refueling, Space News reports. A senior adviser at the Defense Innovation Unit (DIU) said SpaceX approached the agency about how Starship’s refueling architecture could be used by the wider space industry. The plan for Starship is to transfer cryogenic propellants between tankers, depots, and ships heading to the Moon, Mars, or other deep-space destinations.

Few details available … US military officials have expressed interest in orbital refueling to support in-space mobility, where ground controllers have the freedom to maneuver national security satellites between different orbits without worrying about running out of propellant. For several years, Space Force commanders and Pentagon officials have touted the importance of in-space mobility, or dynamic space operations, in a new era of orbital warfare. However, there are reports that the Space Force has considered zeroing out a budget line item for space mobility in its upcoming fiscal year 2026 budget request.

A small step toward a fully reusable European rocket. The French space agency CNES has issued a call for proposals to develop a reusable upper stage for a heavy-lift rocket, European Spaceflight reports. This project is named DEMESURE (DEMonstration Étage SUpérieur REutilisable / Reusable Upper Stage Demonstration), and it marks one of Europe’s first steps in developing a fully reusable rocket. That’s all good, but there’s a sense of tentativeness in this announcement. The current call for proposals will only cover the earliest phases of development, such as a requirements evaluation, cost estimation review, and a feasibility meeting. A future call will deal with the design and fabrication of a “reduced scale” upper stage, followed by a demonstration phase with a test flight, recovery, and reuse of the vehicle. CNES’s vision is to field a fully reusable rocket as a successor to the single-use Ariane 6.

Toes in the water … If you’re looking for reasons to be skeptical about Project DEMESURE, look no further than the Themis program, which aims to demonstrate the recovery and reuse of a booster stage akin to SpaceX’s Falcon 9. Themis originated in a partnership between CNES and European industry in 2019, then ESA took over the project in 2020. Five years later, the Themis demonstrator still hasn’t flown. After some initial low-altitude hops, Themis is supposed to launch on a high-altitude test flight and maneuver through the entire flight profile of a reusable booster, from liftoff to a vertical propulsive landing. As we’ve seen with SpaceX, recovering an orbital-class upper stage is a lot harder than landing the booster. An optimistic view of this announcement is that anything worth doing requires taking a first step, and that’s what CNES has done here. (submitted by EllPeaTea)

Next three launches

Feb. 7: Falcon 9 | Starlink 12-9 | Cape Canaveral Space Force Station, Florida | 18: 52 UTC

Feb. 8: Electron | IoT 4 You and Me | Māhia Peninsula, New Zealand | 20: 43 UTC

Feb. 10: Falcon 9 | Starlink 11-10 | Vandenberg Space Force Base, California | 00: 03 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Another hiccup with SpaceX upper stage; Japan’s H3 starts strong Read More »

it-seems-the-faa-office-overseeing-spacex’s-starship-probe-still-has-some-bite

It seems the FAA office overseeing SpaceX’s Starship probe still has some bite


The political winds have shifted in Washington, but the FAA hasn’t yet changed its tune on Starship.

Liftoff of SpaceX’s seventh full-scale test flight of the Super Heavy/Starship launch vehicle on January 16. Credit: SpaceX

The seventh test flight of SpaceX’s gigantic Starship rocket came to a disappointing end a little more than two weeks ago. The in-flight failure of the rocket’s upper stage, or ship, about eight minutes after launch on January 16 rained debris over the Turks and Caicos Islands and the Atlantic Ocean.

Amateur videos recorded from land, sea, and air showed fiery debris trails streaming overhead at twilight, appearing like a fireworks display gone wrong. Within hours, posts on social media showed small pieces of debris recovered by residents and tourists in the Turks and Caicos. Most of these items were modest in size, and many appeared to be chunks of tiles from Starship’s heat shield.

Unsurprisingly, the Federal Aviation Administration grounded Starship and ordered an investigation into the accident on the day after the launch. This decision came three days before the inauguration of President Donald Trump. Elon Musk’s close relationship with Trump, coupled with the new administration’s appetite for cutting regulations and reducing the size of government, led some industry watchers to question whether Musk’s influence might change the FAA’s stance on SpaceX.

So far, the FAA hasn’t budged on its requirement for an investigation, an agency spokesperson told Ars on Friday. After a preliminary assessment of flight data, SpaceX officials said a fire appeared to develop in the aft section of the ship before it broke apart and fell to Earth.

“The FAA has directed SpaceX to lead an investigation of the Starship Super Heavy Flight 7 mishap with FAA oversight,” the spokesperson said. “Based on the investigation findings for root cause and corrective actions, the FAA may require a company to modify its license.”

This is much the same language the FAA used two weeks ago, when it first ordered the investigation.

Damage report

The FAA’s Office of Commercial Space Transportation is charged with ensuring commercial space launches and reentries don’t endanger the public, and requires launch operators obtain liability insurance or demonstrate financial ability to cover any third-party property damages.

For each Starship launch, the FAA requires SpaceX maintain liability insurance policies worth at least $500 million for such claims. It’s rare for debris from US rockets to fall over land during a launch. This would typically only happen if a launch failed at certain parts of the flight. And there’s no public record of any claims of third-party property damage in the era of commercial spaceflight. Under federal law, the US government would pay for damages to a much higher amount if any claims exceeded a launch company’s insurance policies.

Here’s a piece of Starship 33 @SpaceX @elonmusk found in Turks and Caicos! 🚀🏝️ pic.twitter.com/HPZDCqA9MV

— @maximzavet (@MaximZavet) January 17, 2025

The good news is there were no injuries or reports of significant damage from the wreckage that fell over the Turks and Caicos. “The FAA confirmed one report of minor damage to a vehicle located in South Caicos,” an FAA spokesperson told Ars on Friday. “To date, there are no other reports of damage.”

It’s not clear if the vehicle owner in South Caicos will file a claim against SpaceX for the damage. It would the first time someone makes such a claim related to an accident with a commercial rocket overseen by the FAA. Last year, a Florida homeowner submitted a claim to NASA for damage to his house from a piece of debris that fell from the International Space Station.

Nevertheless, the Turks and Caicos government said local officials met with representatives from SpaceX and the UK Air Accident Investigations Branch on January 25 to develop a recovery plan for debris that fell on the islands, which are a British Overseas Territory.

A prickly relationship

Musk often bristled at the FAA last year, especially after regulators proposed fines of more than $600,000 alleging that SpaceX violated terms of its launch licenses during two Falcon 9 missions. The alleged violations involved the relocation of a propellant farm at one of SpaceX’s launch pads in Florida, and the use of a new launch control center without FAA approval.

In a post on X, Musk said the FAA was conducting “lawfare” against his company. “SpaceX will be filing suit against the FAA for regulatory overreach,” Musk wrote.

There was no such lawsuit, and the issue may now be moot. Sean Duffy, Trump’s new secretary of transportation, vowed to review the FAA fines during his confirmation hearing in the Senate. It is rare for the FAA to fine launch companies, and the fines last year made up the largest civil penalty ever imposed by the FAA’s commercial spaceflight division.

SpaceX also criticized delays in licensing Starship test flights last year. The FAA cited environmental issues and concerns about the extent of the sonic boom from Starship’s 23-story-tall Super Heavy booster returning to its launch pad in South Texas. SpaceX successfully caught the returning first stage booster at the launch pad for the first time in October, and repeated the feat after the January 16 test flight.

What separates the FAA’s ongoing oversight of Starship’s recent launch failure from these previous regulatory squabbles is that debris fell over populated areas. This would appear to be directly in line with the FAA’s responsibility for public safety.

During last month’s test flight, Starship did not deviate from its planned ground track, which took the rocket over the Gulf of Mexico, the waters between Florida and Cuba, and then the Atlantic Ocean. But the debris field extended beyond the standard airspace closure for the launch. After the accident, FAA air traffic controllers cleared additional airspace over the debris zone for more than an hour, rerouting, diverting, and delaying dozens of commercial aircraft.

These actions followed pre-established protocols. However, it highlighted the small but non-zero risk of rocket debris falling to Earth after a launch failure. “The potential for a bad day downrange just got real,” Lori Garver, a former NASA deputy administrator, posted on X.

Public safety is not sole mandate of the FAA’s commercial space office. It is also chartered to “encourage, facilitate, and promote commercial space launches and reentries by the private sector,” according to an FAA website. There’s a balance to strike.

Lawmakers last year urged the FAA to speed up its launch approvals, primarily because Starship is central to strategic national objectives. NASA has contracts with SpaceX to develop a variant of Starship to land astronauts on the Moon, and Starship’s unmatched ability to deliver more than 100 tons of cargo to low-Earth orbit is attractive to the Pentagon.

While Musk criticized the FAA in 2024, SpaceX officials in 2023 took a different tone, calling for Congress to increase the budget for the FAA’s Office of Commercial Spaceflight and for the regulator to double the space division’s workforce. This change, SpaceX officials argued, would allow the FAA to more rapidly assess and approve a fast-growing number of commercial launch and reentry applications.

In September, SpaceX released a statement accusing the former administrator of the FAA, Michael Whitaker, of making inaccurate statements about SpaceX to a congressional subcommittee. In a different post on X, Musk directly called for Whitaker’s resignation.

He needs to resign https://t.co/pG8htfTYHb

— Elon Musk (@elonmusk) September 25, 2024

That’s exactly what happened. Whitaker, who took over the FAA’s top job in 2023 under the Biden administration, announced in December he would resign on Inauguration Day. Since the agency’s establishment in 1958, three FAA administrators have similarly resigned when a new administration takes power, but the office has been largely immune from presidential politics in recent decades. Since 1993, FAA administrators have stayed in their post during all presidential transitions.

There’s no evidence Whitaker’s resignation had any role in the mid-air collision of an American Eagle passenger jet and a US Army helicopter Wednesday night near Ronald Reagan Washington National Airport. But his departure from the FAA less than two years into a five-year term on January 20 left the agency without a leader. Trump named Chris Rocheleau as the FAA’s acting administrator Thursday.

Next flight, next month?

SpaceX has not released an official schedule for the next Starship test flight or outlined its precise objectives. However, it will likely repeat many of the goals planned for the previous flight, which ended before SpaceX could accomplish some of its test goals. These missed objectives included the release of satellite mockups in space for the first demonstration of Starship’s payload deployment mechanism, and a reentry over the Indian Ocean to test new, more durable heat shield materials.

The January 16 test flight was the first launch up an upgraded, slightly taller Starship, known as Version 2 or Block 2. The next flight will use the same upgraded version.

A SpaceX filing with the Federal Communications Commission suggests the next Starship flight could launch as soon as February 24. Sources told Ars that SpaceX teams believe a launch before the end of February is realistic.

But SpaceX has more to do before Flight 8. These tasks include completing the FAA-mandated investigation and the installation of all 39 Raptor engines on the rocket. Then, SpaceX will likely test-fire the booster and ship before stacking the two elements together to complete assembly of the 404-foot-tall (123.1-meter) rocket.

SpaceX is also awaiting a new FAA launch license, pending its completion of the investigation into what happened on Flight 7.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

It seems the FAA office overseeing SpaceX’s Starship probe still has some bite Read More »

fire-destroys-starship-on-its-seventh-test-flight,-raining-debris-from-space

Fire destroys Starship on its seventh test flight, raining debris from space

This launch debuted a more advanced, slightly taller version of Starship, known as Version 2 or Block 2, with larger propellant tanks, a new avionics system, and redesigned feed lines flowing methane and liquid oxygen propellants to the ship’s six Raptor engines. SpaceX officials did not say whether any of these changes might have caused the problem on Thursday’s launch.

SpaceX officials have repeatedly and carefully set expectations for each Starship test flight. They routinely refer to the rocket as experimental, and the primary focus of the rocket’s early demo missions is to gather data on the performance of the vehicle. What works, and what doesn’t work?

Still, the outcome of Thursday’s test flight is a clear disappointment for SpaceX. This was the seventh test flight of SpaceX’s enormous rocket and the first time Starship failed to complete its launch sequence since the second flight in November 2023. Until now, SpaceX has made steady progress, and each Starship flight has achieved more milestones than the one before.

On the first flight in April 2023, the rocket lost control a little more than two minutes after liftoff, and the ground-shaking power of the booster’s 33 engines shattered the concrete foundation beneath the launch pad. Seven months later, on Flight 2, the rocket made it eight minutes before failing. On that mission, Starship failed at roughly the same point of its ascent, just before the cutoff of the vehicle’s six methane-fueled Raptor engines.

Back then, a handful of photos and images from the Florida Keys and Puerto Rico showed debris in the sky after Starship activated its self-destruct mechanism due to an onboard fire caused by a dump of liquid oxygen propellant. But that flight occurred in the morning, with bright sunlight along the ship’s flight path.

This time, the ship disintegrated and reentered the atmosphere at dusk, with impeccable lighting conditions accentuating the debris cloud’s appearance. These twilight conditions likely contributed to the plethora of videos posted to social media on Thursday.

Starship and Super Heavy head downrange from SpaceX’s launch site near Brownsville, Texas. Credit: SpaceX

The third Starship test flight last March saw the spacecraft reach its planned trajectory and fly halfway around the world before succumbing to the scorching heat of atmospheric reentry. In June, the fourth test flight ended with controlled splashdowns of the rocket’s Super Heavy booster in the Gulf of Mexico and of Starship in the Indian Ocean.

In October, SpaceX caught the Super Heavy booster with mechanical arms at the launch pad for the first time, proving out the company’s audacious approach to recovering and reusing the rocket. On this fifth test flight, SpaceX modified the ship’s heat shield to better handle the hot temperatures of reentry, and the vehicle again made it to an on-target splashdown in the Indian Ocean.

Most recently, Flight 6 on November 19 demonstrated the ship’s ability to reignite its Raptor engines in space for the first time and again concluded with a bullseye splashdown. But SpaceX aborted an attempt to again catch the booster back at Starbase due to a problem with sensors on the launch pad’s tower.

With Flight 7, SpaceX hoped to test more changes to the heat shield protecting Starship from reentry temperatures up to 2,600° Fahrenheit (1,430° Celsius). Musk has identified the heat shield as one of the most difficult challenges still facing the program. In order for SpaceX to reach its ambition for the ship to become rapidly reusable, with minimal or no refurbishment between flights, the heat shield must be resilient and durable.

Fire destroys Starship on its seventh test flight, raining debris from space Read More »

here’s-what-nasa-would-like-to-see-spacex-accomplish-with-starship-this-year

Here’s what NASA would like to see SpaceX accomplish with Starship this year


Iterate, iterate, and iterate some more

The seventh test flight of Starship is scheduled for launch Thursday afternoon.

SpaceX’s upgraded Starship rocket stands on its launch pad at Starbase, Texas. Credit: SpaceX

SpaceX plans to launch the seventh full-scale test flight of its massive Super Heavy booster and Starship rocket Thursday afternoon. It’s the first of what might be a dozen or more demonstration flights this year as SpaceX tries new things with the most powerful rocket ever built.

There are many things on SpaceX’s Starship to-do list in 2025. They include debuting an upgraded, larger Starship, known as Version 2 or Block 2, on the test flight preparing to launch Thursday. The one-hour launch window opens at 5 pm EST (4 pm CST; 22: 00 UTC) at SpaceX’s launch base in South Texas. You can watch SpaceX’s live webcast of the flight here.

SpaceX will again attempt to catch the rocket’s Super Heavy booster—more than 20 stories tall and wider than a jumbo jet—back at the launch pad using mechanical arms, or “chopsticks,” mounted to the launch tower. Read more about the Starship Block 2 upgrades in our story from last week.

You might think of next week’s Starship test flight as an apéritif before the entrées to come. Ars recently spoke with Lisa Watson-Morgan, the NASA engineer overseeing the agency’s contract with SpaceX to develop a modified version of Starship to land astronauts on the Moon. NASA has contracts with SpaceX worth more than $4 billion to develop and fly two Starship human landing missions under the umbrella of the agency’s Artemis program to return humans to the Moon.

We are publishing the entire interview with Watson-Morgan below, but first, let’s assess what SpaceX might accomplish with Starship this year.

There are many things to watch for on this test flight, including the deployment of 10 satellite simulators to test the ship’s payload accommodations and the performance of a beefed-up heat shield as the vehicle blazes through the atmosphere for reentry and splashdown in the Indian Ocean.

If this all works, SpaceX may try to launch a ship into low-Earth orbit on the eighth flight, expected to launch in the next couple of months. All of the Starship test flights to date have intentionally flown on suborbital trajectories, bringing the ship back toward reentry over the sea northwest of Australia after traveling halfway around the world.

Then, there’s an even bigger version of Starship called Block 3 that could begin flying before the end of the year. This version of the ship is the one that SpaceX will use to start experimenting with in-orbit refueling, according to Watson-Morgan.

In order to test refueling, two Starships will dock together in orbit, allowing one vehicle to transfer super-cold methane and liquid oxygen into the other. Nothing like this on this scale has ever been attempted before. Future Starship missions to the Moon and Mars may require 10 or more tanker missions to gas up in low-Earth orbit. All of these missions will use different versions of the same basic Starship design: a human-rated lunar lander, a propellant depot, and a refueling tanker.

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

Questions for 2025

Catching Starship back at its launch tower and demonstrating orbital propellant transfer are the two most significant milestones on SpaceX’s roadmap for 2025.

SpaceX officials have said they aim to fly as many as 25 Starship missions this year, allowing engineers to more rapidly iterate on the vehicle’s design. SpaceX is constructing a second launch pad at its Starbase facility near Brownsville, Texas, to help speed up the launch cadence.

Can SpaceX achieve this flight rate in 2025? Will faster Starship manufacturing and reusability help the company fly more often? Will SpaceX fly its first ship-to-ship propellant transfer demonstration this year? When will Starship begin launching large batches of new-generation Starlink Internet satellites?

Licensing delays at the Federal Aviation Administration have been a thorn in SpaceX’s side for the last couple of years. Will those go away under the incoming administration of President-elect Donald Trump, who counts SpaceX founder Elon Musk as a key adviser?

And will SpaceX gain a larger role in NASA’s Artemis lunar program? The Artemis program’s architecture is sure to be reviewed by the Trump administration and the nominee for the agency’s next administrator, billionaire businessman and astronaut Jared Isaacman.

The very expensive Space Launch System rocket, developed by NASA with Boeing and other traditional aerospace contractors, might be canceled. NASA currently envisions the SLS rocket and Orion spacecraft as the transportation system to ferry astronauts between Earth and the vicinity of the Moon, where crews would meet up with a landing vehicle provided by commercial partners SpaceX and Blue Origin.

Watson-Morgan didn’t have answers to all of these questions. Many of them are well outside of her purview as Human Landing System program manager, so Ars didn’t ask. Instead, Ars discussed technical and schedule concerns with her during the half-hour interview. Here is one part of the discussion, lightly edited for clarity.

Ars: What do you hope to see from Flight 7 of Starship?

Lisa Watson-Morgan: One of the exciting parts of working with SpaceX are these test flights. They have a really fast turnaround, where they put in different lessons learned. I think you saw many of the flight objectives that they discussed from Flight 6, which was a great success. I think they mentioned different thermal testing experiments that they put on the ship in order to understand the different heating, the different loads on certain areas of the system. All that was really good with each one of those, in addition to how they configure the tiles. Then, from that, there’ll be additional tests that they will put on Flight 7, so you kind of get this iterative improvement and learning that we’ll get to see in Flight 7. So Flight 7 is the first Version 2 of their ship set. When I say that, I mean the ship, the booster, all the systems associated with it. So, from that, it’s really more just understanding how the system, how the flaps, how all of that interacts and works as they’re coming back in. Hopefully we’ll get to see some catches, that’s always exciting.

Ars: How did the in-space Raptor engine relight go on Flight 6 (on November 19)?

Lisa Watson-Morgan: Beautifully. And that’s something that’s really important to us because when we’re sitting on the Moon… well, actually, the whole path to the Moon as we are getting ready to land on the Moon, we’ll perform a series of maneuvers, and the Raptors will have an environment that is very, very cold. To that, it’s going to be important that they’re able to relight for landing purposes. So that was a great first step towards that. In addition, after we land, clearly the Raptors will be off, and it will get very cold, and they will have to relight in a cold environment (to get off the Moon). So that’s why that step was critical for the Human Landing System and NASA’s return to the Moon.

A recent artist’s illustration of two Starships docked together in low-Earth orbit. Credit: SpaceX

Ars: Which version of the ship is required for the propellant transfer demonstration, and what new features are on that version to enable this test?

Lisa Watson-Morgan: We’re looking forward to the Version 3, which is what’s coming up later on, sometime in ’25, in the near term, because that’s what we need for propellant transfer and the cryo fluid work that is also important to us… There are different systems in the V3 set that will help us with cryo fluid management. Obviously, with those, we have to have the couplers and the quick-disconnects in order for the two systems to have the right guidance, navigation, trajectory, all the control systems needed to hold their station-keeping in order to dock with each other, and then perform the fluid transfer. So all the fluid lines and all that’s associated with that, those systems, which we have seen in tests and held pieces of when we’ve been working with them at their site, we’ll get to see those actually in action on orbit.

Ars: Have there been any ground tests of these systems, whether it’s fluid couplers or docking systems? Can you talk about some of the ground tests that have gone into this development?

Lisa Watson-Morgan: Oh, absolutely. We’ve been working with them on ground tests for this past year. We’ve seen the ground testing and reviewed the data. Our team works with them on what we deem necessary for the various milestones. While the milestone contains proprietary (information), we work closely with them to ensure that it’s going to meet the intent, safety-wise as well as technically, of what we’re going to need to see. So they’ve done that.

Even more exciting, they have recently shipped some of their docking systems to the Johnson Space Center for testing with the Orion Lockheed Martin docking system, and that’s for Artemis III. Clearly, that’s how we’re going to receive the crew. So those are some exciting tests that we’ve been doing this past year as well that’s not just focused on, say, the booster and the ship. There are a lot of crew systems that are being developed now. We’re in work with them on how we’re going to effectuate the crew manual control requirements that we have, so it’s been a great balance to see what the crew needs, given the size of the ship. That’s been a great set of work. We have crew office hours where the crew travels to Hawthorne [SpaceX headquarters in California] and works one-on-one with the different responsible engineers in the different technical disciplines to make sure that they understand not just little words on the paper from a requirement, but actually what this means, and then how systems can be operated.

Ars: For the docking system, Orion uses the NASA Docking System, and SpaceX brings its own design to bear on Starship?

Lisa Watson-Morgan: This is something that I think the Human Landing System has done exceptionally well. When we wrote our high-level set of requirements, we also wrote it with a bigger picture in mind—looked into the overall standards of how things are typically done, and we just said it has to be compliant with it. So it’s a docking standard compliance, and SpaceX clearly meets that. They certainly do have the Dragon heritage, of course, with the International Space Station. So, because of that, we have high confidence that they’re all going to work very well. Still, it’s important to go ahead and perform the ground testing and get as much of that out of the way as we can.

Lisa Watson-Morgan, NASA’s HLS program manager, is based at Marshall Space Flight Center in Huntsville, Alabama. Credit: ASA/Aubrey Gemignani

Ars: How far along is the development and design of the layout of the crew compartment at the top of Starship? Is it far along, or is it still in the conceptual phase? What can you say about that?

Lisa Watson-Morgan: It’s much further along there. We’ve had our environmental control and life support systems, whether it’s carbon dioxide monitoring fans to make sure the air is circulating properly. We’ve been in a lot of work with SpaceX on the temperature. It’s… a large area (for the crew). The seats, making sure that the crew seats and the loads on that are appropriate. For all of that work, as the analysis work has been performed, the NASA team is reviewing it. They had a mock-up, actually, of some of their life support systems even as far back as eight-plus months ago. So there’s been a lot of progress on that.

Ars: Is SpaceX planning to use a touchscreen design for crew displays and controls, like they do with the Dragon spacecraft?

Lisa Watson-Morgan: We’re in talks about that, about what would be the best approach for the crew for the dynamic environment of landing.

Ars: I can imagine it is a pretty dynamic environment with those Raptor engines firing. It’s almost like a launch in reverse.

Lisa Watson-Morgan: Right. Those are some of the topics that get discussed in the crew office hours. That’s why it’s good to have the crew interacting directly, in addition to the different discipline leads, whether it’s structural, mechanical, propulsion, to have all those folks talking guidance and having control to say, “OK, well, when the system does this, here’s the mode we expect to see. Here’s the impact on the crew. And is this condition, or is the option space that we have on the table, appropriate for the next step, with respect to the displays.”

Ars: One of the big things SpaceX needs to prove out before going to the Moon with Starship is in-orbit propellant transfer. When do you see the ship-to-ship demonstration occurring?

Lisa Watson-Morgan: I see it occurring in ’25.

Ars: Anything more specific about the schedule for that?

Lisa Watson-Morgan: That’d be a question for SpaceX because they do have a number of flights that they’re performing commercially, for their maturity. We get the benefit of that. It’s actually a great partnership. I’ll tell you, it’s really good working with them on this, but they’d have to answer that question. I do foresee it happening in ’25.

Ars: What things do you need to see SpaceX accomplish before they’re ready for the refueling demo? I’m thinking of things like the second launch tower, potentially. Do they need to demonstrate a ship catch or anything like that before going for orbital refueling?

Lisa Watson-Morgan: I would say none of that’s required. You just kind of get down to, what are the basics? What are the basics that you need? So you need to be able to launch rapidly off the same pad, even. They’ve shown they can launch and catch within a matter of minutes. So that is good confidence there. The catching is part of their reuse strategy, which is more of their commercial approach, and not a NASA requirement. NASA reaps the benefit of it by good pricing as a result of their commercial model, but it is not a requirement that we have. So they could theoretically use the same pad to perform the propellant transfer and the long-duration flight, because all it requires is two launches, really, within a specified time period to where the two systems can meet in a planned trajectory or orbit to do the propellant transfer. So they could launch the first one, and then within a week or two or three, depending on what the concept of operations was that we thought we could achieve at that time, and then have the propellant transfer demo occur that way. So you don’t necessarily need two pads, but you do need more thermal characterization of the ship. I would say that is one of the areas (we need to see data on), and that is one of the reasons, I think, why they’re working so diligently on that.

Ars: You mentioned the long-duration flight demonstration. What does that entail?

Lisa Watson-Morgan: The simple objectives are to launch two different tankers or Starships. The Starship will eventually be a crewed system. Clearly, the ones that we’re talking about for the propellant transfer are not. It’s just to have the booster and Starship system launch, and within a few weeks, have another one launch, and have them rendezvous. They need to be able to find each other with their sensors. They need to be able to come close, very, very close, and they need to be able to dock together, connect, do the quick connect, and make sure they are able, then, to flow propellant and LOX (liquid oxygen) to another system. Then, we need to be able to measure the quantity of how much has gone over. And from that, then they need to safely undock and dispose.

Ars: So the long-duration flight demonstration is just part of what SpaceX needs to do in order to be ready for the propellant transfer demonstration?

Lisa Watson-Morgan: We call it long duration just because it’s not a 45-minute or an hour flight. Long duration, obviously, that’s a relative statement, but it’s a system that can stay up long enough to be able to find another Starship and perform those maneuvers and flow of fuel and LOX.

Ars: How much propellant will you transfer with this demonstration, and do you think you’ll get all the data you need in one demonstration, or will SpaceX need to try this several times?

Lisa Watson-Morgan: That’s something you can ask SpaceX (about how much propellant will be transferred). Clearly, I know, but there’s some sensitivity there. You’ve seen our requirements in our initial solicitation. We have thresholds and goals, meaning we want you to at least do this, but more is better, and that’s typically how we work almost everything. Working with commercial industry in these fixed-price contracts has worked exceptionally well, because when you have providers that are also wanting to explore commercially or trying to make a commercial system, they are interested in pushing more than what we would typically ask for, and so often we get that for an incredibly fair price.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s what NASA would like to see SpaceX accomplish with Starship this year Read More »