Author name: Kris Guyer

hollywood-mourns-the-loss-of-david-lynch

Hollywood mourns the loss of David Lynch

The success of Lynch’s next film, Blue Velvet, helped assuage his disappointment, as did his move to television with the bizarrely surreal and influential series Twin Peaks—part detective story, part soap opera, with dashes of sci-fi and horror. The series spawned a spin-off prequel movie, Twin Peaks: Fire Walk With Me (1992), and a 2017 revival series, Twin Peaks: The Return, that picks up the storyline 25 years later. Many other TV series were influenced by Lynch’s show, including The X-Files, Lost, The Sopranos, Bates Motel, Fargo, Riverdale, Atlanta, and the animated series Gravity Falls.

His final feature films were an LA-centric trilogy—Lost Highway (1997), Mulholland Drive, and Inland Empire (2006)—and 1999’s biographical road drama, The Straight Story, based on the true story of a man named Alvin Straight who drove across Iowa and Wisconsin on a lawn mower. It was acquired by Walt Disney Pictures and was Lynch’s only G-rated film.

“A singular visionary dreamer”

The director’s filmography also includes an assortment of short films, all bearing his eccentric stamp, including a surrealist short, Absurda, shown at Cannes in 2007, as well as Premonition Following an Evil Deed (NSFW YouTube link), Lynch’s contribution to the 1995 anthology film Lumière and Company. All 41 featured directors used the original Cinématographe camera invented by the Lumière brothers. Lynch was also an avid painter, cartoonist, and musician and directed several music videos for such artists as Moby and Nine Inch Nails. Until his death, he hosted quirky online “weather reports” and a web series, What Is David Lynch Working on Today? He even racked up the occasional acting credit.

Lynch received an Honorary Oscar in 2000 for lifetime achievement at the Governors Awards after three prior nominations for The Elephant Man, Blue Velvet, and Mulholland Drive. Deadline’s Pete Hammond called Lynch’s speech “probably one of the shortest for any Oscar acceptance.” Lynch briefly thanked the Academy, the other honorees, wished everyone a great night, then pointed to the statuette and said, “You have a very interesting figure. Good night.” At Cannes, he won the Palme d’Or in 1990 for Wild at Heart and won Best Director in 2001 for Mulholland Drive.

Naomi Watts, who played a dual role as doppelgängers Betty Elms and Diane Selwyn in Mulholland Drive, said that Lynch put her “on the map” as an actor by casting her. “It wasn’t just his art that impacted me—his wisdom, humor, and love gave me a special sense of belief in myself I’d never accessed before,” she said in a statement. “Every moment together felt charged with a presence I’ve rarely seen or known. Probably because, yes, he seemed to live in an altered world, one that I feel beyond lucky to have been a small part of. And David invited all to glimpse into that world through his exquisite storytelling, which elevated cinema and inspired generations of filmmakers across the globe.”

Hollywood mourns the loss of David Lynch Read More »

a-solid-electrolyte-gives-lithium-sulfur-batteries-ludicrous-endurance

A solid electrolyte gives lithium-sulfur batteries ludicrous endurance


Sulfur can store a lot more lithium but is problematically reactive in batteries.

If you weren’t aware, sulfur is pretty abundant. Credit: P_Wei

Lithium may be the key component in most modern batteries, but it doesn’t make up the bulk of the material used in them. Instead, much of the material is in the electrodes, where the lithium gets stored when the battery isn’t charging or discharging. So one way to make lighter and more compact lithium-ion batteries is to find electrode materials that can store more lithium. That’s one of the reasons that recent generations of batteries are starting to incorporate silicon into the electrode materials.

There are materials that can store even more lithium than silicon; a notable example is sulfur. But sulfur has a tendency to react with itself, producing ions that can float off into the electrolyte. Plus, like any electrode material, it tends to expand in proportion to the amount of lithium that gets stored, which can create physical strains on the battery’s structure. So while it has been easy to make lithium-sulfur batteries, their performance has tended to degrade rapidly.

But this week, researchers described a lithium-sulfur battery that still has over 80 percent of its original capacity after 25,000 charge/discharge cycles. All it took was a solid electrolyte that was more reactive than the sulfur itself.

When lithium meets sulfur…

Sulfur is an attractive battery material. It’s abundant and cheap, and sulfur atoms are relatively lightweight compared to many of the other materials used in battery electrodes. Sodium-sulfur batteries, which rely on two very cheap raw materials, have already been developed, although they only work at temperatures high enough to melt both of these components. Lithium-sulfur batteries, by contrast, could operate more or less the same way that current lithium-ion batteries do.

With a few major exceptions, that is. One is that the elemental sulfur used as an electrode is a very poor conductor of electricity, so it has to be dispersed within a mesh of conductive material. (You can contrast that with graphite, which both stores lithium and conducts electricity relatively well, thanks to being composed of countless sheets of graphene.) Lithium is stored there as Li2S, which occupies substantially more space than the elemental sulfur it’s replacing.

Both of these issues, however, can be solved with careful engineering of the battery’s structure. A more severe problem comes from the properties of the lithium-sulfur reactions that occur at the electrode. Elemental sulfur exists as an eight-atom ring, and the reactions with lithium are slow enough that semi-stable intermediates with smaller chains of sulfur end up forming. Unfortunately, these tend to be soluble in most electrolytes, allowing them to travel to the opposite electrode and participate in chemical reactions there.

This process essentially discharges the battery without allowing the electrons to be put to use. And it gradually leaves the electrode’s sulfur unavailable for participating in future charge/discharge cycles. The net result is that early generations of the technology would discharge themselves while sitting unused and would only survive a few hundred cycles before performance decayed dramatically.

But there has been progress on all these fronts, and some lithium-sulfur batteries with performance similar to lithium-ion have been demonstrated. Late last year, a company announced that it had lined up the money needed to build the first large-scale lithium-sulfur battery factory. Still, work on improvements has continued, and the new work seems to suggest ways to boost performance well beyond lithium-ion.

The need for speed

The paper describing the new developments, done by a collaboration between Chinese and German researchers, focuses on one aspect of the challenges posed by lithium-sulfur batteries: the relatively slow chemical reaction between lithium ions and elemental sulfur. It presents that aspect as a roadblock to fast charging, something that will be an issue for automotive applications. But at the same time, finding a way to limit the formation of inactive intermediate products during this reaction goes to the root of the relatively short usable life span of lithium-sulfur batteries.

As it turns out, the researchers found two.

One of the problems with the lithium-sulfur reaction intermediates is that they dissolve in most electrolytes. But that’s not a problem if the electrolyte isn’t a liquid. Solid electrolytes are materials that have a porous structure at the atomic level, with the environment inside the pores being favorable for ions. This allows ions to diffuse through the solid. If there’s a way to trap ions on one side of the electrolyte, such as a chemical reaction that traps or de-ionizes them, then it can enable one-way travel.

Critically, pores that favor the transit of lithium ions, which are quite compact, aren’t likely to allow the transit of the large ionized chains of sulfur. So a solid electrolyte should help cut down on the problems faced by lithium-sulfur batteries. But it won’t necessarily help with fast charging.

The researchers began by testing a glass formed from a mixture of boron, sulfur, and lithium (B2S3 and Li2S). But this glass had terrible conductivity, so they started experimenting with related glasses and settled on a combination that substituted in some phosphorus and iodine.

The iodine turned out to be a critical component. While the exchange of electrons with sulfur is relatively slow, iodine undergoes electron exchange (technically termed a redox reaction) extremely quickly. So it can act as an intermediate in the transfer of electrons to sulfur, speeding up the reactions that occur at the electrode. In addition, iodine has relatively low melting and boiling points, and the researchers suggest there’s some evidence that it moves around within the electrolyte, allowing it to act as an electron shuttle.

Successes and caveats

The result is a far superior electrolyte—and one that enables fast charging. It’s typical that fast charging cuts into the total capacity that can be stored in a battery. But when charged at an extraordinarily fast rate (50C, meaning a full charge in just over a minute), a battery based on this system still had half the capacity of a battery charged 25 times more slowly (2C, or a half-hour to full charge).

But the striking thing was how durable the resulting battery was. Even at an intermediate charging rate (5C), it still had over 80 percent of its initial capacity after over 25,000 charge/discharge cycles. By contrast, lithium-ion batteries tend to hit that level of decay after about 1,000 cycles. If that sort of performance is possible in a mass-produced battery, it’s only a slight exaggeration to say it can radically alter our relationships with many battery-powered devices.

What’s not at all clear, however, is whether this takes full advantage of one of the original promises of lithium-sulfur batteries: more charge in a given weight and volume. The researchers specify the battery being used for testing; one electrode is an indium/lithium metal foil, and the other is a mix of carbon, sulfur, and the glass electrolyte. A layer of the electrolyte sits between them. But when giving numbers for the storage capacity per weight, only the weight of the sulfur is mentioned.

Still, even if weight issues would preclude this from being stuffed into a car or cell phone, there are plenty of storage applications that would benefit from something that doesn’t wear out even with 65 years of daily cycling.

Nature, 2025. DOI: 10.1038/s41586-024-08298-9  (About DOIs).

Photo of John Timmer

John is Ars Technica’s science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots.

A solid electrolyte gives lithium-sulfur batteries ludicrous endurance Read More »

google-is-about-to-make-gemini-a-core-part-of-workspaces—with-price-changes

Google is about to make Gemini a core part of Workspaces—with price changes

Google has added AI features to its regular Workspace accounts for business while slightly raising the baseline prices of Workspace plans.

Previously, AI tools in the Gemini Business plan were a $20 per seat add-on to existing Workspace accounts, which had a base cost of $12 per seat without. Now, the AI tools are included for all Workspace users, but the per-seat base price is increasing from $12 to $14.

That means that those who were already paying extra for Gemini are going to pay less than half of what they were—effectively $14 per seat instead of $32. But those who never used or wanted Gemini or any other newer features under the AI umbrella from Workspace are going to pay a little bit more than before.

Features covered here include access to Gemini Advanced, the NotebookLM research assistant, email and document summaries in Gmail and Docs, adaptive audio and additional transcription languages for Meet, and “help me write” and Gemini in the side panel across a variety of applications.

Google says that it plans “to roll out even more AI features previously available in Gemini add-ons only.”

Google is about to make Gemini a core part of Workspaces—with price changes Read More »

here’s-what-nasa-would-like-to-see-spacex-accomplish-with-starship-this-year

Here’s what NASA would like to see SpaceX accomplish with Starship this year


Iterate, iterate, and iterate some more

The seventh test flight of Starship is scheduled for launch Thursday afternoon.

SpaceX’s upgraded Starship rocket stands on its launch pad at Starbase, Texas. Credit: SpaceX

SpaceX plans to launch the seventh full-scale test flight of its massive Super Heavy booster and Starship rocket Thursday afternoon. It’s the first of what might be a dozen or more demonstration flights this year as SpaceX tries new things with the most powerful rocket ever built.

There are many things on SpaceX’s Starship to-do list in 2025. They include debuting an upgraded, larger Starship, known as Version 2 or Block 2, on the test flight preparing to launch Thursday. The one-hour launch window opens at 5 pm EST (4 pm CST; 22: 00 UTC) at SpaceX’s launch base in South Texas. You can watch SpaceX’s live webcast of the flight here.

SpaceX will again attempt to catch the rocket’s Super Heavy booster—more than 20 stories tall and wider than a jumbo jet—back at the launch pad using mechanical arms, or “chopsticks,” mounted to the launch tower. Read more about the Starship Block 2 upgrades in our story from last week.

You might think of next week’s Starship test flight as an apéritif before the entrées to come. Ars recently spoke with Lisa Watson-Morgan, the NASA engineer overseeing the agency’s contract with SpaceX to develop a modified version of Starship to land astronauts on the Moon. NASA has contracts with SpaceX worth more than $4 billion to develop and fly two Starship human landing missions under the umbrella of the agency’s Artemis program to return humans to the Moon.

We are publishing the entire interview with Watson-Morgan below, but first, let’s assess what SpaceX might accomplish with Starship this year.

There are many things to watch for on this test flight, including the deployment of 10 satellite simulators to test the ship’s payload accommodations and the performance of a beefed-up heat shield as the vehicle blazes through the atmosphere for reentry and splashdown in the Indian Ocean.

If this all works, SpaceX may try to launch a ship into low-Earth orbit on the eighth flight, expected to launch in the next couple of months. All of the Starship test flights to date have intentionally flown on suborbital trajectories, bringing the ship back toward reentry over the sea northwest of Australia after traveling halfway around the world.

Then, there’s an even bigger version of Starship called Block 3 that could begin flying before the end of the year. This version of the ship is the one that SpaceX will use to start experimenting with in-orbit refueling, according to Watson-Morgan.

In order to test refueling, two Starships will dock together in orbit, allowing one vehicle to transfer super-cold methane and liquid oxygen into the other. Nothing like this on this scale has ever been attempted before. Future Starship missions to the Moon and Mars may require 10 or more tanker missions to gas up in low-Earth orbit. All of these missions will use different versions of the same basic Starship design: a human-rated lunar lander, a propellant depot, and a refueling tanker.

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

Questions for 2025

Catching Starship back at its launch tower and demonstrating orbital propellant transfer are the two most significant milestones on SpaceX’s roadmap for 2025.

SpaceX officials have said they aim to fly as many as 25 Starship missions this year, allowing engineers to more rapidly iterate on the vehicle’s design. SpaceX is constructing a second launch pad at its Starbase facility near Brownsville, Texas, to help speed up the launch cadence.

Can SpaceX achieve this flight rate in 2025? Will faster Starship manufacturing and reusability help the company fly more often? Will SpaceX fly its first ship-to-ship propellant transfer demonstration this year? When will Starship begin launching large batches of new-generation Starlink Internet satellites?

Licensing delays at the Federal Aviation Administration have been a thorn in SpaceX’s side for the last couple of years. Will those go away under the incoming administration of President-elect Donald Trump, who counts SpaceX founder Elon Musk as a key adviser?

And will SpaceX gain a larger role in NASA’s Artemis lunar program? The Artemis program’s architecture is sure to be reviewed by the Trump administration and the nominee for the agency’s next administrator, billionaire businessman and astronaut Jared Isaacman.

The very expensive Space Launch System rocket, developed by NASA with Boeing and other traditional aerospace contractors, might be canceled. NASA currently envisions the SLS rocket and Orion spacecraft as the transportation system to ferry astronauts between Earth and the vicinity of the Moon, where crews would meet up with a landing vehicle provided by commercial partners SpaceX and Blue Origin.

Watson-Morgan didn’t have answers to all of these questions. Many of them are well outside of her purview as Human Landing System program manager, so Ars didn’t ask. Instead, Ars discussed technical and schedule concerns with her during the half-hour interview. Here is one part of the discussion, lightly edited for clarity.

Ars: What do you hope to see from Flight 7 of Starship?

Lisa Watson-Morgan: One of the exciting parts of working with SpaceX are these test flights. They have a really fast turnaround, where they put in different lessons learned. I think you saw many of the flight objectives that they discussed from Flight 6, which was a great success. I think they mentioned different thermal testing experiments that they put on the ship in order to understand the different heating, the different loads on certain areas of the system. All that was really good with each one of those, in addition to how they configure the tiles. Then, from that, there’ll be additional tests that they will put on Flight 7, so you kind of get this iterative improvement and learning that we’ll get to see in Flight 7. So Flight 7 is the first Version 2 of their ship set. When I say that, I mean the ship, the booster, all the systems associated with it. So, from that, it’s really more just understanding how the system, how the flaps, how all of that interacts and works as they’re coming back in. Hopefully we’ll get to see some catches, that’s always exciting.

Ars: How did the in-space Raptor engine relight go on Flight 6 (on November 19)?

Lisa Watson-Morgan: Beautifully. And that’s something that’s really important to us because when we’re sitting on the Moon… well, actually, the whole path to the Moon as we are getting ready to land on the Moon, we’ll perform a series of maneuvers, and the Raptors will have an environment that is very, very cold. To that, it’s going to be important that they’re able to relight for landing purposes. So that was a great first step towards that. In addition, after we land, clearly the Raptors will be off, and it will get very cold, and they will have to relight in a cold environment (to get off the Moon). So that’s why that step was critical for the Human Landing System and NASA’s return to the Moon.

A recent artist’s illustration of two Starships docked together in low-Earth orbit. Credit: SpaceX

Ars: Which version of the ship is required for the propellant transfer demonstration, and what new features are on that version to enable this test?

Lisa Watson-Morgan: We’re looking forward to the Version 3, which is what’s coming up later on, sometime in ’25, in the near term, because that’s what we need for propellant transfer and the cryo fluid work that is also important to us… There are different systems in the V3 set that will help us with cryo fluid management. Obviously, with those, we have to have the couplers and the quick-disconnects in order for the two systems to have the right guidance, navigation, trajectory, all the control systems needed to hold their station-keeping in order to dock with each other, and then perform the fluid transfer. So all the fluid lines and all that’s associated with that, those systems, which we have seen in tests and held pieces of when we’ve been working with them at their site, we’ll get to see those actually in action on orbit.

Ars: Have there been any ground tests of these systems, whether it’s fluid couplers or docking systems? Can you talk about some of the ground tests that have gone into this development?

Lisa Watson-Morgan: Oh, absolutely. We’ve been working with them on ground tests for this past year. We’ve seen the ground testing and reviewed the data. Our team works with them on what we deem necessary for the various milestones. While the milestone contains proprietary (information), we work closely with them to ensure that it’s going to meet the intent, safety-wise as well as technically, of what we’re going to need to see. So they’ve done that.

Even more exciting, they have recently shipped some of their docking systems to the Johnson Space Center for testing with the Orion Lockheed Martin docking system, and that’s for Artemis III. Clearly, that’s how we’re going to receive the crew. So those are some exciting tests that we’ve been doing this past year as well that’s not just focused on, say, the booster and the ship. There are a lot of crew systems that are being developed now. We’re in work with them on how we’re going to effectuate the crew manual control requirements that we have, so it’s been a great balance to see what the crew needs, given the size of the ship. That’s been a great set of work. We have crew office hours where the crew travels to Hawthorne [SpaceX headquarters in California] and works one-on-one with the different responsible engineers in the different technical disciplines to make sure that they understand not just little words on the paper from a requirement, but actually what this means, and then how systems can be operated.

Ars: For the docking system, Orion uses the NASA Docking System, and SpaceX brings its own design to bear on Starship?

Lisa Watson-Morgan: This is something that I think the Human Landing System has done exceptionally well. When we wrote our high-level set of requirements, we also wrote it with a bigger picture in mind—looked into the overall standards of how things are typically done, and we just said it has to be compliant with it. So it’s a docking standard compliance, and SpaceX clearly meets that. They certainly do have the Dragon heritage, of course, with the International Space Station. So, because of that, we have high confidence that they’re all going to work very well. Still, it’s important to go ahead and perform the ground testing and get as much of that out of the way as we can.

Lisa Watson-Morgan, NASA’s HLS program manager, is based at Marshall Space Flight Center in Huntsville, Alabama. Credit: ASA/Aubrey Gemignani

Ars: How far along is the development and design of the layout of the crew compartment at the top of Starship? Is it far along, or is it still in the conceptual phase? What can you say about that?

Lisa Watson-Morgan: It’s much further along there. We’ve had our environmental control and life support systems, whether it’s carbon dioxide monitoring fans to make sure the air is circulating properly. We’ve been in a lot of work with SpaceX on the temperature. It’s… a large area (for the crew). The seats, making sure that the crew seats and the loads on that are appropriate. For all of that work, as the analysis work has been performed, the NASA team is reviewing it. They had a mock-up, actually, of some of their life support systems even as far back as eight-plus months ago. So there’s been a lot of progress on that.

Ars: Is SpaceX planning to use a touchscreen design for crew displays and controls, like they do with the Dragon spacecraft?

Lisa Watson-Morgan: We’re in talks about that, about what would be the best approach for the crew for the dynamic environment of landing.

Ars: I can imagine it is a pretty dynamic environment with those Raptor engines firing. It’s almost like a launch in reverse.

Lisa Watson-Morgan: Right. Those are some of the topics that get discussed in the crew office hours. That’s why it’s good to have the crew interacting directly, in addition to the different discipline leads, whether it’s structural, mechanical, propulsion, to have all those folks talking guidance and having control to say, “OK, well, when the system does this, here’s the mode we expect to see. Here’s the impact on the crew. And is this condition, or is the option space that we have on the table, appropriate for the next step, with respect to the displays.”

Ars: One of the big things SpaceX needs to prove out before going to the Moon with Starship is in-orbit propellant transfer. When do you see the ship-to-ship demonstration occurring?

Lisa Watson-Morgan: I see it occurring in ’25.

Ars: Anything more specific about the schedule for that?

Lisa Watson-Morgan: That’d be a question for SpaceX because they do have a number of flights that they’re performing commercially, for their maturity. We get the benefit of that. It’s actually a great partnership. I’ll tell you, it’s really good working with them on this, but they’d have to answer that question. I do foresee it happening in ’25.

Ars: What things do you need to see SpaceX accomplish before they’re ready for the refueling demo? I’m thinking of things like the second launch tower, potentially. Do they need to demonstrate a ship catch or anything like that before going for orbital refueling?

Lisa Watson-Morgan: I would say none of that’s required. You just kind of get down to, what are the basics? What are the basics that you need? So you need to be able to launch rapidly off the same pad, even. They’ve shown they can launch and catch within a matter of minutes. So that is good confidence there. The catching is part of their reuse strategy, which is more of their commercial approach, and not a NASA requirement. NASA reaps the benefit of it by good pricing as a result of their commercial model, but it is not a requirement that we have. So they could theoretically use the same pad to perform the propellant transfer and the long-duration flight, because all it requires is two launches, really, within a specified time period to where the two systems can meet in a planned trajectory or orbit to do the propellant transfer. So they could launch the first one, and then within a week or two or three, depending on what the concept of operations was that we thought we could achieve at that time, and then have the propellant transfer demo occur that way. So you don’t necessarily need two pads, but you do need more thermal characterization of the ship. I would say that is one of the areas (we need to see data on), and that is one of the reasons, I think, why they’re working so diligently on that.

Ars: You mentioned the long-duration flight demonstration. What does that entail?

Lisa Watson-Morgan: The simple objectives are to launch two different tankers or Starships. The Starship will eventually be a crewed system. Clearly, the ones that we’re talking about for the propellant transfer are not. It’s just to have the booster and Starship system launch, and within a few weeks, have another one launch, and have them rendezvous. They need to be able to find each other with their sensors. They need to be able to come close, very, very close, and they need to be able to dock together, connect, do the quick connect, and make sure they are able, then, to flow propellant and LOX (liquid oxygen) to another system. Then, we need to be able to measure the quantity of how much has gone over. And from that, then they need to safely undock and dispose.

Ars: So the long-duration flight demonstration is just part of what SpaceX needs to do in order to be ready for the propellant transfer demonstration?

Lisa Watson-Morgan: We call it long duration just because it’s not a 45-minute or an hour flight. Long duration, obviously, that’s a relative statement, but it’s a system that can stay up long enough to be able to find another Starship and perform those maneuvers and flow of fuel and LOX.

Ars: How much propellant will you transfer with this demonstration, and do you think you’ll get all the data you need in one demonstration, or will SpaceX need to try this several times?

Lisa Watson-Morgan: That’s something you can ask SpaceX (about how much propellant will be transferred). Clearly, I know, but there’s some sensitivity there. You’ve seen our requirements in our initial solicitation. We have thresholds and goals, meaning we want you to at least do this, but more is better, and that’s typically how we work almost everything. Working with commercial industry in these fixed-price contracts has worked exceptionally well, because when you have providers that are also wanting to explore commercially or trying to make a commercial system, they are interested in pushing more than what we would typically ask for, and so often we get that for an incredibly fair price.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s what NASA would like to see SpaceX accomplish with Starship this year Read More »

two-lunar-landers-are-on-the-way-to-the-moon-after-spacex’s-double-moonshot

Two lunar landers are on the way to the Moon after SpaceX’s double moonshot

Julianna Scheiman, director of NASA science missions for SpaceX, said it made sense to pair the Firefly and ispace missions on the same Falcon 9 rocket.

“When we have two missions that can each go to the Moon on the same launch, that is something that we obviously want to take advantage of,” Scheiman said. “So when we found a solution for the Firefly and ispace missions to fly together on the same Falcon 9, it was a no-brainer to put them together.”

SpaceX stacked the two landers, one on top of the other, inside the Falcon 9’s payload fairing. Firefly’s lander, the larger of the two spacecraft, rode on top of the stack and deployed from the rocket first. The Resilience lander from ispace launched in the lower position, cocooned inside a specially designed canister. Once Firefly’s lander separated from the Falcon 9, the rocket jettisoned the canister, performed a brief engine firing to maneuver into a slightly different orbit, then released ispace’s lander.

This dual launch arrangement resulted in a lower launch price for Firefly and ispace, according to Scheiman.

“At SpaceX, we are really interested in and invested in lowering the cost of launch for everybody,” she said. “So that’s something we’re really proud of.”

The Resilience lunar lander is pictured at ispace’s facility in Japan last year. The company’s small Tenacious rover is visible on the upper left part of the spacecraft. credit: ispace Credit: ispace

The Blue Ghost and Resilience landers will take different paths toward the Moon.

Firefly’s Blue Ghost will spend about 25 days in Earth orbit, then four days in transit to the Moon. After Blue Ghost enters lunar orbit, Firefly’s ground team will verify the readiness of the lander’s propulsion and navigation systems and execute several thruster burns to set up for landing.

Blue Ghost’s final descent to the Moon is tentatively scheduled for March 2. The target landing site is in Mare Crisium, an ancient 350-mile-wide (560-kilometer) impact basin in the northeast part of the near side of the Moon.

After touchdown, Blue Ghost will operate for about 14 days (one entire lunar day). The instruments aboard Firefly’s lander include a subsurface drill, an X-ray imager, and an experimental electrodynamic dust shield to test methods of repelling troublesome lunar dust from accumulating on sensitive spacecraft components.

The Resilience lander from ispace will take four to five months to reach the Moon. It carries several intriguing tech demo experiments, including a water electrolyzer provided by a Japanese company named Takasago Thermal Engineering. This demonstration will test equipment that future lunar missions could use to convert the Moon’s water ice resources into electricity and rocket fuel.

The lander will also deploy a “micro-rover” named Tenacious, developed by an ispace subsidiary in Luxembourg. The Tenacious rover will attempt to scoop up lunar soil and capture high-definition imagery of the Moon.

Ron Garan, CEO of ispace’s US-based subsidiary, told Ars that this mission is “pivotal” for the company.

“We were not fully successful on our first mission,” Garan said in an interview. “It was an amazing accomplishment, even though we didn’t have a soft landing… Although the hardware worked flawlessly, exactly as it was supposed to, we did have some lessons learned in the software department. The fixes to prevent what happened on the first mission from happening on the second mission were fairly straightforward, so that boosts our confidence.”

The ispace subsidiary led by Garan, a former NASA astronaut, is based in Colorado. While the Resilience lander launched Wednesday is not part of the CLPS program, the company will build an upgraded lander for a future CLPS mission for NASA, led by Draper Laboratory.

“I think the fact that we have two lunar landers on the same rocket for the first time in history is pretty substantial,” Garan said. I think we all are rooting for each other.”

Investors need to see more successes with commercial lunar landers to fully realize the market’s potential, Garan said.

“That market, right now, is very nascent. It’s very, very immature. And one of the reasons for that is that it’s very difficult for companies that are contemplating making investments on equipment, experiments, etc., to put on the lunar surface and lunar orbit,” Garan said. “It’s very difficult to make those investments, especially if they’re long-term investments, because there really hasn’t been a proof of concept yet.”

“So every time we have a success, that makes it more likely that these companies that will serve as the foundation of a commercial lunar market movement will be able to make those investments,” Garan said. “Conversely, every time we have a failure, the opposite happens.”

Two lunar landers are on the way to the Moon after SpaceX’s double moonshot Read More »

Demystifying data fabrics – bridging the gap between data sources and workloads

The term “data fabric” is used across the tech industry, yet its definition and implementation can vary. I have seen this across vendors: in autumn last year, British Telecom (BT) talked about their data fabric at an analyst event; meanwhile, in storage, NetApp has been re-orienting their brand to intelligent infrastructure but was previously using the term. Application platform vendor Appian has a data fabric product, and database provider MongoDB has also been talking about data fabrics and similar ideas. 

At its core, a data fabric is a unified architecture that abstracts and integrates disparate data sources to create a seamless data layer. The principle is to create a unified, synchronized layer between disparate sources of data and the workloads that need access to data—your applications, workloads, and, increasingly, your AI algorithms or learning engines. 

There are plenty of reasons to want such an overlay. The data fabric acts as a generalized integration layer, plugging into different data sources or adding advanced capabilities to facilitate access for applications, workloads, and models, like enabling access to those sources while keeping them synchronized. 

So far, so good. The challenge, however, is that we have a gap between the principle of a data fabric and its actual implementation. People are using the term to represent different things. To return to our four examples:

  • BT defines data fabric as a network-level overlay designed to optimize data transmission across long distances.
  • NetApp’s interpretation (even with the term intelligent data infrastructure) emphasizes storage efficiency and centralized management.
  • Appian positions its data fabric product as a tool for unifying data at the application layer, enabling faster development and customization of user-facing tools. 
  • MongoDB (and other structured data solution providers) consider data fabric principles in the context of data management infrastructure.

How do we cut through all of this? One answer is to accept that we can approach it from multiple angles. You can talk about data fabric conceptually—recognizing the need to bring together data sources—but without overreaching. You don’t need a universal “uber-fabric” that covers absolutely everything. Instead, focus on the specific data you need to manage.

If we rewind a couple of decades, we can see similarities with the principles of service-oriented architecture, which looked to decouple service provision from database systems. Back then, we discussed the difference between services, processes, and data. The same applies now: you can request a service or request data as a service, focusing on what’s needed for your workload. Create, read, update and delete remain the most straightforward of data services!

I am also reminded of the origins of network acceleration, which would use caching to speed up data transfers by holding versions of data locally rather than repeatedly accessing the source. Akamai built its business on how to transfer unstructured content like music and films efficiently and over long distances. 

That’s not to suggest data fabrics are reinventing the wheel. We are in a different (cloud-based) world technologically; plus, they bring new aspects, not least around metadata management, lineage tracking, compliance and security features. These are especially critical for AI workloads, where data governance, quality and provenance directly impact model performance and trustworthiness.

If you are considering deploying a data fabric, the best starting point is to think about what you want the data for. Not only will this help orient you towards what kind of data fabric might be the most appropriate, but this approach also helps avoid the trap of trying to manage all the data in the world. Instead, you can prioritize the most valuable subset of data and consider what level of data fabric works best for your needs:

  1. Network level: To integrate data across multi-cloud, on-premises, and edge environments.
  2. Infrastructure level: If your data is centralized with one storage vendor, focus on the storage layer to serve coherent data pools.
  3. Application level: To pull together disparate datasets for specific applications or platforms.

For example, in BT’s case, they’ve found internal value in using their data fabric to consolidate data from multiple sources. This reduces duplication and helps streamline operations, making data management more efficient. It’s clearly a useful tool for consolidating silos and improving application rationalization.

In the end, data fabric isn’t a monolithic, one-size-fits-all solution. It’s a strategic conceptual layer, backed up by products and features, that you can apply where it makes the most sense to add flexibility and improve data delivery. Deployment fabric isn’t a “set it and forget it” exercise: it requires ongoing effort to scope, deploy, and maintain—not only the software itself but also the configuration and integration of data sources.

While a data fabric can exist conceptually in multiple places, it’s important not to replicate delivery efforts unnecessarily. So, whether you’re pulling data together across the network, within infrastructure, or at the application level, the principles remain the same: use it where it’s most appropriate for your needs, and enable it to evolve with the data it serves.

Demystifying data fabrics – bridging the gap between data sources and workloads Read More »

after-ceo-exit,-sonos-gets-rid-of-its-chief-product-officer,-too

After CEO exit, Sonos gets rid of its chief product officer, too

A day after announcing that CEO Patrick Spence is departing the company, Sonos revealed that chief product officer Maxime Bouvat-Merlin is also leaving. Bouvat-Merlin had the role since 2023.

As first reported by Bloomberg, Sonos will not fill the chief product officer role. Instead, Tom Conrad, the interim CEO Sonos announced yesterday, will take on the role’s responsibilities. In an email to staff cited by Bloomberg (you can read the letter in its entirety at The Verge), Conrad explained:

With my stepping in as CEO, the board, Max, and I have agreed that my background makes the chief product officer role redundant. Therefore, Max’s role is being eliminated and the product organization will report directly to me. I’ve asked Max to advise me over the next period to ensure a smooth transition and I am grateful that he’s agreed to do that.

In May, Sonos released an update to its app that led to customers, many of them long-time users, revolting over broken features, like accessibility capabilities and the ability to set timers. Sonos expects that remedying the app and Sonos’ reputation will cost it at least $20 million to $30 million. 

As head of the company, Spence received a lot of blame and has also been criticized for not apologizing for the problems until July. However, numerous reports have also attributed blame to Bouvat-Merlin.

After CEO exit, Sonos gets rid of its chief product officer, too Read More »

maker-of-weight-loss-drugs-to-ask-trump-to-pause-price-negotiations:-report

Maker of weight-loss drugs to ask Trump to pause price negotiations: Report

Popular prescriptions

For now, Medicare does not cover drugs prescribed specifically for weight loss, but it will cover GLP-1 class drugs if they’re prescribed for other conditions, such as Type 2 diabetes. Wegovy, for example, is covered if it is prescribed to reduce the risk of heart attack and stroke in adults with either obesity or overweight. But, in November, the Biden administration proposed reinterpreting Medicare prescription-coverage rules to allow for coverage of “anti-obesity medications.”

Such a move is reportedly part of the argument Lilly’s CEO plans to bring to the Trump administration. Rather than using drug price negotiations to reduce health care costs, Ricks aims to play up the potential to reduce long-term health care costs by improving people’s overall health with coverage of GLP-1 drugs now. This argument would presumably be targeted at Mehmet Oz, the TV presenter and heart surgeon Trump has tapped to run the Centers for Medicare and Medicaid Services.

“My argument to Mehmet Oz is that if you want to protect Medicare costs in 10 years, have [the Affordable Care Act] and Medicare plans list these drugs now,” Ricks said to Bloomberg. “We know so much about how much cost savings there will be downstream in heart disease and other conditions.”

An October report from the Congressional Budget Office strongly disputed that claim, however. The CBO estimated that the direct cost of Medicare coverage for anti-obesity drugs between 2026 and 2034 would be nearly $39 billion, while the savings from improved health would total just a little over $3 billion, for a net cost to US taxpayers of about $35.5 billion.

Maker of weight-loss drugs to ask Trump to pause price negotiations: Report Read More »

meta-to-cut-5%-of-employees-deemed-unfit-for-zuckerberg’s-ai-fueled-future

Meta to cut 5% of employees deemed unfit for Zuckerberg’s AI-fueled future

Anticipating that 2025 will be an “intense year” requiring rapid innovation, Mark Zuckerberg reportedly announced that Meta would be cutting 5 percent of its workforce—targeting “lowest performers.”

Bloomberg reviewed the internal memo explaining the cuts, which was posted to Meta’s internal Workplace forum Tuesday. In it, Zuckerberg confirmed that Meta was shifting its strategy to “move out low performers faster” so that Meta can hire new talent to fill those vacancies this year.

“I’ve decided to raise the bar on performance management,” Zuckerberg said. “We typically manage out people who aren’t meeting expectations over the course of a year, but now we’re going to do more extensive performance-based cuts during this cycle.”

Cuts will likely impact more than 3,600 employees, as Meta’s most recent headcount in September totaled about 72,000 employees. It may not be as straightforward as letting go anyone with an unsatisfactory performance review, as Zuckerberg said that any employee not currently meeting expectations could be spared if Meta is “optimistic about their future performance,” The Wall Street Journal reported.

Any employees affected will be notified by February 10 and receive “generous severance,” Zuckerberg’s memo promised.

This is the biggest round of cuts at Meta since 2023, when Meta laid off 10,000 employees during what Zuckerberg dubbed the “year of efficiency.” Those layoffs followed a prior round where 11,000 lost their jobs and Zuckerberg realized that “leaner is better.” He told employees in 2023 that a “surprising result” from reducing the workforce was “that many things have gone faster.”

“A leaner org will execute its highest priorities faster,” Zuckerberg wrote in 2023. “People will be more productive, and their work will be more fun and fulfilling. We will become an even greater magnet for the most talented people. That’s why in our Year of Efficiency, we are focused on canceling projects that are duplicative or lower priority and making every organization as lean as possible.”

Meta to cut 5% of employees deemed unfit for Zuckerberg’s AI-fueled future Read More »

buyers-of-razer’s-bogus-“n95”-zephyr-masks-get-over-$1-million-in-refunds

Buyers of Razer’s bogus “N95” Zephyr masks get over $1 million in refunds

“The Razer Zephyr was conceived to offer a different and innovative face covering option for the community,” the company said at the time. “The FTC’s claims against Razer concerned limited portions of some of the statements relating to the Zephyr. More than two years ago, Razer proactively notified customers that the Zephyr was not a N95 mask, stopped sales, and refunded customers.”

FTC: Only 6 percent of US purchases were refunded

The FTC lawsuit casts doubt on the earlier availability of refunds, saying that Razer “allegedly implemented” a refund policy. Razer provided refunds for less than 6 percent of Zephyr purchases in the US, the FTC said.

“While Defendants purport to have instituted a policy of fully refunding consumers concerned about the filters on January 9, 2022, Defendants did not promote that policy in its January emails to consumers or on its website,” the FTC said.

That’s a reference to a Razer email sent to mask buyers acknowledging that the mask “is not a medical device nor certified as an N95 mask.” The FTC said the Razer email to consumers “did not invite or otherwise indicate that consumers who believed they were purchasing an N95 mask when they purchased the Zephyr could request a refund from Razer.”

Razer customers who sought refunds ran into several kinds of problems, the FTC said. Some “were told that they could not receive a refund because they were outside of Razer’s standard 14-day return policy,” while others “were told that they could not receive a full refund because they had used the disposable filters provided with the Zephyr when they bought the Zephyr in October 2022 or because the Zephyr was no longer sealed and unused,” the lawsuit said.

“Numerous customers were deterred from, or confused regarding their ability to, obtain full refunds because of statements by Defendants’ customer service representatives that they were ineligible for full refunds,” the lawsuit said.

We contacted Razer today and will update this article if it provides further comment.

Buyers of Razer’s bogus “N95” Zephyr masks get over $1 million in refunds Read More »

how-gm’s-super-cruise-went-from-limo-driving-to-lane-changes-and-towing

How GM’s Super Cruise went from limo driving to lane changes and towing

The Unified Lateral Controller

The algorithm that handles all of that is called the Unified Lateral Controller. “So it’s a single software stack, but it is also modular to adapt with different vehicle configurations, with different driving scenarios, different maneuvers,” Zarringhalam said.

“Let’s imagine that you’re driving a Super Cruise vehicle, and you indicate to the left, or the system automatically decides to make a lane change to the left, and then, for whatever reason, the driver decides that they want to go back, mid-maneuver; they want to go back to the original lane. So you can just indicate to the opposite side, in this case, the right-hand side. Under the hood, in this scenario, everything is jumping. Our target trajectory is jumping from a left-lane maneuver to a right turn. The turn can be very sharp. There could be other objects that narrow the envelope of operation that you’re allowed to function in,” Zarringhalam said.

Again, that behavior has to be consistent and predictable, whether it’s below freezing or in the middle of a heatwave, and things like tire wear must also be taken into account. Or, say, the presence of a trailer, which could be anything from a bike rack with wheels to a three-axle trailer.

“As soon as we detect that the trailer is attached, we run several real-time algorithms—trailer inertial parameters, trailer math, trailer configuration, even how many axles we have, and the control adapts itself to execute lane turning and keep both the vehicle and the trailer at the center of the road,” Zarringhalam said.

That’s done automatically without the driver having to input the information (obviating the problem of someone entering the wrong details), “and if you change the loading or the trailer configuration, even mid-drive—if you pull over, load more weight and continue driving on the same road with Super Cruise active—these learnings happen in a matter of seconds,” Zarringhalam said.

How GM’s Super Cruise went from limo driving to lane changes and towing Read More »

skull-long-thought-to-be-cleopatra’s-sister’s-was-actually-a-young-boy

Skull long thought to be Cleopatra’s sister’s was actually a young boy

Scientists have demonstrated that an ancient human skull excavated from a tomb at Ephesos was not that of Arsinoë IV, half-sister to Cleopatra VII. Rather, it’s the skull of a young male between the ages of 11 and 14 from Italy or Sardinia, who may have suffered from one or more developmental disorders, according to a new paper published in the journal Scientific Reports. Arsinoë IV’s remains are thus still missing.

Arsinoë IV led quite an adventurous short life. She was either the third or fourth daughter of Ptolemy XII, who left the throne to Cleopatra and his son, Ptolemy XIII, to rule together. Ptolemy XIII didn’t care for this decision and dethroned Cleopatra in a civil war—until Julius Caesar intervened to enforce their father’s original plan of co-rulership. As for Arsinoë, Caesar returned Cyprus to Egyptian rule and named her and her youngest brother (Ptolemy XIV) co-rulers. This time, it was Arsinoë who rebelled, taking command of the Egyptian army and declaring herself queen.

She was fairly successful at first in battling the Romans, conducting a siege against Alexandria and Cleopatra, until her disillusioned officers decided they’d had enough and secretly negotiated with Caesar to turn her over to him. Caesar agreed, and after a bit of public humiliation, he granted Arsinoë sanctuary in the temple of Artemis in Ephesus. She lived in relative peace for a few years, until Cleopatra and Mark Antony ordered her execution on the steps of the temple—a scandalous violation of the temple as a place of sanctuary. Historians disagree about Arsinoë’s age when she died: Estimates range from 22 to 27.

Archaeologists have been excavating the ancient city of Ephesus for more than a century. The Octagon was uncovered in 1904, and the burial chamber was opened in 1929. That’s where Joseph Keil found a skeleton in a sarcophagus filled with water, but for some reason, Keil only removed the cranium from the tomb before sealing it back up. He took the skull with him to Germany and declared it belonged to a likely female around 20 years old, although he provided no hard data to support that conclusion.

It was Hilke Thur of the Austrian Academy of Sciences who first speculated that the skull may have belonged to Arsinoë IV, despite the lack of an inscription (or even any grave goods) on the tomb where it was found. Old notes and photographs, as well as craniometry, served as the only evidence. The skull accompanied Keil to his new position at the University of Vienna, and there was one 1953 paper reporting on craniometric measurements, but after that, the skull languished in relative obscurity. Archaeologists at the University of Graz rediscovered the skull in Vienna in 2022. The rest of the skeleton remained buried until the chamber was reopened and explored further in the 1980s and 1990s, but it was no longer in the sarcophagus.

Skull long thought to be Cleopatra’s sister’s was actually a young boy Read More »