Two NASA spacecraft built by Rocket Lab are on the road from California to Florida this weekend to begin preparations for launch on Blue Origin’s first New Glenn rocket.
These two science probes must launch between late September and mid-October to take advantage of a planetary alignment between Earth and Mars that only happens once every 26 months. NASA tapped Blue Origin, Jeff Bezos’ space company, to launch the Escape and Plasma Acceleration and Dynamics Explorers (ESCAPADE) mission with a $20 million contract.
Last November, the space agency confirmed the $79 million ESCAPADE mission will launch on the inaugural flight of Blue Origin’s New Glenn rocket. With this piece of information, the opaque schedule for Blue Origin’s long-delayed first New Glenn mission suddenly became more clear.
The launch period opens on September 29. The two identical Mars-bound spacecraft for the ESCAPADE mission, nicknamed Blue and Gold, are now complete. Rocket Lab announced Friday that its manufacturing team packed the satellites and shipped them from their factory in Long Beach, California. Over the weekend, they arrived at a clean room facility just outside the gates of NASA’s Kennedy Space Center in Florida, where technicians will perform final checkups and load hydrazine fuel into both spacecraft, each a little more than a half-ton in mass.
Then, if Blue Origin is ready, ground teams will connect the ESCAPADE spacecraft with the New Glenn’s launch adapter, encapsulate the probes inside the payload fairing, and mount them on top of the rocket.
“There’s a whole bunch of checking and tests to make sure everything’s OK, and then we move into fueling, and then we integrate with the launch vehicle. So it’s a big milestone,” said Rob Lillis, the mission’s lead scientist from the University of California Berkeley’s Space Science Laboratory. “There have been some challenges along the way. This wasn’t easy to make happen on this schedule and for this cost. So we’re very happy to be where we are.”
Racing to the finish line
But there’s a lot for Blue Origin to accomplish in the next couple of months if the New Glenn rocket is going to be ready to send the ESCAPADE mission toward Mars in this year’s launch period. Blue Origin has not fully exercised a New Glenn rocket during a launch countdown, hasn’t pumped a full load of cryogenic propellants into the launch vehicle, and hasn’t test-fired a full complement of first stage or second stage engines.
These activities typically take place months before the first launch of a large new orbital-class rocket. For comparison, SpaceX test-fired its first fully assembled Falcon 9 rocket on the launch pad about three months before its first flight in 2010. United Launch Alliance completed a hot-fire test of its new Vulcan rocket on the launch pad last year, about seven months before its inaugural flight.
However, Blue Origin is making visible progress toward the first flight of New Glenn, after years of speculation and few outward signs of advancement. Earlier this year, the company raised a full-scale, 320-foot-tall (98-meter) New Glenn rocket on its launch pad at Cape Canaveral Space Force Station and loaded it with liquid nitrogen, a cryogenic substitute for the methane and liquid hydrogen fuel it will burn in flight.
Welcome to Edition 7.07 of the Rocket Report! SpaceX has not missed a beat since the Federal Aviation Administration gave the company a green light to resume Falcon 9 launches after a failure last month. In 19 days, SpaceX has launched 10 flights of the Falcon 9 rocket, taking advantage of all three of its Falcon 9 launch pads. This is a remarkable cadence in its own right, but even though it’s a small sample size, it is especially impressive right out of the gate after the rocket’s grounding.
As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.
A quick turnaround for Rocket Lab. Rocket Lab launched its 52nd Electron rocket on August 11 from its private spaceport on Mahia Peninsula in New Zealand, Space News reports. The company’s light-class Electron rocket deployed a small radar imaging satellite into a mid-inclination orbit for Capella Space. This was the shortest turnaround between two Rocket Lab missions from its primary launch base in New Zealand, coming less than nine days after an Electron rocket took off from the same pad with a radar imaging satellite for the Japanese company Synspective. Capella’s Acadia 3 satellite was originally supposed to launch in July, but Capella requested a delay to perform more testing of its spacecraft. Rocket Lab swapped its place in the Electron launch sequence and launched the Synspective mission first.
Now, silence at the launch pad … Rocket Lab hailed the swap as an example of the flexibility provided by Electron, as well as the ability to deliver payloads to specific orbits that are not feasible with rideshare missions, according to Space News. For this tailored launch service, Rocket Lab charges a premium launch price over the price of launching a small payload on a SpaceX rideshare mission. However, SpaceX’s rideshare launches gobble up the lion’s share of small satellites within Rocket Lab’s addressable market. On Friday, a Falcon 9 rocket is slated to launch 116 small payloads into polar orbit. Rocket Lab, meanwhile, projects just one more launch before the end of September and expects to perform 15 to 18 Electron launches this year, a record for the company but well short of the 22 it forecasted earlier in the year. Rocket Lab says customer readiness is the reason it will be far short of projections.
The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.
Defense contractors teaming up on solid rockets. Lockheed Martin and General Dynamics are joining forces to kickstart solid rocket motor production, announcing a strategic teaming agreement today that could see new motors roll off the line as early as 2025, Breaking Defense reports. The new agreement could position a third vendor to enter into the ailing solid rocket motor industrial base, which currently only includes L3Harris subsidiary Aerojet Rocketdyne and Northrop Grumman in the United States. Both companies have struggled to meet demands from weapons makers like Lockheed and RTX, which are in desperate need of solid rocket motors for products such as Javelin or the PAC-3 missiles used by the Patriot missile defense system.
Pressure from startups … Demand for solid rocket motors has skyrocketed since Russia’s invasion of Ukraine as the United States and its partners sought to backfill stocks of weapons like Javelin and Stinger, as well as provide motors to meet growing needs in the space domain. Although General Dynamics has kept its interest in the solid rocket motor market quiet until now, several defense tech startups, such as Ursa Major Technologies, Anduril, and X-Bow Systems, have announced plans to enter the market. (submitted by Ken the Bin)
Going polar with crew. SpaceX will fly the first human spaceflight over the Earth’s poles, possibly before the end of this year, Ars reports. The private Crew Dragon mission will be led by a Chinese-born cryptocurrency entrepreneur named Chun Wang, and he will be joined by a polar explorer, a roboticist, and a filmmaker whom he has befriended in recent years. The “Fram2” mission, named after the Norwegian research ship Fram, will launch into a polar corridor from SpaceX’s launch facilities in Florida and fly directly over the north and south poles. The three- to five-day mission is being timed to fly over Antarctica near the summer solstice in the Southern Hemisphere, to afford maximum lighting.
Wang’s inclination is Wang’s prerogative … Wang told Ars he wanted to try something new, and flying a polar mission aligned with his interests in cold places on Earth. He’s paying the way on a commercial basis, and SpaceX in recent years has demonstrated it can launch satellites into polar orbit from Cape Canaveral, Florida, something no one had done in more than 50 years. The highest-inclination flight ever by a human spacecraft was the Soviet Vostok 6 mission in 1963 when Valentina Tereshkova’s spacecraft reached 65.1 degrees. Now, Fram2 will fly repeatedly and directly over the poles.
Chinese officials have long signaled their interest in deploying a satellite network, or maybe several, to beam broadband Internet signals across China and other nations within its sphere of influence.
Two serious efforts are underway in China to develop a rival to SpaceX’s Starlink network, which the Chinese government has banned in its territory. The first batch of 18 satellites for one of those Chinese networks launched into low-Earth orbit Tuesday.
A Long March 6A rocket delivered the 18 spacecraft into a polar orbit following liftoff at 2: 42 am EDT (06: 42 UTC) from the Taiyuan launch base in northern China’s Shanxi province. The Long March 6A is one of China’s newest rockets—and the country’s first to employ strap-on solid rocket boosters—with the ability to deploy a payload of up to 4.5 metric tons (9,900 pounds) into a 700-kilometer (435-mile) Sun-synchronous orbit.
The rocket placed its payload of 18 Qianfan satellites into the proper orbit, and the launch mission was a complete success, according to the China Aerospace Science and Technology Corporation, the largest state-owned contractor for the Chinese space program.
Qianfan translates to “Thousand Sails,” and the 18 satellites launched Tuesday are the first of potentially thousands of spacecraft planned by Shanghai Spacecom Satellite Technology (SSST), a company backed by Shanghai’s municipal government. The network developed by SSST is also called the “Spacesail Constellation.”
Shanghai officials only began releasing details of this constellation last year. A filing with the International Telecommunication Union suggests the developers of Shanghai-based megaconstellation initially plan to deploy 1,296 satellites at an altitude of about 1,160 kilometers (721 miles).
Xinhua, China’s state-run news agency, said the constellation “will provide global users with low-latency, high-speed and ultra-reliable satellite broadband Internet services.”
Opening the floodgates?
SSST’s network was previously known as G60 Starlink, referencing a major cross-country highway in China and the project’s intent to imitate SpaceX’s broadband service.
Thousand Sails may eventually consist of more than 14,000 satellites, but like other Internet megaconstellations, the size of the fleet will likely grow at a rate commensurate with demand. It will take many years for SSST to deploy a 14,000-satellite constellation, if it ever does. SpaceX has rolled out several generations of Starlink satellites to offer new services and more capacity to meet customer uptake.
Chinese officials have released few details about the Qianfan satellites. But the project’s backers have said the spacecraft has a “standardized and modular” flat-panel design. “It meets the needs of stacking multiple satellites with one rocket,” said Shanghai Gesi Aerospace Technology, a joint venture set up by SSST and the Chinese Academy of Sciences to oversee manufacturing of Qianfan satellites.
This sounds a lot like the design of SpaceX’s Starlink satellites, which are flat-packed for launch on Falcon 9 rockets. SpaceX pioneered this way of launching and deploying large numbers of satellites. The approach used for Starlink, and apparently for Qianfan, streamlines the integration of multiple satellites with their launcher on the ground. It also simplifies their separation from the rocket once in orbit.
The new Qianfan satellite factory in Shanghai can produce up to 300 spacecraft per year, project officials said in December. Officials previously said the first 108 satellites for the Thousand Sails constellation would launch this year.
SSST announced in February it had raised more than $900 million from Chinese state-backed investment funds, Shanghai’s municipal government, and sources of venture capital. SSST’s origin is linked to a Chinese joint venture with a Germany-based company called KLEO Connect, which intended to develop a smaller constellation of low-Earth orbit satellites for data relay services.
China launched four technology demonstration satellites, purportedly related to the KLEO Connect venture, to test telecom hardware and electric propulsion systems in orbit. The joint venture fell apart with a flurry of lawsuits, and the German government last year blocked a complete takeover of KLEO Connect by its Chinese investors.
Now, SSST is going it alone with the Thousand Sails network. It has rapidly scaled up satellite manufacturing capacity in Shanghai. But outside of Starlink, companies with ideas for megaconstellations have run into serious headwinds.
OneWeb filed for bankruptcy in 2020 before eventually launching its entire first-generation network of 633 Internet satellites. Amazon has pushed back the full-scale deployment of its Project Kuiper megaconstellation, and the launch of the first operational Kuiper Internet satellites may be delayed again to 2025. The future of the European Union’s IRIS² satellite Internet network is in doubt after disagreements among European governments on funding the project.
The Thousand Sails constellation is less well-known than another planned Chinese satellite Internet network known as Guowang, or “national network,” which is supported by China’s central government. Guowang is owned by a state-backed company called SatNet, and its architecture will consist of 13,000 satellites. However, China has not yet launched any spacecraft for the Guowang project.
It’s unclear if the Thousand Sails network and the Guowang constellation will be direct competitors. They could be geared to different segments of the broadband market. In either case, China’s restrictive Internet policies with terrestrial networks will likely spill over into the satellite segment.
Chinese officials recognize the military utility of satellite Internet services like Starlink, which has supported Ukrainian military forces fighting Russian troops since 2022. A homegrown Starlink-like service would, no doubt, prove useful for China’s military.
Alongside potential domestic civilian users, China could use its satellite Internet networks as a diplomatic tool to build on existing partnerships between the Chinese government and developing countries. This could “lead to a leapfrogging moment, where African countries opt for the Chinese Internet constellation over Western providers due to the fact that much of their infrastructure is already Chinese-built,” the Royal United Services Institute, a UK think tank, wrote in a report last year.
While there are open questions about how China will use its satellite megaconstellations, their deployment will require a significant increase in the country’s launch capacity, driving the development of new commercial rockets, including reusable boosters, to lower costs and increase their flight rate.
Welcome to Edition 7.05 of the Rocket Report! The Federal Aviation Administration grounded SpaceX’s Falcon 9 rocket for 15 days after a rare failure of its upper stage earlier this month. The FAA gave the green light for Falcon 9 to return to flight July 25, and within a couple of days, SpaceX successfully launched three missions from three launch pads. There’s a lot on Falcon 9’s to-do list, so we expect SpaceX to quickly return to form with several flights per week.
As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.
Big delay for a reusable rocket testbed. The French space agency, CNES, has revealed that the inaugural test flight of its Callisto reusable rocket demonstrator will not take place until late 2025 or early 2026, European Spaceflight reports. CNES unveiled an updated website for the Callisto rocket program earlier this month, showing the test rocket has been delayed from a debut launch later this year to until late 2025 or early 2026. The Callisto rocket is designed to test techniques and technologies required for reusable rockets, such as vertical takeoff and vertical landing, with suborbital flights from the Guiana Space Center in South America.
Cooperative action … Callisto, which stands for Cooperative Action Leading to Launcher Innovation in Stage Toss-back Operations, is a joint project between CNES, German space agency DLR, and JAXA, the Japanese space agency. It will stand 14 meters (46 feet) tall and weigh about 4 metric tons (8,800 pounds), with an engine supplied by Japan. Callisto is one of several test projects in Europe aiming to pave the way for a future reusable rocket. (submitted by EllPeaTea and Ken the Bin)
The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.
Small step for Themis. Another European project established to demonstrate reusable rocket tech is making slow progress toward a first flight. The Themis project, funded by the European Space Agency, is similar in purpose to the Callisto testbed discussed above. This week, the German aerospace manufacturing company MT Aerospace announced it has begun testing a demonstrator of the landing legs that will be used aboard the Themis reusable booster, European Spaceflight reports. The landing legs for Themis are made of carbon fiber-reinforced plastic composites, and the initial test demonstrated good deployment and showed it would withstand the impact energy of landing.
Also delayed … Like Callisto, Themis is facing delays in getting to the launch pad. ArianeGroup, the ESA-selected Themis prime contractor, had been expected to conduct an initial hop test of the demonstrator before the end of 2024. However, officials have announced the initial hop tests won’t happen until sometime next year. The Themis booster is intended to eventually become the first stage booster for an orbital-class partially reusable rocket being developed by MaiaSpace, a subsidiary of ArianeGroup. (submitted by Ken the Bin)
Falcon 9 is flying again. A SpaceX Falcon 9 rocket returned to flight on July 27, barely two weeks after an upper stage failure ended a streak of more than 300 consecutive successful launches, Ars reports. By some measures this was an extremely routine mission—it was, after all, SpaceX’s 73rd launch of this calendar year. And like many other Falcon 9 launches this year, the “Starlink 10-9” mission carried 23 of the broadband Internet satellites into orbit. However, after a rare failure earlier this month, this particular Falcon 9 rocket was making a return-to-flight for the company and attempting to get the world’s most active booster back into service.
Best part is no part … The Falcon 9 successfully deployed its payload of Starlink satellites about an hour after lifting off from NASA’s Kennedy Space Center in Florida. Later in the weekend, SpaceX launched two more Starlink missions on Falcon 9 rockets from Florida and California, notching three flights in less than 28 hours. The launch failure on the previous Falcon 9 launch was caused by a liquid oxygen leak on the upper stage, which led to a “hard start” on the upper stage engine when it attempted to reignite in flight. Engineers and technicians were quickly able to pinpoint the cause of the leak, a crack in a “sense line” for a pressure sensor attached to the vehicle’s liquid oxygen system.
Atlas V’s NSSL era is over. United Launch Alliance delivered a classified US military payload to orbit Tuesday for the last time with an Atlas V rocket, ending the Pentagon’s use of Russian rocket engines as national security missions transition to all-American launchers, Ars reports. This was the 101st launch of an Atlas V rocket since its debut in 2002, and the 58th and final Atlas V mission with a US national security payload since 2007. The Atlas V is powered by an RD-180 main engine made in Russia, and with a little prodding from SpaceX (via a lawsuit) and Congress, the Pentagon started making moves to end its reliance on the RD-180 a decade ago.
Other options available … The RD-180 never failed on a National Security Space Launch (NSSL) mission using the Atlas V rocket, but its use became politically untenable after Russia’s annexation of Crimea in 2014, which predated Russia’s full-scale invasion of Ukraine eight years later. SpaceX began launching US military missions in 2018, and ULA debuted its new Vulcan rocket in January. Assuming a successful second test flight of Vulcan in September, ULA’s next-generation rocket has a good shot at launching its first national security mission by the end of the year. The Space Force’s policy is to maintain at least two independent launch vehicles capable of flying military payloads into orbit. Vulcan and SpaceX’s Falcon rocket family fulfill that requirement, so the military no longer needs the Atlas V. However, 15 more Atlas V rockets remain in ULA’s inventory for future commercial flights.
Crackdown at the Cape. While this week’s landmark launch of the Atlas V rocket is worthy of celebration, there’s a new ULA policy that deserves ridicule, Ars reports. Many of the spectacular photos of rocket launches shared on social media come from independent photographers, who often make little to no money working for an established media organization. Instead, they rely on sales of prints to recoup at least some of their expenses for gas, food, and camera equipment needed to capture these images, which often serve as free publicity for launch providers like ULA. Last month, ULA announced it will no longer permit these photographers to set up remote cameras at their launch pads if they sell their images independently. This new policy was in place for the Atlas V launch from Cape Canaveral, Florida, on Tuesday morning.
But why? … “ULA will periodically confirm editorial publication for media participating in remote camera placement,” ULA stated in an email distributed to photographers last month. “If publication does not occur, or photos are sold outside of editorial purposes, privileges to place remote cameras may be revoked.” To the photographers who spend many hours preparing their equipment, waiting to set up and remove cameras, and persevering through scrubs and more, it seemed like a harsh judgment. And nobody knows why it happened. ULA has offered no public comment about the new policy, and the company did not respond to questions from Ars about the agreement.
Astroscale achieves a first in orbit. There are more than 2,000 mostly intact dead rockets circling the Earth, but until this year, no one ever launched a satellite to go see what one looked like after many years of tumbling around the planet, Ars reports. A Japanese company named Astroscale launched a small satellite in February to chase down the derelict upper stage from a Japanese H-IIA rocket. Astroscale’s ADRAS-J spacecraft arrived near the H-IIA upper stage in April, and the company announced this week that its satellite has now completed two 360-degree fly-arounds of the rocket. This is the first time a satellite has maneuvered around an actual piece of space junk, and it offers an unprecedented snapshot of how an abandoned rocket holds up to 15 years in the harsh environment of space.
Prepping for the future … Astroscale’s ADRAS-J mission is partially funded by the Japan Aerospace Exploration Agency (JAXA). Astroscale and JAXA also have a contract for a follow-up mission named ADRAS-J2, which will attempt to link up with the same H-IIA rocket and steer it on a trajectory to burn up in Earth’s atmosphere. This would be the first demonstration of active debris removal, a concept pursued by Astroscale and other companies to help clear space junk out of low-Earth orbit.
An update on Ariane 6. The European Space Agency has released its first update on the results from the first flight of the Ariane 6 rocket since its launch July 9. Europe’s new flagship rocket had a mostly successful inaugural test flight. Its first stage, solid rocket boosters, and upper stage performed as expected for the first phase of the flight, delivering eight small satellites into an on-target orbit. The launch pad at the Guiana Space Center in South America also held up to the violent environment of launch, ESA said.
Still investigating … However, the final phase of the mission didn’t go according to plan. The upper stage’s Vinci engine was supposed to reignite for a third time on the test flight to deorbit the rocket, which would have released two small reentry capsules on technology demonstration missions to test heat shield technologies. This didn’t happen. An Auxiliary Propulsion Unit, which is a small engine to provide additional bursts of thrust and pressurize the upper stage’s propellant tanks, shut down shortly after startup ahead of the third burn of the primary Vinci engine. “This meant the Vinci engine’s third boost could not take place,” ESA said. “Analysis of the APU’s behavior is ongoing and further information will be made available as soon as possible, while the next task force update is expected in September.” (submitted by Ken the Bin)
Room to grow at Starbase. SpaceX has since launched Starship four times from its launch site in South Texas, known as Starbase, and is planning a fifth launch within the next two months, Ars reports. However, as it continues to test Starship and make plans for regular flights, SpaceX will need a higher flight rate. This is especially true as the company is unlikely to activate additional launch pads for Starship in Florida until at least 2026. To that end, SpaceX has asked the FAA for permission for up to 25 flights a year from South Texas, as well as the capability to land both the Starship upper stage and Super Heavy booster stage back at the launch site.
The answer is probably yes … On Monday, the FAA signaled that it is inclined to grant this request. The agency released a draft assessment indicating that its extensive 2022 analysis of Starship launch activities on the environment, wildlife, local communities, and more was sufficient to account for SpaceX’s proposal for more launches. There is more to do for this conclusion to become official, including public meetings and a public comment period this month.
SpaceX eyes Australia. SpaceX is in talks with US and Australian officials to land and recover one of its Starship rockets off Australia’s coast, a possible first step toward a bigger presence for Elon Musk’s company in the region as the two countries bolster security ties, Reuters reports. At the end of SpaceX’s fourth Starship test flight in June, the rocket made a controlled splashdown in the Indian Ocean hundreds of miles off the northwest coast of Australia. The discussions now underway are focused on the possibility of towing a future Starship vehicle from its splashdown point in the ocean to a port in Australia, where SpaceX engineers could inspect it and learn more about how it performed.
Eventually, it’ll come back to land … On the next Starship flight, currently planned for no earlier than late August, SpaceX plans to attempt to recover Starship’s giant Super Heavy booster using catch arms on the launch pad tower in Texas. On Sunday, Elon Musk told SpaceX and Tesla enthusiasts at an event called the “X Takeover” that it will take a few more flights for engineers to get comfortable returning the Starship itself to a landing onshore. “We want to be really confident that the ship heat shield is super robust and lands at the exact right location,” he said. “So before we try to bring the ship back to the launch site, we probably want to have at least three successful landings of the ship [at sea].” (submitted by Ken the Bin)
Next three launches
August 2: Electron | “Owl for One, One for Owl” | Mahia Peninsula, New Zealand | 16: 39 UTC
August 3: Falcon 9 | NG-21 | Cape Canaveral Space Force Station, Florida | 15: 28 UTC
August 4: Falcon 9 | Starlink 11-1 | Vandenberg Space Force Base, California | 07: 00 UTC
There are more than 2,000 mostly intact dead rockets circling the Earth, but until this year, no one ever launched a satellite to go see what one looked like after many years of tumbling around the planet.
In February, a Japanese company named Astroscale sent a small satellite into low-Earth orbit on top of a Rocket Lab launcher. A couple of months later, Astroscale’s ADRAS-J (Active Debris Removal by Astroscale-Japan) spacecraft completed its pursuit of a Japanese rocket stuck in orbit for more than 15 years.
ADRAS-J photographed the upper stage of an H-IIA rocket from a range of several hundred meters and then backed away. This was the first publicly released image of space debris captured from another spacecraft using rendezvous and proximity operations.
Since then, Astroscale has pulled off more complex maneuvers around the H-IIA upper stage, which hasn’t been controlled since it deployed a Japanese climate research satellite in January 2009. Astroscale attempted to complete a 360-degree fly-around of the H-IIA rocket last month, but the spacecraft triggered an autonomous abort one-third through the maneuver after detecting an attitude anomaly.
ADRAS-J flew away from the H-IIA rocket for several weeks. After engineers determined the cause of the glitch that triggered the abort, ADRAS-J fired thrusters to approach the upper stage again this month. The ADRAS-J spacecraft is about the size of a kitchen oven, while the H-IIA rocket it’s visiting is nearly the size of a city bus.
Astroscale’s satellite completed two fly-around maneuvers of the H-IIA upper stage on July 15 and 16, examining all sides of the rocket as it soared more than 350 miles (560 kilometers) above the planet. Engineers also wanted to measure the upper stage’s spin rate and spin axis. At first glance, the upper stage appears remarkably similar to the way it looked when it launched. Despite exposure to the harsh conditions of space, the rocket’s outer skin remains covered in orange foam insulation, and the engine nozzle still shines as if it were new.
ADRAS-J autonomously maneuvered around the rocket at a distance of about 50 meters (164 feet), using navigation data from a light detection and ranging sensor and Astroscale’s custom-developed guidance algorithms to control its position as the vehicles moved around Earth at nearly 4.7 miles per second (7.6 kilometers per second). This is the crux of the challenge for ADRAS-J because the rocket is unpowered and unable to hold position. The upper stage also lacks laser reflectors and targets that would aid an approaching spacecraft.
This is a first
These types of complex maneuvers, known as rendezvous and proximity operations (RPO), are common for crew and cargo spacecraft around the International Space Station. Other commercial satellites have demonstrated formation-flying and even docking with a spacecraft that wasn’t designed to connect with another vehicle in orbit.
Military satellites from the United States, Russia, and China also have RPO capabilities, but as far as we know, these spacecraft have only maneuvered in ultra-close range around so-called “cooperative” objects designed to receive them. In 2003, the Air Force Research Laboratory launched a small satellite named XSS-10 to inspect the upper stage of a Delta II rocket in orbit, but it had a head start. XSS-10 maneuvered around the same rocket that deployed it, rather than pursuing a separate target.
United Launch Alliance delivered a classified US military payload to orbit Tuesday for the last time with an Atlas V rocket, ending the Pentagon’s use of Russian rocket engines as national security missions transition to all-American launchers.
The Atlas V rocket lifted off from Cape Canaveral Space Force Station in Florida at 6: 45 am EDT (10: 45 UTC) Tuesday, propelled by a Russian-made RD-180 engine and five strap-on solid-fueled boosters in its most powerful configuration. This was the 101st launch of an Atlas V rocket since its debut in 2002, and the 58th and final Atlas V mission with a US national security payload since 2007.
The US Space Force’s Space Systems Command confirmed a successful conclusion to the mission, code-named USSF-51, on Tuesday afternoon. The rocket’s Centaur upper stage released the top secret USSF-51 payload about seven hours after liftoff, likely in a high-altitude geostationary orbit over the equator. The military did not publicize the exact specifications of the rocket’s target orbit.
“What a fantastic launch and a fitting conclusion for our last national security space Atlas V (launch),” said Walt Lauderdale, USSF-51 mission director at Space Systems Command, in a post-launch press release. “When we look back at how well Atlas V met our needs since our first launch in 2007, it illustrates the hard work and dedication from our nation’s industrial base. Together, we made it happen, and because of teams like this, we have the most successful and thriving launch industry in the world, bar none.”
RD-180’s long goodbye
The launch Tuesday morning was the end of an era born in the 1990s when US government policy allowed Lockheed Martin, the original developer of the Atlas V, to use Russian rocket engines during its first stage. There was a widespread sentiment in the first decade after the fall of the Soviet Union that the United States and other Western nations should partner with Russia to keep the country’s aerospace workers employed and prevent “rogue states” like Iran or North Korea from hiring them.
At the time, the Pentagon was procuring new rockets to replace legacy versions of the Atlas, Delta, and Titan rocket families, which had been in service since the late 1950s or early 1960s.
Ultimately, the Air Force chose Lockheed Martin’s Atlas V and Boeing’s Delta IV rocket for development in 1998. The Atlas V, with its Russian main engine, was somewhat less expensive than the Delta IV and the more successful of the two designs. After Tuesday’s launch, 15 more Atlas V rockets are booked to fly payloads for commercial customers and NASA, mainly for Amazon’s Kuiper network and Boeing’s Starliner crew spacecraft. The 45th and final Delta IV launch occurred in April.
Boeing and Lockheed Martin merged their rocket divisions in 2006 to form a 50-50 joint venture named United Launch Alliance, which became the sole contractor certified to carry large US military satellites to orbit until SpaceX started launching national security missions in 2018.
SpaceX filed a lawsuit in 2014 to protest the Air Force’s decision to award ULA a multibillion-dollar sole-source contract for 36 Atlas V and Delta IV rocket booster cores. The litigation started soon after Russia’s military occupation and annexation of Crimea, which prompted US government sanctions on prominent Russian government officials, including Dmitry Rogozin, then Russia’s deputy prime minister and later the head of Russia’s space agency.
Rogozin, known for his bellicose but usually toothless rhetoric, threatened to halt exports of RD-180 engines for US military missions on the Atlas V. That didn’t happen until Russia finally stopped engine exports to the United States in 2022, following its full-scale invasion of Ukraine. At that point, ULA already had all the engines it needed to fly out all of its remaining Atlas V rockets. This export ban had a larger effect on Northrop Grumman’s Antares rocket, which also used Russian engines, forcing the development of a brand new first stage booster with US engines.
The SpaceX lawsuit, Russia’s initial military incursions into Ukraine in 2014, and the resulting sanctions marked the beginning of the end for the Atlas V rocket and ULA’s use of the Russian RD-180 engine. The dual-nozzle RD-180, made by a Russian company named NPO Energomash, consumes kerosene and liquid oxygen propellants and generates 860,000 pounds of thrust at full throttle.
Welcome to Edition 7.03 of the Rocket Report! One week ago, SpaceX suffered a rare failure of its workhorse Falcon 9 rocket. In fact, it was the first time the latest version of the Falcon 9, known as the Block 5, has ever failed on its prime mission after nearly 300 launches. The world’s launch pads have been silent since the grounding of the Falcon 9 fleet after last week’s failure. This isn’t surprising, but it’s noteworthy. After all, the Falcon 9 has flown more this year than all of the world’s other rockets combined and is fundamental to much of what the world does in space.
As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.
Astra finally goes private, again. A long-simmering deal for Astra’s founders to take the company private has been finalized, the company announced Thursday, capping the rocket launch company’s descent from blank-check darling to delisting in three years, Bloomberg reports. The launch company’s valuation peaked at $3.9 billion in 2021, the year it went public, and was worth about $12.2 million at the end of March, according to data compiled by Bloomberg. Astra’s chief executive officer, Chris Kemp, and chief technology officer, Adam London, founded the company in 2016 with the goal of essentially commoditizing launch services for small satellites. But Astra’s rockets failed to deliver and fell short of orbit five times in seven tries.
Spiraling … Astra’s stock price tanked after the spate of launch failures, drying up its funding spigot as Kemp tried to pivot toward a slightly larger, more reliable rocket. Astra acquired a company named Apollo Fusion in 2021, entering a new business segment to produce electric thrusters for small satellites. But Astra’s launch business faltered, and last November Kemp and London submitted an offer to retake ownership of the company. Astra announced the closure of the take-private deal Thursday, with Kemp and London acquiring the company’s outstanding shares for 50 cents per share in cash, below the stock’s final listing price of 53 cents. “We will now focus all of our attention on a successful launch of Rocket 4, delivering satellite engines to our customers, and building a company of consequence,” Kemp said. (submitted by EllPeaTea and Ken the Bin)
Firefly chief leaves company. Launch startup Firefly Aerospace parted ways with CEO Bill Weber, Payload reports. The announcement of Weber’s departure late Wednesday came two days after Payload reported Firefly was investigating claims of an alleged inappropriate relationship between him and a female employee. “Firefly Aerospace’s Board of Directors announced that Bill Weber is no longer serving as CEO of the company, effective immediately,” the company said in a statement Wednesday night. Peter Schumacher takes over as interim CEO while Firefly searches for a new permanent chief executive. Schumacher was an interim CEO at Firefly before Weber’s hiring in 2022.
Two days and gone … Payload published the first report of Weber’s alleged improper relationship with a female employee Monday. Two days later, Weber was gone. Payload reported an executive brought his concerns about the alleged relationship to Firefly’s board and resigned because he lost confidence in leadership at the company. Citing four current and former employees, Payload reported Firefly’s culture became “chaotic” since Weber took the helm in 2022 after its acquisition by AE Industrial Partners. The Texas-based company achieved some success during Weber’s tenure, with four orbital launches of its Alpha rocket, although two of the flights ended up in lower-than-planned orbits. (submitted by Ken the Bin)
The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.
Themis hop tests delayed to next year. The initial hop tests of the European Themis reusable booster, developed by ArianeGroup and funded by ESA, won’t start until next year, European Spaceflight reports. The Swedish Space Corporation, which operates the space center in Sweden where Themis will initially fly, confirmed the schedule change. Once ArianeGroup moves on to higher altitude flights, the testing will be moved to the Guiana Space Center. ESA awarded the first development contract for the Themis booster in 2019, and the first hop tests were then scheduled for 2022. Themis’ hops will be similar to SpaceX’s Grasshopper rocket, which performed a series of up-and-down atmospheric test flights before SpaceX started recovering and reusing Falcon 9 boosters.
Fate of Themis … The Themis booster is powered by the methane-fueled Prometheus engine, also funded by ESA. A large European reusable rocket is unlikely to fly until the 2030s, but a subsidiary of ArianeGroup named MaiaSpace is developing a smaller partially reusable two-stage rocket slated to debut as soon as next year. The Maia rocket will use a modified Themis booster as its first stage. “As a result, for MaiaSpace, the continued and rapid development of the Themis program is essential to ensure it can hit its projected target of an inaugural flight of Maia in 2025,” European Spaceflight reports. (submitted by Ken the Bin)
A SpaceX Falcon 9 rocket suffered an upper stage engine failure and deployed a batch of Starlink Internet satellites into a perilously low orbit after launch from California Thursday night, the first blemish on the workhorse launcher’s record in more than 300 missions since 2016.
Elon Musk, SpaceX’s founder and CEO, posted on X that the rocket’s upper stage engine failed when it attempted to reignite nearly an hour after the Falcon 9 lifted off from Vandenberg Space Force Base, California, at 7: 35 pm PDT (02: 35 UTC).
Frosty evidence
After departing Vandenberg to begin SpaceX’s Starlink 9-3 mission, the rocket’s reusable first stage booster propelled the Starlink satellites into the upper atmosphere, then returned to Earth for an on-target landing on a recovery ship parked in the Pacific Ocean. A single Merlin Vacuum engine on the rocket’s second stage fired for about six minutes to reach a preliminary orbit.
A few minutes after liftoff of SpaceX’s Starlink 9-3 mission, veteran observers of SpaceX launches noticed an unusual build-up of ice around the top of the Merlin Vacuum engine, which consumes a propellant mixture of super-chilled kerosene and cryogenic liquid oxygen. The liquid oxygen is stored at a temperature of several hundred degrees below zero.
Numerous chunks of ice fell away from the rocket as the upper stage engine powered into orbit, but the Merlin Vacuum, or M-Vac, engine appeared to complete its first burn as planned. A leak in the oxidizer system or a problem with insulation could lead to ice accumulation, although the exact cause, and its possible link to the engine malfunction later in flight, will be the focus of SpaceX’s investigation into the failure.
A second burn with the upper stage engine was supposed to raise the perigee, or low point, of the rocket’s orbit well above the atmosphere before releasing 20 Starlink satellites to continue climbing to their operational altitude with their own propulsion.
“Upper stage restart to raise perigee resulted in an engine RUD for reasons currently unknown,” Musk wrote in an update two hours after the launch. RUD (rapid unscheduled disassembly) is a term of art in rocketry that usually signifies a catastrophic or explosive failure.
“Team is reviewing data tonight to understand root cause,” Musk continued. “Starlink satellites were deployed, but the perigee may be too low for them to raise orbit. Will know more in a few hours.”
Telemetry from the Falcon 9 rocket indicated it released the Starlink satellites into an orbit with a perigee just 86 miles (138 kilometers) above Earth, roughly 100 miles (150 kilometers) lower than expected, according to Jonathan McDowell, an astrophysicist and trusted tracker of spaceflight activity. Detailed orbital data from the US Space Force was not immediately available.
Ripple effects
While ground controllers scramble to salvage the 20 Starlink satellites, SpaceX engineers began probing what went wrong with the second stage’s M-Vac engine. For SpaceX and its customers, the investigation into the rocket malfunction is likely the more pressing matter.
SpaceX could absorb the loss of 20 Starlink satellites relatively easily. The company’s satellite assembly line can produce 20 Starlink spacecraft in a few days. But the Falcon 9 rocket’s dependability and high flight rate have made it a workhorse for NASA, the US military, and the wider space industry. An investigation will probably delay several upcoming SpaceX flights.
The first in-flight failure for SpaceX’s Falcon rocket family since June 2015, a streak of 344 consecutive successful launches until tonight.
Depending on the cause of the problem and what SpaceX must do to fix it, it’s possible the company can recover from the upper stage failure and resume launching Starlink satellites soon. Most of SpaceX’s launches aren’t for external customers, but deploy satellites for the company’s own Starlink network. This gives SpaceX a unique flexibility to quickly return to flight with the Falcon 9 without needing to satisfy customer concerns.
The Federal Aviation Administration, which licenses all commercial space launches in the United States, will require SpaceX to conduct a mishap investigation before resuming Falcon 9 flights.
“The FAA will be involved in every step of the investigation process and must approve SpaceX’s final report, including any corrective actions,” an FAA spokesperson said. “A return to flight is based on the FAA determining that any system, process, or procedure related to the mishap does not affect public safety.”
Two crew missions are supposed to launch on SpaceX’s human-rated Falcon 9 rocket in the next six weeks, but those launch dates are now in doubt.
The all-private Polaris Dawn mission, commanded by billionaire Jared Isaacman, is scheduled to launch on a Falcon 9 rocket on July 31 from NASA’s Kennedy Space Center in Florida. Isaacman and three commercial astronaut crewmates will spend five days in orbit on a mission that will include the first commercial spacewalk outside their Crew Dragon capsule, using new pressure suits designed and built by SpaceX.
NASA’s next crew mission with SpaceX is slated to launch from Florida aboard a Falcon 9 rocket around August 19. This team of four astronauts will replace a crew of four who have been on the International Space Station since March.
Some customers, especially NASA’s commercial crew program, will likely want to see the results of an in-depth inquiry and require SpaceX to string together a series of successful Falcon 9 flights with Starlink satellites before clearing their own missions for launch. SpaceX has already launched 70 flights with its Falcon family of rockets since January 1, an average cadence of one launch every 2.7 days, more than the combined number of orbital launches by all other nations this year.
With this rapid-fire launch cadence, SpaceX could quickly demonstrate the fitness of any fixes engineers recommend to resolve the problem that caused Thursday night’s failure. But investigations into rocket failures often take weeks or months. It was too soon, early on Friday, to know the true impact of the upper stage malfunction on SpaceX’s launch schedule.
Welcome to Edition 7.01 of the Rocket Report! We’re compiling this week’s report a day later than usual due to the Independence Day holiday. Ars is beginning its seventh year publishing this weekly roundup of rocket news, and there’s a lot of it this week despite the holiday here in the United States. Worldwide, there were 122 launches that flew into Earth orbit or beyond in the first half of 2024, up from 91 in the same period last year.
As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.
Firefly launches its fifth Alpha flight. Firefly Aerospace placed eight CubeSats into orbit on a mission funded by NASA on the first flight of the company’s Alpha rocket since an upper stage malfunction more than half a year ago, Space News reports. The two-stage Alpha rocket lifted off from Vandenberg Space Force Base in California late Wednesday, two days after an issue with ground equipment aborted liftoff just before engine ignition. The eight CubeSats come from NASA centers and universities for a range of educational, research, and technology demonstration missions. This was the fifth flight of Firefly’s Alpha rocket, capable of placing about a metric ton of payload into low-Earth orbit.
Anomaly resolution … This was the fifth flight of an Alpha rocket since 2021 and the fourth Alpha flight to achieve orbit. But the last Alpha launch in December failed to place its Lockheed Martin payload into the proper orbit due to a problem during the relighting of its second-stage engine. On this week’s launch, Alpha deployed its NASA-sponsored payloads after a single burn of the second stage, then completed a successful restart of the engine for a plane change maneuver. Engineers traced the problem on the last Alpha flight to a software error. (submitted by Ken the Bin)
Two companies added to DoD’s launch pool. Blue Origin and Stoke Space Technologies — neither of which has yet reached orbit — have been approved by the US Space Force to compete for future launches of small payloads, Breaking Defense reports. Blue Origin and Stoke Space join a roster of launch companies eligible to compete for launch task orders the Space Force puts up for bid through the Orbital Services Program-4 (OSP-4) contract. Under this contract, Space Systems Command buys launch services for payloads 400 pounds (180 kilograms) or greater, enabling launch from 12 to 24 months of the award of a task order. The OSP-4 contract has an “emphasis on small orbital launch capabilities and launch solutions for Tactically Responsive Space mission needs,” said Lt. Col. Steve Hendershot, chief of Space Systems Command’s small launch and targets division.
An even dozen … Blue Origin aims to launch its orbital-class New Glenn rocket for the first time as soon as late September, while Stoke Space aims to fly its Nova rocket on an orbital test flight next year. The addition of these two companies means there are 12 providers eligible to bid on OSP-4 task orders. The other companies are ABL Space Systems, Aevum, Astra, Firefly Aerospace, Northrop Grumman, Relativity Space, Rocket Lab, SpaceX, United Launch Alliance, and X-Bow. (submitted by Ken the Bin and brianrhurley)
The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.
Italian startup test-fires small rocket. Italian rocket builder Sidereus Space Dynamics has completed the first integrated system test of its EOS rocket, European Spaceflight reports. This test occurred Sunday, culminating in a firing of the rocket’s kerosene/liquid oxygen MR-5 main engine for approximately 11 seconds. The EOS rocket is a novel design, utilizing a single-stage-to-orbit architecture, with the reusable booster returning to Earth from orbit for recovery under a parafoil. The rocket stands less than 14 feet (4.2 meters) tall and will be capable of delivering about 29 pounds (13 kilograms) of payload to low-Earth orbit.
A lean operation … After it completes integrated testing on the ground, the company will conduct the first low-altitude EOS test flights. Founded in 2019, Sidereus has raised 6.6 million euros ($7.1 million) to fund the development of the EOS rocket. While this is a fraction of the funding other European launch startups like Isar Aerospace, MaiaSpace, and Orbex have attracted, the Sidereus’s CEO, Mattia Barbarossa, has previously stated that the company intends to “reshape spaceflight in a fraction of the time and with limited resources.” (submitted by EllPeaTea and Ken the Bin)
United Launch Alliance and Blue Origin are worried about SpaceX’s plans to launch its enormous Starship rocket from Florida.
In documents submitted to the Federal Aviation Administration last month, ULA and Blue Origin raised concerns about the impact of Starship launch operations on their own activities on Florida’s Space Coast. Blue Origin, Jeff Bezos’ space company, urged the federal government to consider capping the number of Starship launches and landings, test-firings, and other operations, and limiting SpaceX’s activities to particular times.
Elon Musk, founder and CEO of SpaceX, called Blue Origin’s filing with the FAA “an obviously disingenuous response. Not cool of them to try (for the third time) to impede SpaceX’s progress by lawfare.” We’ll get to that in a moment.
The FAA and SpaceX are preparing an environmental impact statement for launches and landings of the Super Heavy booster and Starship rocket at Launch Complex 39A at NASA’s Kennedy Space Center (KSC), while the US Space Force is working with SpaceX on a similar environmental review for Starship flights from Space Launch Complex 37 at nearby Cape Canaveral Space Force Station (CCSFS).
These reviews likely won’t be complete until late 2025, at the earliest, and only then will SpaceX be cleared to launch Starship from Florida. SpaceX also must construct launch infrastructure at both sites, which could take a couple of years. This is already underway at Launch Complex 39A.
Big rocket with a big footprint
During the environmental review process, the FAA should weigh how regular flights of the reusable Starship—as many as 120 launches per year, according to TechCrunch—will affect other launch providers operating at Cape Canaveral, ULA and Blue Origin said. SpaceX’s final proposed launch cadence from each site will be part of draft environmental assessments released for public comment as soon as the end of this year.
SpaceX plans to launch Starlink satellites, customer payloads, and missions to support NASA’s Artemis lunar landings from the launch pads in Florida. Getting a launch pad up and running in Florida is one of several schedule hurdles facing SpaceX’s program to develop a human-rated lunar lander version of Starship, alongside demonstrating orbital refueling.
Starship-Super Heavy launches and landings “are expected to have a greater environmental impact than any other launch system currently operating at KSC or CCSFS,” Blue Origin wrote. In its current configuration, Starship is the most powerful rocket in history, and SpaceX is developing a larger version standing 492 feet (150 meters) tall with nearly 15 million pounds (6,700 metric tons) of propellant. This larger variant is the one that will fly from Cape Canaveral.
“It’s a very, very large rocket, and getting bigger,” wrote Tory Bruno, ULA’s CEO, in a post on X. “That quantity of propellant requires an evacuation zone whenever fueled that includes other people’s facilities. A (weekly) launch has injurious sound levels all the way into town. The Cape isn’t meant for a monopoly.”
At SpaceX’s privately owned Starbase launch site in South Texas, the evacuation zone is set at 1.5 miles (2.5 kilometers) when Starship and Super Heavy are filled with methane and liquid oxygen propellants. During an actual launch, the checkpoint is farther back at more than 3 miles (5 kilometers) from the pad.
“The total launch capacity of the Cape will go down if other providers are forced to evacuate their facilities whenever a vehicle is fueled,” Bruno wrote.
We don’t yet know the radius of the keep-out zones for Starship operations in Florida, but Blue Origin wrote that the impact of Starship activities in Florida “may be even greater than at Starbase,” presumably due to the larger rocket SpaceX plans to launch from Cape Canaveral. If this is the case, neighboring launch pads would need to be evacuated during Starship operations.
Purely based on the geography of Cape Canaveral, ULA seems to have the bigger worry. Its launch pad for the Vulcan and Atlas V rocket is located less than 2.2 miles (3.5 kilometers) from Launch Complex 39A (LC-39A). SpaceX’s proposal for up to 44 launches from LC-39A “will result in significant airspace and ground closures, result in acoustic impacts felt at nearby operations, and potentially produce debris, particulates, and property damage,” ULA said.
ULA said these hazards could prevent it from fulfilling its contracts to launch critical national security satellites for the US military.
“As the largest rocket in existence, an accident would inflict serious or even catastrophic damage, while normal launch operations would have a cumulative impact on structures, launch vehicle hardware, and other critical launch support equipment,” ULA said.
A small research satellite designed to study the violent processes behind the creation and destruction of chemical elements will launch on a SpaceX Falcon 9 rocket in 2027, NASA announced Tuesday.
The Compton Spectrometer and Imager (COSI) mission features a gamma-ray telescope that will scan the sky to study gamma-rays emitted by the explosions of massive stars and the end of their lives. These supernova explosions generate reactions that fuse new atomic nuclei, a process called nucleosynthesis, of heavier elements.
Using data from COSI, scientists will map where these elements are forming in the Milky Way galaxy. COSI’s observations will also yield new insights into the annihilation of positrons, the antimatter equivalent of electrons, which appear to be originating from the center of the galaxy. Another goal for COSI will be to rapidly report the location of short gamma-ray bursts, unimaginably violent explosions that flash and then fade in just a couple of seconds. These bursts are likely caused by merging neutron stars.
The COSI mission will be sensitive to so-called soft gamma rays, a relatively unexplored segment of the electromagnetic spectrum. The telescope is based on a design scientists have flown on research balloon flights.
NASA selected COSI in a competition for funding to become the next mission in the agency’s Explorers program in 2021. Earlier this year, NASA formally approved the mission to proceed into development for launch in August 2027, with an overall budget in the range of $267 million to $294 million, according to NASA budget documents.
From Florida to the equator
COSI is a relatively small spacecraft, built by Northrop Grumman and weighing less than a ton, but it will ride alone into orbit on top of a Falcon 9 rocket. That’s because COSI will operate in an unusual orbit about 340 miles (550 kilometers) over the equator, an orbit chosen to avoid interference from radiation over the South Atlantic Anomaly, the region where the inner Van Allen radiation belt comes closest to Earth’s surface.
SpaceX’s Falcon 9 will deliver COSI directly into its operational orbit after taking off from Cape Canaveral, Florida, then will fire its upper stage in a sideways maneuver to make a turn at the equator. This type of maneuver, called a plane change, takes a lot of energy, or delta-V, on par with the delta-V required to put a heavier satellite into a much higher orbit.
NASA awarded SpaceX a firm-fixed-price contract valued at $69 million to launch the COSI mission. This is about a 37 percent increase in the price NASA paid SpaceX in a 2019 contract for launch of the similarly sized IXPE X-ray telescope into a similar orbit as COSI. The higher price is at least partially explained by inflation.
The space agency didn’t have much of a decision to make in the COSI launch contract. The Falcon 9 is the only rocket certified by NASA that can launch a satellite with the mass of COSI into its equatorial orbit.
In the next couple of years, NASA hopes United Launch Alliance’s Vulcan rocket and Blue Origin’s New Glenn launcher will be in the mix to compete for launch contracts for missions like COSI. All of ULA’s remaining Atlas V rockets are already booked by other customers.
Welcome to Edition 6.50 of the Rocket Report! SpaceX launched its 10th Falcon Heavy rocket this week with the GOES-U weather satellite for NOAA, and this one was a beauty. The late afternoon timing of the launch and atmospheric conditions made for great photography. Falcon Heavy has become a trusted rocket for the US government, and its next flight in October will deploy NASA’s Europa Clipper spacecraft on the way to explore one of Jupiter’s enigmatic icy moons.
As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.
Sir Peter Beck dishes on launch business. Ars spoke with the recently knighted Peter Beck, founder and CEO of Rocket Lab, on where his scrappy company fits in a global launch marketplace dominated by SpaceX. Rocket Lab racked up the third-most number of orbital launches by any US launch company (it’s headquartered in California but primarily assembles and launches rockets in New Zealand). SpaceX’s rideshare launch business with the Falcon 9 rocket is putting immense pressure on small launch companies like Rocket Lab. However, Beck argues his Electron rocket is a bespoke solution for customers desiring to put their satellite in a specific place at a specific time, a luxury they can’t count on with a SpaceX rideshare.
Ruthlessly efficient … A word that Beck returned to throughout his interview with Ars was “ruthless.” He said Rocket Lab’s success is a result of the company being “ruthlessly efficient and not making mistakes.” At one time, Rocket Lab was up against Virgin Orbit in the small launch business, and Virgin Orbit had access to capital through billionaire Richard Branson. Now, SpaceX is the 800-pound gorilla in the market. “We have a saying here at Rocket Lab that we have no money, so we have to think. We’ve never been in a position to outspend our competitors. We just have to out-think them. We have to be lean and mean.”
Firefly reveals plans for new launch sites. Firefly Aerospace plans to use the state of Virginia-owned launch pad at NASA’s Wallops Flight Facility for East Coast launches of its Alpha small-satellite rocket, Aviation Week reports. The company plans to use Pad 0A for US military and other missions, particularly those requiring tight turnaround between procurement and launch. This is the same launch pad previously used by Northrop Grumman’s Antares rocket, and it’s the soon-to-be home of the Medium Launch Vehicle (MLV) jointly developed by Northrop and Firefly. The launch pad will be configured for Alpha launches beginning in 2025, according to Firefly, which previously planned to develop an Alpha launch pad at Cape Canaveral Space Force Station in Florida. Now, Alpha and MLV rockets will fly from the same site on the East Coast, while Alpha will continue launching from the West Coast at Vandenberg Space Force Base, California.
Hello, Sweden… A few days after the announcement for launches from Virginia, Firefly unveiled a collaborative agreement with Swedish Space Corporation to launch Alpha rockets from the Esrange Space Center in Sweden as soon as 2026. Esrange has been the departure point for numerous suborbital and sounding rocket for nearly 50 years, but the spaceport is being upgraded for orbital satellite launches. A South Korean startup named Perigee Aerospace announced in May it signed an agreement to be the first user of Esrange’s orbital launch capability. Firefly is the second company to make plans to launch satellites from the remote site in northern Sweden. (submitted by Ken the Bin and brianrhurley)
The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.
China hops closer to reusable rockets. The Shanghai Academy of Spaceflight Technology (SAST), part of China’s apparatus of state-owned aerospace companies, has conducted the country’s highest altitude launch and landing test so far as several teams chase reusable rocket capabilities, Space News reports. A 3.8-meter-diameter (9.2-foot) test article powered by three methane liquid-oxygen engines lifted off from the Gobi Desert on June 23 and soared to an altitude of about 12 kilometers (7.5 miles) before setting down successfully for a vertical propulsive touchdown on landing legs at a nearby landing area. SAST will follow up with a 70-kilometer (43.5-mile) suborbital test using grid fins for better control. A first orbital flight of the new reusable rocket is planned for 2025.
Lots of players … If you don’t exclusively follow China’s launch sector, you should be forgiven for being unable to list all the companies working on new reusable rockets. Late last year, a Chinese startup named iSpace flew a hopper rocket testbed to an altitude of several hundred meters as part of a development program for the company’s upcoming partially reusable Hyperbola 2 rocket. A company named Space Pioneer plans to launch its medium-class Tianlong 3 rocket for the first time later this year. Tianlong 3 looks remarkably like SpaceX’s Falcon 9, and its first stage will eventually be made reusable. China recently test-fired engines for the government’s new Long March 10, a partially reusable rocket planned to become China’s next-generation crew launch vehicle. These are just a few of the reusable rocket programs in China. (submitted by Ken the Bin)
Spanish launch startup invests in Kourou. PLD Space says it is ready to start construction at a disused launch complex at the Guiana Space Center in Kourou, French Guiana. The Spanish launch startup announced this week a 10 million euro ($10.7 million) investment in the launch complex for its Miura 5 rocket, with preparations of the site set to begin “after the summer.” The launch pad was previously used by the French Diamant rocket in the 1970s and is located several miles away from the launch pads used by the European Ariane 6 and Vega rockets. PLD Space is on track to become the first fully commercial company to launch from the spaceport in South America.
Free access to space … Also this week, PLD Space announced a new program to offer space aboard the first two flights of its Miura 5 rocket for free, European Spaceflight reports. The two-stage Miura 5 rocket will be capable of delivering about a half-ton of payload mass into a Sun-synchronous orbit. PLD Space will offer free launch services aboard the first two Miura 5 flights, which are expected to take place in late 2025 and early 2026. The application process will close on July 30, and winning proposals will be announced on November 30. (submitted by Ken the Bin and EllPeaTea)