launch

fire-destroys-starship-on-its-seventh-test-flight,-raining-debris-from-space

Fire destroys Starship on its seventh test flight, raining debris from space

This launch debuted a more advanced, slightly taller version of Starship, known as Version 2 or Block 2, with larger propellant tanks, a new avionics system, and redesigned feed lines flowing methane and liquid oxygen propellants to the ship’s six Raptor engines. SpaceX officials did not say whether any of these changes might have caused the problem on Thursday’s launch.

SpaceX officials have repeatedly and carefully set expectations for each Starship test flight. They routinely refer to the rocket as experimental, and the primary focus of the rocket’s early demo missions is to gather data on the performance of the vehicle. What works, and what doesn’t work?

Still, the outcome of Thursday’s test flight is a clear disappointment for SpaceX. This was the seventh test flight of SpaceX’s enormous rocket and the first time Starship failed to complete its launch sequence since the second flight in November 2023. Until now, SpaceX has made steady progress, and each Starship flight has achieved more milestones than the one before.

On the first flight in April 2023, the rocket lost control a little more than two minutes after liftoff, and the ground-shaking power of the booster’s 33 engines shattered the concrete foundation beneath the launch pad. Seven months later, on Flight 2, the rocket made it eight minutes before failing. On that mission, Starship failed at roughly the same point of its ascent, just before the cutoff of the vehicle’s six methane-fueled Raptor engines.

Back then, a handful of photos and images from the Florida Keys and Puerto Rico showed debris in the sky after Starship activated its self-destruct mechanism due to an onboard fire caused by a dump of liquid oxygen propellant. But that flight occurred in the morning, with bright sunlight along the ship’s flight path.

This time, the ship disintegrated and reentered the atmosphere at dusk, with impeccable lighting conditions accentuating the debris cloud’s appearance. These twilight conditions likely contributed to the plethora of videos posted to social media on Thursday.

Starship and Super Heavy head downrange from SpaceX’s launch site near Brownsville, Texas. Credit: SpaceX

The third Starship test flight last March saw the spacecraft reach its planned trajectory and fly halfway around the world before succumbing to the scorching heat of atmospheric reentry. In June, the fourth test flight ended with controlled splashdowns of the rocket’s Super Heavy booster in the Gulf of Mexico and of Starship in the Indian Ocean.

In October, SpaceX caught the Super Heavy booster with mechanical arms at the launch pad for the first time, proving out the company’s audacious approach to recovering and reusing the rocket. On this fifth test flight, SpaceX modified the ship’s heat shield to better handle the hot temperatures of reentry, and the vehicle again made it to an on-target splashdown in the Indian Ocean.

Most recently, Flight 6 on November 19 demonstrated the ship’s ability to reignite its Raptor engines in space for the first time and again concluded with a bullseye splashdown. But SpaceX aborted an attempt to again catch the booster back at Starbase due to a problem with sensors on the launch pad’s tower.

With Flight 7, SpaceX hoped to test more changes to the heat shield protecting Starship from reentry temperatures up to 2,600° Fahrenheit (1,430° Celsius). Musk has identified the heat shield as one of the most difficult challenges still facing the program. In order for SpaceX to reach its ambition for the ship to become rapidly reusable, with minimal or no refurbishment between flights, the heat shield must be resilient and durable.

Fire destroys Starship on its seventh test flight, raining debris from space Read More »

here’s-what-nasa-would-like-to-see-spacex-accomplish-with-starship-this-year

Here’s what NASA would like to see SpaceX accomplish with Starship this year


Iterate, iterate, and iterate some more

The seventh test flight of Starship is scheduled for launch Thursday afternoon.

SpaceX’s upgraded Starship rocket stands on its launch pad at Starbase, Texas. Credit: SpaceX

SpaceX plans to launch the seventh full-scale test flight of its massive Super Heavy booster and Starship rocket Thursday afternoon. It’s the first of what might be a dozen or more demonstration flights this year as SpaceX tries new things with the most powerful rocket ever built.

There are many things on SpaceX’s Starship to-do list in 2025. They include debuting an upgraded, larger Starship, known as Version 2 or Block 2, on the test flight preparing to launch Thursday. The one-hour launch window opens at 5 pm EST (4 pm CST; 22: 00 UTC) at SpaceX’s launch base in South Texas. You can watch SpaceX’s live webcast of the flight here.

SpaceX will again attempt to catch the rocket’s Super Heavy booster—more than 20 stories tall and wider than a jumbo jet—back at the launch pad using mechanical arms, or “chopsticks,” mounted to the launch tower. Read more about the Starship Block 2 upgrades in our story from last week.

You might think of next week’s Starship test flight as an apéritif before the entrées to come. Ars recently spoke with Lisa Watson-Morgan, the NASA engineer overseeing the agency’s contract with SpaceX to develop a modified version of Starship to land astronauts on the Moon. NASA has contracts with SpaceX worth more than $4 billion to develop and fly two Starship human landing missions under the umbrella of the agency’s Artemis program to return humans to the Moon.

We are publishing the entire interview with Watson-Morgan below, but first, let’s assess what SpaceX might accomplish with Starship this year.

There are many things to watch for on this test flight, including the deployment of 10 satellite simulators to test the ship’s payload accommodations and the performance of a beefed-up heat shield as the vehicle blazes through the atmosphere for reentry and splashdown in the Indian Ocean.

If this all works, SpaceX may try to launch a ship into low-Earth orbit on the eighth flight, expected to launch in the next couple of months. All of the Starship test flights to date have intentionally flown on suborbital trajectories, bringing the ship back toward reentry over the sea northwest of Australia after traveling halfway around the world.

Then, there’s an even bigger version of Starship called Block 3 that could begin flying before the end of the year. This version of the ship is the one that SpaceX will use to start experimenting with in-orbit refueling, according to Watson-Morgan.

In order to test refueling, two Starships will dock together in orbit, allowing one vehicle to transfer super-cold methane and liquid oxygen into the other. Nothing like this on this scale has ever been attempted before. Future Starship missions to the Moon and Mars may require 10 or more tanker missions to gas up in low-Earth orbit. All of these missions will use different versions of the same basic Starship design: a human-rated lunar lander, a propellant depot, and a refueling tanker.

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

Questions for 2025

Catching Starship back at its launch tower and demonstrating orbital propellant transfer are the two most significant milestones on SpaceX’s roadmap for 2025.

SpaceX officials have said they aim to fly as many as 25 Starship missions this year, allowing engineers to more rapidly iterate on the vehicle’s design. SpaceX is constructing a second launch pad at its Starbase facility near Brownsville, Texas, to help speed up the launch cadence.

Can SpaceX achieve this flight rate in 2025? Will faster Starship manufacturing and reusability help the company fly more often? Will SpaceX fly its first ship-to-ship propellant transfer demonstration this year? When will Starship begin launching large batches of new-generation Starlink Internet satellites?

Licensing delays at the Federal Aviation Administration have been a thorn in SpaceX’s side for the last couple of years. Will those go away under the incoming administration of President-elect Donald Trump, who counts SpaceX founder Elon Musk as a key adviser?

And will SpaceX gain a larger role in NASA’s Artemis lunar program? The Artemis program’s architecture is sure to be reviewed by the Trump administration and the nominee for the agency’s next administrator, billionaire businessman and astronaut Jared Isaacman.

The very expensive Space Launch System rocket, developed by NASA with Boeing and other traditional aerospace contractors, might be canceled. NASA currently envisions the SLS rocket and Orion spacecraft as the transportation system to ferry astronauts between Earth and the vicinity of the Moon, where crews would meet up with a landing vehicle provided by commercial partners SpaceX and Blue Origin.

Watson-Morgan didn’t have answers to all of these questions. Many of them are well outside of her purview as Human Landing System program manager, so Ars didn’t ask. Instead, Ars discussed technical and schedule concerns with her during the half-hour interview. Here is one part of the discussion, lightly edited for clarity.

Ars: What do you hope to see from Flight 7 of Starship?

Lisa Watson-Morgan: One of the exciting parts of working with SpaceX are these test flights. They have a really fast turnaround, where they put in different lessons learned. I think you saw many of the flight objectives that they discussed from Flight 6, which was a great success. I think they mentioned different thermal testing experiments that they put on the ship in order to understand the different heating, the different loads on certain areas of the system. All that was really good with each one of those, in addition to how they configure the tiles. Then, from that, there’ll be additional tests that they will put on Flight 7, so you kind of get this iterative improvement and learning that we’ll get to see in Flight 7. So Flight 7 is the first Version 2 of their ship set. When I say that, I mean the ship, the booster, all the systems associated with it. So, from that, it’s really more just understanding how the system, how the flaps, how all of that interacts and works as they’re coming back in. Hopefully we’ll get to see some catches, that’s always exciting.

Ars: How did the in-space Raptor engine relight go on Flight 6 (on November 19)?

Lisa Watson-Morgan: Beautifully. And that’s something that’s really important to us because when we’re sitting on the Moon… well, actually, the whole path to the Moon as we are getting ready to land on the Moon, we’ll perform a series of maneuvers, and the Raptors will have an environment that is very, very cold. To that, it’s going to be important that they’re able to relight for landing purposes. So that was a great first step towards that. In addition, after we land, clearly the Raptors will be off, and it will get very cold, and they will have to relight in a cold environment (to get off the Moon). So that’s why that step was critical for the Human Landing System and NASA’s return to the Moon.

A recent artist’s illustration of two Starships docked together in low-Earth orbit. Credit: SpaceX

Ars: Which version of the ship is required for the propellant transfer demonstration, and what new features are on that version to enable this test?

Lisa Watson-Morgan: We’re looking forward to the Version 3, which is what’s coming up later on, sometime in ’25, in the near term, because that’s what we need for propellant transfer and the cryo fluid work that is also important to us… There are different systems in the V3 set that will help us with cryo fluid management. Obviously, with those, we have to have the couplers and the quick-disconnects in order for the two systems to have the right guidance, navigation, trajectory, all the control systems needed to hold their station-keeping in order to dock with each other, and then perform the fluid transfer. So all the fluid lines and all that’s associated with that, those systems, which we have seen in tests and held pieces of when we’ve been working with them at their site, we’ll get to see those actually in action on orbit.

Ars: Have there been any ground tests of these systems, whether it’s fluid couplers or docking systems? Can you talk about some of the ground tests that have gone into this development?

Lisa Watson-Morgan: Oh, absolutely. We’ve been working with them on ground tests for this past year. We’ve seen the ground testing and reviewed the data. Our team works with them on what we deem necessary for the various milestones. While the milestone contains proprietary (information), we work closely with them to ensure that it’s going to meet the intent, safety-wise as well as technically, of what we’re going to need to see. So they’ve done that.

Even more exciting, they have recently shipped some of their docking systems to the Johnson Space Center for testing with the Orion Lockheed Martin docking system, and that’s for Artemis III. Clearly, that’s how we’re going to receive the crew. So those are some exciting tests that we’ve been doing this past year as well that’s not just focused on, say, the booster and the ship. There are a lot of crew systems that are being developed now. We’re in work with them on how we’re going to effectuate the crew manual control requirements that we have, so it’s been a great balance to see what the crew needs, given the size of the ship. That’s been a great set of work. We have crew office hours where the crew travels to Hawthorne [SpaceX headquarters in California] and works one-on-one with the different responsible engineers in the different technical disciplines to make sure that they understand not just little words on the paper from a requirement, but actually what this means, and then how systems can be operated.

Ars: For the docking system, Orion uses the NASA Docking System, and SpaceX brings its own design to bear on Starship?

Lisa Watson-Morgan: This is something that I think the Human Landing System has done exceptionally well. When we wrote our high-level set of requirements, we also wrote it with a bigger picture in mind—looked into the overall standards of how things are typically done, and we just said it has to be compliant with it. So it’s a docking standard compliance, and SpaceX clearly meets that. They certainly do have the Dragon heritage, of course, with the International Space Station. So, because of that, we have high confidence that they’re all going to work very well. Still, it’s important to go ahead and perform the ground testing and get as much of that out of the way as we can.

Lisa Watson-Morgan, NASA’s HLS program manager, is based at Marshall Space Flight Center in Huntsville, Alabama. Credit: ASA/Aubrey Gemignani

Ars: How far along is the development and design of the layout of the crew compartment at the top of Starship? Is it far along, or is it still in the conceptual phase? What can you say about that?

Lisa Watson-Morgan: It’s much further along there. We’ve had our environmental control and life support systems, whether it’s carbon dioxide monitoring fans to make sure the air is circulating properly. We’ve been in a lot of work with SpaceX on the temperature. It’s… a large area (for the crew). The seats, making sure that the crew seats and the loads on that are appropriate. For all of that work, as the analysis work has been performed, the NASA team is reviewing it. They had a mock-up, actually, of some of their life support systems even as far back as eight-plus months ago. So there’s been a lot of progress on that.

Ars: Is SpaceX planning to use a touchscreen design for crew displays and controls, like they do with the Dragon spacecraft?

Lisa Watson-Morgan: We’re in talks about that, about what would be the best approach for the crew for the dynamic environment of landing.

Ars: I can imagine it is a pretty dynamic environment with those Raptor engines firing. It’s almost like a launch in reverse.

Lisa Watson-Morgan: Right. Those are some of the topics that get discussed in the crew office hours. That’s why it’s good to have the crew interacting directly, in addition to the different discipline leads, whether it’s structural, mechanical, propulsion, to have all those folks talking guidance and having control to say, “OK, well, when the system does this, here’s the mode we expect to see. Here’s the impact on the crew. And is this condition, or is the option space that we have on the table, appropriate for the next step, with respect to the displays.”

Ars: One of the big things SpaceX needs to prove out before going to the Moon with Starship is in-orbit propellant transfer. When do you see the ship-to-ship demonstration occurring?

Lisa Watson-Morgan: I see it occurring in ’25.

Ars: Anything more specific about the schedule for that?

Lisa Watson-Morgan: That’d be a question for SpaceX because they do have a number of flights that they’re performing commercially, for their maturity. We get the benefit of that. It’s actually a great partnership. I’ll tell you, it’s really good working with them on this, but they’d have to answer that question. I do foresee it happening in ’25.

Ars: What things do you need to see SpaceX accomplish before they’re ready for the refueling demo? I’m thinking of things like the second launch tower, potentially. Do they need to demonstrate a ship catch or anything like that before going for orbital refueling?

Lisa Watson-Morgan: I would say none of that’s required. You just kind of get down to, what are the basics? What are the basics that you need? So you need to be able to launch rapidly off the same pad, even. They’ve shown they can launch and catch within a matter of minutes. So that is good confidence there. The catching is part of their reuse strategy, which is more of their commercial approach, and not a NASA requirement. NASA reaps the benefit of it by good pricing as a result of their commercial model, but it is not a requirement that we have. So they could theoretically use the same pad to perform the propellant transfer and the long-duration flight, because all it requires is two launches, really, within a specified time period to where the two systems can meet in a planned trajectory or orbit to do the propellant transfer. So they could launch the first one, and then within a week or two or three, depending on what the concept of operations was that we thought we could achieve at that time, and then have the propellant transfer demo occur that way. So you don’t necessarily need two pads, but you do need more thermal characterization of the ship. I would say that is one of the areas (we need to see data on), and that is one of the reasons, I think, why they’re working so diligently on that.

Ars: You mentioned the long-duration flight demonstration. What does that entail?

Lisa Watson-Morgan: The simple objectives are to launch two different tankers or Starships. The Starship will eventually be a crewed system. Clearly, the ones that we’re talking about for the propellant transfer are not. It’s just to have the booster and Starship system launch, and within a few weeks, have another one launch, and have them rendezvous. They need to be able to find each other with their sensors. They need to be able to come close, very, very close, and they need to be able to dock together, connect, do the quick connect, and make sure they are able, then, to flow propellant and LOX (liquid oxygen) to another system. Then, we need to be able to measure the quantity of how much has gone over. And from that, then they need to safely undock and dispose.

Ars: So the long-duration flight demonstration is just part of what SpaceX needs to do in order to be ready for the propellant transfer demonstration?

Lisa Watson-Morgan: We call it long duration just because it’s not a 45-minute or an hour flight. Long duration, obviously, that’s a relative statement, but it’s a system that can stay up long enough to be able to find another Starship and perform those maneuvers and flow of fuel and LOX.

Ars: How much propellant will you transfer with this demonstration, and do you think you’ll get all the data you need in one demonstration, or will SpaceX need to try this several times?

Lisa Watson-Morgan: That’s something you can ask SpaceX (about how much propellant will be transferred). Clearly, I know, but there’s some sensitivity there. You’ve seen our requirements in our initial solicitation. We have thresholds and goals, meaning we want you to at least do this, but more is better, and that’s typically how we work almost everything. Working with commercial industry in these fixed-price contracts has worked exceptionally well, because when you have providers that are also wanting to explore commercially or trying to make a commercial system, they are interested in pushing more than what we would typically ask for, and so often we get that for an incredibly fair price.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here’s what NASA would like to see SpaceX accomplish with Starship this year Read More »

two-lunar-landers-are-on-the-way-to-the-moon-after-spacex’s-double-moonshot

Two lunar landers are on the way to the Moon after SpaceX’s double moonshot

Julianna Scheiman, director of NASA science missions for SpaceX, said it made sense to pair the Firefly and ispace missions on the same Falcon 9 rocket.

“When we have two missions that can each go to the Moon on the same launch, that is something that we obviously want to take advantage of,” Scheiman said. “So when we found a solution for the Firefly and ispace missions to fly together on the same Falcon 9, it was a no-brainer to put them together.”

SpaceX stacked the two landers, one on top of the other, inside the Falcon 9’s payload fairing. Firefly’s lander, the larger of the two spacecraft, rode on top of the stack and deployed from the rocket first. The Resilience lander from ispace launched in the lower position, cocooned inside a specially designed canister. Once Firefly’s lander separated from the Falcon 9, the rocket jettisoned the canister, performed a brief engine firing to maneuver into a slightly different orbit, then released ispace’s lander.

This dual launch arrangement resulted in a lower launch price for Firefly and ispace, according to Scheiman.

“At SpaceX, we are really interested in and invested in lowering the cost of launch for everybody,” she said. “So that’s something we’re really proud of.”

The Resilience lunar lander is pictured at ispace’s facility in Japan last year. The company’s small Tenacious rover is visible on the upper left part of the spacecraft. credit: ispace Credit: ispace

The Blue Ghost and Resilience landers will take different paths toward the Moon.

Firefly’s Blue Ghost will spend about 25 days in Earth orbit, then four days in transit to the Moon. After Blue Ghost enters lunar orbit, Firefly’s ground team will verify the readiness of the lander’s propulsion and navigation systems and execute several thruster burns to set up for landing.

Blue Ghost’s final descent to the Moon is tentatively scheduled for March 2. The target landing site is in Mare Crisium, an ancient 350-mile-wide (560-kilometer) impact basin in the northeast part of the near side of the Moon.

After touchdown, Blue Ghost will operate for about 14 days (one entire lunar day). The instruments aboard Firefly’s lander include a subsurface drill, an X-ray imager, and an experimental electrodynamic dust shield to test methods of repelling troublesome lunar dust from accumulating on sensitive spacecraft components.

The Resilience lander from ispace will take four to five months to reach the Moon. It carries several intriguing tech demo experiments, including a water electrolyzer provided by a Japanese company named Takasago Thermal Engineering. This demonstration will test equipment that future lunar missions could use to convert the Moon’s water ice resources into electricity and rocket fuel.

The lander will also deploy a “micro-rover” named Tenacious, developed by an ispace subsidiary in Luxembourg. The Tenacious rover will attempt to scoop up lunar soil and capture high-definition imagery of the Moon.

Ron Garan, CEO of ispace’s US-based subsidiary, told Ars that this mission is “pivotal” for the company.

“We were not fully successful on our first mission,” Garan said in an interview. “It was an amazing accomplishment, even though we didn’t have a soft landing… Although the hardware worked flawlessly, exactly as it was supposed to, we did have some lessons learned in the software department. The fixes to prevent what happened on the first mission from happening on the second mission were fairly straightforward, so that boosts our confidence.”

The ispace subsidiary led by Garan, a former NASA astronaut, is based in Colorado. While the Resilience lander launched Wednesday is not part of the CLPS program, the company will build an upgraded lander for a future CLPS mission for NASA, led by Draper Laboratory.

“I think the fact that we have two lunar landers on the same rocket for the first time in history is pretty substantial,” Garan said. I think we all are rooting for each other.”

Investors need to see more successes with commercial lunar landers to fully realize the market’s potential, Garan said.

“That market, right now, is very nascent. It’s very, very immature. And one of the reasons for that is that it’s very difficult for companies that are contemplating making investments on equipment, experiments, etc., to put on the lunar surface and lunar orbit,” Garan said. “It’s very difficult to make those investments, especially if they’re long-term investments, because there really hasn’t been a proof of concept yet.”

“So every time we have a success, that makes it more likely that these companies that will serve as the foundation of a commercial lunar market movement will be able to make those investments,” Garan said. “Conversely, every time we have a failure, the opposite happens.”

Two lunar landers are on the way to the Moon after SpaceX’s double moonshot Read More »

rocket-report:-china-launches-refueling-demo;-dod’s-big-appetite-for-hypersonics

Rocket Report: China launches refueling demo; DoD’s big appetite for hypersonics


We’re just a few days away from getting a double-dose of heavy-lift rocket action.

Stratolaunch’s Talon-A hypersonic rocket plane will be used for military tests involving hypersonic missile technology. Credit: Stratolaunch

Welcome to Edition 7.26 of the Rocket Report! Let’s pause and reflect on how far the rocket business has come in the last 10 years. On this date in 2015, SpaceX made the first attempt to land a Falcon 9 booster on a drone ship positioned in the Atlantic Ocean. Not surprisingly, the rocket crash-landed. In less than a year and a half, though, SpaceX successfully landed reusable Falcon 9 boosters onshore and offshore, and now has done it nearly 400 times. That was remarkable enough, but we’re in a new era now. Within a few days, we could see SpaceX catch its second Super Heavy booster and Blue Origin land its first New Glenn rocket on an offshore platform. Extraordinary.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Our annual ranking of the top 10 US launch companies. You can easily guess who made the top of the list: the company that launched Falcon rockets 134 times in 2024 and launched the most powerful and largest rocket ever built on four test flights, each accomplishing more than the last. The combined 138 launches is more than NASA flew the Space Shuttle over three decades. SpaceX will aim to launch even more often in 2025. These missions have far-reaching impacts, supporting Internet coverage for consumers worldwide, launching payloads for NASA and the US military, and testing technology that will take humans back to the Moon and, someday, Mars.

Are there really 10? … It might also be fairly easy to rattle off a few more launch companies that accomplished big things in 2024. There’s United Launch Alliance, which finally debuted its long-delayed Vulcan rocket and flew two Atlas V missions and the final Delta IV mission, and Rocket Lab, which launched 16 missions with its small Electron rocket this year. Blue Origin flew its suborbital New Shepard vehicle on three human missions and one cargo-only mission and nearly launched its first orbital-class New Glenn rocket in 2024. That leaves just Firefly Aerospace as the only other US company to reach orbit last year.

DoD announces lucrative hypersonics deal. Defense technology firm Kratos has inked a deal worth up to $1.45 billion with the Pentagon to help develop a low-cost testbed for hypersonic technologies, Breaking Defense reports. The award is part of the military’s Multi-Service Advanced Capability Hypersonic Test Bed (MACH-TB) 2.0 program. The MACH-TB program, which began as a US Navy effort, includes multiple “Task Areas.” For its part, Kratos will be tasked with “systems engineering, integration, and testing, to include integrated subscale, full-scale, and air launch services to address the need to affordably increase hypersonic flight test cadence,” according to the company’s release.

Multiple players … The team led by Kratos, which specializes in developing airborne drones and military weapons systems, includes several players such as Leidos, Rocket Lab, Stratolaunch, and others. Kratos last year revealed that its Erinyes hypersonic test vehicle successfully flew for a Missile Defense Agency experiment. Rocket Lab has launched multiple suborbital hypersonic experiments for the military using a modified version of its Electron rocket, and Stratolaunch reportedly flew a high-speed test vehicle and recovered it last month, according to Aviation Week & Space Technology. The Pentagon is interested in developing hypersonic weapons that can evade conventional air and missile defenses. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

ESA will modify some of its geo-return policies. An upcoming European launch competition will be an early test of efforts by the European Space Agency to modify its approach to policies that link contracts to member state contributions, Space News reports. ESA has long used a policy known as geo-return, where member states are guaranteed contracts with companies based in their countries in proportion to the contribution those member states make to ESA programs.

The third rail of European space … Advocates of geo-return argue that it provides an incentive for countries to fund those programs. This incentivizes ESA to lure financial contributions from its member states, which will win guaranteed business and jobs from the agency’s programs. However, critics of geo-return, primarily European companies, claim that it creates inefficiencies that make them less competitive. One approach to revising geo-return is known as “fair contribution,” where ESA first holds competitions for projects, and member states then make contributions based on how companies in their countries fared in the competition. ESA will try the fair contribution approach for the upcoming launch competition to award contracts to European rocket startups. (submitted by EllPeaTea)

RFA is building a new rocket. German launch services provider Rocket Factory Augsburg (RFA) is currently focused on building a new first stage for the inaugural flight of its RFA One rocket, European Spaceflight reports. The stage that was initially earmarked for the flight was destroyed during a static fire test last year on a launch pad in Scotland. In a statement given to European Spaceflight, RFA confirmed that it expects to attempt an inaugural flight of RFA One in 2025.

Waiting on a booster … RFA says it is “fully focused on building a new first stage and qualifying it.” The rocket’s second stage and Redshift OTV third stage are already qualified for flight and are being stored until a new first stage is ready. The RFA One rocket will stand 98 feet (30 meters) tall and will be capable of delivering payloads of up to 1.3 metric tons (nearly 2,900 pounds) into polar orbits. RFA is one of several European startups developing commercial small satellite launchers and was widely considered the frontrunner before last year’s setback. (submitted by EllPeaTea)

Pentagon provides a boost for defense startup. Defense technology contractor Anduril Industries has secured a $14.3 million Pentagon contract to expand solid-fueled rocket motor production, as the US Department of Defense moves to strengthen domestic manufacturing capabilities amid growing supply chain concerns, Space News reports. The contract, awarded under the Defense Production Act, will support facility modernization and manufacturing improvements at Anduril’s Mississippi plant, the Pentagon said Tuesday.

Doing a solid … The Pentagon is keen to incentivize new entrants into the solid rocket manufacturing industry, which provides propulsion for missiles, interceptors, and other weapons systems. Two traditional defense contractors, Northrop Grumman and L3Harris, control almost all US solid rocket production. Companies like Anduril, Ursa Major, and X-Bow are developing solid rocket motor production capability. The Navy previously awarded Anduril a $19 million contract last year to develop solid rocket motors for the Standard Missile 6 program. (submitted by EllPeaTea)

Relativity’s value seems to be plummeting. For several years, an innovative, California-based launch company named Relativity Space has been the darling of investors and media. But the honeymoon appears to be over, Ars reports. A little more than a year ago, Relativity reached a valuation of $4.5 billion following its latest Series F fundraising round. This was despite only launching one rocket and then abandoning that program and pivoting to the development of a significantly larger reusable launch vehicle. The decision meant Relativity would not realize any significant revenue for several years, and Ars reported in September on some of the challenges the company has encountered developing the much larger Terran R rocket.

Gravity always wins … Relativity is a privately held company, so its financial statements aren’t public. However, we can glean some clues from the published quarterly report from Fidelity Investments, which owns Relativity shares. As of March 2024, Fidelity valued its 1.67 million shares at an estimated $31.8 million. However, in a report ending November 29 of last year, which was only recently published, Fidelity’s valuation of Relativity plummeted. Its stake in Relativity was then thought to be worth just $866,735—a per-share value of 52 cents. Shares in the other fundraising rounds are also valued at less than $1 each.

SpaceX has already launched four times this year. The space company is off to a fast start in 2025, with four missions in the first nine days of the year. Two of these missions launched Starlink internet satellites, and the other two deployed an Emirati-owned geostationary communications satellite and a batch of Starshield surveillance satellites for the National Reconnaissance Office. In its new year projections, SpaceX estimates it will launch more than 170 Falcon rockets, between Falcon 9 and Falcon Heavy, Spaceflight Now reports. This is in addition to SpaceX’s plans for up to 25 flights of the Starship rocket from Texas.

What’s in store this year?… Highlights of SpaceX’s launch manifest this year will likely include an attempt to catch and recover Starship after returning from orbit, a first in-orbit cryogenic propellant transfer demonstration with Starship, and perhaps the debut of a second launch pad at Starbase in South Texas. For the Falcon rocket fleet, notable missions this year will include launches of commercial robotic lunar landers for NASA’s CLPS program and several crew flights, including the first human spaceflight mission to fly in polar orbit. According to public schedules, a Falcon 9 rocket could launch a commercial mini-space station for Vast, a privately held startup, before the end of the year. That would be a significant accomplishment, but we won’t be surprised if this schedule moves to the right.

China is dipping its toes into satellite refueling. China kicked off its 2025 launch activities with the successful launch of the Shijian-25 satellite Monday, aiming to advance key technologies for on-orbit refueling and extending satellite lifespans, Space News reports. The satellite launched on a Long March 3B into a geostationary transfer orbit, suggesting the unspecified target spacecraft for the refueling demo test might be in geostationary orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator.

Under a watchful eye … China has tested mission extension and satellite servicing capabilities in space before. In 2021, China launched a satellite named Shijian-21, which docked a defunct Beidou navigation satellite and towed it to a graveyard orbit above the geostationary belt. Reportedly, Shijian-21 satellite may have carried robotic arms to capture and manipulate other objects in space. These kinds of technologies are dual-use, meaning they have civilian and military applications. The US Space Force is also interested in satellite life extension and refueling tech, so US officials will closely monitor Shijian-25’s actions in orbit.

SpaceX set to debut upgraded Starship. An upsized version of SpaceX’s Starship mega-rocket rolled to the launch pad early Thursday in preparation for liftoff on a test flight next week, Ars reports. The rocket could lift off as soon as Monday from SpaceX’s Starbase test facility in South Texas. This flight is the seventh full-scale demonstration launch for Starship. The rocket will test numerous upgrades, including a new flap design, larger propellant tanks, redesigned propellant feed lines, a new avionics system, and an improved antenna for communications and navigation.

The new largest rocket … Put together, all of these changes to the ship raise the rocket’s total height by nearly 6 feet (1.8 meters), so it now towers 404 feet (123.1 meters) tall. With this change, SpaceX will break its own record for the largest rocket ever launched. SpaceX plans to catch the rocket’s Super Heavy booster back at the launch site in Texas and will target a controlled splashdown of the ship in the Indian Ocean.

Blue Origin targets weekend launch of New Glenn. Blue Origin is set to launch its New Glenn rocket in a long-delayed, uncrewed test mission that would help pave the way for the space venture founded by Jeff Bezos to compete against Elon Musk’s SpaceX, The Washington Post reports. Blue Origin has confirmed it plans to launch the 320-foot-tall rocket during a three-hour launch window opening at 1 am EDT (06: 00 UTC) Sunday in the company’s first attempt to reach orbit.

Finally … This is a much-anticipated milestone for Blue Origin and for the company’s likely customers, which include the Pentagon and NASA. Data from this test flight will help the Space Force certify New Glenn to loft national security satellites, providing a new competitor for SpaceX and United Launch Alliance in the heavy-lift segment of the market. Blue Origin isn’t quite shooting for the Moon on this inaugural launch, but the company will attempt to reach orbit and try to land the New Glenn’s first stage booster on a barge in the Atlantic Ocean. (submitted by EllPeaTea)

Next three launches

Jan. 10: Falcon 9 | Starlink 12-12 | Cape Canaveral Space Force Station, Florida | 18: 11 UTC

Jan. 12: New Glenn | NG-1 Blue Ring Pathfinder | Cape Canaveral Space Force Station, Florida | 06: 00 UTC

Jan. 13: Jielong 3 | Unknown Payload | Dongfang Spaceport, Yellow Sea | 03: 00 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: China launches refueling demo; DoD’s big appetite for hypersonics Read More »

two-european-satellites-launch-on-mission-to-blot-out-the-sun—for-science

Two European satellites launch on mission to blot out the Sun—for science


This will all happen nearly 40,000 miles above the Earth, so you won’t need your eclipse glasses.

An infrared view of a test of the Proba-3 mission’s laser ranging system, which will allow two spacecraft to fly in formation with millimeter-scale precision. Credit: ESA – M. Pédoussaut / J. Versluys

Two spacecraft developed by the European Space Agency launched on top of an Indian rocket Thursday, kicking off a mission to test novel formation flying technologies and observe a rarely seen slice of the Sun’s ethereal corona.

ESA’s Proba-3 mission is purely experimental. The satellites are loaded with sophisticated sensors and ranging instruments to allow the two spacecraft to orbit the Earth in lockstep with one another. Proba-3 will attempt to achieve millimeter-scale precision, several orders of magnitude better than the requirements for a spacecraft closing in for docking at the International Space Station.

“In a nutshell, it’s an experiment in space to demonstrate a new concept, a new technology that is technically challenging,” said Damien Galano, Proba-3’s project manager.

The two Proba-3 satellites launched from India at 5: 34 am EST (10: 34 UTC) Thursday, riding a Polar Satellite Launch Vehicle (PSLV). The PSLV released Proba-3 into a stretched-out orbit with a low point of approximately 356 miles (573 kilometers), a high point of 37,632 miles (60,563 kilometers), and an inclination of 59 degrees to the equator.

India’s PSLV accelerates through the speed of sound shortly after liftoff with the Proba-3 mission Thursday. Credit: ISRO

After initial checkouts, the two Proba-3 satellites, each smaller than a compact car, will separate from one another to begin their tech demo experiments early next year. The larger of the two satellites, known as the Coronagraph spacecraft, carries a suite of science instruments to image the Sun’s corona, or outer atmosphere. The smaller spacecraft, named Occulter, hosts navigation sensors and low-impulse thrusters to help it maneuver into position less than 500 feet (150 meters) from its Coronagraph companion.

From the point of view of the Coronagraph spacecraft, this is just the right distance for a 4.6-foot (1.4-meter) disk mounted to Proba-3’s Occulter spacecraft to obscure the surface of the Sun. The occultation will block the Sun’s blinding glare and cast a shadow just 3 inches (8 centimeters) onto the Coronagraph satellite, revealing the wispy, super-heated gases that make up the solar corona.

Why do this?

The corona is normally hidden by the brightness of the Sun and is best observed from Earth during total solar eclipses, but these events only last a few minutes. Scientists devised a way to create artificial eclipses using devices known as coronagraphs, which have flown in space on several previous solar research missions. However, these coronagraphs were placed inside a single instrument on a single spacecraft, limiting their effectiveness due to complications from diffraction or vignetting, where sunlight encroaches around the edge of the occulting disk or misses the imaging detector entirely.

Ideally, scientists would like to place the occulting disk much farther from the camera taking images of the Sun. This would more closely mimic what the human eye sees during a solar eclipse. With Proba-3, ESA will attempt to do just that.

“There was simply no other way of reaching the optical performance Proba-3 requires than by having its occulting disk fly on a separate, carefully controlled spacecraft,” said Joe Zender, ESA’s Proba-3 mission scientist. “Any closer and unwanted stray light would spill over the edges of the disk, limiting our close-up views of the Sun’s surrounding corona.”

But deploying one enormous 150-meter-long spacecraft would be cost-prohibitive. With contributions from 14 member states and Canada, ESA developed the dual-spacecraft Proba-3 mission on a budget of approximately 200 million euros ($210 million) over 10 years. Spain and Belgium, which are not among ESA’s highest-spending member states, funded nearly three-quarters of Proba-3’s cost.

The Proba-3 satellites will use several sensors to keep station roughly 150 meters away from one another, including inter-satellite radio links, satellite navigation receivers, and cameras on the Occulter spacecraft to help determine its relative position by monitoring LEDs on the Coronagraph satellite.

For the most precise navigation, the Occulter satellite will shine a laser toward a reflector on the Coronagraph spacecraft. The laser light bounced back to the Occulter spacecraft will allow it to autonomously and continuously track the range to its companion and send signals to fire cold gas thrusters and make fine adjustments.

The laser will give Proba-3 the ability to control the distance between the two satellites with an error of less than a millimeter—around the thickness of an average fingernailand hold position for up to six hours, 50 times longer than the maximum duration of a total solar eclipse. Proba-3 will create the eclipses while it is flying farthest from Earth in its nearly 20-hour orbit.

Scientists hope to achieve at least 1,000 hours of artificial totality during Proba-3’s two-year prime mission.

Proba-3’s Occulter spacecraft (top) and Coronagraph spacecraft (bottom) will hold position 150 meters away from one another. Credit: ESA-P. Carril

The corona extends millions of miles from the Sun’s convective surface, with temperatures as hot as 3.5 million degrees Fahrenheit. Still, the corona is easily outshined by the glare from the Sun itself. Scientists say it’s important to study this region to understand how the Sun generates the solar wind and drives geomagnetic storms that can affect the Earth.

NASA’s Parker Solar Probe, well-insulated from the scorching heat, became the first spacecraft to fly through the corona in 2021. It is collecting data on the actual conditions within the Sun’s atmosphere, while a network of other spacecraft monitor solar activity from afar to get the big picture.

Proba-3 is tasked with imaging a normally invisible part of the corona as close as 43,500 miles (70,000 kilometers) above the Sun’s surface. Extreme ultraviolet instruments are capable of observing the part of the corona closest to the Sun, while existing coronagraphs on other satellites are good at seeing the outermost portion of the corona.

“That leaves a significant observing gap, from about 3 solar radii down to 1.1 solar radii, that Proba-3 will be able to fill,” said Andrei Zhukov of the Royal Observatory of Belgium, principal investigator for Proba-3’s coronagraph instrument. “This will make it possible, for example, to follow the evolution of the colossal solar explosions called Coronal Mass Ejections as they rise from the solar surface and the outward acceleration of the solar wind.”

Proba-3’s coronagraph instrument will take images as often as once every two seconds, helping scientists search for small-scale fast-moving plasma waves that might be responsible for driving up the corona’s hellish temperatures. The mission will also hunt for the glow of plasma jets scientists believe have a role in accelerating the solar wind, a cloud of particles streaming away from the Sun at speeds of up to 1.2 million mph (2 million km/hr).

These are two of the core science objectives for the Proba-3 mission. But the project has a deeper purpose of proving two satellites can continually fly in tight formation. This level of precision could meet the exacting demands of future space missions, such as Mars Sample Return and the clearing of space junk from low-Earth orbit, according to ESA.

“Proba-3’s coronal observations will take place as part of a larger in-orbit demonstration of precise formation flying,” said Josef Aschbacher, ESA’s director general. “The best way to prove this new European technology works as intended is to produce novel science data that nobody has ever seen before.

“It is not practical today to fly a single 150-meter-long spacecraft in orbit, but if Proba-3 can indeed achieve an equivalent performance using two small spacecraft, the mission will open up new ways of working in space for the future,” Aschbacher said in a statement. “Imagine multiple small platforms working together as one to form far-seeing virtual telescopes or arrays.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Two European satellites launch on mission to blot out the Sun—for science Read More »

over-the-weekend,-china-debuted-a-new-rocket-on-the-nation’s-path-to-the-moon

Over the weekend, China debuted a new rocket on the nation’s path to the Moon


Depending on how you count them, China now has roughly 18 types of active space launchers.

China’s new Long March 12 rocket made a successful inaugural flight Saturday, placing two experimental satellites into orbit and testing uprated, higher-thrust engines that will allow a larger Chinese launcher in development to send astronauts to the Moon.

The 203-foot-tall (62-meter) Long March 12 rocket lifted off at 9: 25 am EST (14: 25 UTC) Saturday from the Wenchang commercial launch site on Hainan Island, China’s southernmost province. This was also the first rocket launch from a new commercial spaceport at Wenchang, consisting of two launch sites a short distance from a pair of existing launch pads used by heavier rockets primarily geared for government missions.

The two-stage rocket delivered two technology demonstration satellites into a near-circular 50-degree-inclination orbit with an average altitude of nearly 650 miles (about 1,040 kilometers), according to US military tracking data.

The Long March 12 is the newest member of China’s Long March rocket family, which has been flying since China launched its first satellite into orbit in 1970. The Long March rockets have significantly evolved since then and now include a range of launch vehicles of different sizes and designs.

Versions of the Long March 2, 3, and 4 rockets have been flying since the 1970s and 1980s, burning the same toxic mix of hypergolic propellants as China’s early ICBMs. More recently, China debuted the Long March 5, 6, 7, and 8 rockets consuming the cleaner combination of kerosene and liquid oxygen propellants. These new rockets provide China with a spectrum of small, medium, and heavy-lift launch capabilities.

So many rockets

So, why bother with yet another Long March rocket? One reason is that Chinese officials seek a less expensive rocket to deploy thousands of small satellites for the country’s Internet mega-constellations to rival SpaceX’s Starlink network. Another motivation is to demonstrate the performance of upgraded rocket engines, new technologies, and fresh designs, some of which appear to copy SpaceX’s workhorse Falcon 9 rocket.

Like all of China’s other existing rockets, the Long March 12 configuration that flew Saturday is fully disposable. At the Zhuhai Airshow earlier this month, China’s largest rocket company displayed another version of the Long March 12 with a reusable first stage but with scant design details.

The Long March 12 is powered by four kerosene-fueled YF-100K engines on its first stage, generating more than 1.1 million pounds, or 5,000 kilonewtons of thrust at full throttle. These engines are upgraded, higher-thrust versions of the YF-100 engines used on several other types of Long March rockets.

Models of the Long March rockets on display at the China National Space Administration (CNSA) booth during the China International Aviation & Aerospace Exhibition in Zhuhai, China, on November 12, 2024. In this image, models of a future reusable version of the Long March 12 (left) and the super-heavy Long March 9 (right) are visible. Credit: Qilai Shen/Bloomberg via Getty Images

Notably, China will use the YF-100K variant on the heavy-lift Long March 10 rocket in development to launch Chinese astronauts to the Moon. The heaviest version of the Long March 10 will use 21 of these YF-100K engines on its core stage and strap-on boosters. Now, Chinese engineers have tested the upgraded YF-100K in flight, with favorable results from Saturday’s launch.

China is also developing a new crew-rated spacecraft and lunar lander that will launch on Long March 10 rockets, eyeing a human landing on the lunar surface by 2030. The Long March 10 will have a reusable first stage like the Falcon 9, and China is now working on a super-heavy fully reusable rocket that appears to be a clone of SpaceX’s Starship. This Long March 9 rocket, which probably won’t fly until the 2030s, will enable larger-scale sustained lunar exploration by China.

And now, the details

The Long March 12 was developed by the Shanghai Academy of Spaceflight Technology, also known as SAST, one of the two main state-owned organizations in charge of designing and manufacturing Long March rockets. Together with the Beijing-based China Academy of Launch Vehicle Technology, SAST is part of the China Aerospace Science and Technology Corporation, the largest government-run enterprise overseeing the Chinese space program.

According to SAST, the Long March 12 is capable of delivering a payload of at least 12 metric tons (26,455 pounds) into low-Earth orbit and about half that to a somewhat higher Sun-synchronous orbit. Two kerosene-fueled YF-115 engines power the Long March 12’s upper stage.

The Long March 12 is also China’s first 3.8-meter (12.5-foot) diameter rocket, which is an optimal match between the width of the booster and lift capability, allowing it to be transported by railway to launch sites across China, according to the state-run Xinhua news agency.

China’s older Long March rocket variants are slimmer and generally require engineers to strap together multiple first-stage boosters in a cluster arrangement to achieve performance similar to the Long March 12. The core of the heavy-lift Long March 5 is around 5 meters in diameter and must be transported by sea.

China’s first Long March 12 rocket on its launch pad before liftoff. Credit: Photo by VCG/VCG via Getty Images

In a post-launch press release, SAST identified several other “technology breakthroughs” flying on the Long March 12 rocket. These include a health management system that can diagnose anomalies in flight and adjust the rocket’s trajectory in real time to compensate for any minor problems. The Long March 12 is also China’s first rocket to use cryogenic helium to pressurize its liquid oxygen tanks, and its tanks are made of an aluminum-lithium alloy to save weight.

The Long March 12 is also the first rocket of its size in the Long March family to be assembled on its side instead of stacked vertically on its launch mount. After integrating the rocket in a nearby hangar, technicians transferred the first Long March 12 to its launch pad horizontally, then raised it vertical with an erector system. This is the same way SpaceX integrates and transports Falcon 9 rockets to the launch pad. SpaceX copied this horizontal integration approach from older Soviet-era rockets, and it offers several advantages, allowing teams to assemble rockets faster without the need for large overhead cranes in tall, cavernous vertical assembly buildings.

A bug or a feature?

We’ve already mentioned the proliferation of different types of Long March rockets, with nine classes of Long March launchers currently in operation. And each of these comes in multiple sub-variants.

This is a starkly different approach from SpaceX, which flies standardized rockets like the Falcon 9 and Falcon Heavy, which almost always fly in the same configuration, regardless of the payload or destination for each mission. The only exception is when SpaceX launches Dragon crew or cargo capsules on the Falcon 9.

Depending on how you count them, China now has roughly 18 different types of active space launchers. This number doesn’t include the Long March 9 or Long March 10, but it counts all the other Long March configurations, plus numerous small- and medium-class rockets fielded by China’s quasi-commercial space industry.

These startups operate with the blessing of China’s government and, in many cases, got their start by utilizing surplus military equipment and investment from Chinese local or provincial governments. However, the Chinese Communist Party has allowed them to raise capital from private sources, and they operate on a commercial basis, almost exclusively to serve domestic Chinese markets.

In some cases, these launch startups compete for commercial contracts directly with the government-backed Long March rocket family. The Long March 12 could be in the mix for launching large batches of spacecraft for China’s planned satellite Internet networks.

Some of these launch companies are working on reusable rockets similar in appearance to SpaceX’s Falcon 9. All of these rockets, government and commercial, are part of an ecosystem of Chinese launchers tasked with hauling military and commercial satellites into orbit.

The Long March 12 launch Saturday was China’s 58th orbital launch attempt of 2024, and no single subvariant of a Chinese rocket has flown more than seven times this year. This is in sharp contrast to the United States, which has logged 142 orbital launch attempts so far this year, 119 of them by SpaceX’s Falcon 9 or Falcon Heavy rockets.

There are around a dozen US orbital-class launch vehicle types you might call operational. But a few of these, such as Northrop Grumman’s Pegasus XL and Minotaur, and NASA’s Space Launch System, haven’t flown for several years.

SpaceX’s Falcon 9 is now the dominant leader in the US launch industry. Most of the Falcon 9 launches are filled to capacity with SpaceX’s own Starlink Internet satellites, but many missions fly with their payload fairings only partially full. Still, the Falcon 9 is more affordable on a per-kilogram basis than any other US rocket.

In China, on the other hand, none of the commercial launch startups have emerged as a clear leader. When that happens, if China allows the market to function in a truly commercial manner, some of these Chinese rocket companies will likely fold.

However, China’s government has a strategic interest in maintaining a portfolio of rockets and launch sites, same as the US government. For example, Chinese officials said the new launch site at Wenchang, where the Long March 12 took off from over the weekend, can accommodate 10 or more different types of rockets.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Over the weekend, China debuted a new rocket on the nation’s path to the Moon Read More »

rocket-report:-a-good-week-for-blue-origin;-italy-wants-its-own-launch-capability

Rocket Report: A good week for Blue Origin; Italy wants its own launch capability


Blue Origin is getting ready to test-fire its first fully integrated New Glenn rocket in Florida.

Blue Origin’s first fully integrated New Glenn rocket rolls out to its launch pad at Cape Canaveral Space Force Station, Florida. Credit: Blue Origin

Welcome to Edition 7.21 of the Rocket Report! We’re publishing the Rocket Report a little early this week due to the Thanksgiving holiday in the United States. We don’t expect any Thanksgiving rocket launches this year, but still, there’s a lot to cover from the last six days. It seems like we’ve seen the last flight of the year by SpaceX’s Starship rocket. A NASA filing with the Federal Aviation Administration requests approval to fly an aircraft near the reentry corridor over the Indian Ocean for the next Starship test flight. The application suggests the target launch date is January 11, 2025.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Another grim first in Ukraine. For the first time in warfare, Russia launched an Intermediate Range Ballistic Missile against a target in Ukraine, Ars reports. This attack on November 21 followed an announcement from Russian President Vladimir Putin earlier the same week that the country would change its policy for employing nuclear weapons in conflict. The IRBM, named Oreshnik, is the longest-range weapon ever used in combat in Europe, and could be refitted to carry nuclear warheads on future strikes.

Putin’s rationale … Putin says his ballistic missile attack on Ukraine is a warning to the West after the US and UK governments approved Ukraine’s use of Western-supplied ATACMS and Storm Shadow tactical ballistic missiles against targets on Russian territory. The Russian leader said his forces could attack facilities in Western countries that supply weapons for Ukraine to use on Russian territory, continuing a troubling escalatory ladder in the bloody war in Eastern Europe. Interestingly, this attack has another rocket connection. The target was apparently a factory in Dnipro that, not long ago, produced booster stages for Northrop Grumman’s Antares rocket.

Blue Origin hops again. Blue Origin launched its ninth suborbital human spaceflight over West Texas on November 22, CollectSpace reports. Six passengers rode the company’s suborbital New Shepard booster to the edge of space, reaching an altitude of 347,661 feet (65.8 miles or 106 kilometers), flying 3 miles (4.8 km) above the Kármán line that serves as the internationally-accepted border between Earth’s atmosphere and outer space. The pressurized capsule carrying the six passengers separated from the booster, giving them a taste of microgravity before parachuting back to Earth.

Dreams fulfilled … These suborbital flights are getting to be more routine, and may seem insignificant compared to Blue Origin’s grander ambitions of flying a heavy-lift rocket and building a human-rated Moon lander. However, we’ll likely have to wait many years before truly routine access to orbital flights becomes available for anyone other than professional astronauts or multimillionaires. This means tickets to ride on suborbital spaceships from Blue Origin or Virgin Galactic are currently the only ways to get to space, however briefly, for something on the order of $1 million or less. That puts the cost of one of these seats within reach for hundreds of thousands of people, and within the budgets of research institutions and non-profits to fund a flight for a scientist, student, or a member of the general public. The passengers on the November 22 flight included Emily Calandrelli, known online as “The Space Gal,” an engineer, Netflix host, and STEM education advocate who became the 100th woman to fly to space. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Rocket Lab flies twice in one day. Two Electron rockets took flight Sunday, one from New Zealand’s Mahia Peninsula and the other from Wallops Island, Virginia, making Rocket Lab the first commercial space company to launch from two different hemispheres in a 24-hour period, Payload reports. One of the missions was the third of five launches for the French Internet of Things company Kinéis, which is building a satellite constellation. The other launch was an Electron modified to act as a suborbital technology demonstrator for hypersonic research. Rocket Lab did not disclose the customer, but speculation is focused on the defense contractor Leidos, which signed a four-launch deal with Rocket Lab last year.

Building cadence … SpaceX first launched two Falcon 9 rockets in 24 hours in 2021. This year, the company launched three Falcon 9s in a single day from pads at Cape Canaveral Space Force Station, Florida, and Vandenberg Space Force Base, California. Rocket Lab has now launched 14 Electron rockets this year, more than any other Western company other than SpaceX. “Two successful launches less than 24 hours apart from pads in different hemispheres. That’s unprecedented capability in the small launch market and one we’re immensely proud to deliver at Rocket Lab,” said Peter Beck, the company’s founder and CEO. (submitted by Ken the Bin)

Italy to reopen offshore launch site. An Italian-run space center located in Kenya will once again host rocket launches from an offshore launch platform, European Spaceflight reports. The Italian minister for enterprises, Adolfo Urso, recently announced that the country decided to move ahead with plans to again launch rockets from the Luigi Broglio Space Center near Malindi, Kenya. “The idea is to give a new, more ambitious mission to this base and use it for the launch of low-orbit microsatellites,” Urso said.

Decades of dormancy … Between 1967 and 1988, the Italian government and NASA partnered to launch nine US-made Scout rockets from the Broglio Space Center to place small satellites into orbit. The rockets lifted off from the San Marco platform, a converted oil platform in equatorial waters off the Kenyan coast. Italian officials have not said what rocket might be used once the San Marco platform is reactivated, but Italy is the leading contributor on the Vega C rocket, a solid-fueled launcher somewhat larger than the Scout. Italy will manage the reactivation of the space center, which has remained in service as a satellite tracking station, under the country’s Mattei Plan, an initiative aimed at fostering stronger economic partnerships with African nations. (submitted by Ken the Bin)

SpaceX flies same rocket twice in two weeks. Less than 14 days after its previous flight, a Falcon 9 booster took off again from Florida’s Space Coast early Monday to haul 23 more Starlink internet satellites into orbit, Spaceflight Now reports. The booster, numbered B1080 in SpaceX’s fleet of reusable rockets, made its 13th trip to space before landing on SpaceX’s floating drone ship in the Atlantic Ocean. The launch marked a turnaround of 13 days, 12 hours, and 44 minutes from this booster’s previous launch November 11, also with a batch of Starlink satellites. The previous record turnaround time between flights of the same Falcon 9 booster was 21 days.

400 and still going … SpaceX’s launch prior to this one was on Saturday night, when a Falcon 9 carried a set of Starlinks aloft from Vandenberg Space Force Base, California. The flight Saturday night was the 400th launch of a Falcon 9 rocket since 2010, and SpaceX’s 100th launch from the West Coast. (submitted by Ken the Bin)

Chinese firm launches upgraded rocket. Chinese launch startup LandSpace put two satellites into orbit late Tuesday with the first launch of an improved version of the Zhuque-2 rocket, Space News reports. The enhanced rocket, named the Zhuque-2E, replaces vernier steering thrusters with a thrust vector control system on the second stage engine, saving roughly 880 pounds (400 kilograms) in mass. The Zhuque-2E rocket is capable of placing a payload of up to 8,800 pounds (4,000 kilograms) into a polar Sun-synchronous orbit, according to LandSpace.

LandSpace in the lead … Founded in 2015, LandSpace is a leader among China’s crop of quasi-commercial launch startups. The company hasn’t launched as often as some of its competitors, but it became the first launch operator in the world to successfully reach orbit with a methane/liquid oxygen (methalox) rocket last year. Now, LandSpace has improved on its design to create the Zhuque-2E rocket, which also has a large niobium allow nozzle extension on the second stage engine for reduced weight. LandSpace also claims the Zhuque-2E is China’s first rocket to use fully supercooled propellant loading, similar to the way SpaceX loads densified propellants into its rockets to achieve higher performance. (submitted by Ken the Bin)

NASA taps Falcon Heavy for another big launch. A little more than a month after SpaceX launched NASA’s flagship Europa Clipper mission on a Falcon Heavy rocket, the space agency announced its next big interplanetary probe will also launch on a Falcon Heavy, Ars reports. What’s more, the Dragonfly mission the Falcon Heavy will launch in 2028 is powered by a plutonium power source. This will be the first time SpaceX launches a rocket with nuclear materials onboard, requiring an additional layer of safety certification by NASA. The agency’s most recent nuclear-powered spacecraft have all launched on United Launch Alliance Atlas V rockets, which are nearing retirement.

The details … Dragonfly is one of the most exciting robotic missions NASA has ever developed. The mission is to send an automated rotorcraft to explore Saturn’s largest moon, Titan, where Dragonfly will soar through a soupy atmosphere in search of organic molecules, the building blocks of life. It’s a hefty vehicle, about the size of a compact car, and much larger than NASA’s Ingenuity Mars helicopter. The launch period opens July 5, 2028, to allow Dragonfly to reach Titan in 2034. NASA is paying SpaceX $256.6 million to launch the mission on a Falcon Heavy. (submitted by Ken the Bin)

New Glenn is back on the pad. Blue Origin has raised its fully stacked New Glenn rocket on the launch pad at Cape Canaveral Space Force Station ahead of pre-launch testing, Florida Today reports. The last time this new 322-foot-tall (98-meter) rocket was visible to the public eye was in March. Since then, Blue Origin has been preparing the rocket for its inaugural launch, which could yet happen before the end of the year. Blue Origin has not announced a target launch date.

But first, more tests … Blue Origin erected the New Glenn rocket vertical on the launch pad earlier this year for ground tests, but this is the first time a flight-ready (or close to it) New Glenn has been spotted on the pad. This time, the first stage booster has its full complement of seven methane-fueled BE-4 engines. Before the first flight, Blue Origin plans to test-fire the seven BE-4 engines on the pad and conduct one or more propellant loading tests to exercise the launch team, the rocket, and ground systems before launch day.

Second Ariane 6 incoming. ArianeGroup has confirmed that the first and second stages for the second Ariane 6 flight have begun the transatlantic voyage from Europe to French Guiana aboard the sail-assisted transport ship Canopée, European Spaceflight reports. The second Ariane 6 launch, previously targeted before the end of this year, has now been delayed to no earlier than February 2025, according to Arianespace, the rocket’s commercial operator. This follows a mostly successful debut launch in July.

An important passenger … While the first Ariane 6 launch carried a cluster of small experimental satellites, the second Ariane 6 rocket will carry a critical spy satellite into orbit for the French armed forces. Shipping the core elements of the second Ariane 6 to the launch site in Kourou, French Guiana, is a significant step in the launch campaign. Once in Kourou, the stages will be connected together and rolled out to the launch pad, where technicians will install two strap-on solid rocket boosters and the payload fairing containing France’s CSO-3 military satellite.

Next three launches

Nov. 29: Soyuz-2.1a | Kondor-FKA 2 | Vostochny Cosmodrome, Russia | 21: 50 UTC

Nov. 30: Falcon 9 | Starlink 6-65 | Cape Canaveral Space Force Station, Florida | 05: 00 UTC

Nov. 30: Falcon 9 | NROL-126 | Vandenberg Space Force Base, California | 08: 08 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: A good week for Blue Origin; Italy wants its own launch capability Read More »

nasa-awards-spacex-a-contract-for-one-of-the-few-things-it-hasn’t-done-yet

NASA awards SpaceX a contract for one of the few things it hasn’t done yet

Notably, the Dragonfly launch was one of the first times United Launch Alliance has been eligible to bid its new Vulcan rocket for a NASA launch contract. NASA officials gave the green light for the Vulcan rocket to compete head-to-head with SpaceX’s Falcon 9 and Falcon Heavy after ULA’s new launcher had a successful debut launch earlier this year. With this competition, SpaceX came out on top.

A half-life of 88 years

NASA’s policy for new space missions is to use solar power whenever possible. For example, Europa Clipper was originally supposed to use a nuclear power generator, but engineers devised a way for the spacecraft to use expansive solar panels to capture enough sunlight to produce electricity, even at Jupiter’s vast distance from the Sun.

But there are some missions where this isn’t feasible. One of these is Dragonfly, which will soar through the soupy nitrogen-methane atmosphere of Titan. Saturn’s largest moon is shrouded in cloud cover, and Titan is nearly 10 times farther from the Sun than Earth, so its surface is comparatively dim.

The Dragonfly mission, seen here in an artist’s concept, is slated to launch no earlier than 2027 on a mission to explore Saturn’s moon Titan. Credit: NASA/JHUAPL/Steve Gribben

Dragonfly will launch with about 10.6 pounds (4.8 kilograms) of plutonium-238 to fuel its power generator. Plutonium-238 has a half-life of 88 years. With no moving parts, RTGs have proven quite reliable, powering spacecraft for many decades. NASA’s twin Voyager probes are approaching 50 years since launch.

The Dragonfly rotorcraft will launch cocooned inside a transit module and entry capsule, then descend under parachute through Titan’s atmosphere, which is four times denser than Earth’s. Finally, Dragonfly will detach from its descent module and activate its eight rotors to reach a safe landing.

Once on Titan, Dragonfly is designed to hop from place to place on numerous flights, exploring environments rich in organic molecules, the building blocks of life. This is one of NASA’s most exciting, and daring, robotic missions of all time.

After launching from NASA’s Kennedy Space Center in Florida in July 2028, it will take Dragonfly about six years to reach Titan. When NASA selected the Dragonfly mission to begin development in 2019, the agency hoped to launch the mission in 2026. NASA later directed Dragonfly managers to target a launch in 2027, and then 2028, requiring the mission to change from a medium-lift to a heavy-lift rocket.

Dragonfly has also faced rising costs NASA blames on the COVID-19 pandemic and supply chain issues and an in-depth redesign since the mission’s selection in 2019. Collectively, these issues caused Dragonfly’s total budget to grow to $3.35 billion, more than double its initial projected cost.

NASA awards SpaceX a contract for one of the few things it hasn’t done yet Read More »

the-key-moment-came-38-minutes-after-starship-roared-off-the-launch-pad

The key moment came 38 minutes after Starship roared off the launch pad


SpaceX wasn’t able to catch the Super Heavy booster, but Starship is on the cusp of orbital flight.

The sixth flight of Starship lifts off from SpaceX’s Starbase launch site at Boca Chica Beach, Texas. Credit: SpaceX.

SpaceX launched its sixth Starship rocket Tuesday, proving for the first time that the stainless steel ship can maneuver in space and paving the way for an even larger, upgraded vehicle slated to debut on the next test flight.

The only hiccup was an abortive attempt to catch the rocket’s Super Heavy booster back at the launch site in South Texas, something SpaceX achieved on the previous flight on October 13. The Starship upper stage flew halfway around the world, reaching an altitude of 118 miles (190 kilometers) before plunging through the atmosphere for a pinpoint slow-speed splashdown in the Indian Ocean.

The sixth flight of the world’s largest launcher—standing 398 feet (121.3 meters) tall—began with a lumbering liftoff from SpaceX’s Starbase facility near the US-Mexico border at 4 pm CST (22: 00 UTC) Tuesday. The rocket headed east over the Gulf of Mexico, propelled by 33 Raptor engines clustered on the bottom of its Super Heavy first stage.

A few miles away, President-elect Donald Trump joined SpaceX founder Elon Musk to witness the launch. The SpaceX boss became one of Trump’s closest allies in this year’s presidential election, giving the world’s richest man extraordinary influence in US space policy. Sen. Ted Cruz (R-Texas) was there, too, among other lawmakers. Gen. Chance Saltzman, the top commander in the US Space Force, stood nearby, chatting with Trump and other VIPs.

Elon Musk, SpaceX’s CEO, President-elect Donald Trump, and Gen. Chance Saltzman of the US Space Force watch the sixth launch of Starship Tuesday. Credit: Brandon Bell/Getty Images

From their viewing platform, they watched Starship climb into a clear autumn sky. At full power, the 33 Raptors chugged more than 40,000 pounds of super-cold liquid methane and liquid oxygen per second. The engines generated 16.7 million pounds of thrust, 60 percent more than the Soviet N1, the second-largest rocket in history.

Eight minutes later, the rocket’s upper stage, itself also known as Starship, was in space, completing the program’s fourth straight near-flawless launch. The first two test flights faltered before reaching their planned trajectory.

A brief but crucial demo

As exciting as it was, we’ve seen all that before. One of the most important new things engineers wanted to test on this flight occurred about 38 minutes after liftoff.

That’s when Starship reignited one of its six Raptor engines for a brief burn to make a slight adjustment to its flight path. The burn lasted only a few seconds, and the impulse was small—just a 48 mph (77 km/hour) change in velocity, or delta-V—but it demonstrated that the ship can safely deorbit itself on future missions.

With this achievement, Starship will likely soon be cleared to travel into orbit around Earth and deploy Starlink Internet satellites or conduct in-space refueling experiments, two of the near-term objectives on SpaceX’s Starship development roadmap.

Launching Starlinks aboard Starship will allow SpaceX to expand the capacity and reach of its commercial consumer broadband network, which, in turn, provides revenue for Musk to reinvest into Starship. Orbital refueling enables Starship voyages beyond low-Earth orbit, fulfilling SpaceX’s multibillion-dollar contract with NASA to provide a human-rated Moon lander for the agency’s Artemis program. Likewise, transferring cryogenic propellants in orbit is a prerequisite for sending Starships to Mars, making real Musk’s dream of creating a settlement on the red planet.

Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX

Until now, SpaceX has intentionally launched Starships to speeds just shy of the blistering velocities needed to maintain orbit. Engineers wanted to test the Raptor’s ability to reignite in space on the third Starship test flight in March, but the ship lost control of its orientation, and SpaceX canceled the engine firing.

Before going for a full orbital flight, officials needed to confirm that Starship could steer itself back into the atmosphere for reentry, ensuring it wouldn’t present any risk to the public with an unguided descent over a populated area. After Tuesday, SpaceX can check this off its to-do list.

“Congrats to SpaceX on Starship’s sixth test flight,” NASA Administrator Bill Nelson posted on X. “Exciting to see the Raptor engine restart in space—major progress towards orbital flight. Starship’s success is Artemis’ success. Together, we will return humanity to the Moon & set our sights on Mars.”

While it lacks the pizzazz of a fiery launch or landing, the engine relight unlocks a new phase of Starship development. SpaceX has now proven that the rocket is capable of reaching space with a fair measure of reliability. Next, engineers will fine-tune how to reliably recover the booster and the ship and learn how to use them.

Acid test

SpaceX appears well on its way to doing this. While SpaceX didn’t catch the Super Heavy booster with the launch tower’s mechanical arms Tuesday, engineers have shown they can do it. The challenge of catching Starship itself back at the launch pad is more daunting. The ship starts its reentry thousands of miles from Starbase, traveling approximately 17,000 mph (27,000 km/hour), and must thread the gap between the tower’s catch arms within a matter of inches.

The good news is that SpaceX has now twice proven it can bring Starship back to a precision splashdown in the Indian Ocean. In October, the ship settled into the sea in darkness. SpaceX moved the launch time for Tuesday’s flight to the late afternoon, setting up for splashdown shortly after sunrise northwest of Australia.

The shift in time paid off with some stunning new visuals. Cameras mounted on the outside of Starship beamed dazzling live views back to SpaceX through the Starlink network, showing a now-familiar glow of plasma encasing the spacecraft as it plowed deeper into the atmosphere. But this time, daylight revealed the ship’s flaps moving to control its belly-first descent toward the ocean. After passing through a deck of low clouds, Starship reignited its Raptor engines and tilted from horizontal to vertical, making contact with the water tail-first within view of a floating buoy and a nearby aircraft in position to observe the moment.

Here’s a replay of the spacecraft’s splashdown around 65 minutes after launch.

Splashdown confirmed! Congratulations to the entire SpaceX team on an exciting sixth flight test of Starship! pic.twitter.com/bf98Va9qmL

— SpaceX (@SpaceX) November 19, 2024

The ship made it through reentry despite flying with a substandard heat shield. Starship’s thermal protection system is made up of thousands of ceramic tiles to protect the ship from temperatures as high as 2,600° Fahrenheit (1,430° Celsius).

Kate Tice, a SpaceX engineer hosting the company’s live broadcast of the mission, said teams at Starbase removed 2,100 heat shield tiles from Starship ahead of Tuesday’s launch. Their removal exposed wider swaths of the ship’s stainless steel skin to super-heated plasma, and SpaceX teams were eager to see how well the spacecraft held up during reentry. In the language of flight testing, this approach is called exploring the corners of the envelope, where engineers evaluate how a new airplane or rocket performs in extreme conditions.

“Don’t be surprised if we see some wackadoodle stuff happen here,” Tice said. There was nothing of the sort. One of the ship’s flaps appeared to suffer some heating damage, but it remained intact and functional, and the harm looked to be less substantial than damage seen on previous flights.

Many of the removed tiles came from the sides of Starship where SpaceX plans to place catch fittings on future vehicles. These are the hardware protuberances that will catch on the top side of the launch tower’s mechanical arms, similar to fittings used on the Super Heavy booster.

“The next flight, we want to better understand where we can install catch hardware, not necessarily to actually do the catch but to see how that hardware holds up in those spots,” Tice said. “Today’s flight will help inform ‘does the stainless steel hold up like we think it may, based on experiments that we conducted on Flight 5?'”

Musk wrote on his social media platform X that SpaceX could try to bring Starship back to Starbase for a catch on the eighth test flight, which is likely to occur in the first half of 2025.

“We will do one more ocean landing of the ship,” Musk said. “If that goes well, then SpaceX will attempt to catch the ship with the tower.”

The heat shield, Musk added, is a focal point of SpaceX’s attention. The delicate heat-absorbing tiles used on the belly of the space shuttle proved vexing to NASA technicians. Early in the shuttle’s development, NASA had trouble keeping tiles adhered to the shuttle’s aluminum skin. Each of the shuttle tiles was custom-machined to fit on a specific location on the orbiter, complicating refurbishment between flights. Starship’s tiles are all hexagonal in shape and agnostic to where technicians place them on the vehicle.

“The biggest technology challenge remaining for Starship is a fully & immediately reusable heat shield,” Musk wrote on X. “Being able to land the ship, refill propellant & launch right away with no refurbishment or laborious inspection. That is the acid test.”

This photo of the Starship vehicle for Flight 6, numbered Ship 31, shows exposed portions of the vehicle’s stainless steel skin after tile removal. Credit: SpaceX

There were no details available Tuesday night on what caused the Super Heavy booster to divert from its planned catch on the launch tower. After detaching from the Starship upper stage less than three minutes into the flight, the booster reversed course to begin the journey back to Starbase.

Then SpaceX’s flight director announced the rocket would fly itself into the Gulf rather than back to the launch site: “Booster offshore divert.”

The booster finished its descent with a seemingly perfect landing burn using a subset of its Raptor engines. As expected after the water landing, the booster—itself 233 feet (71 meters) tall—toppled and broke apart in a dramatic fireball visible to onshore spectators.

In an update posted to its website after the launch, SpaceX said automated health checks of hardware on the launch and catch tower triggered the aborted catch attempt. The company did not say what system failed the health check. As a safety measure, SpaceX must send a manual command for the booster to come back to land in order to prevent a malfunction from endangering people or property.

Turning it up to 11

There will be plenty more opportunities for more booster catches in the coming months as SpaceX ramps up its launch cadence at Starbase. Gwynne Shotwell, SpaceX’s president and chief operating officer, hinted at the scale of the company’s ambitions last week.

“We just passed 400 launches on Falcon, and I would not be surprised if we fly 400 Starship launches in the next four years,” she said at the Barron Investment Conference.

The next batch of test flights will use an improved version of Starship designated Block 2, or V2. Starship Block 2 comes with larger propellant tanks, redesigned forward flaps, and a better heat shield.

The new-generation Starship will hold more than 11 million pounds of fuel and oxidizer, about a million pounds more than the capacity of Starship Block 1. The booster and ship will produce more thrust, and Block 2 will measure 408 feet (124.4 meters) tall, stretching the height of the full stack by a little more than 10 feet.

Put together, these modifications should give Starship the ability to heave a payload of up to 220,000 pounds (100 metric tons) into low-Earth orbit, about twice the carrying capacity of the first-generation ship. Further down the line, SpaceX plans to introduce Starship Block 3 to again double the ship’s payload capacity.

Just as importantly, these changes are designed to make it easier for SpaceX to recover and reuse the Super Heavy booster and Starship upper stage. SpaceX’s goal of fielding a fully reusable launcher builds on the partial reuse SpaceX pioneered with its Falcon 9 rocket. This should dramatically bring down launch costs, according to SpaceX’s vision.

With Tuesday’s flight, it’s clear Starship works. Now it’s time to see what it can do.

Updated with additional details, quotes, and images.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

The key moment came 38 minutes after Starship roared off the launch pad Read More »

firefly-aerospace-rakes-in-more-cash-as-competitors-struggle-for-footing

Firefly Aerospace rakes in more cash as competitors struggle for footing

More than just one thing

Firefly’s majority owner is the private equity firm AE Industrial Partners, and the Series D funding round was led by Michigan-based RPM Ventures.

“Few companies can say they’ve defined a new category in their industry—Firefly is one of those,” said Marc Weiser, a managing director at RPM Ventures. “They have captured their niche in the market as a full service provider for responsive space missions and have become the pinnacle of what a modern space and defense technology company looks like.”

This descriptor—a full service provider—is what differentiates Firefly from most other space companies. Firefly’s crosscutting work in small and medium launch vehicles, rocket engines, lunar landers, and in-space propulsion propels it into a club of wide-ranging commercial space companies that, arguably, only includes SpaceX, Blue Origin, and Rocket Lab.

NASA has awarded Firefly three task orders under the Commercial Lunar Payload Services (CLPS) program. Firefly will soon ship its first Blue Ghost lunar lander to Florida for final preparations to launch to the Moon and deliver 10 NASA-sponsored scientific instruments and tech demo experiments to the lunar surface. NASA has a contract with Firefly for a second Blue Ghost mission, plus an agreement for Firefly to transport a European data relay satellite to lunar orbit.

Firefly also boasts a healthy backlog of missions on its Alpha rocket. In June, Lockheed Martin announced a deal for as many as 25 Alpha launches through 2029. Two months later, L3Harris inked a contract with Firefly for up to 20 Alpha launches. Firefly has also signed Alpha launch contracts with NASA, the National Oceanic and Atmospheric Administration (NOAA), the Space Force, and the National Reconnaissance Office. One of these Alpha launches will deploy Firefly’s first orbital transfer vehicle, named Elytra, designed to host customer payloads and transport them to different orbits following separation from the launcher’s upper stage.

And there’s the Medium Launch Vehicle, a rocket Firefly and Northrop Grumman hope to launch as soon as 2026. But first, the companies will fly an MLV booster stage with seven kerosene-fueled Miranda engines on a new version of Northrop Grumman’s Antares rocket for cargo deliveries to the International Space Station. Northrop Grumman has retired the previous version of Antares after losing access to Russian rocket engines in the wake of Russia’s invasion of Ukraine.

Firefly Aerospace rakes in more cash as competitors struggle for footing Read More »

rocket-report:-australia-says-yes-to-the-launch;-russia-delivers-for-iran

Rocket Report: Australia says yes to the launch; Russia delivers for Iran


The world’s first wooden satellite arrived at the International Space Station this week.

A Falcon 9 booster fires its engines on SpaceX’s “tripod” test stand in McGregor, Texas. Credit: SpaceX

Welcome to Edition 7.19 of the Rocket Report! Okay, we get it. We received more submissions from our readers on Australia’s approval of a launch permit for Gilmour Space than we’ve received on any other news story in recent memory. Thank you for your submissions as global rocket activity continues apace. We’ll cover Gilmour in more detail as they get closer to launch. There will be no Rocket Report next week as Eric and I join the rest of the Ars team for our 2024 Technicon in New York.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Gilmour Space has a permit to fly. Gilmour Space Technologies has been granted a permit to launch its 82-foot-tall (25-meter) orbital rocket from a spaceport in Queensland, Australia. The space company, founded in 2012, had initially planned to lift off in March but was unable to do so without approval from the Australian Space Agency, the Australian Broadcasting Corporation reports. The government approved Gilmour’s launch permit Monday, although the company is still weeks away from flying its three-stage Eris rocket.

A first for Australia … Australia hosted a handful of satellite launches with US and British rockets from 1967 through 1971, but Gilmour’s Eris rocket would become the first all-Australian launch vehicle to reach orbit. The Eris rocket is capable of delivering about 670 pounds (305 kilograms) of payload mass into a Sun-synchronous orbit. Eris will be powered by hybrid rocket engines burning a solid fuel mixed with a liquid oxidizer, making it unique among orbital-class rockets. Gilmour completed a wet dress rehearsal, or practice countdown, with the Eris rocket on the launch pad in Queensland in September. The launch permit becomes active after 30 days, or the first week of December. “We do think we’ve got a good chance of launching at the end of the 30-day period, and we’re going to give it a red hot go,” said Adam Gilmour, the company’s co-founder and CEO. (submitted by Marzipan, mryall, ZygP, Ken the Bin, Spencer Willis, MarkW98, and EllPeaTea)

North Korea tests new missile. North Korea apparently completed a successful test of its most powerful intercontinental ballistic missile on October 31, lofting it nearly 4,800 miles (7,700 kilometers) into space before the projectile fell back to Earth, Ars reports. This solid-fueled, multi-stage missile, named the Hwasong-19, is a new tool in North Korea’s increasingly sophisticated arsenal of weapons. It has enough range—perhaps as much as 9,320 miles (15,000 kilometers), according to Japan’s government—to strike targets anywhere in the United States. It also happens to be one of the largest ICBMs in the world, rivaling the missiles fielded by the world’s more established nuclear powers.

Quid pro quo? … The Hwasong-19 missile test comes as North Korea deploys some 10,000 troops inside Russia to support the country’s war against Ukraine. The budding partnership between Russia and North Korea has evolved for several years. Russian President Vladimir Putin has met with North Korean leader Kim Jong Un on multiple occasions, most recently in Pyongyang in June. This has fueled speculation about what Russia is offering North Korea in exchange for the troops deployed on Russian soil. US and South Korean officials have some thoughts. They said North Korea is likely to ask for technology transfers in diverse areas related to tactical nuclear weapons, ICBMs, and reconnaissance satellites.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Virgin Galactic is on the hunt for cash. Virgin Galactic is proposing to raise $300 million in additional capital to accelerate production of suborbital spaceplanes and a mothership aircraft the company says can fuel its long-term growth, Space News reports. The company, founded by billionaire Richard Branson, suspended operations of its VSS Unity suborbital spaceplane earlier this year. VSS Unity hit a monthly flight cadence carrying small groups of space tourists and researchers to the edge of space, but it just wasn’t profitable. Now, Virgin Galactic is developing larger Delta-class spaceplanes it says will be easier and cheaper to turn around between flights.

All-in with Delta … Michael Colglazier, Virgin Galactic’s CEO, announced the company’s appetite for fundraising in a quarterly earnings call with investment analysts Wednesday. He said manufacturing of components for Virgin Galactic’s first two Delta-class ships, which the company says it can fund with existing cash, is proceeding on schedule at a factory in Arizona. Virgin Galactic previously said it would use revenue from paying passengers on its first two Delta-class ships to pay for development of future vehicles. Instead, Virgin Galactic now says it wants to raise money to speed up work on the third and fourth Delta-class vehicles, along with a second airplane mothership to carry the spaceplanes aloft before they release and fire into space. (submitted by Ken the Bin and EllPeaTea)

ESA breaks its silence on Themis. The European Space Agency has provided a rare update on the progress of its Themis reusable booster demonstrator project, European Spaceflight reports. ESA is developing the Themis test vehicle for atmospheric flights to fine-tune technologies for a future European reusable rocket capable of vertical takeoffs and vertical landings. Themis started out as a project led by CNES, the French space agency, in 2018. ESA member states signed up to help fund the project in 2019, and the agency awarded ArianeGroup a contract to move forward with Themis in 2020. At the time, the first low-altitude hop test was expected to take place in 2022.

Some slow progress … Now, the first low-altitude hop is scheduled for 2025 from Esrange Space Centre in Sweden, a three-year delay. This week, ESA said engineers have completed testing of the Themis vehicle’s main systems, and assembly of the demonstrator is underway in France. A single methane-fueled Prometheus engine, also developed by ArianeGroup, has been installed on the rocket. Teams are currently adding avionics, computers, electrical systems, and cable harnesses. Themis’ stainless steel propellant tanks have been manufactured, tested, and cleaned and are now ready to be installed on the Themis demonstrator. Then, the rocket will travel by road from France to the test site in Sweden for its initial low-altitude hops. After those flights are complete, officials plan to add two more Prometheus engines to the rocket and ship it to French Guiana for high-altitude test flights. (submitted by Ken the Bin and EllPeaTea)

SpaceX will give the ISS a boost. A Cargo Dragon spacecraft docked to the International Space Station on Tuesday morning, less than a day after lifting off from Florida. As space missions go, this one is fairly routine, ferrying about 6,000 pounds (2,700 kilograms) of cargo and science experiments to the space station. One thing that’s different about this mission is that it delivered to the station a tiny 2 lb (900 g) satellite named LignoSat, the first spacecraft made of wood, for later release outside the research complex. There is one more characteristic of this flight that may prove significant for NASA and the future of the space station, Ars reports. As early as Friday, NASA and SpaceX have scheduled a “reboost and attitude control demonstration,” during which the Dragon spacecraft will use some of the thrusters at the base of the capsule. This is the first time the Dragon spacecraft will be used to move the space station.

Dragon’s breath … Dragon will fire a subset of its 16 Draco thrusters, each with about 90 pounds of thrust, for approximately 12.5 minutes to make a slight adjustment to the orbital trajectory of the roughly 450-ton space station. SpaceX and NASA engineers will analyze the results from the demonstration to determine if Dragon could be used for future space station reboost opportunities. The data will also inform the design of the US Deorbit Vehicle, which SpaceX is developing to perform the maneuvers required to bring the space station back to Earth for a controlled, destructive reentry in the early 2030s. For NASA, demonstrating Dragon’s ability to move the space station will be another step toward breaking free of reliance on Russia, which is currently responsible for providing propulsion to maneuver the orbiting outpost. Northrop Grumman’s Cygnus supply ship also previously demonstrated a reboost capability. (submitted by Ken the Bin and N35t0r)

Russia launches Soyuz in service of Iran. Russia launched a Soyuz rocket Monday carrying two satellites designed to monitor the space weather around Earth and 53 small satellites, including two Iranian ones, Reuters reports. The primary payloads aboard the Soyuz-2.1b rocket were two Ionosfera-M satellites to probe the ionosphere, an outer layer of the atmosphere near the edge of space. Solar activity can alter conditions in the ionosphere, impacting communications and navigation. The two Iranian satellites on this mission were named Kowsar and Hodhod. They will collect high-resolution reconnaissance imagery and support communications for Iran.

A distant third … This was only the 13th orbital launch by Russia this year, trailing far behind the United States and China. We know of two more Soyuz flights planned for later this month, but no more, barring a surprise military launch (which is possible). The projected launch rate puts Russia on pace for its quietest year of launch activity since 1961, the year Yuri Gagarin became the first person to fly in space. A major reason for this decline in launches is the decisions of Western governments and companies to move their payloads off of Russian rockets after the invasion of Ukraine. For example, OneWeb stopped launching on Soyuz in 2022, and the European Space Agency suspended its partnership with Russia to launch Soyuz rockets from French Guiana. (submitted by Ken the Bin)

H3 deploys Japanese national security satellite. Japan launched a defense satellite Monday aimed at speedier military operations and communication on an H3 rocket and successfully placed it into orbit, the Associated Press reports. The Kirameki 3 satellite will use high-speed X-band communication to support Japan’s defense ministry with information and data sharing, and command and control services. The satellite will serve Japanese land, air, and naval forces from its perch in geostationary orbit alongside two other Kirameki communications satellites.

Gaining trust … The H3 is Japan’s new flagship rocket, developed by Mitsubishi Heavy Industries (MHI) and funded by the Japan Aerospace Exploration Agency (JAXA). The launch of Kirameki 3 marked the third consecutive successful launch of the H3 rocket, following a debut flight in March 2023 that failed to reach orbit. This was the first time Japan’s defense ministry put one of its satellites on the H3 rocket. The first two Kirameki satellites launched on a European Ariane 5 and a Japanese H-IIA rocket, which the H3 will replace. (submitted by Ken the Bin, tsunam, and EllPeaTea)

Rocket Lab enters the race for military contracts. Rocket Lab is aiming to chip away at SpaceX’s dominance in military space launch, confirming its bid to compete for Pentagon contracts with its new medium-lift rocket, Neutron, Space News reports. Last month, the Space Force released a request for proposals from launch companies seeking to join the military’s roster of launch providers in the National Security Space Launch (NSSL) program. The Space Force will accept bids for launch providers to “on-ramp” to the NSSL Phase 3 Lane 1 contract, which doles out task orders to launch companies for individual missions. In order to win a task order, a launch provider must be on the Phase 3 Lane 1 contract. Currently, SpaceX, United Launch Alliance, and Blue Origin are the only rocket companies eligible. SpaceX won all of the first round of Lane 1 task orders last month.

Joining the club … The Space Force is accepting additional risk for Lane 1 missions, which largely comprise repeat launches deploying a constellation of missile-tracking and data-relay satellites for the Space Development Agency. A separate class of heavy-lift missions, known as Lane 2, will require rockets to undergo a thorough certification by the Space Force to ensure their reliability. In order for a launch company to join the Lane 1 roster, the Space Force requires bidders to be ready for a first launch by December 2025. Peter Beck, Rocket Lab’s founder and CEO, said he thinks the Neutron rocket will be ready for its first launch by then. Other new medium-lift rockets, such as Firefly Aerospace’s MLV and Relativity’s Terran-R, almost certainly won’t be ready to launch by the end of next year, leaving Rocket Lab as the only company that will potentially join incumbents SpaceX, ULA, and Blue Origin. (submitted by Ken the Bin)

Next Starship flight is just around the corner. Less than a month has passed since the historic fifth flight of SpaceX’s Starship, during which the company caught the booster with mechanical arms back at the launch pad in Texas. Now, another test flight could come as soon as November 18, Ars reports. The improbable but successful recovery of the Starship first stage with “chopsticks” last month, and the on-target splashdown of the Starship upper stage halfway around the world, allowed SpaceX to avoid an anomaly investigation by the Federal Aviation Administration. Thus, the company was able to press ahead on a sixth test flight if it flew a similar profile. And that’s what SpaceX plans to do, albeit with some notable additions to the flight plan.

Around the edges … Perhaps the most significant change to the profile for Flight 6 will be an attempt to reignite a Raptor engine on Starship while it is in space. SpaceX tried to do this on a test flight in March but aborted the burn because the ship’s rolling motion exceeded limits. A successful demonstration of a Raptor engine relight could pave the way for SpaceX to launch Starship into a higher stable orbit around Earth on future test flights. This is required for SpaceX to begin using Starship to launch Starlink Internet satellites and perform in-orbit refueling experiments with two ships docked together. (submitted by EllPeaTea)

China’s version of Starship. China has updated the design of its next-generation heavy-lift rocket, the Long March 9, and it looks almost exactly like a clone of SpaceX’s Starship rocket, Ars reports. The Long March 9 started out as a conventional-looking expendable rocket, then morphed into a launcher with a reusable first stage. Now, the rocket will have a reusable booster and upper stage. The booster will have 30 methane-fueled engines, similar to the number of engines on SpaceX’s Super Heavy booster. The upper stage looks remarkably like Starship, with flaps in similar locations. China intends to fly this vehicle for the first time in 2033, nearly a decade from now.

A vehicle for the Moon … The reusable Long March 9 is intended to unlock robust lunar operations for China, similar to the way Starship, and to some extent Blue Origin’s Blue Moon lander, promises to support sustained astronaut stays on the Moon’s surface. China says it plans to land its astronauts on the Moon by 2030, initially using a more conventional architecture with an expendable rocket named the Long March 10, and a lander reminiscent of NASA’s Apollo lunar lander. These will allow Chinese astronauts to remain on the Moon for a matter of days. With Long March 9, China could deliver massive loads of cargo and life support resources to sustain astronauts for much longer stays.

Ta-ta to the tripod. The large three-legged vertical test stand at SpaceX’s engine test site in McGregor, Texas, is being decommissioned, NASA Spaceflight reports. Cranes have started removing propellant tanks from the test stand, nicknamed the tripod, towering above the Central Texas prairie. McGregor is home to SpaceX’s propulsion test team and has 16 test cells to support firings of Merlin, Raptor, and Draco engines multiple times per day for the Falcon 9 rocket, Starship, and Dragon spacecraft.

Some history … The tripod might have been one of SpaceX’s most important assets in the company’s early years. It was built by Beal Aerospace for liquid-fueled rocket engine tests in the late 1990s. Beal Aerospace folded, and SpaceX took over the site in 2003. After some modifications, SpaceX installed the first qualification version of its Falcon 9 rocket on the tripod for a series of nine-engine test-firings leading up to the rocket’s inaugural flight in 2010. SpaceX test-fired numerous new Falcon 9 boosters on the tripod before shipping them to launch sites in Florida or California. Most recently, the tripod was used for testing of Raptor engines destined to fly on Starship and the Super Heavy booster.

Next three launches

Nov. 9:  Long March 2C | Unknown Payload | Jiuquan Satellite Launch Center, China | 03: 40 UTC

Nov. 9: Falcon 9 | Starlink 9-10 | Vandenberg Space Force Base, California | 06: 14 UTC

Nov. 10:  Falcon 9 | Starlink 6-69 | Cape Canaveral Space Force Station, Florida | 21: 28 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Australia says yes to the launch; Russia delivers for Iran Read More »

rocket-report:-sneak-peek-at-the-business-end-of-new-glenn;-france-to-fly-frog

Rocket Report: Sneak peek at the business end of New Glenn; France to fly FROG


“The vehicle’s max design gimbal condition is during ascent when it has to fight high-altitude winds.”

Blue Origin’s first New Glenn rocket, with seven BE-4 engines installed inside the company’s production facility near NASA’s Kennedy Space Center in Florida. Credit: Blue Origin

Welcome to Edition 7.17 of the Rocket Report! Next week marks 10 years since one of the more spectacular launch failures of this century. On October 28, 2014, an Antares rocket, then operated by Orbital Sciences, suffered an engine failure six seconds after liftoff from Virginia and crashed back onto the pad in a fiery twilight explosion. I was there and won’t forget seeing the rocket falter just above the pad, being shaken by the deafening blast, and then running for cover. The Antares rocket is often an afterthought in the space industry, but it has an interesting backstory touching on international geopolitics, space history, and novel engineering. Now, Northrop Grumman and Firefly Aerospace are developing a new version of Antares.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Astra gets a lifeline from DOD. Astra, the launch startup that was taken private again earlier this year for a sliver of its former value, has landed a new contract with the Defense Innovation Unit (DIU) to support the development of a next-gen launch system for time-sensitive space missions, TechCrunch reports. The contract, which the DIU awarded under its Novel Responsive Space Delivery (NRSD) program, has a maximum value of $44 million. The money will go toward the continued development of Astra’s Launch System 2, designed to perform rapid, ultra-low-cost launches.

Guarantees? … It wasn’t clear from the initial reporting how much money DIU is actually committing to Astra, which said the contract will fund continued development of Launch System 2. Launch System 2 includes a small-class launch vehicle with a similarly basic name, Rocket 4, and mobile ground infrastructure designed to be rapidly set up at austere spaceports. Adam London, founder and chief technology officer at Astra, said the contract award is a “major vote of confidence” in the company. If Astra can capitalize on the opportunity, this would be quite a remarkable turnaround. After going public at an initial valuation of $2.1 billion, or $12.90 per share, Astra endured multiple launch failures with its previous rocket and risked bankruptcy before the company’s co-founders, Chris Kemp and Adam London, took the company private again this year at a price of just $0.50 per share. (submitted by Ken the Bin and EllPeaTea)

Blue Origin debuts a new New Shepard. Jeff Bezos’ Blue Origin space venture successfully sent a brand-new New Shepard rocket ship on an uncrewed shakedown cruise Wednesday, with the aim of increasing the company’s capacity to take people on suborbital space trips, GeekWire reports. The capsule, dubbed RSS Karman Line, carried payloads instead of people when it lifted off from Blue Origin’s Launch Site One in West Texas. But if all the data collected during the 10-minute certification flight checks out, it won’t be long before crews climb aboard for similar flights.

Now there are two … With this week’s flight, Blue Origin now has two human-rated suborbital capsules in its fleet, along with two boosters. This should allow the company to ramp up the pace of its human missions, which have historically flown at a cadence of about one flight every two to three months. The new capsule, named for the internationally recognized boundary of space 62 miles (100 kilometers) above Earth, features upgrades to improve performance and ease reusability. (submitted by Ken the Bin and EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

China has a new space tourism company. Chinese launch startup Deep Blue Aerospace targets providing suborbital tourism flights starting in 2027, Space News reports. The company was already developing a partially reusable orbital rocket named Nebula-1 for satellite launches and recently lost a reusable booster test vehicle during a low-altitude test flight. While Deep Blue moves forward with more Nebula-1 testing before its first orbital launch, the firm is now selling tickets for rides to suborbital space on a six-person capsule. The first two tickets were expected to be sold Thursday in a promotional livestream event.

Architectural considerations … Deep Blue has a shot at becoming China’s first space tourism company and one of only a handful in the world, joining US-based Blue Origin and Virgin Galactic in the market for suborbital flights. Deep Blue’s design will be a single-stage reusable rocket and crew capsule, similar to Blue Origin’s New Shepard, capable of flying above the Kármán line and providing up to 10 minutes of microgravity experience for its passengers before returning to the ground. A ticket, presumably for a round trip, will cost about $210,000. (submitted by Ken the Bin)

France’s space agency aims to launch a FROG. French space agency CNES will begin flight testing a small reusable rocket demonstrator called FROG-H in 2025, European Spaceflight reports. FROG is a French acronym that translates to Rocket for GNC demonstration, and its purpose is to test landing algorithms for reusable launch vehicles. CNES manages the program in partnership with French nonprofits and universities. At 11.8 feet (3.6 meters) tall, FROG is the smallest launch vehicle prototype at CNES, which says it will test concepts and technologies at small scale before incorporating them into Europe’s larger vertical takeoff/vertical landing test rockets like Callisto and Themis. Eventually, the idea is for all this work to lead to a reusable European orbital-class rocket.

Building on experience … CNES flew a jet-powered demonstrator named FROG-T on five test flights beginning in May 2019, reaching a maximum altitude of about 100 feet (30 meters). FROG-H will be powered by a hydrogen peroxide rocket engine developed by the Łukasiewicz Institute of Aviation in Poland under a European Space Agency contract. The first flights of FROG-H are scheduled for early 2025. The structure of the FROG project seeks to “break free from traditional development methods” by turning to “teams of enthusiasts” to rapidly develop and test solutions through an experimental approach, CNES says on its website. (submitted by EllPeaTea and Ken the Bin)

Falcon 9 sweeps NSSL awards. The US Space Force’s Space Systems Command announced on October 18 it has ordered nine launches from SpaceX in the first batch of dozens of missions the military will buy in a new phase of competition for lucrative national security launch contracts, Ars reports. The parameters of the competition limited the bidders to SpaceX and United Launch Alliance (ULA). SpaceX won both task orders for a combined value of $733.5 million, or roughly $81.5 million per mission. Six of the nine missions will launch from Vandenberg Space Force Base, California, beginning as soon as late 2025. The other three will launch from Cape Canaveral Space Force Station, Florida.

Head-to-head … This was the first set of contract awards by the Space Force’s National Security Space Launch (NSSL) Phase 3 procurement round and represents one of the first head-to-head competitions between SpaceX’s Falcon 9 and ULA’s Vulcan rocket. The nine launches were divided into two separate orders, and SpaceX won both. The missions will deploy payloads for the National Reconnaissance Office and the Space Development Agency. (submitted by Ken the Bin)

SpaceX continues deploying NRO megaconstellation. SpaceX launched more surveillance satellites for the National Reconnaissance Office Thursday aboard a Falcon 9 rocket, Spaceflight Now reports. While the secretive spy satellite agency did not identify the number or exact purpose of the satellites, the Falcon 9 likely deployed around 20 spacecraft believed to be based on SpaceX’s Starshield satellite bus, a derivative of the Starlink spacecraft platform, with participation from Northrop Grumman. These satellites host classified sensors for the NRO.  This is the fourth SpaceX launch for the NRO’s new satellite fleet, which seeks to augment the agency’s bespoke multibillion-dollar spy satellites with a network of smaller, cheaper, more agile platforms in low-Earth orbit.

The century mark … This mission, officially designated NROL-167, was the 100th flight of a Falcon 9 rocket this year and the 105th SpaceX launch overall in 2024. The NRO has not said how many satellites will make up its fleet when completed, but the intelligence agency says it will be the US government’s largest satellite constellation in history. By the end of the year, the NRO expects to have 100 or more of these satellites in orbit, allowing the agency to transition from a demonstration mode to an operational mode to deliver intelligence data to military and government users. Many more launches are expected through 2028. (submitted by Ken the Bin)

ULA is stacking its third Vulcan rocket. United Launch Alliance has started assembling its next Vulcan rocket—the first destined to launch a US military payload—as the Space Force prepares to certify it to loft the Pentagon’s most precious national security satellites, Ars reports. Space Force officials expect to approve ULA’s Vulcan rocket for military missions without requiring another test flight, despite an unusual problem on the rocket’s second demonstration flight earlier this month, when one of Vulcan’s two strap-on solid-fueled boosters lost its nozzle shortly after liftoff.

Pending certification … Despite the nozzle failure, the Vulcan rocket continued climbing into space and eventually reached its planned injection orbit, and the Space Force and ULA declared the test flight a success. Still, engineers want to understand what caused the nozzle to break apart and decide on corrective actions before the Space Force clears the Vulcan rocket to launch a critical national security payload. This could take a little longer than expected due to the booster problem, but Space Force officials still hope to certify the Vulcan rocket in time to support a national security launch by the end of the year.

Blue Origin’s first New Glenn has all its engines. Blue Origin published a photo Thursday on X showing all seven first-stage BE-4 engines installed on the base of the company’s first New Glenn rocket. This is a notable milestone as Blue Origin proceeds toward the first launch of the heavy-lifter, possibly before the end of the year. But there’s a lot of work for Blue Origin to accomplish before then. These steps include rolling the rocket to the launch pad, running through propellant loading tests and practice countdowns, and then test-firing all seven BE-4 engines on the pad at Cape Canaveral Space Force Station, Florida.

Seven for seven … The BE-4 engines will consume methane fuel mixed with liquid oxygen for the first few minutes of the New Glenn flight, generating more than 3.8 million pounds of combined thrust. The seven BE-4s on New Glenn are similar to the BE-4 engines that fly two at a time on ULA’s Vulcan rocket. Dave Limp, Blue Origin’s CEO, said three of the seven engines on the New Glenn first stage have thrust vector control capability to provide steering during launch, reentry, and landing on the company’s offshore recovery vessel. “That gimbal capability, along with the landing gear and Reaction Control System thrusters, are key to making our booster fully reusable,” Limp wrote on X. “Fun fact: The vehicle’s max design gimbal condition is during ascent when it has to fight high-altitude winds.”

Next Super Heavy booster test-fired in Texas. SpaceX fired up the Raptor engines on its next Super Heavy booster, numbered Booster 13, Thursday evening at the company’s launch site in South Texas. This happened just 11 days after SpaceX launched and caught the Super Heavy booster on the previous Starship test flight and signals SpaceX could be ready for the next Starship test flight sometime in November. SpaceX has already test-fired the Starship upper stage for the next flight.

Great expectations … We expect the next Starship flight, which will be program’s sixth full-scale demo mission, will include another booster catch back at the launch tower at Starbase, Texas. SpaceX may also attempt to reignite a Raptor engine on the Starship upper stage while it is in space, demonstrating the capability to steer itself back into the atmosphere on future flights. So far, SpaceX has only launched Starships on long, arcing suborbital trajectories that carry the vehicle halfway around the world before reentry. In order to actually launch a Starship into a stable orbit around Earth, SpaceX will want to show it can bring the vehicle back so it doesn’t reenter the atmosphere in an uncontrolled manner. An uncontrolled reentry of a large spacecraft like Starship could pose a public safety risk.

Next three launches

Oct. 26: Falcon 9 | Starlink 10-8 | Cape Canaveral Space Force Station, Florida | 21: 47 UTC

Oct. 29: Falcon 9 | Starlink 9-9 | Vandenberg Space Force Base, California | 11: 30 UTC

Oct. 30: H3 | Kirameki 3 | Tanegashima Space Center, Japan | 06: 46 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Sneak peek at the business end of New Glenn; France to fly FROG Read More »