launch

rocket-report:-chinese-rockets-fail-twice-in-12-hours;-rocket-lab-reports-setback

Rocket Report: Chinese rockets fail twice in 12 hours; Rocket Lab reports setback


Another partially reusable Chinese rocket, the Long March 12B, is nearing its first test flight.

An Archimedes engine for Rocket Lab’s Neutron rocket is test-fired at Stennis Space Center, Mississippi. Credit: Rocket Lab

Welcome to Edition 8.26 of the Rocket Report! The past week has been one of advancements and setbacks in the rocket business. NASA rolled the massive rocket for the Artemis II mission to its launch pad in Florida, while Chinese launchers suffered back-to-back failures within a span of approximately 12 hours. Rocket Lab’s march toward a debut of its new Neutron launch vehicle in the coming months may have stalled after a failure during a key qualification test. We cover all this and more in this week’s Rocket Report.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Australia invests in sovereign launch. Six months after its first orbital rocket cleared the launch tower for just 14 seconds before crashing back to Earth, Gilmour Space Technologies has secured 217 million Australian dollars ($148 million) in funding that CEO Adam Gilmour says finally gives Australia a fighting chance in the global space race, the Sydney Morning Herald reports. The funding round, led by the federal government’s National Reconstruction Fund Corporation and superannuation giant Hostplus with $75 million each, makes the Queensland company Australia’s newest unicorna fast-growth start-up valued at more than $1 billionand one of the country’s most heavily backed private technology ventures.

Homegrown rocket… “We’re a rocket company that has never had access to the capital that our American competitors have,” Gilmour told the newspaper. “This is the first raise where I’ve actually raised a decent amount of capital compared to the rest of the world.” The investment reflects growing concern about Australia’s reliance on foreign launch providerspredominantly Elon Musk’s SpaceXto put government, defense, and commercial satellites into orbit. With US launch queues stretching beyond two years and geopolitical tensions reshaping access to space infrastructure, Canberra has identified sovereign launch capability as a strategic priority. Gilmour’s first Eris rocket lifted off from the Bowen Orbital Spaceport in North Queensland on July 30 last year. It achieved 14 seconds of flight before falling back to the ground, a result Gilmour framed as a partial success in an industry where first launches routinely fail.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Isar Aerospace postpones test flight. Isar Aerospace scrubbed a potential January 21 launch of its Spectrum rocket to address a technical fault, Aviation Week & Space Technology reports. Hours before the launch window was set to open, the German company said that it was addressing “an issue with a pressurization valve.” A valve issue was one of the factors that caused a Spectrum to crash moments after liftoff on Isar’s first test flight last year. “The teams are currently assessing the next possible launch opportunities and a new target date will be announced shortly,” the company wrote in a post on its website. The Spectrum rocket, designed to haul cargoes of up to a metric ton (2,200 pounds) to low-Earth orbit, is awaiting liftoff from Andøya Spaceport in Norway.

Geopolitics at play... The second launch of Isar’s Spectrum rocket comes at a time when Europe’s space industry looks to secure the continent’s sovereignty in spaceflight. European satellites are no longer able to launch on Russian rockets, and the continent’s leaders don’t have much of an appetite to turn to US rockets amid strained trans-Atlantic relations. Europe’s satellite industry is looking for more competition for the Ariane 6 and Vega C rockets developed by ArianeGroup and Avio, and Isar Aerospace appears to be best positioned to become a new entrant in the European launch market. “I’m well aware that it would be really good for us Europeans to get this one right,” said Daniel Metzler, Isar’s co-founder and CEO.

A potential buyer for Orbex? UK-based rocket builder Orbex has signed a letter of intent to sell its business to European space logistics startup The Exploration Company, European Spaceflight reports. Orbex was founded in 2015 and is developing a small launch vehicle called Prime. The company also began work on a larger medium-lift launch vehicle called Proxima in December 2024. On Wednesday, Orbex published a brief press release stating that a letter of intent had been signed and that negotiations had begun. The company added that all details about the transaction remain confidential at this stage.

Time’s up... A statement from Orbex CEO Phil Chambers suggests that the company’s financial position factored into its decision to pursue a buyer. “Our Series D fundraising could have led us in many directions,” said Chambers. “We believe this opportunity plays to the strengths of both businesses, and we look forward to sharing more when the time is right.” The Exploration Company, headquartered near Munich, Germany, is developing a reusable space capsule to ferry cargo to low-Earth orbit and a high-thrust reusable rocket engine. It is one of the most well-financed space startups in Europe. Orbex is one of five launch startups in Europe selected by the European Space Agency last year to compete in the European Launcher Challenge and receive funding from ESA member states. But the UK company’s financial standing is in question. Orbex’s Danish subsidiary is filing for bankruptcy, and its main UK entity is overdue in filing its 2024 financial accounts. (submitted by EllPeaTea)

A bad day for Chinese rockets. China suffered a pair of launch failures January 16, seeing the loss of a classified Shijian satellite and the failed first launch of the Ceres-2 rocket, Space News reports. The first of the two failures involved the attempted launch of a Shijian military satellite aboard a Long March 3B rocket from the Xichang launch base in southwestern China. The Shijian 32 satellite was likely heading for a geostationary transfer orbit, but a failure of the Long March 3B’s third stage doomed the mission. The Long March 3B is one of China’s most-flown rockets, and this was the first failure of a Long March 3-series vehicle since 2020, ending a streak of 50 consecutive successful flights of the rocket.

And then… Less than 12 hours later, another Chinese rocket failed on its climb to orbit. This launch, using a Ceres-2 rocket, originated from the Jiuquan space center in northwestern China. It was the first flight of the Ceres-2, a larger variant of the light-class Ceres-1 rocket developed and operated by a Chinese commercial startup named Galactic Energy. Chinese officials did not disclose the payloads lost on the Ceres-2 rocket.

Neutron in neutral. Rocket Lab suffered a structural failure of the Neutron rocket’s Stage 1 tank during testing, setting back efforts to get to the inaugural flight for the partially reusable launcher, Aviation Week & Space Technology reports. The mishap occurred during a hydrostatic pressure trial, the company said Wednesday. “There was no significant damage to the test structure or facilities,” Rocket Lab added. Rocket Lab last year pushed the first Neutron mission from 2025 to 2026, citing the volume of testing ahead. The US-based company said it is now analyzing what transpired to determine the impact on Neutron launch plans. Rocket Lab said it would provide an update during its next quarterly financials, due in a few weeks.

Where to go from here?… The Neutron rocket is designed to catapult Rocket Lab into more direct competition with legacy rocket companies like SpaceX and United Launch Alliance. “The next Stage 1 tank is already in production, and Neutron’s development campaign continues,” the company said. Setbacks like this one are to be expected during the development of new rockets. Rocket Lab has publicized aggressive, or aspirational, launch schedules for the first Neutron rocket, so it’s likely the company will hang onto its projection of a debut launch in 2026, at least for now. (submitted by EllPeaTea)

Falcon 9 launches NRO spysats. SpaceX executed a late night Falcon 9 launch from Vandenberg Space Force Base on January 16, carrying an undisclosed number of intelligence-gathering satellites for the National Reconnaissance Office, Spaceflight Now reports. The mission, NROL-105, hauled a payload of satellites heading to low-Earth orbit, which are believed to be Starshield, a government variant of the Starlink satellites. “Today’s mission is the twelfth overall launch of the NRO’s proliferated architecture and first of approximately a dozen NRO launches scheduled throughout 2026 consisting of proliferated and national security missions,” the NRO said in a post-launch statement.

Mysteries abound… A public accounting of the agency’s proliferated constellation suggests it now numbers nearly 200 satellites with the ability to rapidly image locations around the world. The NRO has dozens more satellites serving other functions. “Having hundreds of NRO satellites on orbit is critical to supporting our nation and its partners,” the agency said in a statement. “This growing constellation enhances mission resilience and capability through reduced revisit times, improved persistent coverage, and accelerated processing and delivery of critical data.” What was unusual about the January 16 mission is it may have only carried two satellites, well short of the 20-plus Starshield satellites launched on most previous Falcon 9 launches, according to Jonathan McDowell, an astrophysicist and expert tracker of global space launch activity.

Long March 12B hot-fired at Jiuquan. China’s main space contractor performed a static fire test of a new reusable Long March rocket Friday, paving the way for a test flight, Space News reports. The test-firing of the Long March 12B rocket’s first stage engines occurred on a launch pad at the Dongfeng Commercial Space Innovation Test Zone at Jiuquan spaceport in northwestern China. The mere existence of the Long March 12B rocket was not publicly known until recently. The new rocket was developed by a subsidiary of the state-owned China Aerospace Science Technology Corporation, with the capacity to carry a payload of 20 metric tons to low-Earth orbit in expendable mode. It’s unknown if the first Long March 12B test flight will include a booster landing attempt.

Another one… The Long March 12B has a reusable first stage with landing legs, similar to the recovery architecture of SpaceX’s Falcon 9 rocket. The booster is designed to land downrange at a recovery zone in the Gobi Desert. The Long March 12B is the latest in a line of partially reusable Chinese rockets to reach the launch pad, following soon after the debut launches of the Long March 12A and Zhuque 3 rocket last month. Several more companies in China are working on their own reusable boosters. Of them all, the Long March 12B appears to be the closest to a clone of SpaceX’s Falcon 9. Like the Falcon 9, the Long March 12B will have nine kerosene-fueled first stage engines and a single kerosene-fueled upper stage engine. Chinese officials have not announced when the Long March 12B will launch.

Artemis II rolls to the launch pad. Preparations for the first human spaceflight to the Moon in more than 50 years took a big step forward last weekend with the rollout of the Artemis II rocket to its launch pad, Ars reports. The rocket reached a top speed of just 1 mph on the four-mile, 12-hour journey from the Vehicle Assembly Building to Launch Complex 39B at NASA’s Kennedy Space Center in Florida. At the end of its nearly 10-day tour through cislunar space, the Orion capsule on top of the rocket will exceed 25,000 mph as it plunges into the atmosphere to bring its four-person crew back to Earth.

Key test ahead“This is the start of a very long journey,” said NASA Administrator Jared Isaacman. “We ended our last human exploration of the Moon on Apollo 17.” The Artemis II mission will set several notable human spaceflight records. Astronauts Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen will travel farther from Earth than any human in history as they travel beyond the far side of the Moon. They won’t land. That distinction will fall to the next mission in line in NASA’s Artemis program. This will be the first time astronauts have flown on the Space Launch System rocket and Orion spacecraft. The launch window opens February 6, but the exact date of Artemis II’s liftoff will be determined by the outcome of a critical fueling test of the SLS rocket scheduled for early February.

Blue Origin confirms rocket reuse plan. Blue Origin confirmed Thursday that the next launch of its New Glenn rocket will carry a large communications satellite into low-Earth orbit for AST SpaceMobile, Ars reports. The rocket will launch the next-generation Block 2 BlueBird satellite “no earlier than late February” from Launch Complex 36 at Cape Canaveral Space Force Station. However, the update from Blue Origin appears to have buried the real news toward the end: “The mission follows the successful NG-2 mission, which included the landing of the ‘Never Tell Me The Odds’ booster. The same booster is being refurbished to power NG-3,” the company said.

Impressive strides… The second New Glenn mission launched on November 13, just 10 weeks ago. If the company makes the late-February target for the next mission—and Ars was told last week to expect the launch to slip into March—it will represent a remarkably short turnaround for an orbital booster. By way of comparison, SpaceX did not attempt to refly the first Falcon 9 booster it landed in December 2015. Instead, initial tests revealed that the vehicle’s interior had been somewhat torn up. It was scrapped and inspected closely so that engineers could learn from the wear and tear.

Next three launches

Jan. 25: Falcon 9 | Starlink 17-20 | Vandenberg Space Force Base, California | 15: 17 UTC

Jan. 26: Falcon 9 | GPS III SV09 | Cape Canaveral Space Force Station, Florida | 04: 46 UTC

Jan. 26: Long March 7A | Unknown Payload | Wenchang Space Launch Site, China | 21: 00 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Chinese rockets fail twice in 12 hours; Rocket Lab reports setback Read More »

rocket-report:-ariane-64-to-debut-soon;-india-has-a-falcon-9-clone-too?

Rocket Report: Ariane 64 to debut soon; India has a Falcon 9 clone too?


All the news that’s fit to lift

“We are fundamentally shifting our approach to securing our munitions supply chain.”

SpaceX launched the Pandora satellite for NASA on Sunday. Credit: SpaceX

Welcome to Edition 8.25 of the Rocket Report! All eyes are on Florida this weekend as NASA rolls out the Space Launch System rocket and Orion spacecraft to its launch site in Florida for the Artemis II mission. NASA has not announced a launch date yet, and this will depend in part on how well a “wet dress rehearsal” goes with fueling the rocket. However, it is likely the rocket has a no-earlier-than launch date of February 8. Our own Stephen Clark will be in Florida for the rollout on Saturday, so be sure and check back here for coverage.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

MaiaSpace scores a major launch deal. The ArianeGroup subsidiary, created in 2022, has inked a major new launch contract with satellite operator Eutelsat, Le Monde reports. A significant portion of the 440 new satellites ordered by Eutelsat from Airbus to renew or expand its OneWeb constellation will be launched into orbit by the new Maia rocket. MaiaSpace previously signed two contracts: one with Exotrail for the launch of an orbital transfer, and the other for two satellites for the Toutatis mission, a defense system developed by U-Space.

A big win for the French firm … The first test launch of Maia is scheduled for the end of 2026, a year later than initially planned, at the Guiana Space Centre in French Guiana. The first flights carrying OneWeb satellites are therefore likely to launch no earlier than 2027. Powered by liquid oxygen-methane propellant, Maia aims to be able to deliver up to 500 kg to low-Earth orbit when the first stage is recovered, and 1,500 kg when fully expendable.

Firefly announces Alpha upgrade plan. Firefly Aerospace said this week it was planning a “Block II” upgrade to its Alpha rocket that will “focus on enhancing reliability, streamlining producibility, and improving launch operations to further support commercial, civil, and national security mission demand.” Firefly’s upcoming Alpha Flight 7, targeted to launch in the coming weeks, will be the last flown in the current configuration and will serve as a test flight with multiple Block II subsystems in shadow mode.

Too many failures … “Firefly worked closely with customers and incorporated data and lessons learned from our first six Alpha launches and hundreds of hardware tests to make upgrades that increase reliability and manufacturability with consolidated parts, key configuration updates, and stronger structures built with automated machinery,” said Jason Kim, CEO of Firefly Aerospace. Speaking bluntly, reliability upgrades are needed. Of Alpha’s six launches to date, only two have been a complete success. (submitted by TFargo04)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Another PSLV launch failure. India’s first launch of 2026 ended in failure due to an issue with the third stage of its Polar Satellite Launch Vehicle (PSLV), Spaceflight Now reports. The mission, designated PSLV-C62, was also the second consecutive failure of this four-stage rocket, with both anomalies affecting the third stage. This time, 16 satellites were lost, including those of other nations. ISRO said it initiated a “detailed analysis” to determine the root cause of the anomaly.

Has been India’s workhorse rocket … The four-stage launch vehicle is a mixture of solid- and liquid- fueled stages. Both the first and third stages are solid-fueled, while the second and fourth stages are powered by liquid propulsion. The PSLV Rocket has flown in multiple configurations since it debuted in September 1993 and achieved 58 fully successful launches, with the payloads on those missions reaching their intended orbit.

US military invests in L3Harris rocket motors. The US government will invest $1 billion in L3Harris Technologies’ growing rocket motor business, guaranteeing a steady supply of the much-needed motors used in a wide range of ‍missiles such as Tomahawks and Patriot interceptors, CNBC reports. L3Harris said on Tuesday it ‌is planning ‌an IPO of its growing rocket motor business into a new publicly ​traded company backed by a $1 billion government convertible security investment. The securities will automatically convert to common equity when the company goes public later in 2026.

Shifting investment strategy … “We are fundamentally shifting our approach to securing our munitions supply chain,” said Michael Duffey, undersecretary of defense for acquisition and sustainment. “By investing directly in suppliers we are building the resilient industrial ⁠base needed for the Arsenal of Freedom.” However, the government’s equity position in L3Harris could face blowback from L3Harris’ rivals, given that it creates a potentially significant conflict of interest for the US government. The Pentagon will have an ownership stake in a company that regularly bids on major defense and other government contracts.

First Ariane 64 to launch next month. Arianespace announced Thursday that it plans to launch the first variant of the Ariane 6 rocket with four solid rocket boosters on February 12 from French Guiana. The mission will also be the company’s first launch of Amazon Leo (formerly Project Kuiper) satellites. This is the first of 18 Ariane 6 launches that Arianespace sold to Amazon for the broadband communications megaconstellation.

A growing cadence … The Ariane 6 rocket has launched five times, including its debut flight in July 2024. All of the launches were a success, although the first flight failed to relight the upper stage in order to make a controlled reentry. Arianespace increased the cadence to four launches last year and will seek to try to double that this year.

Falcon 9 launches the Pandora mission. NASA’s Pandora satellite rocketed into orbit early Sunday from Vandenberg Space Force Base, California, Ars reports. It hitched a ride with around 40 other small payloads aboard a SpaceX Falcon 9 rocket, launching into a polar Sun-synchronous orbit before deploying at an altitude of roughly 380 miles (613 kilometers).

A satellite that can carry a tune … Pandora will augment the capabilities of NASA’s James Webb Space Telescope. Over the next few weeks, ground controllers will put Pandora through a series of commissioning and calibration steps before turning its eyes toward deep space. From low-Earth orbit, Pandora will observe exoplanets and their stars simultaneously, allowing astronomers to correct their measurements of the planet’s atmospheric composition and structure based on the ever-changing conditions of the host star itself.

ArianeGroup seeking ideas for Ariane 6 reuse. In this week’s newsletter, we’ve already had a story about MaiaSpace and another item about the Ariane 6 rocket. So why not combine the two and also have a report about an Ariane 6 mashup with the Maia rocket? As it turns out, there’s a relatively new proposal to retrofit the existing Ariane 6 rocket design for partial reuse with Maia rockets as side boosters, Ars reports.

Sir, maia I have some cost savings? … It’s infeasible to recover the Ariane 6’s core stage for many reasons. Chief among them is that the main stage burns for more than seven minutes on an Ariane 6 flight, reaching speeds about twice as fast as SpaceX’s Falcon 9 booster achieves during its two-and-a-half minutes of operation during launch. Swapping out Ariane 6’s solid rocket motors for reusable liquid boosters makes some economic sense for ArianeGroup. The proposal would bring the development and production of the boosters under full control of ArianeGroup and its French subsidiary, cutting Italy’s solid rocket motor developer, Avio, out of the program. All the same, we’ll believe this when we see it.

Meet the EtherealX Razor Crest Mk-1. I learned that there is a rocket company founded in Bengaluru, India, named Ethereal Exploration Guild, or EtherealX. (Did you see what they did there?) I found this out because the company announced (via email) that it had raised an oversubscribed $20.5 million Series A round led by TDK Ventures and BIG Capital. So naturally, I went to the EtherealX website looking for more information.

Let me say, I was not disappointed … As you might expect from a company named EtherealX, its proposed rocket has nine engines, is powered by liquid oxygen and kerosene, and has a maximum capacity of 24.8 metric tons to low-Earth orbit. (Did you see what they did there?) The website does not include much information, but there is this banger of a statement: “The EtherealX Razor Crest Mk-1 will house 9 of the most powerful operational liquid rocket engines in Asia, Europe, Australia, Africa, South America, and Antarctica – Stallion.” And let’s be honest, when you’ve bested Antarctica in engine development, you know you’re cooking. Alas, what I did not see on the website was much evidence of real hardware.

NASA topples historic Saturn and shuttle infrastructure. Two historic NASA test facilities used in the development of the Saturn V and space shuttle launch vehicles have been demolished after towering over the Marshall Space Flight Center in Alabama since the start of the Space Age, Ars reports. The Propulsion and Structural Test Facility, which was erected in 1957—the same year the first artificial satellite entered Earth orbit—and the Dynamic Test Facility, which has stood since 1964, were brought down by a coordinated series of implosions on Saturday, January 10.

Out with the old, in with the new … Located in Marshall’s East Test Area on the US Army’s Redstone Arsenal in Huntsville, the two structures were no longer in use and, according to NASA, had a backlog of $25 million in needed repairs. “This work reflects smart stewardship of taxpayer resources,” Jared Isaacman, NASA administrator, said in a statement. “Clearing outdated infrastructure allows NASA to safely modernize, streamline operations and fully leverage the infrastructure investments signed into law by President Trump to keep Marshall positioned at the forefront of aerospace innovation.”

Space Force swaps Vulcan for Falcon 9. The next Global Positioning System satellite is switching from a United Launch Alliance Vulcan rocket to a SpaceX Falcon 9, a spokesperson for the US Space Force Space Systems Command System Delta 80 said Tuesday, Spaceflight Now reports. SpaceX could launch the GPS III Space Vehicle 09 (SV09) within the next few weeks, as the satellite was entering the final stages of pre-flight preparations.

The trade is logical … SV09 was originally awarded to ULA as part of order-year five of the National Security Space Launch (NSSL) Phase 2 contract, which was announced on October 31, 2023. This isn’t the first time that the Space Force has shuffled timelines and switched launch providers for GPS missions. In May 2025, SpaceX launched the GPS III SV08 spacecraft, which was originally assigned to ULA in June 2023. In exchange, ULA was given the SV11 launch, which would have flown on a Falcon Heavy rocket. The changes have been driven largely by repeated delays in Vulcan readiness.

Next three launches

January 16: Long March 3B | Unknown payload | Xichang Satellite Launch Center, China | 16: 55 UTC

January 17: Ceres 2 | Demo flight | Jiuquan Satellite Launch Center, China | 04: 05 UTC

January 17: Falcon 9 | NROL-105 | Vandenberg Space Force Base, Calif. | 06: 18 UTC

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Rocket Report: Ariane 64 to debut soon; India has a Falcon 9 clone too? Read More »

esa-considers-righting-the-wrongs-of-ariane-6-by-turning-it-into-a-franken-rocket

ESA considers righting the wrongs of Ariane 6 by turning it into a Franken-rocket

Bruno Le Maire, the former French finance minister, said in 2021 that the Ariane 6 was a “bad strategic choice.” More recently, in October of last year, the head of ESA said the continent’s space industry must “catch up” with international competitors like SpaceX and develop a reusable launcher “relatively fast.”

In its submission to ESA’s BEST! initiative, ArianeGroup proposes replacing the Ariane 6 rocket’s solid-fueled side boosters with new liquid-fueled boosters. The boosters would be developed by MaiaSpace, a French subsidiary of ArianeGroup working on its own partially reusable small satellite launcher. MaiaSpace and ArianeGroup would convert the Maia rocket’s methane-fueled booster for use on the Ariane 6.

Isar Aerospace’s concept for a reusable first stage booster (left) and ArianeGroup’s proposal for an Ariane 6 rocket with reusable strap-on boosters (right).

Credit: ESA/Isar Aerospace/ArianeGroup

Isar Aerospace’s concept for a reusable first stage booster (left) and ArianeGroup’s proposal for an Ariane 6 rocket with reusable strap-on boosters (right). Credit: ESA/Isar Aerospace/ArianeGroup

ArianeGroup’s proposal was first reported by European Spaceflight, which said the concept presented to ESA is similar to an ArianeGroup proposal from 2022, when the company described the liquid reusable boosters as a “plug-and-play” alternative to Ariane 6’s solid-fueled boosters, helping reduce operating costs and increase launch rates.

The details of ArianeGroup’s newest proposal have not been published, but the concept was summarized in a paper presented at the European Conference for Aeronautics and Space Sciences in 2025.

Isar Aerospace, a German rocket startup, won a separate BEST! contract from ESA to study a demonstrator for a reusable first stage based on the company’s light-class Spectrum rocket. The Spectrum rocket’s initial design is expendable. Its first test flight last year ended in failure, and Isar is readying the second Spectrum rocket for another launch attempt later this month.

ESA asked ArianeGroup and Isar Aerospace to assess the feasibility of their proposals, develop technology and system development plans, and define plans and costs for a “major flight demonstration.”

MaiaSpace’s rocket won’t launch until 2027, at the earliest, and it’s unlikely any decision to use it as the basis for new Ariane 6 boosters will bear fruit until long after Maia flies on its own. Even if ESA and ArianeGroup take this route, the Ariane 6 rocket would still be predominantly expendable.

ESA considers righting the wrongs of Ariane 6 by turning it into a Franken-rocket Read More »

rocket-report:-a-new-super-heavy-launch-site-in-california;-2025-year-in-review

Rocket Report: A new super-heavy launch site in California; 2025 year in review


SpaceX opened its 2026 launch campaign with a mission for the Italian government.

A Chinese Long March 7 rocket carrying a cargo ship for China’s Tiangong space station soars into orbit from the Wenchang Space Launch Site on July 15, 2025. Credit: Liu Guoxing/VCG via Getty Images

Welcome to Edition 8.24 of the Rocket Report! We’re back from a restorative holiday, and there’s a great deal Eric and I look forward to covering in 2026. You can get a taste of what we’re expecting this year in this feature. Other storylines are also worth watching this year that didn’t make the Top 20. Will SpaceX’s Starship begin launching Starlink satellites? Will United Launch Alliance finally get its Vulcan rocket flying at a higher cadence? Will Blue Origin’s New Glenn rocket be certified by the US Space Force? I’m looking forward to learning the answers to these questions, and more. As for what has already happened in 2026, it has been a slow start on the world’s launch pads, with only a pair of SpaceX missions completed in the first week of the year. Only? Two launches in one week by any company would have been remarkable just a few years ago.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

New launch records set in 2025. The number of orbital launch attempts worldwide last year surpassed the record 2024 flight rate by 25 percent, with SpaceX and China accounting for the bulk of the launch activity, Aviation Week & Space Technology reports. Including near-orbital flight tests of SpaceX’s Starship-Super Heavy launch system, the number of orbital launch attempts worldwide reached 329 last year, an annual analysis of global launch and satellite activity by Jonathan’s Space Report shows. Of those 329 attempts, 321 reached orbit or marginal orbits. In addition to five Starship-Super Heavy launches, SpaceX launched 165 Falcon 9 rockets in 2025, surpassing its 2024 record of 134 Falcon 9 and two Falcon Heavy flights. No Falcon Heavy rockets flew in 2025. US providers, including Rocket Lab Electron orbital flights from its New Zealand spaceport, added another 30 orbital launches to the 2025 tally, solidifying the US as the world leader in space launch.

International launches… China, which attempted 92 orbital launches in 2025, is second, followed by Russia, with 17 launches last year, and Europe with eight. Rounding out the 2025 orbital launch manifest were five orbital launch attempts from India, four from Japan, two from South Korea, and one each from Israel, Iran, and Australia, the analysis shows. The global launch tally has been on an upward trend since 2019, but the numbers may plateau this year. SpaceX expects to launch about the same number of Falcon 9 rockets this year as it did last year as the company prepares to ramp up the pace of Starship flights.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

South Korean startup suffers launch failure. The first commercial rocket launched at Brazil’s Alcantara Space Center crashed soon after liftoff on December 22, dealing a blow to Brazilian aerospace ambitions and the South Korean satellite launch company Innospace, Reuters reports. The rocket began its vertical trajectory as planned after liftoff but fell to the ground after something went wrong 30 seconds into its flight, according to Innospace, the South Korean startup that developed the launch vehicle. The craft crashed within a pre-designated safety zone and did not harm anyone, officials said.

An unsurprising result... This was the first flight of Innospace’s nano-launcher, named Hanbit-Nano. The rocket was loaded with eight small payloads, including five deployable satellites, heading for low-Earth orbit. But rocket debuts don’t have a good track record, and Innospace’s rocket made it a bit farther than some new launch vehicles do. The rocket is designed to place up to 200 pounds (90 kilograms) of payload mass into Sun-synchronous orbit. It has a unique design, with hybrid engines consuming a mix of paraffin as the fuel and liquid oxygen as the oxidizer. Innospace said it intends to launch a second test flight in 2026. (submitted by EllPeaTea)

Take two for Germany’s Isar Aerospace. Isar Aerospace is gearing up for a second launch attempt of its light-class Spectrum rocket after completing 30-second integrated static test firings for both stages late last year, Aviation Week & Space Technology reports. The endeavor would be the first orbital launch for Spectrum and an effort at a clean mission after a March 30 flight ended in failure because a vent valve inadvertently opened soon after liftoff, causing a loss of control. “Rapid iteration is how you win in this domain. Being back on the pad less than nine months after our first test flight is proof that we can operate at the speed the world now demands,” said Daniel Metzler, co-founder and CEO of Isar Aerospace.

No earlier than… Airspace and maritime warning notices around the Spectrum rocket’s launch site in northern Norway suggest Isar Aerospace is targeting launch no earlier than January 17. Based near Munich, Isar Aerospace is Europe’s leading launch startup. Not only has Isar beat its competitors to the launch pad, the company has raised far more money than other European rocket firms. After its most recent fundraising round in June, Isar has raised more than 550 million euros ($640 million) from venture capital investors and government-backed funds. Now, Isar just needs to reach orbit.

A step forward for Canada’s launch ambitions. The Atlantic Spaceport Complex—a new launch facility being developed by the aerospace company NordSpace on the southern coast of Newfoundland—has won an important regulatory approval, NASASpaceflight.com reports. The provincial government of Newfoundland and Labrador “released” the spaceport from the environmental assessment process. “At this stage, the spaceport no longer requires further environmental assessment,” NordSpace said in a statement. “This release represents the single most significant regulatory milestone for NordSpace’s spaceport development to date, clearing the path for rapid execution of Canada’s first purpose-built, sovereign orbital launch complex designed and operated by an end-to-end launch services provider.”

Now, about that rocket... NordSpace began construction of the Atlantic Spaceport Complex last year and planned to launch its first suborbital rocket from the spaceport last August. But bad weather and technical problems kept NordSpace’s Taiga rocket grounded, and then the company had to wait for the Canadian government to reissue a launch license. NordSpace said it most recently delayed the suborbital launch until March in order to “continue our focus on advancing our orbital-scale technologies.” NordSpace is one of the companies likely to participate in a challenge sponsored by the Canadian government, which is committing 105 million Canadian dollars ($75 million) to develop a sovereign orbital launch capability. (submitted by EllPeaTea)

H3 rocket falters on the way to orbit. A faulty payload fairing may have doomed Japan’s latest H3 rocket mission, with the Japanese space agency now investigating if the shield separated abnormally and crippled the vehicle in flight after lifting off on December 21, the Asahi Shimbun reports. Japan Aerospace Exploration Agency officials told a science ministry panel on December 23 they suspect an abnormal separation of the rocket’s payload fairing—a protective nose cone shield—caused a critical drop in pressure in the second-stage engine’s hydrogen tank. The second-stage engine lost thrust as it climbed into space, then failed to restart for a critical burn to boost Japan’s Michibiki 5 navigation satellite into a high-altitude orbit.

Growing pains… The H3 rocket is Japan’s flagship launch vehicle, having replaced the country’s H-IIA rocket after its retirement last year. The December launch was the seventh flight of an H3 rocket, and its second failure. While engineers home in on the rocket’s suspect payload fairing, several H3 launches planned for this year now face delays. Japanese officials already announced that the next H3 flight will be delayed from February. Japan’s space agency plans to launch a robotic mission to Mars on an H3 rocket in October. While there’s still time for officials to investigate and fix the issues that caused last month’s launch failure, the incident adds a question mark to the schedule for the Mars launch. (submitted by tsunam and EllPeaTea)

SpaceX opens 2026 with launch for Italy. SpaceX rang in the new year with a Falcon 9 rocket launch on January 2 from Vandenberg Space Force Base in California, Spaceflight Now reports. The payload was Italy’s Cosmo-SkyMed Second Generation Flight Model 3 (CSG-FM3) satellite, a radar surveillance satellite for dual civilian and military use. The Cosmo-SkyMed mission was the first Falcon 9 rocket flight in 16 days, the longest stretch without a SpaceX orbital launch in four years.

Poached from Europe… The CSG-FM3 satellite is the third of four second-generation Cosmo-SkyMed radar satellites ordered by the Italian government. The second and third satellites have now launched on SpaceX Falcon 9 rockets instead of their initial ride: Europe’s Vega C launcher. Italy switched the satellites to SpaceX after delays in making the Vega C rocket operational and Europe’s loss of access to Russian Soyuz rockets in the aftermath of the invasion of Ukraine. The rocket swap became a regular occurrence for European satellites in the last few years as Europe’s indigenous launch program encountered repeated delays.

Rocket deploys heaviest satellite ever launched from India. An Indian LVM3 rocket launched AST SpaceMobile’s next-generation direct-to-device BlueBird satellite December 23, kicking off the rollout of dozens of spacecraft built around the largest commercial communications antenna ever deployed in low-Earth orbit, Space News reports. At 13,450 pounds (6.1 metric tons), the BlueBird 6 satellite was the heaviest spacecraft ever launched on an Indian rocket. The LVM3 rocket released BlueBird 6 into an orbit approximately 323 miles (520 kilometers) above the Earth.

The pressure is on… BlueBird 6 is the first of AST SpaceMobile’s Block 2 satellites designed to beam Internet signals directly to smartphones. The Texas-based company is competing with SpaceX’s Starlink network in the same direct-to-cell market. Starlink has an early lead in the direct-to-device business, but AST SpaceMobile says it plans to launch between 45 and 60 satellites by the end of this year. AST’s BlueBird satellites are significantly larger than SpaceX’s Starlink platforms, with antennas unfurling in space to cover an area of 2,400 square feet (223 square meters). The competition between SpaceX and AST SpaceMobile has led to a race for spectrum access and partnerships with cell service providers.

Ars’ annual power rankings of US rocket companies. There’s been some movement near the top of our annual power rankings. It was not difficult to select the first-place company on this list. As it has every year in our rankings, SpaceX holds the top spot. Blue Origin was the biggest mover on the list, leaping from No. 4 on the list to No. 2. It was a breakthrough year for Jeff Bezos’ space company, finally shaking the notion that it was a company full of promise that could not quite deliver. Blue Origin delivered big time in 2025. On the very first launch of the massive New Glenn rocket in January, Blue Origin successfully sent a test payload into orbit. Although a landing attempt failed after New Glenn’s engines failed to re-light, it was a remarkable success. Then, in November, New Glenn sent a pair of small spacecraft on their way to Mars. This successful launch was followed by a breathtaking and inspiring landing of the rocket’s first stage on a barge.

Where’s ULA?… Rocket Lab came in at No. 3. The company had an excellent year, garnering its highest total of Electron launches and having complete mission success. Rocket Lab has now gone more than three dozen launches without a failure. Rocket Lab also continued to make progress on its medium-lift Neutron vehicle, although its debut was ultimately delayed to mid-2026, at least. United Launch Alliance slipped from No. 2 to No. 4 after launching its new Vulcan rocket just once last year, well short of the company’s goal of flying up to 10 Vulcan missions.

Rocketdyne changes hands again. If you are a student of space history or tracked the space industry before billionaires and venture capital changed it forever, you probably know the name Rocketdyne. A half-century ago, Rocketdyne manufactured almost all of the large liquid-fueled rocket engines in the United States. The Saturn V rocket that boosted astronauts toward the Moon relied on powerful engines developed by Rocketdyne, as did the Space Shuttle, the Atlas, Thor, and Delta rockets, and the US military’s earliest ballistic missiles. But Rocketdyne has lost its luster in the 21st century as it struggled to stay relevant in the emerging commercial launch industry. Now, the engine-builder is undergoing its fourth ownership change in 20 years. AE Industrial Partners, a private equity firm, announced it will purchase a controlling stake in Rocketdyne from L3Harris after less than three years of ownership, Ars reports.

Splitting up… Rocketdyne’s RS-25 engine, used on NASA’s Space Launch System rocket, is not part of the deal with AE Industrial. It will remain under the exclusive ownership of L3Harris. Rocketdyne’s work on solid-fueled propulsion, ballistic missile interceptors, tactical missiles, and other military munitions will also remain under L3Harris control. The split of the company’s space and defense segments will allow L3Harris to concentrate on Pentagon programs, the company said. So, what is AE Industrial getting in its deal with L3Harris? Aside from the Rocketdyne name, the private equity firm will have a majority stake in the production of the liquid-fueled RL10 upper-stage engine used on United Launch Alliance’s Vulcan rocket. AE Industrial’s Rocketdyne will also continue the legacy company’s work in nuclear propulsion, electric propulsion, and smaller in-space maneuvering thrusters used on satellites.

Tory Bruno has a new employer. Jeff Bezos-founded Blue Origin said on December 26 that it has hired Tory Bruno, the longtime CEO of United Launch Alliance, as president of its newly formed national security-focused unit, Reuters reports. Bruno will head the National Security Group and report to Blue Origin CEO Dave Limp, the company said in a social media post, underscoring its push to expand in US defense and intelligence launch markets. The hire brings one of the US launch industry’s most experienced executives to Blue Origin as the company works to challenge the dominance of SpaceX and win a larger share of lucrative US military and intelligence launch contracts.

11 years at ULA… The move comes days after Bruno stepped down as CEO of ULA, the Boeing-Lockheed Martin joint venture that has long dominated US national security space launches alongside Elon Musk’s SpaceX. In 11 years at ULA, Bruno oversaw the development of the Vulcan rocket, the company’s next-generation launch vehicle designed to replace its Atlas V and Delta IV rockets and secure future Pentagon contracts. (submitted by r0twhylr)

A California spaceport has room to grow. A new orbital launch site is up for grabs at Vandenberg Space Force Base in California, Spaceflight Now reports. The Department of the Air Force published a request for information from launch providers to determine the level of interest in what would become the southernmost launch complex on the Western Range. The location, which will be designated as Space Launch Complex-14 or SLC-14, is being set aside for orbital rockets in a heavy or super-heavy vertical launch class. One of the requirements listed in the RFI includes what the government calls the “highest technical maturity.” It states that for the bid from a launch provider to be taken seriously, it needs to prove that it can begin operations within approximately five years of receiving a lease for the property.

Who’s in contention?… Multiple US launch providers have rockets in the heavy to super-heavy classification either currently launching or in development. Given all the requirements and the state of play on the orbital launch front, one of the contenders would likely be SpaceX’s Starship-Super Heavy rocket. The company is slated to launch the latest iteration of the rocket, dubbed Version 3, sometime in early 2026. Blue Origin is another likely contender for the prospective launch site. Blue Origin currently has an undeveloped space at Vandenberg’s SLC-9 for its New Glenn rocket. But the company unveiled plans in November for a new super-heavy lift version called New Glenn 9×4. (submitted by EllPeaTea)

Next three launches

Jan. 9: Falcon 9 | Starlink 6-96 | Cape Canaveral Space Force Station, Florida | 18: 05 UTC

Jan. 11: Falcon 9 | Twilight Mission | Vandenberg Space Force Base, California | 13: 19 UTC

Jan. 11: Falcon 9 | Starlink 6-97 | Cape Canaveral Space Force Station, Florida | 18: 08 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: A new super-heavy launch site in California; 2025 year in review Read More »

in-a-surprise-announcement,-tory-bruno-is-out-as-ceo-of-united-launch-alliance

In a surprise announcement, Tory Bruno is out as CEO of United Launch Alliance

The retirement of the Atlas V and Delta IV led to a period of downsizing for United Launch Alliance, with layoffs and facility closures in Florida, California, Alabama, Colorado, and Texas. In a further sign of ULA’s troubles, SpaceX won a majority of US military launch contracts for the first time last year.

Bruno, 64, served as a genial public face for ULA amid the company’s difficult times. He routinely engaged with space enthusiasts on social media, fielded questions from reporters, and even started a podcast. Bruno’s friendly and accessible demeanor was unusual among industry leaders, especially those with ties to large legacy defense contractors.

ULA is a 50-50 joint venture between Boeing and Lockheed Martin, which merged their rocket divisions in 2006. Bruno’s plans did not always enjoy full support from ULA’s corporate owners. For example, Boeing and Lockheed initially only approved tranches of funding for developing the new Vulcan rocket on a quarterly basis. Beginning before Bruno’s arrival and extending into his tenure as CEO, ULA’s owners slow-walked development of an advanced upper stage that might have become a useful centerpiece for an innovative in-space transport and refueling infrastructure.

There were also rumors in recent years of an impending sale of ULA by Boeing and Lockheed Martin, but nothing has materialized so far.

The third flight of the Vulcan rocket lifted off from Cape Canaveral Space Force Station, Florida, on August 12, 2025. Credit: United Launch Alliance

A statement from the co-chairs of ULA’s board, Robert Lightfoot of Lockheed Martin and Kay Sears of Boeing, did not identify a reason for Bruno’s resignation, other than saying he is stepping down “to pursue another opportunity.”

“We are grateful for Tory’s service to ULA and the country, and we thank him for his leadership,” the board chairs said in a statement.

John Elbon, ULA’s chief operating officer, will take over as interim CEO effective immediately, the company said.

“We have the greatest confidence in John to continue strengthening ULA’s momentum while the board proceeds with finding the next leader of ULA,” the company said. “Together with Mark Peller, the new COO, John’s career in aerospace and his launch expertise is an asset for ULA and its customers, especially for achieving key upcoming Vulcan milestones.”

In a post on X, Bruno thanked ULA’s owners for the opportunity to lead the company. “It has been a great privilege to lead ULA through its transformation and to bring Vulcan into service,” he wrote. “My work here is now complete and I will be cheering ULA on.”

In a surprise announcement, Tory Bruno is out as CEO of United Launch Alliance Read More »

rocket-report:-russia-pledges-quick-fix-for-soyuz-launch-pad;-ariane-6-aims-high

Rocket Report: Russia pledges quick fix for Soyuz launch pad; Ariane 6 aims high


South Korean rocket startup Innospace is poised to debut a new nano-launcher.

The fifth Ariane 6 rocket climbs away from Kourou, French Guiana, with two European Galileo navigation satellites. Credit: ESA-CNES-Arianespace

Welcome to Edition 8.23 of the Rocket Report! Several new rockets made their first flights this year. Blue Origin’s New Glenn was the most notable debut, with a successful inaugural launch in January followed by an impressive second flight in November, culminating in the booster’s first landing on an offshore platform. Second on the list is China’s Zhuque-3, a partially reusable methane-fueled rocket developed by the quasi-commercial launch company LandSpace. The medium-lift Zhuque-3 successfully reached orbit on its first flight earlier this month, and its booster narrowly missed landing downrange. We could add China’s Long March 12A to the list if it flies before the end of the year. This will be the final Rocket Report of 2025, but we’ll be back in January with all the news that’s fit to lift.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Rocket Lab delivers for Space Force and NASA. Four small satellites rode a Rocket Lab Electron launch vehicle into orbit from Virginia early Thursday, beginning a government-funded technology demonstration mission to test the performance of a new spacecraft design, Ars reports. The satellites were nestled inside a cylindrical dispenser on top of the 59-foot-tall (18-meter) Electron rocket when it lifted off from NASA’s Wallops Flight Facility. A little more than an hour later, the rocket’s upper stage released the satellites one at a time at an altitude of about 340 miles (550 kilometers). The launch was the starting gun for a proof-of-concept mission to test the viability of a new kind of satellite called DiskSats, designed by the Aerospace Corporation.

Stack ’em high… “DiskSat is a lightweight, compact, flat disc-shaped satellite designed for optimizing future rideshare launches,” the Aerospace Corporation said in a statement. The DiskSats are 39 inches (1 meter) wide, about twice the diameter of a New York-style pizza, and measure just 1 inch (2.5 centimeters) thick. Made of composite carbon fiber, each satellite carries solar cells, control avionics, reaction wheels, and an electric thruster to change and maintain altitude. The flat design allows DiskSats to be stacked one on top of the other for launch. The format also has significantly more surface area than other small satellites with comparable mass, making room for more solar cells for high-power missions or large-aperture payloads like radar imaging instruments or high-bandwidth antennas. NASA and the US Space Force cofunded the development and launch of the DiskSat demo mission.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

SpaceX warns of dangerous Chinese launch. China’s recent deployment of nine satellites occurred dangerously close to a Starlink satellite, SpaceX’s vice president of Starlink engineering said. Michael Nicolls wrote in a December 12 social media post that there was a 200-meter close approach between a satellite launched December 10 on a Chinese Kinetica-1 rocket and SpaceX’s Starlink-6079 spacecraft at 560 kilometers (348 miles) altitude, Aviation Week and Space Technology reports. “Most of the risk of operating in space comes from the lack of coordination between satellite operators—this needs to change,” Nicolls wrote.

Blaming the customer... The company in charge of the Kinetica-1 rocket, CAS Space, responded to Nicolls’ post on X saying it would “work on identifying the exact details and provide assistance.” In a follow-up post on December 13, CAS Space said the close call, if confirmed, occurred nearly 48 hours after the satellite separated from the Kinetica-1 rocket, by which time the launch mission had long concluded. “CAS Space will coordinate with satellite operators to proceed.”

A South Korean startup is ready to fly. Innospace, a South Korean space startup, will launch its independently developed commercial rocket, Hanbit-Nano, as soon as Friday, the Maeil Business Newspaper reports. The rocket will lift off from the Alcântara Space Center in Brazil. The small launcher will attempt to deliver eight small payloads, including five deployable satellites, into low-Earth orbit. The launch was delayed two days to allow time for technicians to replace components of the first stage oxidizer supply cooling system.

Hybrid propulsion… This will be the first launch of Innospace’s Hanbit-Nano rocket. The launcher has two stages and stands 71 feet (21.7 meters) tall with a diameter of 4.6 feet (1.4 meters). Hanbit-Nano is a true micro-launcher, capable of placing up to 200 pounds (90 kilograms) of payload mass into Sun-synchronous orbit. It has a unique design, with hybrid engines consuming a mix of paraffin as the fuel and liquid oxygen as the oxidizer.

Ten years since a milestone in rocketry. On December 21, 2015, SpaceX launched the Orbcomm-2 mission on an upgraded version of its Falcon 9 rocket. That night, just days before Christmas, the company successfully landed the first stage for the first time. Ars has reprinted a slightly condensed chapter from the book Reentry, authored by Senior Space Editor Eric Berger and published in 2024. The chapter begins in June 2015 with the failure of a Falcon 9 rocket during launch of a resupply mission to the International Space Station and ends with a vivid behind-the-scenes recounting of the historic first landing of a Falcon 9 booster to close out the year.

First-person account… I have my own memory of SpaceX’s first rocket landing. I was there, covering the mission for another publication, as the Falcon 9 lifted off from Cape Canaveral, Florida. In an abundance of caution, Air Force officials in charge of the Cape Canaveral spaceport closed large swaths of the base for the Falcon 9’s return to land. The decision shunted VIPs and media representatives to viewing locations outside the spaceport’s fence, so I joined SpaceX’s official press room at the top of a seven-floor tower near the Port Canaveral cruise terminals. The view was tremendous. We all knew to expect a sonic boom as the rocket came back to Florida, but its arrival was a jolt. The next morning, I joined SpaceX and a handful of reporters and photographers on a chartered boat to get a closer look at the Falcon 9 standing proudly after returning from space.

Roscosmos targets quick fix to Soyuz launch pad. Russian space agency Roscosmos says it expects a damaged launch pad critical to International Space Station operations to be fixed by the end of February, Aviation Week and Space Technology reports. “Launch readiness: end of February 2026,” Roscosmos said in a statement Tuesday. Russia had been scrambling to assess the extent of repairs needed to Pad 31 at the Baikonur Cosmodrome in Kazakhstan after the November 27 flight of a Soyuz-2.1a rocket damaged key elements of the infrastructure. The pad is the only one capable of supporting Russian launches to the ISS.

Best-case scenario… A quick repair to the launch pad would be the best-case scenario for Roscosmos. A service structure underneath the rocket was unsecured during the launch of a three-man crew to the ISS last month. The structure fell into the launch pad’s flame trench, leaving the complex without the service cabin technicians use to work on the Soyuz rocket before liftoff. Roscosmos said a “complete service cabin replacement kit” has arrived at the Baikonur Cosmodrome, and more than 130 staff are working in two shifts to implement the repairs. A fix by the end of February would allow Russia to resume cargo flights to the ISS in March.

Atlas V closes out an up-and-down year for ULA. United Launch Alliance aced its final launch of 2025, a predawn flight of an Atlas V rocket Tuesday carrying 27 satellites for Amazon’s recently rebranded Leo broadband Internet service, Spaceflight Now reports. The rocket flew northeast from Cape Canaveral to place the Amazon Leo satellites into low-Earth orbit. This was ULA’s fourth launch for Amazon’s satellite broadband venture, previously known as Project Kuiper. ULA closes out 2025 with six launches, one more than the company achieved last year. But ULA’s new Vulcan rocket launched just once this year, disappointingly short of the company’s goal to fly Vulcan up to 10 times.

Taking stock of Amazon Leo… This year marked the start of the deployment of Amazon’s operational satellites. There are now 180 Amazon Leo satellites in orbit after Tuesday’s launch, well short of the FCC’s requirement for Amazon to deploy half of its planned 3,232 satellites by July 31, 2026. Amazon won’t meet the deadline, and it’s likely the retail giant will ask government regulators for a waiver or extension to the deadline. Amazon’s factory is hitting its stride producing and delivering Amazon Leo satellites. The real question is launch capacity. Amazon has contracts to launch satellites on ULA’s Atlas V and Vulcan rockets, Europe’s Ariane 6, and Blue Origin’s New Glenn. Early next year, a batch of 32 Amazon Leo satellites will launch on the first flight of Europe’s uprated Ariane 64 rocket from Kourou, French Guiana. (submitted by EllPeaTea)

A good year for Ariane 6. Europe’s Ariane 6 rocket launched four times this year after a debut test flight in 2024. The four successful missions deployed payloads for the French military, Europe’s weather satellite agency, the European Union’s Copernicus environmental monitoring network, and finally, on Wednesday, the European Galileo navigation satellite fleet, Space News reports. This is a strong showing for a new rocket flying from a new launch pad and a faster ramp-up of launch cadence than any medium- or heavy-lift rocket in recent memory. All five Ariane 6 launches to date have used the Ariane 62 configuration with two strap-on solid rocket boosters. The more powerful Ariane 64 rocket, with four strap-on motors, will make its first flight early next year.

Aiming high… This was the first launch using the Ariane 6 rocket’s ability to fly long-duration missions lasting several hours. The rocket’s cryogenic upper stage, with a restartable Vinci engine, took nearly four hours to inject two Galileo navigation satellites into an orbit more than 14,000 miles (nearly 23,000 kilometers) above the Earth. The flight profile put more stress on the Ariane 6 upper stage than any of the rocket’s previous missions, but the rocket released its payloads into an on-target orbit. (submitted by EllPeaTea)

ESA wants to do more with Ariane 6’s kick stage. The European Space Agency plans to adapt a contract awarded to ArianeGroup in 2021 for an Ariane 6 kick stage to cover its evolution into an orbital transfer vehicle, European Spaceflight reports. The original contract was for the development of the Ariane 6’s Astris kick stage, an optional addition for Ariane 6 missions to deploy payloads into multiple orbits or directly inject satellites into geostationary orbit. Last month, ESA’s member states committed approximately 100 million euros ($117 million) to refocus the Astris kick stage into a more capable Orbital Transfer Vehicle (OTV).

Strong support from Germany… ESA’s director of space transportation, Toni Tolker-Nielsen, said the performance of the Ariane 6 OTV will be “well beyond” that of the originally conceived Astris kick stage. The funding commitment obtained during last month’s ESA ministerial council meeting includes strong support from Germany, Tolker-Nielsen said. Under the new timeline, a protoflight mode of the OTV is expected to be ready for ground qualification by the end of 2028, with an inaugural flight following in 2029. (submitted EllPeaTea)

Another Starship clone in China. Every other week, it seems, a new Chinese launch company pops up with a rocket design and a plan to reach orbit within a few years. For a long time, the majority of these companies revealed designs that looked a lot like SpaceX’s Falcon 9 rocket. Now, Chinese companies are starting to introduce designs that appear quite similar to SpaceX’s newer, larger Starship rocket, Ars reports. The newest entry comes from a company called “Beijing Leading Rocket Technology.” This outfit took things a step further by naming its vehicle “Starship-1,” adding that the new rocket will have enhancements from AI and is billed as being a “fully reusable AI rocket.”

Starship prime… China has a long history of copying SpaceX. The country’s first class of reusable rockets, which began flying earlier this month, show strong similarities to the Falcon 9 rocket. Now, it’s Starship. The trend began with the Chinese government. In November 2024, the government announced a significant shift in the design of its super-heavy lift rocket, the Long March 9. Instead of the previous design, a fully expendable rocket with three stages and solid rocket boosters strapped to the sides, the country’s state-owned rocket maker revealed a vehicle that mimicked SpaceX’s fully reusable Starship. At least two more companies have announced plans for Starship-like rockets using SpaceX’s chopstick-style method for booster recovery. Many of these launch startups will not grow past the PowerPoint phase, of course.

Next three launches

Dec. 19: Hanbit-Nano | Spaceward | Alcântara Launch Center, Brazil | 18: 45 UTC

Dec. 20: Long March 5 | Unknown Payload | Wenchang Space Launch Site, China | 12: 30 UTC

Dec. 20: New Shepard | NS-37 crew mission | Launch Site One, Texas | 14: 00 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Russia pledges quick fix for Soyuz launch pad; Ariane 6 aims high Read More »

rocket-report:-blunder-at-baikonur;-do-launchers-really-need-rocket-engines?

Rocket Report: Blunder at Baikonur; do launchers really need rocket engines?


The Department of the Air Force approves a new home in Florida for SpaceX’s Starship.

South Korea’s Nuri 1 rocket is lifted vertical on its launch pad in this multi-exposure photo. Credit: Korea Aerospace Research Institute

Welcome to Edition 8.21 of the Rocket Report! We’re back after the Thanksgiving holiday with more launch news. Most of the big stories over the last couple of weeks came from abroad. Russian rockets and launch pads didn’t fare so well. China’s launch industry celebrated several key missions. SpaceX was busy, too, with seven launches over the last two weeks, six of them carrying more Starlink Internet satellites into orbit. We expect between 15 and 20 more orbital launch attempts worldwide before the end of the year.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Another Sarmat failure. A Russian intercontinental ballistic missile (ICBM) fired from an underground silo on the country’s southern steppe on November 28 on a scheduled test to deliver a dummy warhead to a remote impact zone nearly 4,000 miles away. The missile didn’t even make it 4,000 feet, Ars reports. Russia’s military has been silent on the accident, but the missile’s crash was seen and heard for miles around the Dombarovsky air base in Orenburg Oblast near the Russian-Kazakh border. A video posted by the Russian blog site MilitaryRussia.ru on Telegram and widely shared on other social media platforms showed the missile veering off course immediately after launch before cartwheeling upside down, losing power, and then crashing a short distance from the launch site.

An unenviable track record … Analysts say the circumstances of the launch suggest it was likely a test of Russia’s RS-28 Sarmat missile, a weapon designed to reach targets more than 11,000 miles (18,000 kilometers) away, making it the world’s longest-range missile. The Sarmat missile is Russia’s next-generation heavy-duty ICBM, capable of carrying a payload of up to 10 large nuclear warheads, a combination of warheads and countermeasures, or hypersonic boost-glide vehicles, according to the Center for Strategic and International Studies. Simply put, the Sarmat is a doomsday weapon designed for use in an all-out nuclear war between Russia and the United States. The missile’s first full-scale test flight in 2022 apparently went well, but the program has suffered a string of consecutive failures since then, most notably a catastrophic explosion last year that destroyed the Sarmat missile’s underground silo in northern Russia.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

ESA fills its coffers for launcher challenge. The European Space Agency’s (ESA) European Launcher Challenge received a significant financial commitment from its member states during the agency’s Ministerial Council meeting last week, European Spaceflight reports. The challenge is designed to support emerging European rocket companies while giving ESA and other European satellite operators more options to compete with the continent’s sole operational launch provider, Arianespace. Through the program, ESA will purchase launch services and co-fund capacity upgrades with the winners. ESA member states committed 902 million euros, or $1.05 billion, to the program at the recent Ministerial Council meeting.

Preselecting the competitors … In July, ESA selected two German companies—Isar Aerospace and Rocket Factory Augsburg—along with Spain’s PLD Space, France’s MaiaSpace, and the UK’s Orbex to proceed with the initiative’s next phase. ESA then negotiated with the governments of each company’s home country to raise money to support the effort. Germany, with two companies on the shortlist, is unsurprisingly a large contributor to the program, committing more than 40 percent of the total budget. France contributed nearly 20 percent, Spain funded nearly 19 percent, and the UK committed nearly 16 percent. Norway paid for 3 percent of the launcher challenge’s budget. Denmark, Portugal, Switzerland, and the Czech Republic contributed smaller amounts.

Europe at the service of South Korea. South Korea’s latest Earth observation satellite was delivered into a Sun-synchronous orbit Monday afternoon following a launch onboard a Vega C rocket by Arianespace, Spaceflight Now reports. The Korea Multi-Purpose Satellite-7 (Kompsat-7) mission launched from Europe’s spaceport in French Guiana. About 44 minutes after liftoff, the Kompsat-7 satellite was deployed into SSO at an altitude of 358 miles (576 kilometers). “By launching the Kompsat-7 satellite, set to significantly enhance South Korea’s Earth observation capabilities, Arianespace is proud to support an ambitious national space program,” said David Cavaillolès, CEO of Arianespace, in a statement.

Something of a rarity … The launch of Kompsat-7 is something of a rarity for Arianespace, which has dominated the international commercial launch market. It’s the first time in more than two years that a satellite for a customer outside Europe has been launched by Arianespace. The backlog for the light-class Vega C rocket is almost exclusively filled with payloads for the European Space Agency, the European Commission, or national governments in Europe. Arianespace’s larger Ariane 6 rocket has 18 launches reserved for the US-based Amazon Leo broadband network. (submitted by EllPeaTea)

South Korea’s homemade rocket flies again. South Korea’s homegrown space rocket Nuri took off from Naro Space Center on November 27 with the CAS500-3 technology demonstration and Earth observation satellite, along with 12 smaller CubeSat rideshare payloads, Yonhap News Agency reports. The 200-ton Nuri rocket debuted in 2021, when it failed to reach orbit on a test flight. Since then, the rocket has successfully reached orbit three times. This mission marked the first time for Hanwha Aerospace to oversee the entire assembly process as part of the government’s long-term plan to hand over space technologies to the private sector. The fifth and sixth launches of the Nuri rocket are planned in 2026 and 2027.

Powered by jet fuel … The Nuri rocket has three stages, each with engines burning Jet A-1 fuel and liquid oxygen. The fuel choice is unusual for rockets, with highly refined RP-1 kerosene or methane being more popular among hydrocarbon fuels. The engines are manufactured by Hanwha Aerospace. The fully assembled rocket stands about 155 feet (47.2 meters) tall and can deliver up to 3,300 pounds (1.5 metric tons) of payload into a polar Sun-synchronous orbit.

Hyundai eyes rocket engine. Meanwhile, South Korea’s space sector is looking to the future. Another company best known for making cars has started a venture in the rocket business. Hyundai Rotem, a member of Hyundai Motor Group, announced a joint program with Korean Air’s Aerospace Division (KAL-ASD) to develop a 35-ton-class reusable methane rocket engine for future launch vehicles. The effort is funded with KRW49 billion ($33 million) from the Korea Research Institute for Defense Technology Planning and Advancement (KRIT).

By the end of the decade … The government-backed program aims to develop the engine by the end of 2030. Hyundai Rotem will lead the engine’s planning and design, while Korean Air, the nation’s largest air carrier, will lead development of the engine’s turbopump. “Hyundai Rotem began developing methane engines in 1994 and has steadily advanced its methane engine technology, achieving Korea’s first successful combustion test in 2006,” Hyundai Rotem said in a statement. “Furthermore, this project is expected to secure the technological foundation for the commercialization of methane engines for reusable space launch vehicles and lay the groundwork for targeting the global space launch vehicle market.”

But who needs rocket engines? Moonshot Space, based in Israel, announced Monday that it has secured $12 million in funding to continue the development of a launch system—powered not by chemical propulsion, but electromagnetism, Payload reports. Moonshot plans to sell other aerospace and defense companies the tech as a hypersonic test platform, while at the same time building to eventually offer orbital launch services. Instead of conventional rocket engines, the system would use a series of electromagnetic coils to power a hardened capsule to hypersonic velocities. The architecture has a downside: extremely high accelerations that could damage or destroy normal satellites. Instead, Moonshot wants to use the technology to send raw materials to orbit, lowering the input costs of the budding in-space servicing, refueling, and manufacturing industries, according to Payload.

Out of the shadows … Moonshot Space emerged from stealth mode with this week’s fundraising announcement. The company’s near-term focus is on building a scaled-down electromagnetic accelerator capable of reaching Mach 6. A larger system would be required to reach orbital velocity. The company’s CEO is the former director-general of Israel’s Ministry of Science, while its chief engineer was the former chief systems engineer for David’s Sling, a critical part of Israel’s missile defense system. (submitted by EllPeaTea)

A blunder at Baikonur. A Soyuz rocket launched on November 27 carrying Roscosmos cosmonauts Sergei Kud-Sverchkov and Sergei Mikayev, as well as NASA astronaut Christopher Williams, for an eight-month mission to the International Space Station. The trio of astronauts arrived at the orbiting laboratory without incident. However, on the ground, there was a serious problem during the launch with the ground systems that support processing of the vehicle before liftoff at Site 31, located at the Baikonur Cosmodrome in Kazakhstan, Ars reports. Roscosmos downplayed the incident, saying only, in passive voice, that “damage to several launch pad components was identified” following the launch.

Repairs needed … However, video imagery of the launch site after liftoff showed substantial damage, with a large service platform appearing to have fallen into the flame trench below the launch table. According to one source, this is a platform located beneath the rocket, where workers can access the vehicle before liftoff. It has a mass of about 20 metric tons and was apparently not secured prior to launch, and the thrust of the vehicle ejected it into the flame trench. “There is significant damage to the pad,” said this source. The damage could throw a wrench into Russia’s ability to launch crews and cargo to the International Space Station. This Soyuz launch pad at Baikonur is the only one outfitted to support such missions.

China’s LandSpace almost landed a rocket. China’s first attempt to land an orbital-class rocket may have ended in a fiery crash, but the company responsible for the mission had a lot to celebrate with the first flight of its new methane-fueled launcher, Ars reports. LandSpace, a decade-old company based in Beijing, launched its new Zhuque-3 rocket for the first time Tuesday (US time) at the Jiuquan launch site in northwestern China. The upper stage of the medium-lift rocket successfully reached orbit. This alone is a remarkable achievement for a new rocket. But LandSpace had other goals for this launch. The Zhuque-3, or ZQ-3, booster stage is architected for recovery and reuse, the first rocket in China with such a design. The booster survived reentry and was seconds away from a pinpoint landing when something went wrong during its landing burn, resulting in a high-speed crash at the landing zone in the Gobi Desert.

Let the games begin … LandSpace got closer to landing an orbital-class booster than any other company on their first try. While LandSpace prepares for a second launch, several more Chinese companies are close to debuting their own reusable rockets. The next of these new rockets, the Long March 12A, is awaiting its first liftoff later this month from another launch pad at the Jiuquan spaceport. The Long March 12A comes from one of China’s established rocket developers, the Shanghai Academy of Spaceflight Technology (SAST), part of the country’s state-owned aerospace enterprise.

China launches a lifeboat. An unpiloted Chinese spacecraft launched on November 24 (US time) and linked with the country’s Tiangong space station a few hours later, providing a lifeboat for three astronauts stuck in orbit without a safe ride home, Ars reports. A Long March 2F rocket lifted off with the Shenzhou 22 spacecraft, carrying cargo instead of a crew. The spacecraft docked with the Tiangong station nearly 250 miles (400 kilometers) above the Earth about three-and-a-half hours later. Shenzhou 22 will provide a ride home next year for three Chinese astronauts. Engineers deemed their primary lifeboat unsafe after finding a cracked window, likely from an impact with a tiny piece of space junk.

In record time … Chinese engineers worked fast to move up the launch of the Shenzhou 22, originally set to fly next year. The launch occurred just 16 days after officials decided they needed to send another spacecraft to the Tiangong station. Shenzhou 22 and its rocket were already in standby at the launch site, but teams had to fuel the spacecraft and complete assembly of the rocket, then roll the vehicle to the launch pad for final countdown preps. The rapid turnaround offers a “successful example for efficient emergency response in the international space industry,” the China Manned Space Agency said. “It vividly embodies the spirit of manned spaceflight: exceptionally hardworking, exceptionally capable, exceptionally resilient, and exceptionally dedicated.”

Another big name flirts with the launch industry. OpenAI chief executive Sam Altman has explored putting together funds to either acquire or partner with a rocket company, a move that would position him to compete with Elon Musk’s SpaceX, the Wall Street Journal reports. Altman reached out to at least one rocket maker, Stoke Space, in the summer, and the discussions picked up in the fall, according to people familiar with the talks. Among the proposals was for OpenAI to make a multibillion-dollar series of equity investments in the company and end up with a controlling stake. The talks are no longer active, people close to OpenAI told the Journal.

Here’s the reason … Altman has been interested in building data centers in space for some time, the Journal reports, suggesting that the insatiable demand for computing resources to power artificial-intelligence systems eventually could require so much power that the environmental consequences would make space a better option. Orbital data centers would allow companies to harness the power of the Sun to operate them. Alphabet’s Google is pursuing a similar concept in partnership with satellite operator Planet Labs. Jeff Bezos and Musk himself have also expressed interest in the idea. Outside of SpaceX and Blue Origin, Stoke Space seems to be a natural partner for such a project because it is one of the few companies developing a fully reusable rocket.

SpaceX gets green light for new Florida launch pad. SpaceX has the OK to build out what will be the primary launch hub on the Space Coast for its Starship and Super Heavy rocket, the most powerful launch vehicle in history, the Orlando Sentinel reports. The Department of the Air Force announced Monday it had approved SpaceX to move forward with the construction of a pair of launch pads at Cape Canaveral Space Force Station’s Space Launch Complex 37 (SLC-37). A “record of decision” on the Environmental Impact Statement required under the National Environmental Policy Act for the proposed Canaveral site was posted to the Air Force’s website, marking the conclusion of what has been a nearly two-year approval process.

Get those Starships ready SpaceX plans to build two launch towers at SLC-37 to augment the single tower under construction at NASA’s Kennedy Space Center, just a few miles to the north. The three pads combined could support up to 120 launches per year. The Air Force’s final approval was expected after it released a draft Environmental Impact Statement earlier this year, suggesting the Starship pads at SLC-37 would have no significant negative impacts on local environmental, historical, social, and cultural interests. The Air Force also found SpaceX’s plans at SLC-37, formerly leased by United Launch Alliance, will have no significant impact on the company’s competitors in the launch industry. SpaceX also has two launch towers at its Starbase facility in South Texas.

Next three launches

Dec. 5: Kuaizhou 1A | Unknown Payload | Jiuquan Satellite Launch Center, China | 09: 00 UTC

Dec. 6: Hyperbola 1 | Unknown Payload | Jiuquan Satellite Launch Center, China | 04: 00 UTC

Dec. 6: Long March 8A | Unknown Payload | Wenchang Space Launch Site, China | 07: 50 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Blunder at Baikonur; do launchers really need rocket engines? Read More »

this-chinese-company-could-become-the-country’s-first-to-land-a-reusable-rocket

This Chinese company could become the country’s first to land a reusable rocket


From the outside, China’s Zhuque-3 rocket looks like a clone of SpaceX’s Falcon 9.

LandSpace’s Zhuque-3 rocket with its nine first stage engines. Credit: LandSpace

There’s a race in China among several companies vying to become the next to launch and land an orbital-class rocket, and the starting gun could go off as soon as tonight.

LandSpace, one of several maturing Chinese rocket startups, is about to launch the first flight of its medium-lift Zhuque-3 rocket. Liftoff could happen around 11 pm EST tonight (04: 00 UTC Wednesday), or noon local time at the Jiuquan Satellite Launch Center in northwestern China.

Airspace warning notices advising pilots to steer clear of the rocket’s flight path suggest LandSpace has a launch window of about two hours. When it lifts off, the Zhuque-3 (Vermillion Bird-3) rocket will become the largest commercial launch vehicle ever flown in China. What’s more, LandSpace will become the first Chinese launch provider to attempt a landing of its first stage booster, using the same tried-and-true return method pioneered by SpaceX and, more recently, Blue Origin in the United States.

Construction crews recently finished a landing pad in the remote Gobi Desert, some 240 miles (390 kilometers) southeast of the launch site at Jiuquan. Unlike US spaceports, the Jiuquan launch base is located in China’s interior, with rockets flying over land as they climb into space. When the Zhuque-3 booster finishes its job of sending the rocket toward orbit, it will follow an arcing trajectory toward the recovery zone, firing its engines to slow for landing about eight-and-a-half minutes after liftoff.

LandSpace’s reusable rocket test vehicle lifts off from the Jiuquan Satellite Launch Center for a high-altitude test flight on Wednesday, September 11, 2024. Credit: Landspace

A first step for China

At least, that’s what is supposed to happen. LandSpace officials have not made any public statements about the odds of a successful landing—or, for that matter, a successful launch. It took Blue Origin, a much larger enterprise than LandSpace backed by Amazon founder Jeff Bezos, two tries to land its New Glenn booster on a floating barge after launching from Cape Canaveral, Florida. A decade ago, SpaceX achieved the first of its now more than 500 rocket landings after many more attempts.

LandSpace was established in 2015, soon after the Chinese government introduced space policy reforms, opening the door for private capital to begin funding startups in the satellite and launch industries. So far, the company has raised more than $400 million from venture capital firms and investment funds backed by the Chinese government.

With this money, LandSpace has developed its own liquid-fueled engines and a light-class launcher named Zhuque-2, which became the world’s first methane-burning launcher to reach orbit in 2023. LandSpace’s Zhuque-2 has logged four successful missions in six tries.

But the Beijing-based company’s broader goal has been the development of a larger, partially reusable rocket to meet China’s growing appetite for satellite services. LandSpace finds itself in a crowded field of competitors, with China’s legacy state-owned rocket developers and a slate of venture-backed startups also in the mix.

The first stage of the Zhuque-3 rocket underwent a test-firing of its nine engines in June. Credit: LandSpace

China needs reusable rockets to keep up with the US launch industry, dominated by SpaceX, which flies more often and hauls heavier cargo to orbit than all Chinese rockets combined. There are at least two Chinese megaconstellations now being deployed in low-Earth orbit, each with architectures requiring thousands of satellites to relay data and Internet signals around the world. Without scaling up satellite production and reusing rockets, China will have difficulty matching the capacities of SpaceX, Blue Origin, and other emerging US launch companies.

Just three months ago, US military officials identified China’s advancements in reusable rocketry as a key to unlocking the country’s ability to potentially threaten US assets in space. “I’m concerned about when the Chinese figure out how to do reusable lift that allows them to put more capability on orbit at a quicker cadence than currently exists,” said Brig. Gen. Brian Sidari, the Space Force’s deputy chief of space operations for intelligence, at a conference in September.

Without reusable rockets, China has turned to a wide variety of expendable boosters this year to launch less than half as often as the United States. China has made 77 orbital launch attempts so far this year, but no single rocket type has flown more than 13 times. In contrast, SpaceX’s Falcon 9 is responsible for 153 of 182 launches by US rockets.

That’s no Falcon 9

The Chinese companies that master reusable rocketry first will have an advantage in the Chinese launch industry. A handful of rockets appear to be poised to take this advantage, beginning with LandSpace’s Zhuque-3.

In its first iteration, the Zhuque-3 rocket will be capable of placing a payload of up to 17,600 pounds (8 metric tons) into low-Earth orbit after accounting for the fuel reserves required for booster recovery. The entire rocket stands about 216 feet (65.9 meters) tall.

The first stage has nine TQ-12A engines consuming methane and liquid oxygen, producing more than 1.6 million pounds of thrust at full throttle. The second stage is powered by a single methane-fueled TQ-15A engine with about 200,000 pounds of thrust. These are the same engines LandSpace has successfully flown on the smaller Zhuque-2 rocket.

LandSpace eventually plans to debut an upgraded Zhuque-3 carrying more propellant and using more powerful engines, raising its payload capacity to more than 40,000 pounds (18.3 metric tons) in reusable mode, or a few tons more with an expendable booster.

From the outside, LandSpace’s new rocket looks a lot like the vehicle it is trying to emulate: SpaceX’s Falcon 9. Like the Falcon 9, the Zhuque-3 booster’s nine-engine design also features four deployable landing legs and grid fins to help steer the rocket toward landing.

But LandSpace also incorporates elements from SpaceX’s much heavier Starship rocket. The primary structure of the Zhuque-3 is made of stainless steel, and its engines burn methane fuel, not kerosene like the Falcon 9.

The Zhuque-3 booster’s landing legs are visible here, folded up against the rocket’s stainless steel fuselage. Credit: LandSpace

In preparation for the debut of the Zhuque-3, LandSpace engineers built a prototype rocket for launch and landing demonstrations. The testbed aced a flight to 10 kilometers, or about 33,000 feet, in September 2024 and descended to a pinpoint vertical landing, validating the rocket’s guidance algorithms and engine restart capability.

The first of many

Another reusable booster is undergoing preflight preparations not far from LandSpace’s launch site at Jiuquan. This rocket, called the Long March 12A, comes from one of China’s established government-owned rocket firms. It could fly before the end of this year, but officials haven’t publicized a schedule.

The Long March 12A has comparable performance to LandSpace’s Zhuque-3, and it will also use a cluster of methane-fueled engines. Its developer, the Shanghai Institute of Spaceflight Technology, will attempt to land the Long March 12A booster on the first flight.

Several other companies working on reusable rockets appear to be in an advanced stage of development.

One of them, Space Pioneer, might have been first to flight with its new Tianlong-3 rocket if not for the thorny problem of an accidental launch during a booster test-firing last year. Space Pioneer eventually completed a successful static fire in September of this year, and the company recently released a photo showing its rocket on the launch pad.

Other Chinese companies with a chance of soon flying their new reusable boosters include CAS Space, which recently shipped its first Kinetica-2 rocket to Jiuquan for launch preps. Galactic Energy completed test-firings of the second stage and first stage for its Pallas-1 rocket in September and November.

Another startup, i-Space, is developing a partially reusable rocket called the Hyperbola-3 that could debut next year from China’s southern spaceport on Hainan Island. Officials from i-Space unveiled an ocean-going drone ship for rocket landings earlier this year. Deep Blue Aerospace is also working on vertical landing technology for its Nebula-1 rocket, having conducted a dramatic high-altitude test flight last year.

These rockets all fall in the small- to medium-class performance range. It’s unclear whether any of these companies will try to land their boosters on their first flights—like the Zhuque-3 and Long March 12Abut all have roadmaps to reusability.

China’s largest rocket developer, the China Academy of Launch Vehicle Technology, is not as close to fielding a reusable launcher. But the academy has far greater ambitions, with a pair of super-heavy rockets in its future. The first will be the Long March 10, designed to fly with reusable boosters while launching China’s next-generation crew spacecraft on missions to the Moon. Later, perhaps in the 2030s, China could debut the fully reusable Long March 9 rocket similar in scale to SpaceX’s Starship.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

This Chinese company could become the country’s first to land a reusable rocket Read More »

the-missile-meant-to-strike-fear-in-russia’s-enemies-fails-once-again

The missile meant to strike fear in Russia’s enemies fails once again

Therefore, it’s no wonder Russian officials like to talk up Sarmat’s capabilities. Russian President Vladimir Putin has called Sarmat a “truly unique weapon” that will “provide food for thought for those who, in the heat of frenzied aggressive rhetoric, try to threaten our country.” Dmitry Rogozin, then the head of Russia’s space agency, called the Sarmat missile a “superweapon” after its first test flight in 2022.

So far, what’s unique about the Sarmat missile is its propensity for failure. The missile’s first full-scale test flight in 2022 apparently went well, but the program has suffered a string of consecutive failures since then, most notably a catastrophic explosion last year that destroyed the Sarmat missile’s underground silo in northern Russia.

The Sarmat is supposed to replace Russia’s aging R-36M2 strategic ICBM fleet, which was built in Ukraine. The RS-28, sometimes called the Satan II, is a “product solely of Russian industry cooperation,” according to Russia’s Ministry of Defense.

The video of the missile failure last week lacks the resolution to confirm whether it was a Sarmat missile or the older-model R-36M2, analysts agree it was most likely a Sarmat. The missile silo used for Friday’s test was recently renovated, perhaps to convert it to support Sarmat tests after the destruction of the new missile’s northern launch site last year.

“Work there began in Spring 2025, after the ice thawed,” wrote Etienne Marcuz, an analyst on strategic armaments at the Foundation for Strategic Research, a French think tank. The “urgent renovation” of the missile silo at Dombarovsky lends support for the hypothesis that last week’s accident involved the Sarmat, and not the R-36M2, which was last tested more than 10 years ago, Marcuz wrote on X.

“If this is indeed another Sarmat failure, it would be highly detrimental to the medium-term future of Russian deterrence,” Marcuz continued. “The aging R-36M2 missiles, which carry a significant portion of Russia’s strategic warheads, are seeing their replacement pushed even further into the future, while their maintenance—previously handled by Ukraine until 2014—remains highly uncertain.”

In this pool photograph distributed by the Russian state media agency Sputnik, Russia’s President Vladimir Putin chairs a Security Council meeting at the Kremlin in Moscow on November 5, 2025. Credit: Gavriil Grigorov/Pool/AFP via Getty Images

Podvig, the UN researcher who also runs the Russian Nuclear Forces blog site, agrees with Marcuz’s conclusions. With the R-36M2 missile soon to retire, “it is extremely unlikely that the Rocket Forces would want to test launch them,” Podvig wrote on his website. “This leaves Sarmat.”

The failure adds fresh uncertainty to the readiness of Russia’s nuclear arsenal. If this were actually a test of one of Russia’s older ICBMs, the result would raise questions about hardware decay and obsolescence. In the more likely case of a Sarmat test flight, it would be the latest in a series of problems that have delayed its entry into service since 2018.

The missile meant to strike fear in Russia’s enemies fails once again Read More »

ula-aimed-to-launch-up-to-10-vulcan-rockets-this-year—it-will-fly-just-once

ULA aimed to launch up to 10 Vulcan rockets this year—it will fly just once

Engineers traced the problem to a manufacturing defect in an insulator on the solid rocket motor, and telemetry data from all four boosters on the following flight in August exhibited “spot-on” performance, according to Bruno. But officials decided to recover the spent expendable motor casings from the Atlantic Ocean for inspections to confirm there were no other surprises or close calls.

The hangup delaying the next Vulcan launches isn’t in rocket production. ULA has hardware for multiple Vulcan rockets in storage at Cape Canaveral Space Force Station, Florida.

Instead, one key reason for Vulcan’s past delays has been the rocket’s performance, particularly its solid rocket boosters. It isn’t clear whether the latest delays are related to the readiness of the Space Force’s GSSAP satellites (the next GPS satellite to fly on Vulcan has been available for launch since 2022), the inspections of Vulcan’s solid rocket motors, or something else.

Vulcan booster cores in storage at Cape Canaveral Space Force Station, Florida. Credit: United Launch Alliance

A Space Systems Command spokesperson told Ars that “appropriate actions are being executed to ensure a successful USSF-87 mission … The teams analyze all hardware as well as available data from previous missions to evaluate space flight worthiness of future missions.”

The spokesperson did not provide a specific answer to a question from Ars about inspections on the solid rocket motors from the most recent Vulcan flight.

ULA’s outfitting of a new rocket assembly hangar and a second mobile launch platform for the Vulcan rocket at Cape Canaveral has also seen delays. With so many launches in its backlog, ULA needs capacity to stack and prepare at least two rockets in different buildings at the same time. Eventually, the company’s goal is to launch at an average clip of twice per month.

On Monday, ground crews at Cape Canaveral moved the second Vulcan launch platform to the company’s launch pad for fit checks and “initial technical testing.” This is a good sign that the company is moving closer to ramping up the Vulcan launch cadence, but it’s now clear it won’t happen this year.

Vulcan’s slow launch rate since its first flight in January 2024 is not unusual for new rockets. It took 28 months for SpaceX’s Falcon 9 and ULA’s Atlas V to reach their fourth flight, a timeline that the Vulcan vehicle will reach in May 2026.

The Delta IV rocket from ULA flew its fourth mission 25 months after debuting in 2002. Europe’s Ariane 6 rocket reached its fourth flight in 16 months, but it shares more in common with its predecessor than the others. SpaceX’s Starship also had a faster ramp-up, with its fourth test flight coming less than 14 months after the first.

ULA aimed to launch up to 10 Vulcan rockets this year—it will fly just once Read More »

rivals-object-to-spacex’s-starship-plans-in-florida—who’s-interfering-with-whom?

Rivals object to SpaceX’s Starship plans in Florida—who’s interfering with whom?


“We’re going to continue to treat any LOX-methane vehicle with 100 percent TNT blast equivalency.”

Artist’s illustration of Starships stacked on two launch pads at the Space Force’s Space Launch Complex 37 at Cape Canaveral, Florida. Credit: SpaceX

The commander of the military unit responsible for running the Cape Canaveral spaceport in Florida expects SpaceX to begin launching Starship rockets there next year.

Launch companies with facilities near SpaceX’s Starship pads are not pleased. SpaceX’s two chief rivals, Blue Origin and United Launch Alliance, complained last year that SpaceX’s proposal of launching as many as 120 Starships per year from Florida’s Space Coast could force them to routinely clear personnel from their launch pads for safety reasons.

This isn’t the first time Blue Origin and ULA have tried to throw up roadblocks in front of SpaceX. The companies sought to prevent NASA from leasing a disused launch pad to SpaceX in 2013, but they lost the fight.

Col. Brian Chatman, commander of a Space Force unit called Space Launch Delta 45, confirmed to reporters on Friday that Starship launches will sometimes restrict SpaceX’s neighbors from accessing their launch pads—at least in the beginning. Space Launch Delta 45, formerly known as the 45th Space Wing, operates the Eastern Range, which oversees launch safety from Cape Canaveral Space Force Station and NASA’s nearby Kennedy Space Center.

Chatman’s unit is responsible for ensuring all personnel remain outside of danger areas during testing and launch operations. The range’s responsibility extends to public safety outside the gates of the spaceport.

“There is no better time to be here on the Space Coast than where we are at today,” Chatman said. “We are breaking records on the launch manifest. We are getting capability on orbit that is essential to national security, and we’re doing that at a time of strategic challenge.”

SpaceX is well along in constructing a Starship launch site on NASA property at Kennedy Space Center within the confines of Launch Complex-39A, where SpaceX also launches its workhorse Falcon 9 rocket. The company wants to build another Starship launch site on Space Force property a few miles to the south.

“Early to mid-next year is when we anticipate Starship coming out here to be able to launch,” Chatman said. “We’ll have the range ready to support at that time.”

Enter the Goliath

Starship and its Super Heavy booster combine to form the largest rocket ever built. Its newest version stands more than 400 feet (120 meters) tall with more than 11 million pounds (5,000 metric tons) of combustible methane and liquid oxygen propellants. That will be replaced by a taller rocket, perhaps as soon as 2027, with about 20 percent more propellant onboard.

While there’s also risk with Starships and Super Heavy boosters returning to Cape Canaveral from space, safety officials worry about what would happen if a Starship and Super Heavy booster detonated with their propellant tanks full. The concern is the same for all rockets, which is why officials evacuate predetermined keep-out zones around launch pads that are fueled up for flight.

But the keep-out zones around SpaceX’s Starship launch pads will extend farther than those around the other launch sites at Cape Canaveral. First, Starship is simply much bigger and uses more propellant than any other rocket. Secondly, Starship’s engines consume methane fuel in combination with liquid oxygen, a blend commonly known as LOX/methane or methalox.

And finally, Starship lacks the track record of older rockets like the Falcon 9, adding a degree of conservatism to the Space Force’s risk calculations. Other launch pads will inevitably fall within the footprint of Starship’s range safety keep-out zones, also known as blast danger areas, or BDAs.

SpaceX’s Starship and Super Heavy booster lift off from Starbase, Texas, in March 2025. Credit: SpaceX

The danger area will be larger for an actual launch, but workers will still need to clear areas closer to Starship launch pads during static fire tests, when the rocket fires its engines while remaining on the ground. This is what prompted ULA and Blue Origin to lodge their protests.

“They understand neighboring operations,” Chatman said in a media roundtable on Friday. “They understand that we will allow the maximum efficiency possible to facilitate their operations, but there will be times that we’re not going to let them go to their launch complex because it’s neighboring a hazardous activity.”

The good news for these other companies is that Eastern Range’s keep-out zones will almost certainly get smaller by the time SpaceX gets anywhere close to 120 Starship launches per year. SpaceX’s Falcon 9 is currently launching at a similar cadence. The blast danger areas for those launches are small and short-lived because the Space Force’s confidence in the Falcon 9’s safety is “extremely high,” Chatman said.

“From a blast damage assessment perspective, specific to the Falcon 9, we know what that keep-out area is,” Chatman said. “It’s the new combination of new fuels—LOX/methanewhich is kind of a game-changer as we look at some of the heavy vehicles that are coming to launch. We just don’t have the analysis on to be able to say, ‘Hey, from a testing perspective, how small can we reduce the BDA and be safe?’”

Methane has become a popular fuel choice, supplanting refined kerosene, liquid hydrogen, or solid fuels commonly used on previous generations of rockets. Methane leaves behind less soot than kerosene, easing engine reusability, while it’s simpler to handle than liquid hydrogen.

Aside from Starship, Blue Origin’s New Glenn and ULA’s Vulcan rockets use liquified natural gas, a fuel very similar to methane. Both rockets are smaller than Starship, but Blue Origin last week unveiled the design of a souped-up New Glenn rocket that will nearly match Starship’s scale.

A few years ago, NASA, the Space Force, and the Federal Aviation Administration decided to look into the explosive potential of methalox rockets. There had been countless tests of explosions of gaseous methane, but data on detonations of liquid methane and liquid oxygen was scarce at the time—just a couple of tests at less than 10 metric tons, according to NASA. So, the government’s default position was to assume an explosion would be equivalent to the energy released by the same amount of TNT. This assumption drives the large keep-out zones the Space Force has drawn around SpaceX’s future Starship launch pads, one of which is seen in the map below.

This map from a Space Force environmental impact statement shows potential restricted access zones around SpaceX’s proposed Starship launch site at Space Launch Complex-37. The restricted zones cover launch pads operated by United Launch Alliance, Relativity Space, and Stoke Space. Credit: SpaceX

Spending millions to blow stuff up

Chatman said the Space Force is prepared to update its blast danger areas once its government partners, SpaceX, and Blue Origin complete testing and analyze their results. Over dozens of tests, engineers are examining how methane and liquid oxygen react to different kinds of accidents, such as impact velocity, pressure, mass ratio, or how much propellant is in the mix.

“That is ongoing currently,” Chatman said. “[We are] working in close partnership with SpaceX and Blue Origin on the LOX/methane combination and the explicit equivalency to identify how much we can … reduce that blast radius. Those discussions are happening, have been happening the last couple years, and are looking to culminate here in ’26.

“Until we get that data from the testing that is ongoing and the analysis that needs to occur, we’re going to continue to treat any LOX-methane vehicle with 100 percent TNT blast equivalency, and have a maximized keep-out zone, simply from a public safety perspective,” Chatman said.

The data so far show promising results. “We do expect that BDA to shrink,” he said. “We expect that to shrink based on some of the initial testing that has been done and the initial data reviews that have been done.”

That’s imperative, not just for Starship’s neighbors at the Cape Canaveral spaceport, but for SpaceX itself. The company forecasts a future in which it will launch Starships more often than the Falcon 9, requiring near-continuous operations at multiple launch pads.

Chatman mentioned one future scenario in which SpaceX might want to launch Starships in close proximity to one another from neighboring pads.

“At that point in the future, I do anticipate the blast damage assessments to shrink down based on the testing that will have been accomplished and dataset will have been reviewed, [and] that we’ll be in a comfortable set to be able to facilitate all launch operations. But until we have that data, until I’m comfortable with what that data shows, with regards to reducing the BDA, keep-out zone, we’re going to continue with the 100 percent TNT equivalency just from a public safety perspective.”

SpaceX has performed explosive LOX/methane tests, including the one seen here, at its development facility in McGregor, Texas. Credit: SpaceX

The Commercial Space Federation, a lobbying group, submitted written testimony to Congress in 2023 arguing the government should be using “existing industry data” to inform its understanding of the explosive potential methane and liquid oxygen. That data, the federation said, suggests the government should set its TNT blast equivalency to no greater than 25 percent, a change that would greatly reduce the size of keep-out zones around launch pads. The organization’s members include prominent methane users SpaceX, Blue Origin, Relativity Space, and Stoke Space, all of which have launch sites at Cape Canaveral.

The government’s methalox testing plans were expected to cost at least $80 million, according to the Commercial Space Federation.

The concern among engineers is that liquid oxygen and methane are highly miscible, meaning they mix together easily, raising the risk of a “condensed phase detonation” with “significantly higher overpressures” than rockets with liquid hydrogen or kerosene fuels. Small-scale mixtures of liquid oxygen and liquified natural gas have “shown a broad detonable range with yields greater than that of TNT,” NASA wrote in 2023.

SpaceX released some basic results of its own methalox detonation tests in September, before the government draws its own conclusions on the matter. The company said it conducted “extensive testing” to refine blast danger areas to “be commensurate with the physics of new launch systems.”

Like the Commercial Space Federation, SpaceX said government officials are relying on “highly conservative approaches to establishing blast danger areas, simply because they lack the data to make refined, accurate clear zones. In the absence of data, clear areas of LOX/methane rockets have defaulted to very large zones that could be disruptive to operations.”

More like an airport

SpaceX said it has conducted sub-scale methalox detonation tests “in close collaboration with NASA,” while also gathering data from full-scale Starship tests in Starbase, Texas, including information from test flights and from recent ground test failures. SpaceX controls much of the land around its South Texas facility, so there’s little interruption to third parties when Starships launch from there.

“With this data, SpaceX has been able to establish a scientifically robust, physics-based yield calculation that will help ‘fill the gap’ in scientific knowledge regarding LOX/methane rockets,” SpaceX said.

The company did not disclose the yield calculation, but it shared maps showing its proposed clear areas around the future Starship launch sites at Cape Canaveral and Kennedy Space Center. They are significantly smarter than the clear areas originally envisioned by the Space Force and NASA, but SpaceX says it uses “actual test data on explosive yield and include a conservative factor of safety.”

The proposed clear distances will have no effect on any other operational launch site or on traffic on the primary north-south road crossing the spaceport, the company said. “SpaceX looks forward to having an open, honest, and reasonable discussion based on science and data regarding spaceport operations with industry colleagues.”

SpaceX will have that opportunity next month. The Space Force and NASA are convening a “reverse industry day” in mid-December during which launch companies will bring their ideas for the future of the Cape Canaveral spaceport to the government. The spaceport has hosted 101 space launches so far this year, an annual record dominated by SpaceX’s rapid-fire Falcon 9 launch cadence.

Chatman anticipates about the same number—perhaps 100 to 115 launches—from Florida’s Space Coast next year, and some forecasts show 300 to 350 launches per year by 2035. The numbers could go down before they rise again. “As we bring on larger lift capabilities like Starship and follow-on large launch capabilities out here to the Eastern Range, that will reduce the total number of launches, because we can get more mass to orbit with heavier lift vehicles,” Chatman said.

Blue Origin’s first recovered New Glenn booster returned to the company’s launch pad at Cape Canaveral, Florida, last week after a successful launch and landing. Credit: Blue Origin

Launch companies have some work to do to make those numbers become real. Space Force officials have identified their own potential bottlenecks, including a shortage of facilities for preparing satellites for launch and the flow of commodities like propellants and high-pressure gases into the spaceport.

Concerns as mundane as traffic jams are now enough of a factor to consider using automated scanners at vehicle inspection points and potentially adding a dedicated lane for slow-moving transporters carrying rocket boosters from one place to another across the launch base, according to Chatman. This is becoming more important as SpaceX, and now Blue Origin, routinely shuttle their reusable rockets from place to place.

Space Force officials largely attribute the steep climb in launch rates at Cape Canaveral to the launch industry’s embrace of automated self-destruct mechanisms. These pyrotechnic devices have largely replaced manual flight termination systems, which require ground support from a larger team of range safety engineers, including radar operators and flight control officers with the authority to send a destruct command to the rocket if it flies off course. Now, that is all done autonomously on most US launch vehicles.

The Space Force mandated that launch companies using military spaceports switch to autonomous safety systems by October 1 2025, but military officials issued waivers for human-in-the-loop destruct devices to continue flying on United Launch Alliance’s Atlas V rocket, NASA’s Space Launch System, and the US Navy’s ballistic missile fleet. That means those launches will be more labor-intensive for the Space Force, but the Atlas V is nearing retirement, and the SLS and the Navy only occasionally appear on the Cape Canaveral launch schedule.

Listing image: SpaceX

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rivals object to SpaceX’s Starship plans in Florida—who’s interfering with whom? Read More »

blue-origin’s-new-glenn-rocket-came-back-home-after-taking-aim-at-mars

Blue Origin’s New Glenn rocket came back home after taking aim at Mars


“Never before in history has a booster this large nailed the landing on the second try.”

Blue Origin’s 320-foot-tall (98-meter) New Glenn rocket lifts off from Cape Canaveral Space Force Station, Florida. Credit: Blue Origin

The rocket company founded a quarter-century ago by billionaire Jeff Bezos made history Thursday with the pinpoint landing of an 18-story-tall rocket on a floating platform in the Atlantic Ocean.

The on-target touchdown came nine minutes after the New Glenn rocket, built and operated by Bezos’ company Blue Origin, lifted off from Cape Canaveral Space Force Station, Florida, at 3: 55 pm EST (20: 55 UTC). The launch was delayed from Sunday, first due to poor weather at the launch site in Florida, then by a solar storm that sent hazardous radiation toward Earth earlier this week.

“We achieved full mission success today, and I am so proud of the team,” said Dave Limp, CEO of Blue Origin. “It turns out Never Tell Me The Odds (Blue Origin’s nickname for the first stage) had perfect odds—never before in history has a booster this large nailed the landing on the second try. This is just the beginning as we rapidly scale our flight cadence and continue delivering for our customers.”

The two-stage launcher set off for space carrying two NASA science probes on a two-year journey to Mars, marking the first time any operational satellites flew on Blue Origin’s new rocket, named for the late NASA astronaut John Glenn. The New Glenn hit its marks on the climb into space, firing seven BE-4 main engines for nearly three minutes on a smooth ascent through blue skies over Florida’s Space Coast.

Seven BE-4 engines power New Glenn downrange from Florida’s Space Coast. Credit: Blue Origin

The engines consumed super-cold liquified natural gas and liquid oxygen, producing more than 3.8 million pounds of thrust at full power. The BE-4s shut down, and the first stage booster released the rocket’s second stage, with dual hydrogen-fueled BE-3U engines, to continue the mission into orbit.

The booster soared to an altitude of 79 miles (127 kilometers), then began a controlled plunge back into the atmosphere, targeting a landing on Blue Origin’s offshore recovery vessel named Jacklyn. Moments later, three of the booster’s engines reignited to slow its descent in the upper atmosphere. Then, moments before reaching the Atlantic, the rocket again lit three engines and extended its landing gear, sinking through low-level clouds before settling onto the football field-size deck of Blue Origin’s recovery platform 375 miles (600 kilometers) east of Cape Canaveral.

A pivotal moment

The moment of touchdown appeared electric at several Blue Origin facilities around the country, which had live views of cheering employees piped in to the company’s webcast of the flight. This was the first time any company besides SpaceX has propulsively landed an orbital-class rocket booster, coming nearly 10 years after SpaceX recovered its first Falcon 9 booster intact in December 2015.

Blue Origin’s New Glenn landing also came almost exactly a decade after the company landed its smaller suborbital New Shepard rocket for the first time in West Texas. Just like Thursday’s New Glenn landing, Blue Origin successfully recovered the New Shepard on its second-ever attempt.

Blue Origin’s heavy-lifter launched successfully for the first time in January. But technical problems prevented the booster from restarting its engines on descent, and the first stage crashed at sea. Engineers made “propellant management and engine bleed control improvements” to resolve the problems, and the fixes appeared to work Thursday.

The rocket recovery is a remarkable achievement for Blue Origin, which has long lagged dominant SpaceX in the commercial launch business. SpaceX has now logged 532 landings with its Falcon booster fleet. Now, with just a single recovery in the books, Blue Origin sits at second in the rankings for propulsive landings of orbit-class boosters. Bezos’ company has amassed 34 landings of the suborbital New Shepard model, which lacks the size and doesn’t reach the altitude and speed of the New Glenn booster.

Blue Origin landed a New Shepard returning from space for the first time in November 2015, a few weeks before SpaceX first recovered a Falcon 9 booster. Bezos threw shade on SpaceX with a post on Twitter, now called X, after the first Falcon 9 landing: “Welcome to the club!”

Jeff Bezos, Blue Origin’s founder and owner, wrote this message on Twitter following SpaceX’s first Falcon 9 landing on December 21, 2015. Credit: X/Jeff Bezos

Finally, after Thursday, Blue Origin officials can say they are part of the same reusable rocket club as SpaceX. Within a few days, Blue Origin’s recovery vessel is expected to return to Port Canaveral, Florida, where ground crews will offload the New Glenn booster and move it to a hangar for inspections and refurbishment.

“Today was a tremendous achievement for the New Glenn team, opening a new era for Blue Origin and the industry as we look to launch, land, repeat, again and again,” said Jordan Charles, the company’s vice president for the New Glenn program, in a statement. “We’ve made significant progress on manufacturing at rate and building ahead of need. Our primary focus remains focused on increasing our cadence and working through our manifest.”

Blue Origin plans to reuse the same booster next year for the first launch of the company’s Blue Moon Mark 1 lunar cargo lander. This mission is currently penciled in to be next on Blue Origin’s New Glenn launch schedule. Eventually, the company plans to have a fleet of reusable boosters, like SpaceX has with the Falcon 9, that can each be flown up to 25 times.

New Glenn is a core element in Blue Origin’s architecture for NASA’s Artemis lunar program. The rocket will eventually launch human-rated lunar landers to the Moon to provide astronauts with rides to and from the surface of the Moon.

The US Space Force will also examine the results of Thursday’s launch to assess New Glenn’s readiness to begin launching military satellites. The military selected Blue Origin last year to join SpaceX and United Launch Alliance as a third launch provider for the Defense Department.

Blue Origin’s New Glenn booster, 23 feet (7 meters) in diameter, on the deck of the company’s landing platform in the Atlantic Ocean.

Slow train to Mars

The mission wasn’t over with the buoyant landing in the Atlantic. New Glenn’s second stage fired its engines twice to propel itself on a course toward deep space, setting up for deployment of NASA’s two ESCAPADE satellites a little more than a half-hour after liftoff.

The identical satellites were released from their mounts on top of the rocket to begin their nearly two-year journey to Mars, where they will enter orbit to survey how the solar wind interacts with the rarefied uppermost layers of the red planet’s atmosphere. Scientists believe radiation from the Sun gradually stripped away Mars’ atmosphere, driving runaway climate change that transitioned the planet from a warm, habitable world to the global inhospitable desert seen today.

“I’m both elated and relieved to see NASA’s ESCAPADE spacecraft healthy post-launch and looking forward to the next chapter of their journey to help us understand Mars’ dynamic space weather environment,” said Rob Lillis, the mission’s principal investigator from the University of California, Berkeley.

Scientists want to understand the environment at the top of the Martian atmosphere to learn more about what drove this change. With two instrumented spacecraft, ESCAPADE will gather data from different locations around Mars, providing a series of multipoint snapshots of solar wind and atmospheric conditions. Another NASA spacecraft, named MAVEN, has collected similar data since arriving in orbit around Mars in 2014, but it is only a single observation post.

ESCAPADE, short for Escape and Plasma Acceleration and Dynamics Explorers, was developed and launched on a budget of about $80 million, a bargain compared to all of NASA’s recent Mars missions. The spacecraft were built by Rocket Lab, and the project is managed on behalf of NASA by the University of California, Berkeley.

The two spacecraft for NASA’s ESCAPADE mission at Rocket Lab’s factory in Long Beach, California. Credit: Rocket Lab

NASA paid Blue Origin about $20 million for the launch of ESCAPADE, significantly less than it would have cost to launch it on any other dedicated rocket. The space agency accepted the risk of launching on the relatively unproven New Glenn rocket, which hasn’t yet been certified by NASA or the Space Force for the government’s marquee space missions.

The mission was supposed to launch last year, when Earth and Mars were in the right positions to enable a direct trip between the planets. But Blue Origin delayed the launch, forcing a yearlong wait until the company’s second New Glenn was ready to fly. Now, the ESCAPADE satellites, each about a half-ton in mass fully fueled, will loiter in a unique orbit more than a million miles from Earth until next November, when they will set off for the red planet. ESCAPADE will arrive at Mars in September 2027 and begin its science mission in 2028.

Rocket Lab ground controllers established communication with the ESCAPADE satellites late Thursday night.

“The ESCAPADE mission is part of our strategy to understand Mars’ past and present so we can send the first astronauts there safely,” said Nicky Fox, associate administrator of NASA’s Science Mission Directorate. “Understanding Martian space weather is a top priority for future missions because it helps us protect systems, robots, and most importantly, humans, in extreme environments.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Blue Origin’s New Glenn rocket came back home after taking aim at Mars Read More »