stoke space

stoke-space-goes-for-broke-to-solve-the-only-launch-problem-that-“moves-the-needle”

Stoke Space goes for broke to solve the only launch problem that “moves the needle”


“Does the world really need a 151st rocket company?”

Stoke Space’s full-flow staged combustion is tested in Central Washington in 2024. Credit: Stoke Space

Stoke Space’s full-flow staged combustion is tested in Central Washington in 2024. Credit: Stoke Space

LAUNCH COMPLEX 14, Cape Canaveral, Fla.—The platform atop the hulking steel tower offered a sweeping view of Florida’s rich, sandy coastline and brilliant blue waves beyond. Yet as captivating as the vista might be for an aspiring rocket magnate like Andy Lapsa, it also had to be a little intimidating.

To his right, at Launch Complex 13 next door, a recently returned Falcon 9 booster stood on a landing pad. SpaceX has landed more than 500 large orbital rockets. And next to SpaceX sprawled the launch site operated by Blue Origin. Its massive New Glenn rocket is also reusable, and founder Jeff Bezos has invested tens of billions of dollars into the venture.

Looking to the left, Lapsa saw a graveyard of sorts for commercial startups. Launch Complex 15 was leased to a promising startup, ABL Space, two years ago. After two failed launches, ABL Space pivoted away from commercial launch. Just beyond lies Launch Complex 16, where Relativity Space aims to launch from. The company has already burned through $1.7 billion in its efforts to reach orbit. Had billionaire Eric Schmidt not stepped in earlier this year, Relativity would have gone bankrupt.

Andy Lapsa may be a brainy rocket scientist, but he is not a billionaire. Far from it.

“When you start a company like this, you have no idea how far you’re going to be able to make it, you know?” he admitted.

Lapsa and another aerospace engineer, Tom Feldman, founded Stoke Space a little more than five years ago. Both had worked the better part of a decade at Blue Origin and decided they wanted to make their mark on the industry. It was not an easy choice to start a rocket company at a time when there were dozens of other entrants in the field.

Andy Lapsa speaks at the Space Economy Summit in November 2025.

Credit: The Economist Group

Andy Lapsa speaks at the Space Economy Summit in November 2025. Credit: The Economist Group

“It was a huge question in my head: Does the world really need a 151st rocket company?” he said. “And in order for me to say yes to that question, I had to very systematically go through all the other players, thinking about the economics of launch, about the business plan, about the evolution of these companies over time. It was very non-intuitive to me to start another launch company.”

So why did he do it?

I traveled to Florida in November to answer this question and to see if the world’s 151st rocket company had any chance of success.

Launch Complex 14

It takes a long time to build a launch site. Probably longer than you might think.

Lapsa and Feldman spent much of 2020 working on the basic design of a rocket that would eventually be named Nova and deciding whether they could build a business around it. In December of that year, they closed their seed round of funding, raising $9.1 million. After this, finding somewhere to launch from became a priority.

They zeroed in on Cape Canaveral because it’s where the majority of US launch companies and customers are, as well as the talent to assemble and launch rockets. They learned in 2021 that the US Space Force was planning to lease an old pad, Space Launch Complex 14, to a commercial company. This was not just a good location to launch from; it was truly a historic location—John Glenn launched into orbit from here in 1962 aboard the Friendship 7 spacecraft. It was retired in 1967 and designated a National Historic Landmark.

But in recent years, the Space Force has sought to support the flourishing US commercial space industry, and it has offered Launch Complex 14. After the competition opened in 2021, Stoke Space won the lease a year later. Then began the long and arduous process of conducting an Environmental Assessment. It took nearly two years, and it was not until October 20, 2024, that Stoke was allowed to break ground.

None of the structures on the site were usable, and aside from the historic blockhouse dating to the Mercury program, everything else had to be demolished and cleared before work could begin.

As we walked the large ring encompassing the site, Lapsa explained that all of the tanks and major hardware needed to support a Nova launch were now on site. There is a large launch tower, as well as a launch mount upon which the rocket will be stood up. The company has mostly turned toward integrating all of the ground infrastructure and wiring up the site. A nearby building to assemble rockets and process payloads is well underway.

Lapsa seemed mostly relieved. “A year ago, this was my biggest concern,” he said.

He need not have worried. A few months before the company completed its environmental permitting, a tall, lanky, thickly bearded engineer named Jonathan Lund hired on. A Stanford graduate who got his start with the US Army Corps of Engineers, Lund worked at SpaceX during the second half of the 2010s, helping to lead the reconstruction of one launch pad, the crew tower project at Launch Complex 39A, and a pad at Vandenberg Space Force Base. He also worked on multiple landing sites for the Falcon 9 rocket. Lund arrived to lead the development of Stoke’s site.

This is Lund’s fifth launch pad. Each one presents different challenges. In Florida, for example, the water table lies only a few feet below the ground. But for most rockets, including Nova, a large trench must be dug to allow flames from the rocket engines to be carried away from the vehicle at ignition and liftoff. As we stood in this massive flame diverter, there were a few indications of water seeping in.

Still, the company recently completed a major milestone by testing the water suppression system, which dampens the energy of a rocket at liftoff to protect the launch pad. Essentially, the plume from the rocket’s engines flows downward where it meets a sheet of water, turning it into steam. This creates an insulating barrier of sorts.

Water suppression test at LC-14 complete. ✅ Flowed the diverter and rain birds in a “launch like” scenario. pic.twitter.com/rs1lEloPul

— Stoke Space (@stoke_space) October 21, 2025

The water comes from large pipes running down the flame diverter, each of which has hundreds of holes not unlike a garden sprinkler hose. Lund said the pipes and the frame they rest on were built near where we stood.

“We fabricated these pieces on site, at the north end of the flame trench,” Lund explained. “Then we built this frame in Cocoa Beach and shipped it in four different sections and assembled it on site. Then we set the frame on the ramp, put together this surface (with the pipes), and then Egyptian-style we slide it down the ramp right into position. We used some old-school methods, but simple sometimes works best. Nothing fancy.”

At this point, Lapsa interrupted. “I was pretty nervous,” he said. “The way you’re describing this sounded good on a PowerPoint. But I wasn’t sure it actually would work.”

But it did.

Waiting on Nova

So if the pad is rounding into shape, how’s that rocket coming?

It sounds like Stoke Space is doing the right things. Earlier this year, the company shipped a full-scale version of its second stage to its test site at Moses Lake in central Washington. There, it underwent qualification testing, during which the vehicle is loaded with cryogenic fuels on multiple occasions, pressurized, and put through other exercises. Lapsa said that testing went well.

The company also built a stubby version of its first stage. The tanks and domes had full-size diameters, but the stage was not its full height. That vehicle also underwent qualification testing and passed.

The company has begun building flight hardware for the first Nova rocket. The vehicle’s software is maturing. Work is well underway on the development of an automated flight termination system. “Having a team that’s been through this cycle many times, it’s something we started putting attention on very early,” Lapsa said. “It’s on a good path as well.”

And yet the final, frenetic months leading to a debut launch are crunch time for any rocket company: first assembly of the full vehicle, first time test-firing it all. Things will inevitably go wrong. The question is how bad will the problems be?

For as long as I’ve known Lapsa, he has been cagey about launch dates for Stoke. This is smart because in reality, no one knows. And seasoned industry people (and journalists) know that projected launch dates for new rockets are squishy. The most precise thing Lapsa will say is that Stoke is targeting “next year” for Nova’s debut.

The company has a customer for the first flight. If all goes well, its first mission will sail to the asteroid belt. Asteroid mining startup AstroForge has signed on for Nova 1.

Stoke Space isn’t shooting for the Moon. It’s shooting for something 1 million times farther.

Too good to believe it’s true?

Stoke Space is far from the first company to start with grand ambitions. And when rocket startups think too big, it can be their undoing.

A little more than a decade ago, Firefly Space Systems in Texas based the design of its Alpha rocket on an aerospike engine, a technology that had never been flown to space before. Although this was theoretically a more efficient engine design, it also brought more technical risk and proved a bridge too far. By 2017, the company was bankrupt. When Ukrainian investor Max Polyakov rescued Firefly later that year, he demanded that Alpha have a more conventional rocket engine design.

Around the same time that Firefly struggled with its aerospike engine, another launch company, Relativity Space, announced its intent to 3D-print the entirety of its rockets. The company finally launched its Terran 1 rocket after eight years. But it struggled with additively manufacturing rockets. Relativity was on the brink of bankruptcy before a former Google executive, Eric Schmidt, stepped in to rescue the company financially. Relativity is now focused on a traditionally manufactured rocket, the Terran R.

Stoke Space’s Hopper 2 takes to the skies in September 2023 in Moses Lake, Washington.

Credit: Stoke Space

Stoke Space’s Hopper 2 takes to the skies in September 2023 in Moses Lake, Washington. Credit: Stoke Space

So what to make of Stoke Space, which has an utterly novel design for its second stage? The stage is powered by a ring of 24 thrusters, an engine collectively named Andromeda. Stoke has also eschewed a tile-based heat shield to protect the vehicle during atmospheric reentry in favor of a regeneratively cooled design.

In this, there are echoes of Firefly, Relativity, and other companies with grand plans that had to be abandoned in favor of simpler designs to avoid financial ruin. After all, it’s hard enough to reach orbit with a conventional rocket.

But the company has already done a lot of testing of this design. Its first iteration of Andromeda even completed a hop test back in 2023.

“Andromeda is wildly new,” Lapsa said. “But the question of can it work, in my opinion, is a resounding yes.”

The engineering team had all manner of questions when designing Andromeda several years ago. How will all of those thrusters and their plumbing interact with one another? Will there be feedback? Is the heat shield idea practical?

“Those are the kind of unknowns that we knew we were walking into from an engineering perspective,” Lapsa said. “We knew there should be an answer in there, but we didn’t know exactly what it would be. It’s very hard to model all that stuff in the transient. So you just had to get after it, and do it, and we were able to do that. So can it work? Absolutely yes. Will it work out of the box? That’s a different question.”

First stage, too

Stoke’s ambitions did not stop with the upper stage. Early on, Lapsa, Feldman, and the small engineering team also decided to develop a full-flow staged combustion engine. This, Lapsa acknowledges, was a “risky” decision for the company. But it was a necessary one, he believes.

Full-flow staged combustion engines had been tested before this decade but were never flown. From an engineering standpoint, they are significantly more complex than a traditional staged combustion engine in that the oxidizer and propellant—which began as cryogenic liquids—arrive in the combustion chamber in a fully gaseous state. This interaction between two gases is more efficient and produces less wear and tear on turbines within the engine.

“You want to get the highest efficiency you can without driving the turbine temperature to a place where you have a short lifetime,” Lapsa said. “Full-flow is the right answer for that. If you do anything else, it’s a distraction.”

Stoke Space successfully tests its advanced full-flow staged combustion rocket engine, designed to power the Nova launch vehicle’s first stage.

Credit: Stoke Space

Stoke Space successfully tests its advanced full-flow staged combustion rocket engine, designed to power the Nova launch vehicle’s first stage. Credit: Stoke Space

It was also massively unproven. When Stoke Space was founded in 2020, no full-flow staged combustion engine had ever gotten close to space. SpaceX was developing the Raptor engine using the technology, but it would not make its first “spaceflight” until the spring of 2023 on the Super Heavy rocket that powers Starship. Multiple Raptors failed shortly after ignition.

But for a company choosing full reusability of its rocket, as SpaceX sought to do with Starship, there ultimately is no choice.

“Anything you build for full and rapid reuse needs to find margin somewhere in the system,” Lapsa said. “And really that’s fuel efficiency. It makes fuel efficiency a very strong, very important driver.”

In June 2024, Stoke Space announced it had just completed a successful hot fire test of its full-flow, staged combustion engine for Nova’s first stage. The propulsion team had, Lapsa said at the time, “worked tirelessly” to reach that point.

Not just another launch company?

Stoke Space got to the party late. After SpaceX’s success with the first Falcon 9 in 2010, a wave of new entrants entered the field over the next decade. They were drawing down billions in venture capital funding, and some were starting to go public at huge valuations as special purpose acquisition companies. But by 2020, the market seemed saturated. The gold rush for new launch companies was nearing the cops-arrive-to-bust-up-the-festivities stage.

Every new company seemed to have its own spin on how to conquer low-Earth orbit.

“There were a lot of other business plans being proposed and tried,” Lapsa said. “There were low-cost, mass-produced disposable rockets. There were rockets under the wings of aircraft. There were rocket engine companies that were going to sell to 150 launch companies. All of those ideas raised big money and deserve to be considered. The question is, which one is the winner in the end?”

And that’s the question he was trying to answer in his own mind. He was in his 30s. He had a family. And he was looking to commit his best years, professionally, to solving a major launch problem.

“What’s the thing that fundamentally moves the needle on what’s out there already today?” he said. “The only thing, in my opinion, is rapid reuse. And once you get it, the economics are so powerful that nothing else matters. That’s the thing I couldn’t get out of my head. That’s the only problem I wanted to work on, and so we started a company in order to work on it.”

Stoke was one of many launch companies five years ago. But in the years since, the field has narrowed considerably. Some promising companies, such as Virgin Orbit and ABL Space, launched a few times and folded. Others never made it to the launch pad. Today, by my count, there are fewer than 10 serious commercial launch companies in the United States, Stoke among them. The capital markets seem convinced. In October, Stoke announced a massive $510 million Series D funding round. That was a lot of money in a challenging time to raise launch firm funding.

So Stoke has the money it needs. It has a team of sharp engineers and capable technicians. It has a launch pad and qualified hardware. That’s all good because this is the point in the journey for a launch startup where things start to get very, very difficult.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Stoke Space goes for broke to solve the only launch problem that “moves the needle” Read More »

rocket-report:-bezos’-firm-will-package-satellites-for-launch;-starship-on-deck

Rocket Report: Bezos’ firm will package satellites for launch; Starship on deck


The long, winding road for Franklin Chang-Diaz’s plasma rocket engine takes another turn.

Blue Origin’s second New Glenn booster left its factory this week for a road trip to the company’s launch pad a few miles away. Credit: Blue Origin

Welcome to Edition 8.14 of the Rocket Report! We’re now more than a week into a federal government shutdown, but there’s been little effect on the space industry. Military space operations are continuing unabated, and NASA continues preparations at Kennedy Space Center, Florida, for the launch of the Artemis II mission around the Moon early next year. The International Space Station is still flying with a crew of seven in low-Earth orbit, and NASA’s fleet of spacecraft exploring the cosmos remain active. What’s more, so much of what the nation does in space is now done by commercial companies largely (but not completely) immune from the pitfalls of politics. But the effect of the shutdown on troops and federal employees shouldn’t be overlooked. They will soon miss their first paychecks unless political leaders reach an agreement to end the stalemate.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Danger from dead rockets. A new listing of the 50 most concerning pieces of space debris in low-Earth orbit is dominated by relics more than a quarter-century old, primarily dead rockets left to hurtle through space at the end of their missions, Ars reports. “The things left before 2000 are still the majority of the problem,” said Darren McKnight, lead author of a paper presented October 3 at the International Astronautical Congress in Sydney. “Seventy-six percent of the objects in the top 50 were deposited last century, and 88 percent of the objects are rocket bodies. That’s important to note, especially with some disturbing trends right now.”

Littering in LEO … The disturbing trends mainly revolve around China’s actions in low-Earth orbit. “The bad news is, since January 1, 2024, we’ve had 26 rocket bodies abandoned in low-Earth orbit that will stay in orbit for more than 25 years,” McKnight told Ars. China is responsible for leaving behind 21 of those 26 rockets. Overall, Russia and the Soviet Union lead the pack with 34 objects listed in McKnight’s Top 50, followed by China with 10, the United States with three, Europe with two, and Japan with one. Russia’s SL-16 and SL-8 rockets are the worst offenders, combining to take 30 of the Top 50 slots. An impact with even a modestly sized object at orbital velocity would create countless pieces of debris, potentially triggering a cascading series of additional collisions clogging LEO with more and more space junk, a scenario called the Kessler Syndrome.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

New Shepard flies again. Blue Origin, Jeff Bezos’ space company, launched its sixth crewed New Shepard flight so far this year Wednesday as the company works to increase the vehicle’s flight rate, Space News reports. This was the 36th flight of Blue Origin’s suborbital New Shepard rocket. The passengers included: Jeff Elgin, Danna Karagussova, Clint Kelly III, Will Lewis, Aaron Newman, and Vitalii Ostrovsky. Blue Origin said it has now flown 86 humans (80 individuals) into space. The New Shepard booster returned to a pinpoint propulsive landing, and the capsule parachuted into the desert a few miles from the launch site near Van Horn, Texas.

Two-month turnaround … This flight continued Blue Origin’s trend of launching New Shepard about once per month. The company has two capsules and two boosters in its active inventory, and each vehicle has flown about once every two months this year. Blue Origin currently has command of the space tourism and suborbital research market as its main competitor in this sector, Virgin Galactic, remains grounded while it builds a next-generation rocket plane. (submitted by EllPeaTea)

NASA still interested in former astronaut’s rocket engine. NASA has awarded the Ad Astra Rocket Company a $4 million, two-year contract for the continued development of the company’s Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept, Aviation Week & Space Technology reports. Ad Astra, founded by former NASA astronaut Franklin Chang-Diaz, claims the vehicle has the potential to reach Mars with human explorers within 45 days using a nuclear power source rather than solar power. The new contract will enable federal funding to support development of the engine’s radio frequency, superconducting magnet, and structural exoskeleton subsystems.

Slow going … Houston-based Ad Astra said in a press release that it sees the high-power plasma engine as “nearing flight readiness.” We’ve heard this before. The VASIMR engine has been in development for decades now, beset by a lack of stable funding and the technical hurdles inherent in designing and testing such demanding technology. For example, Ad Astra once planned a critical 100-hour, 100-kilowatt ground test of the VASIMR engine in 2018. The test still hasn’t happened. Engineers discovered a core component of the engine tended to overheat as power levels approached 100 kilowatts, forcing a redesign that set the program back by at least several years. Now, Ad Astra says it is ready to build and test a pair of 150-kilowatt engines, one of which is intended to fly in space at the end of the decade.

Gilmour eyes return to flight next year. Australian rocket and satellite startup Gilmour Space Technologies is looking to return to the launch pad next year after the first attempt at an orbital flight failed over the summer, Aviation Week & Space Technology reports. “We are well capitalized. We are going to be launching again next year,” Adam Gilmour, the company’s CEO, said October 3 at the International Astronautical Congress in Sydney.

What happened? … Gilmour didn’t provide many details about the cause of the launch failure in July, other than to say it appeared to be something the company didn’t test for ahead of the flight. The Eris rocket flew for 14 seconds, losing control and crashing a short distance from the launch pad in the Australian state of Queensland. If there’s any silver lining, Gilmour said the failure didn’t damage the launch pad, and the rocket’s use of a novel hybrid propulsion system limited the destructive power of the blast when it struck the ground.

Stoke Space’s impressive funding haul. Stoke Space announced a significant capital raise on Wednesday, a total of $510 million as part of Series D funding. The new financing doubles the total capital raised by Stoke Space, founded in 2020, to $990 million, Ars reports. The infusion of money will provide the company with “the runway to complete development” of the Nova rocket and demonstrate its capability through its first flights, said Andy Lapsa, the company’s co-founder and chief executive, in a news release characterizing the new funding.

A futuristic design … Stoke is working toward a 2026 launch of the medium-lift Nova rocket. The rocket’s innovative design is intended to be fully reusable from the payload fairing on down, with a regeneratively cooled heat shield on the vehicle’s second stage. In fully reusable mode, Nova will have a payload capacity of 3 metric tons to low-Earth orbit, and up to 7 tons in fully expendable mode. Stoke is building a launch pad for the Nova rocket at Cape Canaveral Space Force Station, Florida.

SpaceX took an unusual break from launching. SpaceX launched its first Falcon 9 rocket from Florida in 12 days during the predawn hours of Tuesday morning, Spaceflight Now reports. The launch gap was highlighted by a run of persistent, daily storms in Central Florida and over the Atlantic Ocean, including hurricanes that prevented deployment of SpaceX’s drone ships to support booster landings. The break ended with the launch of 28 more Starlink broadband satellites. SpaceX launched three Starlink missions in the interim from Vandenberg Space Force Base, California.

Weather still an issue … Weather conditions on Florida’s Space Coast are often volatile, particularly in the evenings during summer and early autumn. SpaceX’s next launch from Florida was supposed to take off Thursday evening, but officials pushed it back to no earlier than Saturday due to a poor weather forecast over the next two days. Weather still gets a vote in determining whether a rocket lifts off or doesn’t, despite SpaceX’s advancements in launch efficiency and the Space Force’s improved weather monitoring capabilities at Cape Canaveral.

ArianeGroup chief departs for train maker. Current ArianeGroup CEO Martin Sion has been named the new head of French train maker Alstom. He will officially take up the role in April 2026, European Spaceflight reports. Sion assumed the role as ArianeGroup’s chief executive in 2023, replacing the former CEO who left the company after delays in the debut of its main product: the Ariane 6 rocket. Sion’s appointment was announced by Alstom, but ArianeGroup has not made any official statement on the matter.

Under pressure … The change in ArianeGroup’s leadership comes as the company ramps up production and increases the launch cadence of the Ariane 6 rocket, which has now flown three times, with a fourth launch due next month. ArianeGroup’s subsidiary, Arianespace, seeks to increase the Ariane 6’s launch cadence to 10 missions per year by 2029. ArianeGroup and its suppliers will need to drastically improve factory throughput to reach this goal.

New Glenn emerges from factory. Blue Origin rolled the first stage of its massive New Glenn rocket from its hangar on Wednesday morning in Florida, kicking off the final phase of the campaign to launch the heavy-lift vehicle for the second time, Ars reports. In sharing video of the rollout to Launch Complex-36 on Wednesday online, the space company did not provide a launch target for the mission, which seeks to put two small Mars-bound payloads into orbit. The pair of identical spacecraft to study the solar wind at Mars is known as ESCAPADE. However, sources told Ars that on the current timeline, Blue Origin is targeting a launch window of November 9 to November 11. This assumes pre-launch activities, including a static-fire test of the first stage, go well.

Recovery or bust? Blue Origin has a lot riding on this booster, named “Never Tell Me The Odds,” which it will seek to recover and reuse. Despite the name of the booster, the company is quietly confident that it will successfully land the first stage on a drone ship named Jacklyn. Internally, engineers at Blue Origin believe there is about a 75 percent chance of success. The first booster malfunctioned before landing on the inaugural New Glenn test flight in January. Company officials are betting big on recovering the booster this time, with plans to reuse it early next year to launch Blue’s first lunar lander to the Moon.

SpaceX gets bulk of this year’s military launch orders. Around this time each year, the US Space Force convenes a Mission Assignment Board to dole out contracts to launch the nation’s most critical national security satellites. The military announced this year’s launch orders Friday, and SpaceX was the big winner, Ars reports. Space Systems Command, the unit responsible for awarding military launch contracts, selected SpaceX to launch five of the seven missions up for assignment this year. United Launch Alliance (ULA), a 50-50 joint venture between Boeing and Lockheed Martin, won contracts for the other two. These missions for the Space Force and the National Reconnaissance Office are still at least a couple of years away from flying.

Vulcan getting more expensive A closer examination of this year’s National Security Space Launch contracts reveals some interesting things. The Space Force is paying SpaceX $714 million for the five launches awarded Friday, for an average of roughly $143 million per mission. ULA will receive $428 million for two missions, or $214 million for each launch. That’s about 50 percent more expensive than SpaceX’s price per mission. This is in line with the prices the Space Force paid SpaceX and ULA for last year’s contracts. However, look back a little further and you’ll find ULA’s prices for military launches have, for some reason, increased significantly over the last few years. In late 2023, the Space Force awarded a $1.3 billion deal to ULA for a batch of 11 launches at an average cost per mission of $119 million. A few months earlier, Space Systems Command assigned six launches to ULA for $672 million, or $112 million per mission.

Starship Flight 11 nears launch. SpaceX rolled the Super Heavy booster for the next test flight of the company’s Starship mega-rocket out to the launch pad in Texas this week. The booster stage, with 33 methane-fueled engines, will power the Starship into the upper atmosphere during the first few minutes of flight. This booster is flight-proven, having previously launched and landed on a test flight in March.

Next steps With the Super Heavy booster installed on the pad, the next step for SpaceX will be the rollout of the Starship upper stage. That is expected to happen in the coming days. Ground crews will raise Starship atop the Super Heavy booster to fully stack the rocket to its total height of more than 400 feet (120 meters). If everything goes well, SpaceX is targeting liftoff of the 11th full-scale test flight of Starship and Super Heavy as soon as Monday evening. (submitted by EllPeaTea)

Blue Origin takes on a new line of business. Blue Origin won a US Space Force competition to build a new payload processing facility at Cape Canaveral Space Force Station, Florida, Spaceflight Now reports. Under the terms of the $78.2 million contract, Blue Origin will build a new facility capable of handling payloads for up to 16 missions per year. The Space Force expects to use about half of that capacity, with the rest available to NASA or Blue Origin’s commercial customers. This contract award follows a $77.5 million agreement the Space Force signed with Astrotech earlier this year to expand the footprint of its payload processing facility at Vandenberg Space Force Base, California.

Important stuff … Ground infrastructure often doesn’t get the same level of attention as rockets, but the Space Force has identified bottlenecks in payload processing as potential constraints on ramping up launch cadences at the government’s spaceports in Florida and California. Currently, there are only a handful of payload processing facilities in the Cape Canaveral area, and most of them are only open to a single user, such as SpaceX, Amazon, the National Reconnaissance Office, or NASA. So, what exactly is payload processing? The Space Force said Blue Origin’s new facility will include space for “several pre-launch preparatory activities” that include charging batteries, fueling satellites, loading other gaseous and fluid commodities, and encapsulation. To accomplish those tasks, Blue Origin will create “a clean, secure, specialized high-bay facility capable of handling flight hardware, toxic fuels, and explosive materials.”

Next three launches

Oct. 11: Gravity 1 | Unknown Payload | Haiyang Spaceport, China Coastal Waters | 02: 15 UTC

Oct. 12: Falcon 9 | Project Kuiper KF-03 | Cape Canaveral Space Force Station, Florida | 00: 41 UTC

Oct. 13: Starship/Super Heavy | Flight 11 | Starbase, Texas | 23: 15 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Bezos’ firm will package satellites for launch; Starship on deck Read More »

firm-developing-a-fully-reusable-rocket-raises-a-quarter-of-a-billion-dollars

Firm developing a fully reusable rocket raises a quarter of a billion dollars

The company continues to make technical progress, Lapsa said.

A few weeks ago, Stoke successfully tested the Nova rocket’s main engine, Zenith, in a vertical position. Lapsa said the company will probably make one more iterative block change on the Zenith engine before it gets into a “nice, tight” flight configuration. Similarly, the second stage engine has gone through a design upgrade to get it ready for flight. After the engines are complete, the company will assemble a flight vehicle and put it through the final phases of testing.

Pads and permitting

At the same time, Stoke is working to complete construction at Launch Complex 14 at Cape Canaveral Space Force Station in Florida and finalize environmental permitting for launches from there.

“We’re pushing really hard to have the pad ready, and it will be activated well before the end of the year,” Lapsa said. “And the vehicle will be right there with it.”

Historically, it’s unlikely for a company to move from engine testing to a first orbital launch attempt in the same year, so a Nova debut in 2026 seems more likely. Nevertheless, the new funding from investors signals confidence that Stoke is making credible technical progress on its vehicle development.

The space capital market has changed significantly since Stoke was founded by Lapsa and Tom Feldman in 2020. At the time, there were dozens of US launch companies at work on small- and medium-lift vehicles. Today, arguably, there are just half a dozen credible US-based entities developing medium-lift rockets.

“It’s a very different conversation with investors than it was five years ago,” Lapsa said.

The winnowing of competitors is also a stark reminder of both the technical and financial challenges of operating a launch company.

Firm developing a fully reusable rocket raises a quarter of a billion dollars Read More »

rocket-report:-ula-is-losing-engineers;-spacex-is-launching-every-two-days

Rocket Report: ULA is losing engineers; SpaceX is launching every two days

Every other day —

The first missions of Stoke Space’s reusable Nova rocket will fly in expendable mode.

A Falcon 9 booster returns to landing at Cape Canaveral Space Force Station following a launch Thursday with two WorldView Earth observation satellites for Maxar.

Enlarge / A Falcon 9 booster returns to landing at Cape Canaveral Space Force Station following a launch Thursday with two WorldView Earth observation satellites for Maxar.

Welcome to Edition 7.07 of the Rocket Report! SpaceX has not missed a beat since the Federal Aviation Administration gave the company a green light to resume Falcon 9 launches after a failure last month. In 19 days, SpaceX has launched 10 flights of the Falcon 9 rocket, taking advantage of all three of its Falcon 9 launch pads. This is a remarkable cadence in its own right, but even though it’s a small sample size, it is especially impressive right out of the gate after the rocket’s grounding.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

A quick turnaround for Rocket Lab. Rocket Lab launched its 52nd Electron rocket on August 11 from its private spaceport on Mahia Peninsula in New Zealand, Space News reports. The company’s light-class Electron rocket deployed a small radar imaging satellite into a mid-inclination orbit for Capella Space. This was the shortest turnaround between two Rocket Lab missions from its primary launch base in New Zealand, coming less than nine days after an Electron rocket took off from the same pad with a radar imaging satellite for the Japanese company Synspective. Capella’s Acadia 3 satellite was originally supposed to launch in July, but Capella requested a delay to perform more testing of its spacecraft. Rocket Lab swapped its place in the Electron launch sequence and launched the Synspective mission first.

Now, silence at the launch pad … Rocket Lab hailed the swap as an example of the flexibility provided by Electron, as well as the ability to deliver payloads to specific orbits that are not feasible with rideshare missions, according to Space News. For this tailored launch service, Rocket Lab charges a premium launch price over the price of launching a small payload on a SpaceX rideshare mission. However, SpaceX’s rideshare launches gobble up the lion’s share of small satellites within Rocket Lab’s addressable market. On Friday, a Falcon 9 rocket is slated to launch 116 small payloads into polar orbit. Rocket Lab, meanwhile, projects just one more launch before the end of September and expects to perform 15 to 18 Electron launches this year, a record for the company but well short of the 22 it forecasted earlier in the year. Rocket Lab says customer readiness is the reason it will be far short of projections.

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Defense contractors teaming up on solid rockets. Lockheed Martin and General Dynamics are joining forces to kickstart solid rocket motor production, announcing a strategic teaming agreement today that could see new motors roll off the line as early as 2025, Breaking Defense reports. The new agreement could position a third vendor to enter into the ailing solid rocket motor industrial base, which currently only includes L3Harris subsidiary Aerojet Rocketdyne and Northrop Grumman in the United States. Both companies have struggled to meet demands from weapons makers like Lockheed and RTX, which are in desperate need of solid rocket motors for products such as Javelin or the PAC-3 missiles used by the Patriot missile defense system.

Pressure from startups … Demand for solid rocket motors has skyrocketed since Russia’s invasion of Ukraine as the United States and its partners sought to backfill stocks of weapons like Javelin and Stinger, as well as provide motors to meet growing needs in the space domain. Although General Dynamics has kept its interest in the solid rocket motor market quiet until now, several defense tech startups, such as Ursa Major Technologies, Anduril, and X-Bow Systems, have announced plans to enter the market. (submitted by Ken the Bin)

Going polar with crew. SpaceX will fly the first human spaceflight over the Earth’s poles, possibly before the end of this year, Ars reports. The private Crew Dragon mission will be led by a Chinese-born cryptocurrency entrepreneur named Chun Wang, and he will be joined by a polar explorer, a roboticist, and a filmmaker whom he has befriended in recent years. The “Fram2” mission, named after the Norwegian research ship Fram, will launch into a polar corridor from SpaceX’s launch facilities in Florida and fly directly over the north and south poles. The three- to five-day mission is being timed to fly over Antarctica near the summer solstice in the Southern Hemisphere, to afford maximum lighting.

Wang’s inclination is Wang’s prerogative … Wang told Ars he wanted to try something new, and flying a polar mission aligned with his interests in cold places on Earth. He’s paying the way on a commercial basis, and SpaceX in recent years has demonstrated it can launch satellites into polar orbit from Cape Canaveral, Florida, something no one had done in more than 50 years. The highest-inclination flight ever by a human spacecraft was the Soviet Vostok 6 mission in 1963 when Valentina Tereshkova’s spacecraft reached 65.1 degrees. Now, Fram2 will fly repeatedly and directly over the poles.

Rocket Report: ULA is losing engineers; SpaceX is launching every two days Read More »

rocket-report:-firefly-delivers-for-nasa;-polaris-dawn-launching-this-month

Rocket Report: Firefly delivers for NASA; Polaris Dawn launching this month

No holds barred —

The all-private Polaris Dawn spacewalk mission is set for launch no earlier than July 31.

Four kerosene-fueled Reaver engines power Firefly's Alpha rocket off the pad at Vandenberg Space Force Base, California.

Enlarge / Four kerosene-fueled Reaver engines power Firefly’s Alpha rocket off the pad at Vandenberg Space Force Base, California.

Welcome to Edition 7.01 of the Rocket Report! We’re compiling this week’s report a day later than usual due to the Independence Day holiday. Ars is beginning its seventh year publishing this weekly roundup of rocket news, and there’s a lot of it this week despite the holiday here in the United States. Worldwide, there were 122 launches that flew into Earth orbit or beyond in the first half of 2024, up from 91 in the same period last year.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Firefly launches its fifth Alpha flight. Firefly Aerospace placed eight CubeSats into orbit on a mission funded by NASA on the first flight of the company’s Alpha rocket since an upper stage malfunction more than half a year ago, Space News reports. The two-stage Alpha rocket lifted off from Vandenberg Space Force Base in California late Wednesday, two days after an issue with ground equipment aborted liftoff just before engine ignition. The eight CubeSats come from NASA centers and universities for a range of educational, research, and technology demonstration missions. This was the fifth flight of Firefly’s Alpha rocket, capable of placing about a metric ton of payload into low-Earth orbit.

Anomaly resolution … This was the fifth flight of an Alpha rocket since 2021 and the fourth Alpha flight to achieve orbit. But the last Alpha launch in December failed to place its Lockheed Martin payload into the proper orbit due to a problem during the relighting of its second-stage engine. On this week’s launch, Alpha deployed its NASA-sponsored payloads after a single burn of the second stage, then completed a successful restart of the engine for a plane change maneuver. Engineers traced the problem on the last Alpha flight to a software error. (submitted by Ken the Bin)

Two companies added to DoD’s launch pool. Blue Origin and Stoke Space Technologies — neither of which has yet reached orbit — have been approved by the US Space Force to compete for future launches of small payloads, Breaking Defense reports. Blue Origin and Stoke Space join a roster of launch companies eligible to compete for launch task orders the Space Force puts up for bid through the Orbital Services Program-4 (OSP-4) contract. Under this contract, Space Systems Command buys launch services for payloads 400 pounds (180 kilograms) or greater, enabling launch from 12 to 24 months of the award of a task order. The OSP-4 contract has an “emphasis on small orbital launch capabilities and launch solutions for Tactically Responsive Space mission needs,” said Lt. Col. Steve Hendershot, chief of Space Systems Command’s small launch and targets division.

An even dozen … Blue Origin aims to launch its orbital-class New Glenn rocket for the first time as soon as late September, while Stoke Space aims to fly its Nova rocket on an orbital test flight next year. The addition of these two companies means there are 12 providers eligible to bid on OSP-4 task orders. The other companies are ABL Space Systems, Aevum, Astra, Firefly Aerospace, Northrop Grumman, Relativity Space, Rocket Lab, SpaceX, United Launch Alliance, and X-Bow. (submitted by Ken the Bin and brianrhurley)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Italian startup test-fires small rocket. Italian rocket builder Sidereus Space Dynamics has completed the first integrated system test of its EOS rocket, European Spaceflight reports. This test occurred Sunday, culminating in a firing of the rocket’s kerosene/liquid oxygen MR-5 main engine for approximately 11 seconds. The EOS rocket is a novel design, utilizing a single-stage-to-orbit architecture, with the reusable booster returning to Earth from orbit for recovery under a parafoil. The rocket stands less than 14 feet (4.2 meters) tall and will be capable of delivering about 29 pounds (13 kilograms) of payload to low-Earth orbit.

A lean operation … After it completes integrated testing on the ground, the company will conduct the first low-altitude EOS test flights. Founded in 2019, Sidereus has raised 6.6 million euros ($7.1 million) to fund the development of the EOS rocket. While this is a fraction of the funding other European launch startups like Isar Aerospace, MaiaSpace, and Orbex have attracted, the Sidereus’s CEO, Mattia Barbarossa, has previously stated that the company intends to “reshape spaceflight in a fraction of the time and with limited resources.” (submitted by EllPeaTea and Ken the Bin)

Rocket Report: Firefly delivers for NASA; Polaris Dawn launching this month Read More »

stoke-space-ignites-its-ambitious-main-engine-for-the-first-time

Stoke Space ignites its ambitious main engine for the first time

Get stoked! —

“This industry is going toward full reusability. To me, that is the inevitable end state.”

A drone camera captures the hotfire test of Stoke Space's full-flow staged combustion engine at the company's testing facility in early June.

Enlarge / A drone camera captures the hotfire test of Stoke Space’s full-flow staged combustion engine at the company’s testing facility in early June.

Stoke Space

On Tuesday, Stoke Space announced the firing of its first stage rocket engine for the first time earlier this month, briefly igniting it for about two seconds. The company declared the June 5 test a success because the engine performed nominally and will be fired up again soon.

“Data point one is that the engine is still there,” said Andy Lapsa, chief executive of the Washington-based launch company, in an interview with Ars.

The test took place at the company’s facilities in Moses Lake, Washington. Seven of these methane-fueled engines, each intended to have a thrust of 100,000 pounds of force, will power the company’s Nova rocket. This launch vehicle will have a lift capacity of about 5 metric tons to orbit. Lapsa declined to declare a target launch date, but based on historical developmental programs, if Stoke continues to move fast, it could fly Nova for the first time in 2026.

Big ambitions for a small company

Although it remains relatively new in the field of emerging launch companies, Stoke has gathered a lot of attention because of its bold ambitions. The company intends for the two-stage Nova rocket to be fully reusable, with both stages returning to Earth. To achieve a vertical landing, the second stage has a novel design. This oxygen-hydrogen engine is based on a ring of 30 thrusters and a regeneratively cooled heat shield.

Lapsa and Stoke, which now has 125 employees, have also gone for an ambitious design in the first-stage engine tested earlier this month. The engine, with a placeholder name of S1E, is based on full-flow, stage-combustion technology in which the liquid propellants are burned in the engine’s pre-burners. Because of this, they arrive in the engine’s combustion chamber in fully gaseous form, leading to a more efficient mixing.

Such an engine—this technology has only previously been demonstrated in flight by SpaceX’s Raptor engine, on the Starship rocket—is more efficient and should theoretically extend turbine life. But it is also technically demanding to develop, and among the most complex engine designs for a rocket company to begin with. This is not rocket science. It’s exceptionally hard rocket science.

It may seem like Stoke is biting off a lot more than it can chew with Nova’s design. Getting to space is difficult enough for a launch startup, but this company is seeking to build a fully reusable rocket with a brand new second stage design and a first stage engine based on full-flow, staged combustion. I asked Lapsa if he was nuts for taking all of this on.

Are these guys nuts?

“I’ve been around long enough to know that any rocket development program is hard, even if you make it as simple as possible,” he responded. “But this industry is going toward full reusability. To me, that is the inevitable end state. When you start with that north star, any other direction you take is a diversion. If you start designing anything else, it’s not something where you can back into full reusability at any point. It means you’ll have to stop and start over to climb the mountain.”

This may sound like happy talk, but Stoke appears to be delivering on its ambitions. Last September, the company completed a successful “hop” test of its second stage at Moses Lake. This validated its design, thrust vector control, and avionics.

This engine is designed to power the Nova rocket.

Enlarge / This engine is designed to power the Nova rocket.

Stoke Space

After this test, the company turned its focus to developing the S1E engine and put it on the test stand for the first time in April before the first test firing in June. Going from zero to 350,000 horsepower in half a second for the first time had a “pretty high pucker factor,” Lapsa said of the first fully integrated engine test.

Now that this initial test is complete, Stoke will spend the rest of the year maturing the design of the engine, conducting longer test firings, and starting to develop flight stages. After that will come stage tests before the complete Nova vehicle is assembled. At the same time, Stoke is also working with the US Space Force on the regulatory process of refurbishing and modernizing Launch Complex 14 at Cape Canaveral Space Force Station in Florida.

Stoke Space ignites its ambitious main engine for the first time Read More »