starliner

boeing’s-starliner-capsule-poised-for-second-try-at-first-astronaut-flight

Boeing’s Starliner capsule poised for second try at first astronaut flight

Boeing's Starliner spacecraft sits on top of a United Launch Alliance Atlas V rocket at Cape Canaveral Space Force Station, Florida.

Enlarge / Boeing’s Starliner spacecraft sits on top of a United Launch Alliance Atlas V rocket at Cape Canaveral Space Force Station, Florida.

NASA and Boeing officials are ready for a second attempt to launch the first crew test flight on the Starliner spacecraft Saturday from Cape Canaveral Space Force Station, Florida.

Liftoff of Boeing’s Starliner capsuled atop a United Launch Alliance Atlas V rocket is set for 12: 25 pm EDT (16: 25 UTC). NASA commander Butch Wilmore and pilot Suni Williams, both veteran astronauts, will take the Starliner spacecraft on its first trip into low-Earth orbit with a crew on board.

You can watch NASA TV’s live coverage of the countdown and launch below.

The first crew flight on a new spacecraft is not an everyday event. Starliner is the sixth orbital-class crew spacecraft in the history of the US space program, following Mercury, Gemini, Apollo, the space shuttle, and SpaceX’s Crew Dragon. NASA signed a $4.2 billion contract with Boeing in 2014 to develop Starliner, but the project is running years behind schedule and has cost Boeing nearly $1.5 billion in cost overruns. SpaceX, meanwhile, won a contract at the same time as Boeing and started launching astronauts on the Crew Dragon four years ago this week.

Now, it is finally Starliner’s turn. A successful crew test flight would set the stage for six operational Starliner flights to ferry astronauts to and from the International Space Station (ISS).

Assuming the test flight gets off the ground Saturday, the spacecraft is due for docking at the ISS at 1: 50 pm EDT (17: 50 UTC) Sunday to begin a stay of at least eight days. Once managers are satisfied the mission has achieved all its planned test objectives, and pending good weather conditions in Starliner’s landing zone in the western United States, the spacecraft will depart the station and return to Earth for a parachute-assisted touchdown. If the mission takes off on Saturday, the earliest nominal landing date would be Monday, June 10.

Wilmore and Williams have been here before. On May 6, the astronauts were strapped into their seats inside Starliner’s cockpit awaiting takeoff on a flight to the International Space Station. A valve malfunction on the Atlas V rocket prevented launch that day, and officials subsequently discovered a helium leak on Starliner’s service module that delayed the mission until this weekend.

Flying as-is

After weeks of reviews and analysis, managers determined Starliner is safe to fly as-is with the leak. The spacecraft uses helium gas to pressurize its propulsion system and push hydrazine and nitrogen tetroxide propellants from internal tanks to the capsule’s maneuvering thrusters.

“When we looked at this problem, it didn’t come down to trades,” said Mark Nappi, Boeing’s vice president and program manager for Starliner. “It came down to: Is it safe or not? And it is safe, and that is why we determined that we can fly with what we have.”

Ground teams traced the leak to a flange on one of four doghouse-shaped propulsion pods around the perimeter of the Starliner spacecraft’s service module. In a worst-case scenario, if the condition grew worse during the flight, ground controllers could isolate it by closing the manifold feeding the leak. If the leak doesn’t worsen, engineers are confident they can manage it with no major impacts to the mission.

“We looked really hard at what our options were with this particular flange,” said Steve Stich, manager of NASA’s commercial crew program, which oversees the agency’s contract with Boeing. The flange has a helium conduit and lines for the spacecraft’s toxic fuel and oxidizer, which makes a repair “problematic,” Stich said.

Starliner commander Butch Wilmore and pilot Suni Williams arrived back at NASA's Kennedy Space Center earlier this week to prepare for launch.

Enlarge / Starliner commander Butch Wilmore and pilot Suni Williams arrived back at NASA’s Kennedy Space Center earlier this week to prepare for launch.

In order to safely fix the leak, which officials believe is likely caused by a defective seal, ground teams would have to disconnect the capsule from the Atlas V rocket, take it back to a hangar, drain its propellant tanks. This would probably push back the long-delayed Starliner test flight until late this year.

But the leak is relatively small and stable. “It’s about a half-pound per day out of 50 pounds of total capability in the tank,” Stich said.

“In our case, we have margin in the helium tank, and we’ve looked really hard to understand that margin and to understand the worst cases, and we took the time to go through that data,” Stich said. “We really think we can manage this leak, both by looking at it before the launch, and then if it got bigger in flight, we could manage it.”

Boeing’s Starliner capsule poised for second try at first astronaut flight Read More »

rocket-report:-north-korean-rocket-explosion;-launch-over-chinese-skyline

Rocket Report: North Korean rocket explosion; launch over Chinese skyline

A sea-borne variant of the commercial Ceres 1 rocket lifts off near the coast of Rizhao, a city of 3 million in China's Shandong province.

Enlarge / A sea-borne variant of the commercial Ceres 1 rocket lifts off near the coast of Rizhao, a city of 3 million in China’s Shandong province.

Welcome to Edition 6.46 of the Rocket Report! It looks like we will be covering the crew test flight of Boeing’s Starliner spacecraft and the fourth test flight of SpaceX’s giant Starship rocket over the next week. All of this is happening as SpaceX keeps up its cadence of flying multiple Starlink missions per week. The real stars are the Ars copy editors helping make sure our stories don’t use the wrong names.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Another North Korean launch failure. North Korea’s latest attempt to launch a rocket with a military reconnaissance satellite ended in failure due to the midair explosion of the rocket during the first-stage flight this week, South Korea’s Yonhap News Agency reports. Video captured by the Japanese news organization NHK appears to show the North Korean rocket disappearing in a fireball shortly after liftoff Monday night from a launch pad on the country’s northwest coast. North Korean officials acknowledged the launch failure and said the rocket was carrying a small reconnaissance satellite named Malligyong-1-1.

Russia’s role? … Experts initially thought the pending North Korean launch, which was known ahead of time from international airspace warning notices, would use the same Chŏllima 1 rocket used on three flights last year. But North Korean statements following the launch Monday indicated the rocket used a new propulsion system burning a petroleum-based fuel, presumably kerosene, with liquid oxygen as the oxidizer. The Chŏllima 1 rocket design used a toxic mixture of hypergolic hydrazine and nitrogen tetroxide as propellants. If North Korea’s statement is true, this would be a notable leap in the country’s rocket technology and begs the question of whether Russia played a significant role in the launch. Last year, Russian President Vladimir Putin pledged more Russian support for North Korea’s rocket program in a meeting with North Korean leader Kim Jong Un. (submitted by Ken the Bin and Jay500001)

Rocket Lab deploys small NASA climate satellite. Rocket Lab is in the midst of back-to-back launches for NASA, carrying identical climate research satellites into different orbits to study heat loss to space in Earth’s polar regions. The Polar Radiant Energy in the Far-InfraRed Experiment (PREFIRE) satellites are each about the size of a shoebox, and NASA says data from PREFIRE will improve computer models that researchers use to predict how Earth’s ice, seas, and weather will change in a warming world. “The difference between the amount of heat Earth absorbs at the tropics and that radiated out from the Arctic and Antarctic is a key influence on the planet’s temperature, helping to drive dynamic systems of climate and weather,” NASA said in a statement.

Twice in a week… NASA selected Rocket Lab’s Electron launch vehicle to deliver the two PREFIRE satellites into orbit on two dedicated rides rather than launching at a lower cost on a rideshare mission. This is because scientists want the satellites flying at the proper alignment to ensure they fly over the poles several hours apart, providing the data needed to measure how the rate at which heat radiates from the polar regions changes over time. The first PREFIRE launch occurred on May 25, and the next one is slated for May 31. Both launches will take off from Rocket Lab’s base in New Zealand. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

A rocket launch comes to Rizhao. China has diversified its launch sector over the last decade to include new families of small satellite launchers and new spaceports. One of these relatively new small rockets, the solid-fueled Ceres 1, took off Wednesday from a floating launch pad positioned about 2 miles (3 km) off the coast of Rizhao, a city of roughly 3 million people in China’s Shandong province. The Ceres 1 rocket, developed by a quasi-commercial company called Galactic Energy, has previously flown from land-based launch pads and a sea-borne platform, but this mission originated from a location remarkably close to shore, with the skyline of a major metropolitan area as a backdrop.

Range safety … There’s no obvious orbital mechanics reason to position the rocket’s floating launch platform so near a major Chinese city, other than perhaps to gain a logistical advantage by launching close to port. The Ceres 1 rocket has a fairly good reliability record—11 successes in 12 flights—but for safety reasons, there’s no Western spaceport that would allow members of the public (not to mention a few million) to get so close to a rocket launch. For decades, Chinese rockets have routinely dropped rocket boosters containing toxic propellant on farms and villages downrange from the country’s inland spaceports.

Rocket Report: North Korean rocket explosion; launch over Chinese skyline Read More »

nasa-finds-more-issues-with-boeing’s-starliner,-but-crew-launch-set-for-june-1

NASA finds more issues with Boeing’s Starliner, but crew launch set for June 1

Boeing's Starliner spacecraft atop its Atlas V rocket on the launch pad earlier this month.

Enlarge / Boeing’s Starliner spacecraft atop its Atlas V rocket on the launch pad earlier this month.

Senior managers from NASA and Boeing told reporters on Friday that they plan to launch the first crew test flight of the Starliner spacecraft as soon as June 1, following several weeks of detailed analysis of a helium leak and a “design vulnerability” with the ship’s propulsion system.

Extensive data reviews over the last two-and-a-half weeks settled on a likely cause of the leak, which officials described as small and stable. During these reviews, engineers also built confidence that even if the leak worsened, it would not add any unacceptable risk for the Starliner test flight to the International Space Station, officials said.

But engineers also found that an unlikely mix of technical failures in Starliner’s propulsion system—representing 0.77 percent of all possible failure modes, according to Boeing’s program manager—could prevent the spacecraft from conducting a deorbit burn at the end of the mission.

“As we studied the helium leak, we also looked across the rest of the propulsion system, just to make sure we didn’t have any other things that we should be concerned about,” said Steve Stich, manager of NASA’s commercial crew program, which awarded a $4.2 billion contract to Boeing in 2014 for development of the Starliner spacecraft.

“We found a design vulnerability… in the prop [propulsion] system as we analyzed this particular helium leak, where for certain failure cases that are very remote, we didn’t have the capability to execute the deorbit burn with redundancy,” Stich said in a press conference Friday.

These two problems, uncovered one after the other, have kept the Starliner test flight grounded to allow time for engineers to find workarounds. This is the first time astronauts will fly into orbit on a Starliner spacecraft, following two unpiloted demonstration missions in 2019 and 2022.

The Starliner program is running years behind schedule, primarily due to problems with the spacecraft’s software, parachutes, and propulsion system, supplied by Aerojet Rocketdyne. Software woes cut short Starliner’s first test flight in 2019 before it could dock at the International Space Station, and they forced Boeing to fly an unplanned second test flight to gain confidence that the spacecraft is safe enough for astronauts. NASA and Boeing delayed the second unpiloted test flight nearly a year to overcome an issue with corroded valves in the ship’s propulsion system.

Last year, just a couple of months before it was supposed to launch on the crew test flight, officials discovered a design problem with Starliner’s parachutes and found that Boeing installed flammable tape inside the capsule’s cockpit. Boeing’s star-crossed Starliner finally appeared ready to fly on the long-delayed crew test flight from Cape Canaveral Space Force Station, Florida.

NASA commander Butch Wilmore and pilot Suni Williams were strapped into their seats inside Starliner on May 6 when officials halted the countdown due to a faulty valve on the spacecraft’s United Launch Alliance Atlas V rocket. ULA rolled the rocket back to its hangar to replace the valve, with an eye toward another launch attempt in mid-May.

But ground teams detected the helium leak in Starliner’s service module in the aftermath of the scrubbed countdown. After some initial troubleshooting, the leak rate grew to approximately 70 psi per minute. Since then, the leak rate has stabilized.

“That gave us pause as the leak rate grew, and we wanted to understand what was causing that leak,” Stich said.

NASA finds more issues with Boeing’s Starliner, but crew launch set for June 1 Read More »

the-first-crew-launch-of-boeing’s-starliner-capsule-is-on-hold-indefinitely

The first crew launch of Boeing’s Starliner capsule is on hold indefinitely

Pursuing rationale —

“NASA will share more details once we have a clearer path forward.”

Boeing's Starliner spacecraft on the eve of the first crew launch attempt earlier this month.

Enlarge / Boeing’s Starliner spacecraft on the eve of the first crew launch attempt earlier this month.

Miguel J. Rodriguez Carrillo/AFP via Getty Images

The first crewed test flight of Boeing’s long-delayed Starliner spacecraft won’t take off as planned Saturday and could face a longer postponement as engineers evaluate a stubborn leak of helium from the capsule’s propulsion system.

NASA announced the latest delay of the Starliner test flight late Tuesday. Officials will take more time to consider their options for how to proceed with the mission after discovering the small helium leak on the spacecraft’s service module.

The space agency did not describe what options are on the table, but sources said they range from flying the spacecraft “as is” with a thorough understanding of the leak and confidence it won’t become more significant in flight, to removing the capsule from its Atlas V rocket and taking it back to a hangar for repairs.

Theoretically, the former option could permit a launch attempt as soon as next week. The latter alternative could delay the launch until at least late summer.

“The team has been in meetings for two consecutive days, assessing flight rationale, system performance, and redundancy,” NASA said in a statement Tuesday night. “There is still forward work in these areas, and the next possible launch opportunity is still being discussed. NASA will share more details once we have a clearer path forward.”

Delays are nothing new for the Starliner program, but it’s not yet clear how this delay will compare to the spacecraft’s previous setbacks.

Software problems cut short an unpiloted test flight in 2019, forcing Boeing to fly a second demonstration mission. Starliner was on the launch pad when pre-flight checkouts revealed stuck valves in the spacecraft’s propulsion system in 2021. Boeing finally flew Starliner on a round-trip mission to the space station in May 2022. Concerns about Starliner’s parachutes and flammable tape inside the spacecraft’s crew cabin delayed the crewed test flight from last summer until this year.

Boeing aims to become the second company to fly astronauts to the space station under contract with NASA’s commercial crew program, following the start of SpaceX’s crew transportation service in 2020. Assuming a smooth crewed test flight, NASA hopes to clear the Starliner spacecraft for six-month crew rotation flights to the space station beginning next year.

In the doghouse

Engineers first noticed the helium leak during the first launch attempt for Starliner’s crewed test flight May 6, but managers did not consider it significant enough to stop the launch. Ultimately, a separate problem with a pressure regulation valve on the spacecraft’s United Launch Alliance (ULA) Atlas V rocket prompted officials to scrub the launch attempt.

NASA astronauts Butch Wilmore and Suni Williams were already strapped into their seats inside the Starliner spacecraft on the launch pad at Cape Canaveral Space Force Station, Florida, when officials ordered a halt to the May 6 countdown. Wilmore and Williams returned to their homes in Houston to await the next Starliner launch opportunity.

ULA returned the Atlas V rocket to its hangar, where technicians swapped out the faulty valve in time for another launch attempt May 17. NASA and Boeing pushed the launch date back to May 21, then to May 25, as engineers assessed the helium leak. The Atlas V rocket and Starliner spacecraft remain inside ULA’s Vertical Integration Facility to wait for the next launch opportunity.

Boeing engineers traced the leak to a flange on a single reaction control system thruster in one of four doghouse-shaped propulsion pods on the Starliner service module.

There are 28 reaction control system thrusters—essentially small rocket engines—on the Starliner service module. In orbit, these thrusters are used for minor course corrections and pointing the spacecraft in the proper direction. The service module has two sets of more powerful engines for larger orbital adjustments and launch-abort maneuvers.

The spacecraft’s propulsion system is pressurized using helium, an inert gas. The thrusters burn a mixture of toxic hydrazine and nitrogen tetroxide propellants. Helium is not combustible, so a small leak is not likely to be a major safety issue on the ground. However, the system needs sufficient helium gas to force propellants from their internal storage tanks to Starliner’s thrusters.

In a statement last week, NASA described the helium leak as “stable” and said it would not pose a risk to the Starliner mission if it didn’t worsen. A Boeing spokesperson declined to provide Ars with any details about the helium leak rate.

If NASA and Boeing resolve their concerns about the helium leak without requiring lengthy repairs, the International Space Station could accommodate the docking of Starliner through part of July. After docking at the station, Wilmore and Williams will spend at least eight days at the complex before undocking to head for a parachute-assisted, airbag-cushioned landing in the Southwestern United States.

After July, the schedule gets messy.

The space station has a busy slate of multiple visiting crew and cargo vehicles in August, including the arrival of a fresh team of astronauts on a SpaceX Dragon spacecraft and the departure of an outgoing crew on another Dragon. There may be an additional window for Starliner to dock with the space station in late August or early September before the launch of SpaceX’s next cargo mission, which will occupy the docking port Starliner needs to use. The docking port opens up again in the fall.

ULA also has other high-priority missions it would like to launch from the same pad needed for the Starliner test flight. Later this summer, ULA plans to launch a US Space Force mission; it will be the last mission to use an Atlas V rocket. Then, ULA aims to launch the second demonstration flight of its new Vulcan Centaur rocket—the Atlas V’s replacement—as soon as September.

The first crew launch of Boeing’s Starliner capsule is on hold indefinitely Read More »

rocket-report:-starship-stacked;-georgia-shuts-the-door-on-spaceport-camden

Rocket Report: Starship stacked; Georgia shuts the door on Spaceport Camden

On Wednesday, SpaceX fully stacked the Super Heavy booster and Starship upper stage for the mega-rocket's next test flight from South Texas.

Enlarge / On Wednesday, SpaceX fully stacked the Super Heavy booster and Starship upper stage for the mega-rocket’s next test flight from South Texas.

Welcome to Edition 6.44 of the Rocket Report! Kathy Lueders, general manager of SpaceX’s Starbase launch facility, says the company expects to receive an FAA launch license for the next Starship test flight shortly after Memorial Day. It looks like this rocket could fly in late May or early June, about two-and-a-half months after the previous Starship test flight. This is an improvement over the previous intervals of seven months and four months between Starship flights.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Blue Origin launch on tap this weekend. Blue Origin plans to launch its first human spaceflight mission in nearly two years on Sunday. This flight will launch six passengers on a flight to suborbital space more than 60 miles (100 km) over West Texas. Blue Origin, Jeff Bezos’s space company, has not flown people to space since a New Shepard rocket failure on an uncrewed research flight in September 2022. The company successfully launched New Shepard on another uncrewed suborbital mission in December.

Historic flight … This will be the 25th flight of Blue Origin’s New Shepard rocket, and the seventh human spaceflight mission on New Shepard. Before Blue Origin’s rocket failure in 2022, the company was reaching a flight cadence of about one launch every two months, on average. The flight rate has diminished since then. Sunday’s flight is important not only because it marks the resumption of launches for Blue Origin’s suborbital human spaceflight business, but also because its six-person crew includes an aviation pioneer. Ed Dwight, 90, almost became the first Black astronaut in 1963. Dwight, a retired Air Force captain, piloted military fighter jets and graduated test pilot school, following a familiar career track as many of the early astronauts. He was on a short list of astronaut candidates the Air Force provided NASA, but the space agency didn’t include him. Dwight will become the oldest person to ever fly in space.

Spaceport Camden is officially no more. With the stroke of a pen, Georgia Governor Brian Kemp signed a bill that dissolved the Camden County Spaceport Authority, Action News Jax reported. This news follows a referendum in March 2022 where more than 70 percent of voters rejected a plan to buy land for the spaceport on the Georgia coastline between Savannah and Jacksonville, Florida. County officials still tried to move forward with the spaceport initiative after the failed referendum, but Georgia’s Supreme Court ruled in February that the county had to abide by the voters’ wishes.

$12 million for what?… The government of Camden County, with a population of about 55,000 people spent $12 million on the Spaceport Camden concept over the course of a decade. The goal of the spaceport authority was to lure small launch companies to the region, but no major launches ever took place from Camden County. State Rep. Steven Sainz, who sponsored the bill eliminating the spaceport authority, said in a statement that the legislation “reflects the community’s choice and opens a path for future collaborations in economic initiatives that are more aligned with local needs.” (submitted by zapman987)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Polaris Spaceplanes moves on to bigger things. German startup Polaris Spaceplanes says it is progressing with construction of its MIRA II and MIRA III spaceplane prototypes after MIRA, a subscale test vehicle, was damaged earlier this year, European Spaceflight reports. The MIRA demonstration vehicle crash-landed on a test flight in February. The incident occurred on takeoff at an airfield in Germany before the vehicle could ignite its linear aerospace engine in flight. The remote-controlled MIRA prototype measured about 4.25 meters long. Polaris announced on April 30 that will not repair MIRA and will instead move forward with the construction of a pair of larger vehicles.

Nearly 16 months without a launch … The MIRA II and MIRA III vehicles will be 5 meters long and will be powered by Polaris’s AS-1 aerospike engines, along with jet engines to power the craft before and after in-flight tests of the rocket engine. Aerospike engines are rocket engines that are designed to operate efficiently at all altitudes. The MIRA test vehicles are precursors to AURORA, a multipurpose spaceplane and hypersonic transporter Polaris says will be capable of delivering up to 1,000 kilograms of payload to low-Earth orbit. (submitted by Jay500001 and Tfargo04)

Rocket Report: Starship stacked; Georgia shuts the door on Spaceport Camden Read More »

faulty-valve-scuttles-starliner’s-first-crew-launch

Faulty valve scuttles Starliner’s first crew launch

The Atlas V rocket and Starliner spacecraft on their launch pad Monday.

Enlarge / The Atlas V rocket and Starliner spacecraft on their launch pad Monday.

Astronauts Butch Wilmore and Suni Williams climbed into their seats inside Boeing’s Starliner spacecraft Monday night in Florida, but trouble with the capsule’s Atlas V rocket kept the commercial ship’s long-delayed crew test flight on the ground.

Around two hours before launch time, shortly after 8: 30 pm EDT (00: 30 UTC), United Launch Alliance’s launch team stopped the countdown. “The engineering team has evaluated, the vehicle is not in a configuration where we can proceed with flight today,” said Doug Lebo, ULA’s launch conductor.

The culprit was a misbehaving valve on the rocket’s Centaur upper stage, which has two RL10 engines fed by super-cold liquid hydrogen and liquid oxygen propellants.

“We saw a self-regulating valve on the LOX (liquid oxygen) side had a bit of a buzz; it was moving in a strange behavior,” said Steve Stich, NASA’s commercial crew program manager. “The flight rules had been laid out for this flight ahead of time. With the crew at the launch pad, the proper action was to scrub.”

The next opportunity to launch Starliner on its first crew test flight will be Friday night at 9 pm EDT (01: 00 UTC Saturday). NASA announced overnight that officials decided to skip a launch opportunity Tuesday night to allow engineers more time to study the valve problem and decide whether they need to replace it.

Work ahead

Everything else was going smoothly in the countdown Monday night. This mission will also be the first time astronauts have flown on ULA’s Atlas V rocket, which has logged 99 successful flights since 2002. It is the culmination of nearly a decade-and-a-half of development by Boeing, which has a $4.2 billion contract with NASA to ready Starliner for crew missions, then carry out six long-duration crew ferry flights to and from the International Space Station.

This crew test flight will last at least eight days, taking Wilmore and Williams to the space station to verify Starliner’s readiness for operational missions. Once Starliner flies, NASA will have two human-rated spacecraft on contract. SpaceX’s Crew Dragon has been in service since 2020.

When officials scrubbed Monday night’s launch attempt, Wilmore and Williams were already aboard the Starliner spacecraft on top of the Atlas V rocket at Cape Canaveral Space Force Station, Florida. The Boeing and ULA support team helped them out of the capsule and drove them back to crew quarters at the nearby Kennedy Space Center to wait for the next launch attempt.

“I promised Butch and Suni a boring evening,” said Tory Bruno, ULA’s CEO. “I didn’t mean for it to be quite this boring, but we’re going to follow our rules, and we’re going to make sure that the crew is safe.”

When the next launch attempt actually occurs depends on whether ULA engineers determine they can resolve the problem without rolling the Atlas V rocket back to its hangar for repairs.

The valve in question vents gas from the liquid oxygen tank on the Centaur upper stage to maintain the tank at proper pressures. This is important for two reasons. The tank needs to be at the correct pressure for the RL10 engines to receive propellant during the flight, and the Centaur upper stage itself has ultra-thin walls to reduce weight, and requires pressure to maintain structural integrity.

Faulty valve scuttles Starliner’s first crew launch Read More »

the-surprise-is-not-that-boeing-lost-commercial-crew-but-that-it-finished-at-all

The surprise is not that Boeing lost commercial crew but that it finished at all

Boeing really is going —

“The structural inefficiency was a huge deal.”

Boeing's Starliner spacecraft is lifted to be placed atop an Atlas V rocket for its first crewed launch.

Enlarge / Boeing’s Starliner spacecraft is lifted to be placed atop an Atlas V rocket for its first crewed launch.

United Launch Alliance

NASA’s senior leaders in human spaceflight gathered for a momentous meeting at the agency’s headquarters in Washington, DC, almost exactly ten years ago.

These were the people who, for decades, had developed and flown the Space Shuttle. They oversaw the construction of the International Space Station. Now, with the shuttle’s retirement, these princely figures in the human spaceflight community were tasked with selecting a replacement vehicle to send astronauts to the orbiting laboratory.

Boeing was the easy favorite. The majority of engineers and other participants in the meeting argued that Boeing alone should win a contract worth billions of dollars to develop a crew capsule. Only toward the end did a few voices speak up in favor of a second contender, SpaceX. At the meeting’s conclusion, NASA’s chief of human spaceflight at the time, William Gerstenmaier, decided to hold off on making a final decision.

A few months later, NASA publicly announced its choice. Boeing would receive $4.2 billion to develop a “commercial crew” transportation system, and SpaceX would get $2.6 billion. It was not a total victory for Boeing, which had lobbied hard to win all of the funding. But the company still walked away with nearly two-thirds of the money and the widespread presumption that it would easily beat SpaceX to the space station.

The sense of triumph would prove to be fleeting. Boeing decisively lost the commercial crew space race, and it proved to be a very costly affair.

With Boeing’s Starliner spacecraft finally due to take flight this week with astronauts on board, we know the extent of the loss, both in time and money. Dragon first carried people to the space station nearly four years ago. In that span, the Crew Dragon vehicle has flown thirteen public and private missions to orbit. Because of this success, Dragon will end up flying 14 operational missions to the station for NASA, earning a tidy fee each time, compared to just six for Starliner. Through last year, Boeing has taken $1.5 billion in charges due to delays and overruns with its spacecraft development.

So what happened? How did Boeing, the gold standard in human spaceflight for decades, fall so far behind on crew? This story, based largely on interviews with unnamed current and former employees of Boeing and contractors who worked on Starliner, attempts to provide some answers.

The early days

When the contracts were awarded, SpaceX had the benefit of working with NASA to develop a cargo variant of Dragon, which by 2014 was flying regular missions to the space station. But the company had no experience with human spaceflight. Boeing, by contrast, had decades of spaceflight experience, but it had to start from scratch with Starliner.

Each faced a deeper cultural challenge. A decade ago, SpaceX was deep into several major projects, including developing a new version of the Falcon 9 rocket, flying more frequently, experimenting with landing and reuse, and doing cargo supply missions. This new contract meant more money but a lot more work. A NASA engineer who worked closely with both SpaceX and Boeing in this time frame recalls visiting SpaceX and the atmosphere being something like a frenzied graduate school, where all of the employees were being pulled in different directions. Getting engineers to focus on Crew Dragon was difficult.

But at least SpaceX was in its natural environment. Boeing’s space division had never won a large fixed-price contract. Its leaders were used to operating in a cost-plus environment, in which Boeing could bill the government for all of its expenses and earn a fee. Cost overruns and delays were not the company’s problem—they were NASA’s. Now Boeing had to deliver a flyable spacecraft for a firm, fixed price.

Boeing struggled to adjust to this environment. When it came to complicated space projects, Boeing was used to spending other people’s money. Now, every penny spent on Starliner meant one less penny in profit (or, ultimately, greater losses). This meant that Boeing allocated fewer resources to Starliner than it needed to thrive.

“The difference between the two company’s cultures, design philosophies, and decision-making structures allowed SpaceX to excel in a fixed-price environment, where Boeing stumbled, even after receiving significantly more funding,” said Lori Garver in an interview. She was deputy administrator of NASA from 2009 to 2013 during the formative years of the commercial crew program and is the author of Escaping Gravity.

So Boeing faced financial pressure from the beginning. At the same time, it was confronting major technical challenges. Building a human spacecraft is very difficult. Some of the biggest hurdles would be flight software and propulsion.

The surprise is not that Boeing lost commercial crew but that it finished at all Read More »

rocket-report:-starliner-launch-preps;-indian-rocket-engine-human-rated

Rocket Report: Starliner launch preps; Indian rocket engine human-rated

Cape-a-palooza —

The Bahamian government and SpaceX signed an agreement for Falcon 9 booster landings.

The first stage of United Launch Alliance's Atlas V rocket was lifted onto its launch platform this week in preparation for an April liftoff with two NASA astronauts on Boeing's Starliner Crew Flight Test.

Enlarge / The first stage of United Launch Alliance’s Atlas V rocket was lifted onto its launch platform this week in preparation for an April liftoff with two NASA astronauts on Boeing’s Starliner Crew Flight Test.

United Launch Alliance

Welcome to Edition 6.32 of the Rocket Report! I’m writing the report again this week as Eric Berger is in Washington, DC, to receive a well-earned honor, the 2024 Excellence in Commercial Space Journalism Award from the Commercial Spaceflight Federation. Cape Canaveral is the world’s busiest spaceport, and this week, three leading US launch companies were active there. SpaceX launched another Falcon 9 rocket, and a few miles away, Blue Origin raised a New Glenn rocket on its launch pad for long-awaited ground testing. Nearby, United Launch Alliance began assembling an Atlas V rocket for the first crew launch of Boeing’s Starliner spacecraft in April. 2024 is shaping up to be a truly exciting year for the spaceflight community.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Astroscale inspector satellite launched by Rocket Lab. Astroscale, a well-capitalized Japanese startup, has launched a small satellite to do something that has never been done in space, Ars reports. This new spacecraft, delivered into orbit on February 18 by Rocket Lab, will approach a defunct upper stage from a Japanese H-IIA rocket that has been circling Earth for more than 15 years. Over the next few months, the satellite will try to move within arm’s reach of the rocket, taking pictures and performing complicated maneuvers to move around the bus-size H-IIA upper stage as it moves around the planet at nearly 5 miles per second (7.6 km/s).

This is a first … Astroscale’s ADRAS-J mission is the first satellite designed to approach and inspect a piece of space junk in orbit. This is a public-private partnership between Astroscale and the Japanese space agency. Of course, space agencies and commercial companies have demonstrated rendezvous operations in orbit for decades. The difference here is the H-IIA rocket is uncontrolled, likely spinning and in a slow tumble, and was never designed to accommodate any visitors. Japan left it in orbit in January 2009 following the launch of a climate monitoring satellite and didn’t look back. ADRAS-J is a technology demonstration that could pave the way for a follow-on mission to actually link up with this H-IIA rocket and remove it from orbit. Astroscale eventually wants to use these technologies for satellite servicing, refueling, and further debris removal missions. (submitted by Ken the Bin and Jay500001)

Software error blamed for Firefly launch malfunction. Firefly Aerospace released an update Tuesday on an investigation into an upper stage malfunction on the company’s Alpha rocket in December. The investigation team, consisting of membership from Firefly, the Federal Aviation Administration, the National Transportation Safety Board, Lockheed Martin, NASA, and the US Space Force, determined a software error in the rocket’s guidance, navigation, and control software algorithm ultimately caused the Alpha rocket to release its payload into a lower-than-planned orbit following a launch from California.

Upper stage woes… The software error prevented the rocket from sending the “necessary pulse commands” to control thrusters on the upper stage before its main engine was supposed to reignite. This second burn by the upper stage was supposed to circularize the rocket’s orbit, but it didn’t happen as planned. Still, the Alpha rocket safely released its commercial satellite payload for Lockheed Martin. Although the lower orbit caused the satellite to reenter the atmosphere earlier this month, Lockheed Martin said it was able to achieve many of the objectives of the technology demonstration mission, which focused on testing an electronically steered antenna. This was the fourth launch of an Alpha rocket, and two of them have suffered from upper stage malfunctions during engine restart attempts. Firefly says it is preparing the next Alpha rocket to fly “in the coming months.” (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

A good fundraising round for Gilmour Space. Australian startup Gilmour Space Technologies has raised $55 million Australian dollars ($36 million) in a Series D funding round announced Monday, Space News reports. The funding supports the small launch vehicle startup’s campaign to manufacture, test, and begin launching rockets and satellites from the Bowen Orbital Spaceport in North Queensland. Gilmour Space, founded in 2012, is developing a three-stage rocket called Eris. The first Eris test flight is expected “in the coming months, pending launch approvals from the Australian Space Agency,” according to the Gilmour Space news release.

Launching from down under… Gilmour Space is aiming to launch the first Australian-built rocket into orbit later this year. The Eris rocket is powered by hybrid engines, and Gilmour says it is capable of delivering about 670 pounds (305 kilograms) of payload mass into a Sun-synchronous orbit. The $36 million fundraising round announced this week follows a $46 million fundraising round in 2021. According to the Australian Broadcasting Corporation, Gilmour Space is aiming for the first flight of Eris in April, and this latest fundraising should give the company enough money to mount four test flights. (submitted by Ken the Bin)

Rocket Report: Starliner launch preps; Indian rocket engine human-rated Read More »