This is an excerpt from Chapter 11 of the book REENTRY: SpaceX, Elon Musk and the Reusable Rockets that Launched a Second Space Age by our own Eric Berger. The book will be published on September 24, 2024. This excerpt describes a fateful meeting 10 years ago at NASA Headquarters in Washington, DC, where the space agency’s leaders met to decide which companies should be awarded billions of dollars to launch astronauts into orbit.
In the early 2010s, NASA’s Commercial Crew competition boiled down to three players: Boeing, SpaceX, and a Colorado-based company building a spaceplane, Sierra Nevada Corporation. Each had its own advantages. Boeing was the blue blood, with decades of spaceflight experience. SpaceX had already built a capsule, Dragon. And some NASA insiders nostalgically loved Sierra Nevada’s Dream Chaser space plane, which mimicked the shuttle’s winged design.
This competition neared a climax in 2014 as NASA prepared to winnow the field to one company, or at most two, to move from the design phase into actual development. In May of that year Musk revealed his Crew Dragon spacecraft to the world with a characteristically showy event at the company’s headquarters in Hawthorne. As lights flashed and a smoke machine vented, Musk quite literally raised a curtain on a black-and-white capsule. He was most proud to reveal how Dragon would land. Never before had a spacecraft come back from orbit under anything but parachutes or gliding on wings. Not so with the new Dragon. It had powerful thrusters, called SuperDracos, that would allow it to land under its own power.
“You’ll be able to land anywhere on Earth with the accuracy of a helicopter,” Musk bragged. “Which is something that a modern spaceship should be able to do.”
A few weeks later I had an interview with John Elbon, a long-time engineer at Boeing who managed the company’s commercial program. As we talked, he tut-tutted SpaceX’s performance to date, noting its handful of Falcon 9 launches a year and inability to fly at a higher cadence. As for Musk’s little Dragon event, Elbon was dismissive.
“We go for substance,” Elbon told me. “Not pizzazz.”
Elbon’s confidence was justified. That spring the companies were finalizing bids to develop a spacecraft and fly six operational missions to the space station. These contracts were worth billions of dollars. Each company told NASA how much it needed for the job, and if selected, would receive a fixed price award for that amount. Boeing, SpaceX, and Sierra Nevada wanted as much money as they could get, of course. But each had an incentive to keep their bids low, as NASA had a finite budget for the program. Boeing had a solution, telling NASA it needed the entire Commercial Crew budget to succeed. Because a lot of decision-makers believed that only Boeing could safely fly astronauts, the company’s gambit very nearly worked.
Scoring the bids
The three competitors submitted initial bids to NASA in late January 2014, and after about six months of evaluations and discussions with the “source evaluation board,” submitted their final bids in July. During this initial round of judging, subject-matter experts scored the proposals and gathered to make their ratings. Sierra Nevada was eliminated because their overall scores were lower, and the proposed cost not low enough to justify remaining in the competition. This left Boeing and SpaceX, with likely only one winner.
“We really did not have the budget for two companies at the time,” said Phil McAlister, the NASA official at the agency’s headquarters in Washington overseeing the Commercial Crew program. “No one thought we were going to award two. I would always say, ‘One or more,’ and people would roll their eyes at me.”
The members of the evaluation board scored the companies based on three factors. Price was the most important consideration, given NASA’s limited budget. This was followed by “mission suitability,” and finally, “past performance.” These latter two factors, combined, were about equally weighted to price. SpaceX dominated Boeing on price.
Boeing asked for $4.2 billion, 60 percent more than SpaceX’s bid of $2.6 billion. The second category, mission suitability, assessed whether a company could meet NASA’s requirements and actually safely fly crew to and from the station. For this category, Boeing received an “excellent” rating, above SpaceX’s “very good.” The third factor, past performance, evaluated a company’s recent work. Boeing received a rating of “very high,” whereas SpaceX received a rating of “high.”
While this makes it appear as though the bids were relatively even, McAlister said the score differences in mission suitability and past performance were, in fact, modest. It was a bit like grades in school. SpaceX scored something like an 88, and got a B; whereas Boeing got a 91 and scored an A. Because of the significant difference in price, McAlister said, the source evaluation board assumed SpaceX would win the competition. He was thrilled, because he figured this meant that NASA would have to pick two companies, SpaceX based on price, and Boeing due to its slightly higher technical score. He wanted competition to spur both of the companies on.
Cards Against Humanity sued SpaceX yesterday, alleging that Elon Musk’s firm illegally took over a plot of land on the US/Mexico border that the party-game company bought in 2017 in an attempt to stymie then-President Trump’s attempt to build a wall.
“As part of CAH’s 2017 holiday campaign, while Donald Trump was President, CAH created a supporter-funded campaign to take a stand against the building of a Border Wall,” said the lawsuit filed in Cameron County District Court in Texas. Cards Against Humanity says it received $15 donations from 150,000 people and used part of that money to buy “a plot of vacant land in Cameron County based upon CAH’s promise to ‘make it as time-consuming and expensive as possible for Trump to build his wall.'”
Cards Against Humanity says it mowed the land “and maintained it in its natural state, marking the edge of the lot with a fence and a ‘No Trespassing’ sign.” But instead of Trump taking over the land, Cards Against Humanity says the parcel was “interfered with and invaded” by Musk’s space company. The lawsuit includes pictures that, according to Cards Against Humanity, show the land when it was first purchased and after SpaceX construction equipment and materials were placed on the land.
This picture was taken in 2017, according to Cards Against Humanity:
Cards Against Humanity says this picture of SpaceX equipment and materials on the same land was taken in 2024:
The lawsuit seeks up to $15 million to cover “the cost to restore and repair the Property, the diminution in the Property’s fair market value, the reasonable value of SpaceX’s use of the Property, the loss of goodwill, damages to CAH’s reputation, and other pecuniary loss and actual damages suffered by CAH.” The suit also seeks punitive damages.
Lawsuit: SpaceX “never asked for permission”
The lawsuit said that SpaceX “acquired many of the vacant lots along the road on which the Property is situated,” and started using the Cards Against Humanity property as its own:
SpaceX and/or its contractors entered the Property and, after erecting posts to mark the property line, proceeded to ignore any distinction based upon property ownership. The site was cleared of vegetation, and the soil was compacted with gravel or other substance to allow SpaceX and its contractors to run and park its vehicles all over the Property. Generators were brought in to run equipment and lights while work was being performed before and after daylight. An enormous mound of gravel was unloaded onto the Property; the gravel is being stored and used for the construction of buildings by SpaceX’s contractors along the road.
Large pieces of construction equipment and numerous construction-related vehicles are utilized and stored on the Property continuously. And, of course, workers are present performing construction work and staging materials and vehicles for work to be performed on other tracts. In short, SpaceX has treated the Property as its own for at least six (6) months without regard for CAH’s property rights nor the safety of anyone entering what has become a worksite that is presumably governed by OSHA safety requirements.
The lawsuit said that “SpaceX has never asked for permission to use the Property, much less for the egregious appropriation of the Property for its own profit-making purposes,” and “never reached out to CAH to explain or apologize for the damage caused to the Property and CAH’s ownership interest therein.”
We contacted SpaceX about the lawsuit and will update this article if it provides a response.
Welcome to Edition 7.11 of the Rocket Report! Outside of companies owned by American billionaires, the most imminent advancements in reusable rockets are coming from China’s quasi-commercial launch industry. This industry is no longer nascent. After initially relying on solid-fueled rocket motors apparently derived from Chinese military missiles, China’s privately funded launch firms are testing larger launchers, with varying degrees of success, and now performing hop tests reminiscent of SpaceX’s Grasshopper and F9R Dev1 programs more than a decade ago.
As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.
Landspace hops closer to a reusable rocket. Chinese private space startup Landspace has completed a 10-kilometer (33,000-foot) vertical takeoff and vertical landing test on its Zhuque-3 (ZQ-3) reusable rocket testbed, including a mid-flight engine reignition at near supersonic conditions, Aviation Week & Space Technology reports. The 18.3-meter (60-foot) vehicle took off from the Jiuquan launch base in northwestern China, ascended to 10,002 meters, and then made a vertical descent and achieved an on-target propulsive landing 3.2 kilometers (2 miles) from the launch pad. Notably, the rocket’s methane-fueled variable-thrust engine intentionally shutdown in flight, then reignited for descent, as engines would operate on future full-scale booster flybacks. The test booster used grid fins and cold gas thrusters to control itself when its main engine was dormant, according to Landspace.
“All indicators met the expected design” … Landspace hailed the test as a major milestone in the company’s road to flying its next rocket, the Zhuque-3, as soon as next year. With nine methane-fueled main engines, the Zhuque-3 will initially be able to deliver 21 metric tons (46,300 pounds) of payload into low-Earth orbit with its booster flying in expendable mode. In 2026, Landspace aims to begin recovering Zhuque-3 first-stage boosters for reuse. Landspace is one of several Chinese companies working seriously on reusable rocket designs. Another Chinese firm, Deep Blue Aerospace, says it plans a 100-kilometer (62-mile) suborbital test of a reusable booster soon, ahead of the first flight of its medium-class Nebula-1 rocket next year. (submitted by Ken the Bin)
The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.
Isar Aerospace sets low bar for success on first launch. Daniel Metzler, CEO of German launch startup Isar Aerospace, stated that the first flight of the Spectrum rocket would be a success if it didn’t destroy the launch site, European Spaceflight reports. During an interview at the Handelsblatt innovation conference, Metzler was asked what he would consider a successful inaugural flight of Spectrum. “For me, the first flight will be a success if we don’t blow up the launch site,” explained Metzler. “That would probably be the thing that would set us back the most in terms of technology and time.” This tempering of expectations sounds remarkably similar to statements made by Elon Musk about SpaceX’s first flight of the Starship rocket last year.
In the catbird seat? … Isar Aerospace could be in a position to become the first in a new crop of European commercial launch companies to attempt its first orbital flight. Another German company, Rocket Factory Augsburg, recently gave up on a possible launch this year after the booster for its first launch caught fire and collapsed during a test at a launch site in Scotland. Isar plans to launch its two-stage Spectrum rocket, designed to carry up to 1,000 kilograms (2,200 pounds) of payload into low-Earth orbit, from Andøya Spaceport in Norway. Isar hasn’t publicized any schedule for the first flight of Spectrum, but there are indications the publicity-shy company is testing hardware at the Norwegian spaceport. (submitted by Ken the Bin)
FAA to introduce new orbital debris rules. The Federal Aviation Administration is moving ahead with efforts to develop rules for the disposal of upper stages as another Centaur upper stage breaks apart in orbit, Space News reports. The FAA released draft regulations on the matter for public comment one year ago, and the head of the agency’s commercial spaceflight division recently said the rules are a “high priority for our organization.” The rules would direct launch operators to dispose of upper stages in one of five ways, from controlled reentries to placement in graveyard or “disposal” orbits not commonly used by operational satellites. One change the FAA might make to the draft rules is to reduce the required timeline for an uncontrolled reentry of a disposed upper stage from no more than 25 years to a shorter timeline. “We got a lot of comments that said it should be a lot less,” said Kelvin Coleman, head of the FAA’s commercial spaceflight office. “We’re taking that into consideration.”
Upper stages are a problem … Several recent breakups involving spent upper stages in orbit have highlighted the concern that dead rocket bodies could create unnecessary space junk. Last month, the upper stage from a Chinese Long March 6A disintegrated in low-Earth orbit, creating at least 300 pieces of space debris. More recently, a Centaur upper stage from a United Launch Alliance Atlas V rocket broke apart in a much higher orbit, resulting in more than 40 pieces of debris. This was the fourth time one of ULA’s Centaur upper stages has broken up since 2018. (submitted by Ken the Bin)
United Airlines announced this morning that it is giving its in-flight Internet access an upgrade. It has signed a deal with Starlink to deliver SpaceX’s satellite-based service to all its aircraft, a process that will start in 2025. And the good news for passengers is that the in-flight Wi-Fi will be free of charge.
The flying experience as it relates to consumer technology has come a very long way in the two-and-a-bit decades that Ars has been publishing. At the turn of the century, even having a power socket in your seat was a long shot. Laptop batteries didn’t last that long, either—usually less than the runtime of whatever DVD I hoped to distract myself with, if memory serves.
Bring a spare battery and that might double, but it helped to have a book or magazine to read.
By 2011, the picture had changed. Wi-Fi was no longer some esoteric thing known only to nerds who built their own computers, and smartphones and tablets were on their way to ubiquity. After an aborted attempt in 2004, 2008 made in-flight Internet access a reality in North America, although the air-to-ground cellular-based system was slow, unreliable, and expensive.
Air-to-ground Internet access was maybe slightly cheaper by 2018, but it was still frustrating and slow, particularly if you were, oh, I dunno, a journalist trying to upload images to a CMS on your way back from an event. But by then, there was a better alternative—satellites. Airliners started sporting new antenna-concealing blisters, and soon, we were all streaming and posting and working our way across the skies.
Enter SpaceX
That bandwidth was courtesy of Viasat, according to all the receipts in my expense reports, but in 2022, SpaceX announced that it was adding aviation to Starlink’s portfolio. Initially, Starlink only targeted smaller regional and private jet aircraft, but now its equipment is also certified for commercial passenger planes from Airbus and Boeing and is already in use with carriers including Qatar Airways and Air New Zealand.
United says it will start testing Starlink equipment early in 2025, with the first use on passenger flights later that year. The service will be available gate-to-gate (as opposed to only working above 10,000 feet, a restriction some other systems operate under), and it certainly sounds like a superior experience to current in-flight Internet, as it will explicitly allow streaming of both video and games, and multiple connected devices at once. Better yet, United says the service will be free for passengers.
Depending on the route you fly, you may need to have some patience, though. United says it will take several years to install Starlink systems on its more than 1,000 aircraft.
Pretty much every day for the last couple of weeks, workers wielding welding guns and torches have climbed onto SpaceX’s Starship launch pad in South Texas to make last-minute upgrades ahead of the next test flight of the world’s largest rocket.
Livestreams of the launch site provided by LabPadre and NASASpaceflight.com have shown sparks raining down two mechanical arms extending from the side of the Starship launch tower at SpaceX’s Starbase launch site on the Gulf Coast east of Brownsville, Texas. We are publishing several views here of the welding activity with the permission of LabPadre, which runs a YouTube page with multiple live views of Starbase.
If SpaceX has its way on the next flight of Starship, these arms will close together to capture the first-stage booster, called Super Heavy, as it descends back to Earth and slows to a hover over the launch pad.
This method of rocket recovery is remarkably different from how SpaceX lands its smaller Falcon 9 booster, which has landing legs to touch down on offshore ocean-going platforms or at concrete sites onshore. Catching the rocket with large metallic arms—sometimes called “mechazilla arms” or “chopsticks”—would reduce the turnaround time to reuse the booster and simplify its design, according to SpaceX.
SpaceX has launched the nearly 400-foot-tall (121 meter) Starship rocket four times, most recently in June, when the Super Heavy booster, itself roughly 233 feet (71 meters) tall, made a pinpoint splashdown in the Gulf of Mexico just off the coast of Starbase.
On the same flight in June, the Starship upper stage flew halfway around the world and reentered the atmosphere over the Indian Ocean. The ship survived reentry and splashed down in the open ocean northwest of Australia. This flight was the first time either part of the Starship rocket made it back to Earth intact, but SpaceX didn’t recover the booster or the ship.
Doubling up
Lessons learned from the June test flight prompted SpaceX to replace thousands of heat shield tiles on the Starship vehicle for the next mission. While the ship survived reentry in June, onboard camera views showed numerous tiles ripped away from the vehicle. Last month, SpaceX test-fired engines on the booster and ship assigned to the next launch.
On August 8, SpaceX said Starship and Super Heavy were “ready to fly, pending regulatory approval” from the Federal Aviation Administration. An FAA spokesperson said the agency is evaluating SpaceX’s proposed flight profile for the next Starship test flight, when SpaceX wants to try catching the booster on the pad. This will be the first time SpaceX will try to bring the stainless-steel Super Heavy booster, as long as and wider than a Boeing 747 jumbo jet, back to a landing on land.
While the rocket appears to be ready to fly, SpaceX officials clearly believe there’s more work to do on the launch pad. Closer views revealed welders are installing structural supports, or doublers, to certain parts of the catch arms. Elsewhere on the arms, workers were seen removing and adding other unknown pieces of hardware. SpaceX hasn’t specified exactly what kind of work teams are doing on the Starship launch pad in Texas, but the focus is on beefing up hardware necessary for catching the Super Heavy booster.
All of this work is occurring during the hottest part of the year in South Texas. On most days this month, afternoon temperatures have soared into the mid-to-upper 90s Fahrenheit, with sticky humidity. A lot of the work on the catch arms has occurred at night, when temperatures drop into the lower 80s.
It’s unclear how long it will take for the FAA to approve a license for SpaceX to launch and recover the rocket on the next test flight or when SpaceX will complete the upgrades on the launch pad. Elon Musk, SpaceX’s founder and CEO, suggested earlier this month that the flight could take off by the end of August, but the condition of the launch pad and remaining tests indicate a launch is still probably at least a couple of weeks away.
Once workers finish up their tasks upgrading the pad and clearing scaffolding and cranes from the area, SpaceX will likely stack the Super Heavy booster and Starship upper stage and fill them with propellants during a full countdown rehearsal, as it has before each previous Starship launch.
Musk has signaled several times that the company will try to catch the Super Heavy booster on the next flight, which will also accelerate the Starship upper stage to nearly orbital velocity for another reentry demonstration over the Indian Ocean. Last month, SpaceX released a video teasing a catch of the booster on the next Starship flight, showing the rocket returning to Starbase with its Raptor engines firing.
Meanwhile, SpaceX has stacked a second Starship launch tower next to the existing launch pad in Texas. The company still has a lot of work to do to outfit the second launch pad before it is ready to support a Starship flight, but SpaceX could have it ready for activation sometime next year. SpaceX also plans two Starship launch pads at Cape Canaveral, Florida. All these sites will allow SpaceX to launch Starships more often. The company is also finishing a sprawling factory near the Starship factory in South Texas, just a couple of miles inland from the launch pads there.
SpaceX is set to launch the 14th crewed flight on its Dragon spacecraft early on Tuesday morning—and it’s an intriguing one.
This Polaris Dawn mission, helmed and funded by an entrepreneur and billionaire named Jared Isaacman, is scheduled to lift off at 3: 38 am ET (07: 38 UTC) on Tuesday from Launch Complex 39A at Kennedy Space Center in Florida.
This is just the second free-flying Crew Dragon mission that SpaceX has flown, and like the Inspiration4 mission that came before it, Polaris Dawn will once again field an entire crew of private astronauts. Although this is a private spaceflight, it really is not a space tourism mission. Rather, it seeks to push the ball of exploration forward. Isaacman has emerged as one of the most serious figures in commercial spaceflight in recent years, spending hundreds of millions of dollars to fly into space and push forward the boundaries of what private citizens can do in space.
“The idea is to develop and test new technology and operations in furtherance of SpaceX’s bold vision to enable humankind to journey among the stars,” Isaacman said last week during a news conference ahead of Tuesday’s launch.
A novel step forward
Isaacman, chief executive of the Shift4 payments company, led the Inspiration4 mission in September 2021, which was unique because the crew consisted of himself—an experienced pilot—and three newcomers to spaceflight. Isaacman used the world’s first all-civilian spaceflight, on a private vehicle, to raise hundreds of millions of dollars for charity and expand the window of who could become an astronaut.
Yet whereas Inspiration4 felt like something of a novelty, Polaris Dawn is truly pushing the boundary of private spaceflight forward. Working closely with SpaceX, Isaacman has plotted a five-day flight that will accomplish a number of significant tasks after it launches.
During the initial hours of the spaceflight, the crew will seek to fly in a highly elliptical orbit, reaching an altitude as high as 1,400 km (870 miles) above the planet’s surface. This will be the highest Earth-orbit mission ever flown by humans and the farthest any person has flown from Earth since the Apollo Moon landings more than half a century ago. This will expose the crew to a not insignificant amount of radiation, and they will collect biological data to assess harms.
The Resilience spacecraft will then descend toward a more circular orbit about 700 km above the Earth’s surface. Assuming a launch on Tuesday, the crew will don four spacesuits on Friday and open the hatch to the vacuum of space. Then Isaacman, followed by mission specialist Sarah Gillis, will each briefly climb out of the spacecraft into space.
Isaacman’s interest in performing the first private spacewalk accelerated, by years, SpaceX’s development of these spacesuits. This really is just the first generation of the suit, and SpaceX is likely to continue iterating toward a spacesuit that has its own portable life support system (PLSS). This is the “backpack” on a traditional spacesuit that allows NASA astronauts to perform spacewalks untethered to the International Space Station.
The general idea is that, as the Starship vehicle makes the surface of the Moon and eventually Mars more accessible to more people, future generations of these lower-cost spacesuits will enable exploration and settlement. That journey, in some sense, begins with this mission’s brief spacewalks, with Isaacman and Gillis tethered to the Dragon vehicle for life support.
Lasers and SpaceXers
Isaacman and his crew will also conduct a number of other research experiments, including trying to better understand a recently detected but major concern of space habitation, spaceflight-associated neuro-ocular syndrome. This will also be the first crewed mission to test Starlink-based laser communications in space.
Then, there is the crew. Isaacman’s close friend, retired US Air Force Col. Scott “Kidd” Poteet, will be the mission’s pilot, with Gillis and Anna Menon serving as mission specialists. Both Gillis and Menon are SpaceX engineers who worked with Isaacman during Inspiration4. Now, they’ll become the first SpaceX employees to ever go into orbit, bringing their experiences back to share with their colleagues.
This is the first of three “Polaris” missions that Isaacman is scheduled to fly with SpaceX. The plan for the second Polaris mission, also to fly on a Dragon spacecraft, has yet to be determined. But it may well employ a second-generation spacesuit based on learnings from this spaceflight. The third flight, unlikely to occur before at least 2030, will be an orbital launch aboard the company’s Starship vehicle—making Isaacman and his crew the first to fly on that rocket.
Following weeks of speculation, NASA finally made it official on Saturday: two astronauts who flew to the International Space Station on Boeing’s Starliner spacecraft in June will not return home on that vehicle. Instead, the agency has asked SpaceX to use its Crew Dragon spacecraft to fly astronauts Butch Wilmore and Suni Williams back to Earth.
“NASA has decided that Butch and Suni will return with Crew-9 next February,” said NASA Administrator Bill Nelson at the outset of a news conference on Saturday afternoon at Johnson Space Center.
In a sign of the gravity surrounding the agency’s decision, both Nelson and NASA’s deputy administrator, Pam Melroy, attended a Flight Readiness Review meeting held Saturday in Houston. During that gathering of the agency’s senior officials, an informal “go/no go” poll was taken. Those present voted unanimously for Wilmore and Williams to return to Earth on Crew Dragon. The official recommendation of the Commercial Crew Program was the same, and Nelson accepted it.
Therefore, Boeing’s Starliner spacecraft will undock from the station early next month—the tentative date, according to a source, is September 6—and attempt to make an autonomous return to Earth and land in a desert in the southwestern United States.
Then, no earlier than September 24, a Crew Dragon spacecraft will launch with two astronauts (NASA has not named the two crew members yet) to the space station with two empty seats. Wilmore and Williams will join these two Crew-9 astronauts for their previously scheduled six-month increment on the space station. All four will then return to Earth on the Crew Dragon vehicle.
Saturday’s announcement has big implications for Boeing, which entered NASA’s Commercial Crew Program more than a decade ago and lent legitimacy to NASA’s efforts to pay private companies for transporting astronauts to the International Space Station. The company’s failure—and despite the encomiums from NASA officials during Saturday’s news conference, this Starliner mission is a failure—will affect Boeing’s future in spaceflight. Ars will have additional coverage of Starliner’s path forward later today.
Never could get comfortable with thruster issues
For weeks after Starliner’s arrival at the space station in early June, officials from Boeing and NASA expressed confidence in the ability of the spacecraft to fly Wilmore and Williams home. They said they just needed to collect a little more data on the performance of the vehicle’s reaction control system thrusters. Five of these 28 small thrusters that guide Starliner failed during the trip to the space station.
Engineers from Boeing and NASA tested the performance of these thrusters at a facility in White Sands, New Mexico, in July. Initially, the engineers were excited to replicate the failures observed during Starliner’s transit to the space station. (Replicating failures is a critical step to understanding the root cause of a hardware problem.)
However, what NASA found after taking apart the failed thrusters was concerning, said the chief of NASA’s Commercial Crew Program, Steve Stich.
“I would say the White Sands testing did give us a surprise,” Stich said Saturday. “It was this piece of Teflon that swells up and got in the flow path and causes the oxidizer to not go into the thruster the way it needs to. That’s what caused the degradation of thrust. When we saw that, I think that’s when things changed a bit for us.”
When NASA took this finding to the thruster’s manufacturer, Aerojet Rocketdyne, the propulsion company said it had never seen this phenomenon before. It was at this point that agency engineers started to believe that it might not be possible to identify the root cause of the problem in a timely manner and become comfortable enough with the physics to be sure that the thruster problem would not occur during Starliner’s return to Earth.
Thank you for flying SpaceX
The result of this uncertainty is that NASA will now turn to the other commercial crew provider, SpaceX. This is not a pleasant outcome for Boeing which, a decade ago, looked askance at SpaceX as something akin to space cowboys. I have covered the space industry closely during the last 15 years, and during most of that time Boeing was perceived by much of the industry as the blueblood of spaceflight while SpaceX was the company that was going to kill astronauts due to its supposed recklessness.
Now the space agency is asking SpaceX to, in effect, rescue the Boeing astronauts currently on the International Space Station.
It won’t be the first time that SpaceX has helped a competitor recently. In the last two years SpaceX has launched satellites for a low-Earth orbit Internet competitor, OneWeb, after Russia’s space program squeezed the company; it has launched Europe’s sovereign Galileo satellites after delays to the Ariane 6 rocket; and it has launched the Cygnus spacecraft built by NASA’s other space station cargo services provider, Northrop Grumman, multiple times. Now SpaceX will help out Boeing, a crew competitor.
After Saturday’s news conference, I asked Jim Free, NASA’s highest-ranking civil servant, what he made of the once-upstart SpaceX now helping to backstop the rest of the Western spaceflight community. Without SpaceX, after all, NASA would not have a way to get crew or cargo to the International Space Station.
“They’re flying a lot, and they’re having success,” Free said. “And you know, when they have an issue, they find a way to recover like with the second-stage issue, We set out to have two providers to take crew to station to have options, and they’ve given us the option. In the reverse, Boeing could have been out there, and we still would face the same thing if they had a systemic Dragon problem, Boeing would have to bring us back. But I can’t argue with how much they’ve flown, that’s for sure, and what they’ve flown.”
Welcome to Edition 7.05 of the Rocket Report! The Federal Aviation Administration grounded SpaceX’s Falcon 9 rocket for 15 days after a rare failure of its upper stage earlier this month. The FAA gave the green light for Falcon 9 to return to flight July 25, and within a couple of days, SpaceX successfully launched three missions from three launch pads. There’s a lot on Falcon 9’s to-do list, so we expect SpaceX to quickly return to form with several flights per week.
As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.
Big delay for a reusable rocket testbed. The French space agency, CNES, has revealed that the inaugural test flight of its Callisto reusable rocket demonstrator will not take place until late 2025 or early 2026, European Spaceflight reports. CNES unveiled an updated website for the Callisto rocket program earlier this month, showing the test rocket has been delayed from a debut launch later this year to until late 2025 or early 2026. The Callisto rocket is designed to test techniques and technologies required for reusable rockets, such as vertical takeoff and vertical landing, with suborbital flights from the Guiana Space Center in South America.
Cooperative action … Callisto, which stands for Cooperative Action Leading to Launcher Innovation in Stage Toss-back Operations, is a joint project between CNES, German space agency DLR, and JAXA, the Japanese space agency. It will stand 14 meters (46 feet) tall and weigh about 4 metric tons (8,800 pounds), with an engine supplied by Japan. Callisto is one of several test projects in Europe aiming to pave the way for a future reusable rocket. (submitted by EllPeaTea and Ken the Bin)
The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.
Small step for Themis. Another European project established to demonstrate reusable rocket tech is making slow progress toward a first flight. The Themis project, funded by the European Space Agency, is similar in purpose to the Callisto testbed discussed above. This week, the German aerospace manufacturing company MT Aerospace announced it has begun testing a demonstrator of the landing legs that will be used aboard the Themis reusable booster, European Spaceflight reports. The landing legs for Themis are made of carbon fiber-reinforced plastic composites, and the initial test demonstrated good deployment and showed it would withstand the impact energy of landing.
Also delayed … Like Callisto, Themis is facing delays in getting to the launch pad. ArianeGroup, the ESA-selected Themis prime contractor, had been expected to conduct an initial hop test of the demonstrator before the end of 2024. However, officials have announced the initial hop tests won’t happen until sometime next year. The Themis booster is intended to eventually become the first stage booster for an orbital-class partially reusable rocket being developed by MaiaSpace, a subsidiary of ArianeGroup. (submitted by Ken the Bin)
Falcon 9 is flying again. A SpaceX Falcon 9 rocket returned to flight on July 27, barely two weeks after an upper stage failure ended a streak of more than 300 consecutive successful launches, Ars reports. By some measures this was an extremely routine mission—it was, after all, SpaceX’s 73rd launch of this calendar year. And like many other Falcon 9 launches this year, the “Starlink 10-9” mission carried 23 of the broadband Internet satellites into orbit. However, after a rare failure earlier this month, this particular Falcon 9 rocket was making a return-to-flight for the company and attempting to get the world’s most active booster back into service.
Best part is no part … The Falcon 9 successfully deployed its payload of Starlink satellites about an hour after lifting off from NASA’s Kennedy Space Center in Florida. Later in the weekend, SpaceX launched two more Starlink missions on Falcon 9 rockets from Florida and California, notching three flights in less than 28 hours. The launch failure on the previous Falcon 9 launch was caused by a liquid oxygen leak on the upper stage, which led to a “hard start” on the upper stage engine when it attempted to reignite in flight. Engineers and technicians were quickly able to pinpoint the cause of the leak, a crack in a “sense line” for a pressure sensor attached to the vehicle’s liquid oxygen system.
Atlas V’s NSSL era is over. United Launch Alliance delivered a classified US military payload to orbit Tuesday for the last time with an Atlas V rocket, ending the Pentagon’s use of Russian rocket engines as national security missions transition to all-American launchers, Ars reports. This was the 101st launch of an Atlas V rocket since its debut in 2002, and the 58th and final Atlas V mission with a US national security payload since 2007. The Atlas V is powered by an RD-180 main engine made in Russia, and with a little prodding from SpaceX (via a lawsuit) and Congress, the Pentagon started making moves to end its reliance on the RD-180 a decade ago.
Other options available … The RD-180 never failed on a National Security Space Launch (NSSL) mission using the Atlas V rocket, but its use became politically untenable after Russia’s annexation of Crimea in 2014, which predated Russia’s full-scale invasion of Ukraine eight years later. SpaceX began launching US military missions in 2018, and ULA debuted its new Vulcan rocket in January. Assuming a successful second test flight of Vulcan in September, ULA’s next-generation rocket has a good shot at launching its first national security mission by the end of the year. The Space Force’s policy is to maintain at least two independent launch vehicles capable of flying military payloads into orbit. Vulcan and SpaceX’s Falcon rocket family fulfill that requirement, so the military no longer needs the Atlas V. However, 15 more Atlas V rockets remain in ULA’s inventory for future commercial flights.
Crackdown at the Cape. While this week’s landmark launch of the Atlas V rocket is worthy of celebration, there’s a new ULA policy that deserves ridicule, Ars reports. Many of the spectacular photos of rocket launches shared on social media come from independent photographers, who often make little to no money working for an established media organization. Instead, they rely on sales of prints to recoup at least some of their expenses for gas, food, and camera equipment needed to capture these images, which often serve as free publicity for launch providers like ULA. Last month, ULA announced it will no longer permit these photographers to set up remote cameras at their launch pads if they sell their images independently. This new policy was in place for the Atlas V launch from Cape Canaveral, Florida, on Tuesday morning.
But why? … “ULA will periodically confirm editorial publication for media participating in remote camera placement,” ULA stated in an email distributed to photographers last month. “If publication does not occur, or photos are sold outside of editorial purposes, privileges to place remote cameras may be revoked.” To the photographers who spend many hours preparing their equipment, waiting to set up and remove cameras, and persevering through scrubs and more, it seemed like a harsh judgment. And nobody knows why it happened. ULA has offered no public comment about the new policy, and the company did not respond to questions from Ars about the agreement.
Astroscale achieves a first in orbit. There are more than 2,000 mostly intact dead rockets circling the Earth, but until this year, no one ever launched a satellite to go see what one looked like after many years of tumbling around the planet, Ars reports. A Japanese company named Astroscale launched a small satellite in February to chase down the derelict upper stage from a Japanese H-IIA rocket. Astroscale’s ADRAS-J spacecraft arrived near the H-IIA upper stage in April, and the company announced this week that its satellite has now completed two 360-degree fly-arounds of the rocket. This is the first time a satellite has maneuvered around an actual piece of space junk, and it offers an unprecedented snapshot of how an abandoned rocket holds up to 15 years in the harsh environment of space.
Prepping for the future … Astroscale’s ADRAS-J mission is partially funded by the Japan Aerospace Exploration Agency (JAXA). Astroscale and JAXA also have a contract for a follow-up mission named ADRAS-J2, which will attempt to link up with the same H-IIA rocket and steer it on a trajectory to burn up in Earth’s atmosphere. This would be the first demonstration of active debris removal, a concept pursued by Astroscale and other companies to help clear space junk out of low-Earth orbit.
An update on Ariane 6. The European Space Agency has released its first update on the results from the first flight of the Ariane 6 rocket since its launch July 9. Europe’s new flagship rocket had a mostly successful inaugural test flight. Its first stage, solid rocket boosters, and upper stage performed as expected for the first phase of the flight, delivering eight small satellites into an on-target orbit. The launch pad at the Guiana Space Center in South America also held up to the violent environment of launch, ESA said.
Still investigating … However, the final phase of the mission didn’t go according to plan. The upper stage’s Vinci engine was supposed to reignite for a third time on the test flight to deorbit the rocket, which would have released two small reentry capsules on technology demonstration missions to test heat shield technologies. This didn’t happen. An Auxiliary Propulsion Unit, which is a small engine to provide additional bursts of thrust and pressurize the upper stage’s propellant tanks, shut down shortly after startup ahead of the third burn of the primary Vinci engine. “This meant the Vinci engine’s third boost could not take place,” ESA said. “Analysis of the APU’s behavior is ongoing and further information will be made available as soon as possible, while the next task force update is expected in September.” (submitted by Ken the Bin)
Room to grow at Starbase. SpaceX has since launched Starship four times from its launch site in South Texas, known as Starbase, and is planning a fifth launch within the next two months, Ars reports. However, as it continues to test Starship and make plans for regular flights, SpaceX will need a higher flight rate. This is especially true as the company is unlikely to activate additional launch pads for Starship in Florida until at least 2026. To that end, SpaceX has asked the FAA for permission for up to 25 flights a year from South Texas, as well as the capability to land both the Starship upper stage and Super Heavy booster stage back at the launch site.
The answer is probably yes … On Monday, the FAA signaled that it is inclined to grant this request. The agency released a draft assessment indicating that its extensive 2022 analysis of Starship launch activities on the environment, wildlife, local communities, and more was sufficient to account for SpaceX’s proposal for more launches. There is more to do for this conclusion to become official, including public meetings and a public comment period this month.
SpaceX eyes Australia. SpaceX is in talks with US and Australian officials to land and recover one of its Starship rockets off Australia’s coast, a possible first step toward a bigger presence for Elon Musk’s company in the region as the two countries bolster security ties, Reuters reports. At the end of SpaceX’s fourth Starship test flight in June, the rocket made a controlled splashdown in the Indian Ocean hundreds of miles off the northwest coast of Australia. The discussions now underway are focused on the possibility of towing a future Starship vehicle from its splashdown point in the ocean to a port in Australia, where SpaceX engineers could inspect it and learn more about how it performed.
Eventually, it’ll come back to land … On the next Starship flight, currently planned for no earlier than late August, SpaceX plans to attempt to recover Starship’s giant Super Heavy booster using catch arms on the launch pad tower in Texas. On Sunday, Elon Musk told SpaceX and Tesla enthusiasts at an event called the “X Takeover” that it will take a few more flights for engineers to get comfortable returning the Starship itself to a landing onshore. “We want to be really confident that the ship heat shield is super robust and lands at the exact right location,” he said. “So before we try to bring the ship back to the launch site, we probably want to have at least three successful landings of the ship [at sea].” (submitted by Ken the Bin)
Next three launches
August 2: Electron | “Owl for One, One for Owl” | Mahia Peninsula, New Zealand | 16: 39 UTC
August 3: Falcon 9 | NG-21 | Cape Canaveral Space Force Station, Florida | 15: 28 UTC
August 4: Falcon 9 | Starlink 11-1 | Vandenberg Space Force Base, California | 07: 00 UTC
Sometime next year, SpaceX will begin returning its Dragon crew and cargo capsules to splashdowns in the Pacific Ocean and end recoveries of the spacecraft off the coast of Florida.
This will allow SpaceX to make changes to the way it brings Dragons back to Earth and eliminate the risk, however tiny, that a piece of debris from the ship’s trunk section might fall on someone and cause damage, injury, or death.
“After five years of splashing down off the coast of Florida, we’ve decided to shift Dragon recovery operations back to the West Coast,” said Sarah Walker, SpaceX’s director of Dragon mission management.
Public safety
In the past couple of years, landowners have discovered debris from several Dragon missions on their property, and the fragments all came from the spacecraft’s trunk, an unpressurized section mounted behind the capsule as it carries astronauts or cargo on flights to and from the International Space Station.
SpaceX returned its first 21 Dragon cargo missions to splashdowns in the Pacific Ocean southwest of Los Angeles. When an upgraded human-rated version of Dragon started flying in 2019, SpaceX moved splashdowns to the Atlantic Ocean and the Gulf of Mexico to be closer to the company’s refurbishment and launch facilities at Cape Canaveral, Florida. The benefits of landing near Florida included a faster handover of astronauts and time-sensitive cargo back to NASA and shorter turnaround times between missions.
The old version of Dragon, known as Dragon 1, separated its trunk after the deorbit burn, allowing the trunk to fall into the Pacific. With the new version of Dragon, called Dragon 2, SpaceX changed the reentry profile to jettison the trunk before the deorbit burn. This meant that the trunk remained in orbit after each Dragon mission, while the capsule reentered the atmosphere on a guided trajectory. The trunk, which is made of composite materials and lacks a propulsion system, usually takes a few weeks or a few months to fall back into the atmosphere and doesn’t have control of where or when it reenters.
Air resistance from the rarefied upper atmosphere gradually slows the trunk’s velocity enough to drop it out of orbit, and the amount of aerodynamic drag the trunk sees is largely determined by fluctuations in solar activity.
SpaceX and NASA, which funded a large portion of the Dragon spacecraft’s development, initially determined the trunk would entirely burn up when it reentered the atmosphere and would pose no threat of surviving reentry and causing injuries or damaging property. However, that turned out to not be the case.
In May, a 90-pound chunk of a SpaceX Dragon spacecraft that departed the International Space Station fell on the property of a “glamping” resort in North Carolina. At the same time, a homeowner in a nearby town found a smaller piece of material that also appeared to be from the same Dragon mission.
These events followed the discovery in April of another nearly 90-pound piece of debris from a Dragon capsule on a farm in the Canadian province of Saskatchewan. SpaceX and NASA later determined the debris fell from orbit in February, and earlier this month, SpaceX employees came to the farm to retrieve the wreckage, according to CBC.
Pieces of a Dragon spacecraft also fell over Colorado last year, and a farmer in Australia found debris from a Dragon capsule on his land in 2022.
After SpaceX decided to launch orbital missions of its Starship rocket from Texas about five years ago, the company had to undergo a federal environmental review of the site to ensure it was safe to do so.
As a part of this multi-year process, the Federal Aviation Administration completed a Final Programmatic Environmental Assessment in June 2022. Following that review, SpaceX received approval to conduct up to five Starship launches from South Texas annually.
SpaceX has since launched Starship four times from its launch site in South Texas, known as Starbase, and is planning a fifth launch within the next two months. However, as it continues to test Starship and make plans for regular flights, SpaceX will need a higher flight rate. This is especially true as the company is unlikely to activate additional launch pads for Starship in Florida until at least 2026.
To that end, SpaceX has asked the FAA for permission for up to 25 flights a year from South Texas, as well as the capability to land both the Starship upper stage and Super Heavy booster stage back at the launch site. On Monday, the FAA signaled that it is inclined to grant permission for this.
A solid step for SpaceX
The federal agency released a 154-page “Draft Tiered Environmental Assessment” for an increased cadence of Starship launches from South Texas. In conclusion, the document stated: “The FAA has concluded that the modification of SpaceX’s existing vehicle operator license for Starship/Super Heavy operations conforms to the prior environmental documentation, consistent with the data contained in the 2022 PEA, that there are no significant environmental changes, and all pertinent conditions and requirements of the prior approval have been met or will be met in the current action.”
Effectively, then, the FAA is saying that its extensive 2022 analysis of Starship activities on the environment, wildlife, local communities, and more was sufficient to account for SpaceX’s proposed modifications.
This is not the final word. In the parlance of the FAA, this is just milestone No. 3 in the seven-part process that results in a final determination. Up next are a series of public meetings, both in person in South Texas and online, during the month of August. The public comment period will then close on August 29.
Although the process is not yet complete, this document indicates the current thinking of federal regulators, who appear inclined to be permissive of an increased scope of activities. This is no small finding, as SpaceX is not only seeking to launch more rockets, but also to land them back at Starbase, as well as significantly increase the thrust of the vehicles.
SpaceX asked the FAA—which has federal authority to regulate such activities in order to protect life and property on the ground—for 25 annual launches and 50 total landings, 25 for Starship and 25 for Super Heavy. The company is also seeking to conduct up to 90 seconds of daytime Starship static fire tests, and 70 seconds of daytime Super Heavy static fire tests a year.
Bigger rockets, more propellant
SpaceX also is developing more powerful variants of its rocket, and the launch of these vehicles would also be permitted. Under the environmental assessment completed in 2022, SpaceX’s plans called for a 50-meter-tall Starship and a 71-meter-tall Super Heavy booster stage. Its upgraded Starship would be 70 meters tall, atop an 80-meter boost stage, for a total stack height of 150 meters.
The company is contemplating a far greater thrust for each of the vehicles, more than doubling Starship’s thrust to 6.5 million pounds and substantially increasing Super Heavy’s thrust to 2.3 million pounds. A bigger, more powerful launch system will require more than 1,500 tons of liquid oxygen and methane propellant.
One change that may have helped sell this increased flight rate is that SpaceX is not seeking any additional increases in road closures of State Highway 4, which leads from Brownsville to Boca Chica Beach. This road passes right by the launch site and is closed during launches and static fire tests. SpaceX has moved much of its pre-launch testing to a new location nearby that does not require road closures.
“SpaceX has dramatically reduced the duration of operations and the number of access restrictions through engineering analysis and improvements,” the FAA draft document states. “There has been an 85% reduction in the number of access restrictions from Flight 1 to Flight 3. Additionally, a majority of the testing that required access restrictions has been moved to SpaceX’s Massey’s Test Site, approximately 4 miles away.”
After the public comment period, the FAA will prepare a final environmental assessment and render a decision on the request.
Early on Saturday morning, at 1: 45 am local time, a Falcon 9 rocket soared into orbit from its launch site at Kennedy Space Center in Florida.
By some measures this was an extremely routine mission—it was, after all, SpaceX’s 73rd launch of this calendar year. And like many other Falcon 9 launches this year, the “Starlink 10-9” mission carried 23 of the broadband internet satellites into orbit. However, after a rare failure earlier this month, this particular Falcon 9 rocket was making a return-to-flight for the company, and attempting to get the world’s most active booster back into service.
And by all measures, it performed. The first stage booster, B-1069, made its 17th flight into orbit before landing on the Just Read the Instructions drone ship in the Atlantic Ocean. Then, a little more than an hour after liftoff, the rocket’s second stage released its payload into a good orbit, from which the Starlink spacecraft will use their on-board thrusters to reach operational altitudes in the coming weeks.
A crack in the sense line
The Falcon 9 rocket only failed a little more than 15 days ago, during a Starlink launch from Vandenberg Space Force Base, California, at 7: 35 pm PDT (02: 35 UTC) on July 11. During that mission, just a few minutes after stage separation, an unusual buildup of ice was observed on the Merlin vacuum engine that powers the second stage of the vehicle.
According to the company, the Merlin vacuum engine successfully completed its first burn after the second stage separated. However, during this time a liquid oxygen leak developed near the engine—which led to the buildup of ice observed during the webcast.
Engineers and technicians were quickly able to pinpoint the cause of the leak, a crack in a “sense line” for a pressure sensor attached to the vehicle’s liquid oxygen system. “This line cracked due to fatigue caused by high loading from engine vibration and looseness in the clamp that normally constrains the line,” the company said in an update published prior to Saturday morning’s launch.
This leak excessively cooled the engine, and caused a lower amount of igniter fluid to be available prior to re-lighting the Merlin for its second burn to circularize the rocket’s orbit before releasing the Starlink satellites. This caused a hard start of the Merlin engine. Ultimately the satellites were released into a lower orbit, where they burnt up in Earth’s atmosphere within days.
The sense line that failed is redundant, SpaceX said. It is not used by the flight safety system, and can be covered by alternate sensors already present on the engine. In the near term, the sense line will be removed from the second stage engine for Falcon 9 launches.
During a news briefing Thursday, SpaceX director Sarah Walker said this sense line was installed based on a customer requirement for another mission. The only difference between this component and other commonly flown sense lines is that it has two connections rather than one, she said. This may have made it a bit more susceptible to vibration, leading to a small crack.
Getting back fast
SpaceX identified the cause of the failure within hours of the anomaly, and worked the Federal Aviation Administration to come to a rapid resolution. On Thursday, the launch company received permission to return to flight.
“It was incredible to see how quickly the team was able to identify the cause of the mishap, and then the associated corrective actions to ensure success,” Walker said.
Before the failure on the night of July 11th, SpaceX had not experienced a mission failure in the previous 297 launches of the Falcon 9 rocket, dating back to the Amos-6 launch pad explosion in September 2016. The short interval between the failure earlier this month, and Saturday’s return to flight, appears to be unprecedented in spaceflight history.
The company now plans to launch two more Starlink missions on the Falcon 9 rocket this weekend, one from Cape Canaveral Space Force Station in Florida, as well as Vandenberg Space Force Base in California. It then has three additional missions before a critical astronaut flight for NASA, Crew-9, that could occur as soon as August 18.
For this reason, NASA was involved in the investigation of the second stage failure. Steve Stich, manager of NASA’s Commercial Crew Program, said SpaceX did an “extraordinary job” in identifying the root cause of the failure, and then rapidly looking at its Dragon spacecraft and first stage of the Falcon 9 rocket to ensure there were no other sensors that could cause similar problems.
The astronauts who rode Boeing’s Starliner spacecraft to the International Space Station last month still don’t know when they will return to Earth.
Astronauts Butch Wilmore and Suni Williams have been in space for 51 days, six weeks longer than originally planned, as engineers on the groundwork through problems with Starliner’s propulsion system.
The problems are twofold. The spacecraft’s reaction control thrusters overheated, and some of them shut off as Starliner approached the space station June 6. A separate, although perhaps related, problem involves helium leaks in the craft’s propulsion system.
On Thursday, NASA and Boeing managers said they still plan to bring Wilmore and Williams home on the Starliner spacecraft. In the last few weeks, ground teams completed testing of a thruster on a test stand at White Sands, New Mexico. This weekend, Boeing and NASA plan to fire the spacecraft’s thrusters in orbit to check their performance while docked at the space station.
“I think we’re starting to close in on those final pieces of flight rationale to make sure that we can come home safely, and that’s our primary focus right now,” Stich said.
The problems have led to speculation that NASA might decide to return Wilmore and Williams to Earth in a SpaceX Crew Dragon spacecraft. There’s one Crew Dragon currently docked at the station, and another one is slated to launch with a fresh crew next month. Steve Stich, manager of NASA’s commercial crew program, said the agency has looked at backup plans to bring the Starliner crew home on a SpaceX capsule, but the main focus is still to have the astronauts fly home aboard Starliner.
“Our prime option is to complete the mission,” Stich said. “There are a lot of good reasons to complete this mission and bring Butch and Suni home on Starliner. Starliner was designed, as a spacecraft, to have the crew in the cockpit.”
Starliner launched from Cape Canaveral Space Force Station in Florida on June 5. Wilmore and Williams are the first astronauts to fly into space on Boeing’s commercial crew capsule, and this test flight is intended to pave the way for future operational flights to rotate crews of four to and from the International Space Station.
Once NASA fully certifies Starliner for operational missions, the agency will have two human-rated spaceships for flights to the station. SpaceX’s Crew Dragon has been flying astronauts since 2020.
Tests, tests, and more tests
NASA has extended the duration of the Starliner test flight to conduct tests and analyze data in an effort to gain confidence in the spacecraft’s ability to safely bring its crew home and to better understand the root causes of the overheating thrusters and helium leaks. These problems are inside Starliner’s service module, which is jettisoned to burn up in the atmosphere during reentry, while the reusable crew module, with the astronauts inside, parachutes to an airbag-cushioned landing.
The most important of these tests was a series of test-firings of a Starliner thruster on the ground. This thruster was taken from a set of hardware slated to fly on a future Starlink mission, and engineers put it through a stress test, firing it numerous times to replicate the sequence of pulses it would see in flight. The testing simulated two sequences of flying up to the space station, and five sequences the thruster would execute during undocking and a deorbit burn for return to Earth.
“This thruster has seen quite a bit of pulses, maybe even more than what we would anticipate we would see during a flight, and more aggressive in terms of two uphills and five downhills,” Stich said. “What we did see in the thruster is the same kind of thrust degradation that we’re seeing on orbit. In a number of the thrusters (on Starliner), we’re seeing reduced thrust, which is important.”
Starliner’s flight computer shut off five of the spacecraft’s 28 reaction control system thrusters, produced by Aerojet Rocketdyne, during the rendezvous with the space station last month. Four of the five thrusters were recovered after overheating and losing thrust, but officials have declared one of the thrusters unusable.
The thruster tested on the ground showed similar behavior. Inspections of the thruster at White Sands showed bulging in a Teflon seal in an oxidizer valve, which could restrict the flow of nitrogen tetroxide propellant. The thrusters, each generating about 85 pounds of thrust, consume the nitrogen tetroxide, or NTO, oxidizer and mix it with hydrazine fuel for combustion.
A poppet valve, similar to an inflation valve on a tire, is designed to open and close to allow nitrogen tetroxide to flow into the thruster.
“That poppet has a Teflon seal at the end of it,” Nappi said. “Through the heating and natural vacuum that occurs with the thruster firing, that poppet seal was deformed and actually bulged out a little bit.”
Stich said engineers are evaluating the integrity of the Teflon seal to determine if it could remain intact through the undocking and deorbit burn of the Starliner spacecraft. The thrusters aren’t needed while Starliner is attached to the space station.
“Could that particular seal survive the rest of the flight? That’s the important part,” Stich said.