Space

nro-chief:-“you-can’t-hide”-from-our-new-swarm-of-spacex-built-spy-satellites

NRO chief: “You can’t hide” from our new swarm of SpaceX-built spy satellites


“A satellite is always coming over an area within a given reasonable amount of time.”

This frame from a SpaceX video shows a stack of Starlink Internet satellites attached to the upper stage of a Falcon 9 rocket, moments after jettison of the launcher’s payload fairing. Credit: SpaceX

The director of the National Reconnaissance Office has a message for US adversaries around the world.

“You can’t hide, because we’re constantly looking,” said Chris Scolese, a longtime NASA engineer who took the helm of the US government’s spy satellite agency in 2019.

The NRO is taking advantage of SpaceX’s Starlink satellite assembly line to build a network of at least 100 satellites, and perhaps many more, to monitor adversaries around the world. So far, more than 80 of these SpaceX-made spacecraft, each a little less than a ton in mass, have launched on four Falcon 9 rockets. There are more to come.

A large number of these mass-produced satellites, or what the NRO calls a “proliferated architecture,” will provide regularly updated imagery of foreign military installations and other sites of interest to US intelligence agencies. Scolese said the new swarm of satellites will “get us reasonably high-resolution imagery of the Earth, at a high rate of speed.”

This is a significant change in approach for the NRO, which has historically operated a smaller number of more expensive satellites, some as big as a school bus.

“We expect to quadruple the number of satellites we have to have on-orbit in the next decade,” said Col. Eric Zarybnisky, director of the NRO’s office of space launch, during an October 29 presentation at the Wernher von Braun Space Exploration Symposium in Huntsville, Alabama.

The NRO is not the only national security agency eyeing a constellation of satellites in low-Earth orbit. The Pentagon’s Space Development Agency plans to kick off a rapid-fire launch cadence next year to begin placing hundreds of small satellites in orbit to detect and track missiles threatening US or allied forces. The Space Force is also interested in buying its own set of SpaceX satellites for broadband connectivity.

The Pentagon started moving in this direction about a decade ago, when leaders raised concerns that the legacy fleets of military and spy satellites were at risk of attack. Now, Elon Musk’s SpaceX and a handful of other companies, many of them startups, specialize in manufacturing and launching small satellites at relatively low cost.

“Why didn’t we do this earlier? Well, launch costs were high, right?” said Troy Meink, the NRO’s principal deputy director, in an October 17 discussion hosted by the Mitchell Institute for Aerospace Studies. “The cost of entry was pretty high, which has come way down. Then, digital electronics has allowed us to build capability in a much smaller package, and a combination of those two is really what’s enabled it.”

A constant vigil

NRO officials still expect to require some large satellites with sharp-eyed optics—think of a Hubble Space Telescope pointed at Earth—to resolve the finest details of things like missile installations, naval fleets, or insurgent encampments. The drawback of this approach is that, at best, a few big optical or radar imaging satellites only fly over places of interest several times per day.

With the proliferated architecture, the NRO will capture views of most places on Earth a lot more often. Two of the most important metrics with a remote-sensing satellite system are imaging resolution and revisit time, or how often a satellite is over a specific location on Earth.

“We need to have persistence or fast revisit,” Scolese said on October 3 in a discussion at the Center for Strategic and International Studies, a nonprofit Washington think tank. “You can proliferate your architecture, put more satellites up there, so that a satellite is always coming over an area within a given reasonable amount of time that’s needed by the users. That’s what we’re doing with the proliferated architecture.

“That’s enabled by a really rich commercial industry that’s building hundreds or thousands of satellites,” Scolese said. “That allowed us to take those satellites, adapt them to our use at low cost, and apply whatever sensor is needed to go off and acquire the information that’s needed at whatever revisit time is required.”

The NRO’s logo for its proliferated satellite constellation, with the slogan “Strength in Numbers.”

Credit: National Reconnaissance Office

The NRO’s logo for its proliferated satellite constellation, with the slogan “Strength in Numbers.” Credit: National Reconnaissance Office

The NRO has identified other benefits, too. It’s a lot more difficult for a country like Russia or China to take out an entire constellation of satellites than to destroy or disable a single spy platform in orbit. Military officials have often referred to these expensive one-off satellites as “big juicy targets” for potential adversaries.

“It gives us a degree of resilience that we didn’t have before,” Scolese said.

The proliferated constellation also allows the NRO to be more nimble in responding to threats or new technologies. If a new type of sensor becomes available, or an adversary does something new that intelligence analysts want to look at, the NRO and its contractor can quickly swap out payloads on satellites going through the production line.

“That’s a huge change for an organization like the NRO,” Zarybnisky said. “It’s a catalyst. Another catalyst for innovation in the NRO is these smaller, lower price-point systems. Rapid turn time means you can introduce that next technology into the next generation and not wait for many years or even decades to introduce new technologies.”

Three-letter agencies

The NRO provides imaging, signals, and electronic intelligence data from its satellites to the National Security Agency, the National Geospatial-Intelligence Agency, and the Department of Defense. Scolese said the NRO wants to get actionable information into the hands of users across the federal government as quickly as possible, but the volume of data coming down from hundreds of satellites presents a challenge.

“Once you go to a proliferated architecture and you’re going from a few satellites to tens of satellites to now hundreds of satellites, you have to change a lot of things, and we’re in the process of doing that,” Scolese said.

With so many satellites, it “means that it’s no longer possible for an individual sitting at a control center to say, ‘I know what this satellite is doing,'” Scolese said. “So we have to have the machines to go off and help us there. We need artificial intelligence, machine learning, automated processes to help us do that.”

“We will deliver data in seconds, not minutes, and not hours,” Zarybnisky said.

The existence of this constellation was made public in March, when Reuters reported the NRO was working with SpaceX to develop and deploy a network of satellites in low-Earth orbit. SpaceX’s Starshield business unit is building the satellites under a $1.8 billion contract signed in 2021, according to Reuters. This is remarkably inexpensive by the standards of the NRO, which has spent more money just constructing a satellite processing facility at Cape Canaveral, Florida (thanks to Eric Berger’s reporting in Reentry for this juicy tidbit).

Chris Scolese appears before the Senate Armed Services Committee in 2019 during a confirmation hearing to become director of the National Reconnaissance Office.

Chris Scolese appears before the Senate Armed Services Committee in 2019 during a confirmation hearing to become director of the National Reconnaissance Office. Credit: Tom Williams/CQ Roll Call

Reuters reported Northrop Grumman is supplying sensors to mount on at least some of the SpaceX-built satellites, but their design and capabilities remain classified. The NRO, which usually keeps its work secret, officially acknowledged the program in April, a month before the first batch of satellites launched from Vandenberg Space Force Base, California.

SpaceX revealed the existence of the Starshield division in 2022, the year after signing the NRO contract, as a vehicle for applying the company’s experience manufacturing Starlink Internet satellites to support US national security missions. SpaceX has built and launched more than 7,200 Starlink satellites since 2019, with more than 6,000 currently operational, 10 times larger than any other existing satellite constellation.

The current generation of Starlink satellites launch in batches of 20 to 23 spacecraft on SpaceX’s Falcon 9 rocket. They’re flat-packed one on top of the other inside the Falcon 9’s payload shroud, then released all at once in orbit. The NRO’s new satellites likely use the same basic design, launching in groups of roughly 21 satellites on each mission.

According to Scolese, the NRO owns these SpaceX-built satellites, rather than SpaceX owning them and supplying data to the government through a service contract arrangement. By the end of the year, the NRO’s director anticipates having at least 100 of these satellites in orbit, with additional launches expected through 2028.

“We are going from the demo phase to the operational phase, where we’re really going to be able to start testing all of this stuff out in a more operational way,” Scolese said.

The NRO is buttressing its network of government-owned satellites with data buys from commercial remote-sensing companies, such as Maxar, Planet, and BlackSky. One advantage of commercial imagery is the NRO can share it widely with allies and the public because it isn’t subject to top-secret classification restrictions.

Scolese said it’s important to maintain a diversity of sources and observation methods to overcome efforts from other nations to hide what they’re doing. This means using more satellites, as the NRO is doing with SpaceX and other commercial partners. It also means using electro-optical, radar, thermal infrared, and electronic detection sensors to fully characterize what intelligence analysts are seeing.

The NRO is also studying more exotic methods like quantum remote sensing, using the principles of quantum physics at the atomic level.

“There’s camouflage,” Scolese said. “There are lots of techniques that can be used, which means we have to go off and look at very different phenomenologies, and we’ve developed and are developing capabilities that will allow us to defeat those types of activities. Quantum sensing is one of them. You can’t really hide from fundamental physics.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

NRO chief: “You can’t hide” from our new swarm of SpaceX-built spy satellites Read More »

us-space-force-warns-of-“mind-boggling”-build-up-of-chinese-capabilities

US Space Force warns of “mind-boggling” build-up of Chinese capabilities

Both Russia and China have tested satellites with capabilities that include grappling hooks to pull other satellites out of orbit and “kinetic kill vehicles” that can target satellites and long-range ballistic missiles in space.

In May, a senior US defense department official told a House Armed Services Committee hearing that Russia was developing an “indiscriminate” nuclear weapon designed to be sent into space, while in September, China made a third secretive test of an unmanned space plane that could be used to disrupt satellites.

The US is far ahead of its European allies in developing military space capabilities, but it wanted to “lay the foundations” for the continent’s space forces, Saltzman said. Last year UK Air Marshal Paul Godfrey was appointed to oversee allied partnerships with NATO with the US Space Force—one of the first times that a high-ranking allied pilot had joined the US military.

But Saltzman warned against a rush to build up space forces across the continent.

“It is resource-intensive to separate out and stand up a new service. Even … in America where we think we have more resources, we underestimated what it was going to take,” he said.

The US Space Force, which monitors more than 46,000 objects in orbit, has about 10,000 personnel but is the smallest department of the US military. Its officers are known as “guardians.”

The costs of building up space defense capabilities mean the US is heavily reliant on private companies, raising concerns about the power of billionaires in a sector where regulation remains minimal.

SpaceX, led by prominent Trump backer Elon Musk, is increasingly working with US military and intelligence through its Starshield arm, which is developing low Earth orbit satellites that track missiles and support intelligence gathering.

This month, SpaceX was awarded a $734 million contract to provide space launch services for US defense and intelligence agencies.

Despite concerns about Musk’s erratic behavior and reports that the billionaire has had regular contact with Russian President Vladimir Putin, Saltzman said he had no concerns about US government collaboration with SpaceX.

“I’m very comfortable that they’ll execute those [contracts] exactly the way they’re designed. All of the dealings I’ve had with SpaceX have been very professional,” he said.

Additional reporting by Kathrin Hille in Taipei.

© 2024 The Financial Times Ltd. All rights reserved. Not to be redistributed, copied, or modified in any way.

US Space Force warns of “mind-boggling” build-up of Chinese capabilities Read More »

as-north-korean-troops-march-toward-ukraine,-does-a-russian-quid-pro-quo-reach-space?

As North Korean troops march toward Ukraine, does a Russian quid pro quo reach space?

Earlier this week, North Korea apparently completed a successful test of its most powerful intercontinental ballistic missile, lofting it nearly 4,800 miles into space before the projectile fell back to Earth.

This solid-fueled, multi-stage missile, named the Hwasong-19, is a new tool in North Korea’s increasingly sophisticated arsenal of weapons. It has enough range—perhaps as much as 9,320 miles (15,000 kilometers), according to Japan’s government—to strike targets anywhere in the United States.

The test flight of the Hwasong-19 on Thursday was North Korea’s first test of a long-range missile in nearly a year, coming as North Korea deploys some 10,000 troops inside Russia just days before the US presidential election. US officials condemned the missile launch as a “provocative and destabilizing” action in violation of UN Security Council resolutions.

The budding partnership between Russia and North Korea has evolved for several years. Russian President Vladimir Putin has met with North Korean leader Kim Jong Un on multiple occasions, most recently in Pyongyang in June. Last September, the North Korean dictator visited Putin at the Vostochny Cosmodrome, Russia’s newest launch base, where the leaders inspected hardware for Russia’s Angara rocket.

In this photo distributed by North Korean state media, a Hwasong-19 missile fires out of a launch tube somewhere in North Korea on October 31, 2024.

In this photo distributed by North Korean state media, a Hwasong-19 missile fires out of a launch tube somewhere in North Korea on October 31, 2024. Credit: KCNA

The visit to Vostochny fueled speculation that Russia might provide missile and space technology to North Korea in exchange for Kim’s assistance in the fight against Ukraine. This week, South Korea’s defense minister said his government has identified several areas where North Korea likely seeks help from Russia.

“In exchange for their deployment, North Korea is very likely to ask for technology transfers in diverse areas, including the technologies relating to tactical nuclear weapons technologies related to their advancement of ICBMs, also those regarding reconnaissance satellites and those regarding SSBNs [ballistic missile submarines] as well,” said Kim Yong-hyun, South Korea’s top military official, on a visit to Washington.

As North Korean troops march toward Ukraine, does a Russian quid pro quo reach space? Read More »

what-is-happening-with-boeing’s-starliner-spacecraft?

What is happening with Boeing’s Starliner spacecraft?

Boeing’s Starliner spacecraft safely landed empty in the New Mexico desert about eight weeks ago, marking a hollow end to the company’s historic first human spaceflight. The vehicle’s passengers during its upward flight to the International Space Station earlier this summer, Butch Wilmore and Suni Williams, remain in space, awaiting a ride home on SpaceX’s Crew Dragon.

Boeing has been steadfastly silent about the fate of Starliner since then. Two senior officials, including Boeing’s leader of human spaceflight, John Shannon, were originally due to attend a post-landing news conference at Johnson Space Center in Houston. However, just minutes before the news conference was to begin, two seats were removed—the Boeing officials were no-shows.

In lieu of speaking publicly, Boeing issued a terse statement early on the morning of September 8, attributing it to Mark Nappi, vice president and program manager of Boeing’s commercial crew program. “We will review the data and determine the next steps for the program,” Nappi said, in part.

And since then? Nothing. Requests for comment from Boeing have gone unanswered. The simple explanation is that the storied aviation company, which has a new chief executive named Kelly Ortberg, remains in the midst of evaluating Boeing’s various lines of business.

Figuring out what to do with Starliner

“There are probably some things on the fringe there that we can be more efficient with, or that just distract us from our main goal here. So, more to come on that,” Ortberg said during his first quarterly earnings call last week. “I don’t have a specific list of things that we’re going to keep and we’re not going to keep. That’s something for us to evaluate, and the process is underway.”

Also last week, The Wall Street Journal reported that Boeing is considering putting some of its space businesses, including Starliner, up for sale. This suggests that if Boeing can get a return on its investment in Starliner, it probably would be inclined to take the money. To date, the company has reported losses of $1.85 billion on Starliner. As a result, Boeing has told NASA it will no longer bid on fixed-price space contracts in the future.

What is happening with Boeing’s Starliner spacecraft? Read More »

rocket-report:-new-glenn-shows-out;-ula-acknowledges-some-fairing-issues

Rocket Report: New Glenn shows out; ULA acknowledges some fairing issues


“We have integrated some corrective actions and additional inspections.”

New Glenn arrives at Launch Complex 36 in Florida. Credit: Blue Origin

Welcome to Edition 7.18 of the Rocket Report! One of the most intriguing bits of news this week is the rolling of Blue Origin’s New Glenn rocket out to its launch complex in Florida. With two months remaining in 2024, will the company make owner Jeff Bezos’ deadline for getting to orbit this year? We’ll have to see, as the Rocket Report is not prepared to endorse any timelines at the moment.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

ESA selects four companies for reusable launch. The European Space Agency announced this week the selection of Rocket Factory Augsburg, The Exploration Company, ArianeGroup, and Isar Aerospace to develop reusable rocket technology, European Spaceflight reports. The four awardees are divided into two initiatives focused on the development of reusable rocket technology: the Technologies for High-thrust Reusable Space Transportation (THRUST!) project and the Boosters for European Space Transportation (BEST!) project. The awarded companies will now begin contract negotiations with ESA to further develop and test their solutions.

The best thrust anywhere … The THRUST! initiative aims to push forward the development of European liquid propulsion systems, and Rocket Factory Augsburg and The Exploration were selected to develop projects under this initiative. The BEST! project was launched to stimulate the development of future reusable rocket first stages or boosters, and ArianeGroup and Isar Aerospace were chosen for this. Europe has a number of initiatives now aimed at developing a reusable rocket, but it seems doubtful that a European rocket will launch into orbit in the 2020s and successfully return to Earth. (submitted by Ken the Bin)

UK startup pursues fully reusable rocket. Astron Systems intends to develop a fully reusable two-stage rocket to transport about 360 kilograms to low-Earth orbit, Space News reports. Founded in 2021 and located at the Harwell Science Campus in England, Astron is one of 12 startups in the fall 2024 class of the TechStars Space Accelerator. “We have a vision for the future in-orbit economy being this big thriving thing,” Astron co-founder Eddie Brown said. “Small satellites are the beating heart of the in-orbit economy today. There are a lot of customers that are crying out for better launch solutions.”

But they have a ways to go … The company seeks to build a methane-liquid oxygen rocket, but clearly it is starting small. Astron Systems has raised more than $600,000 to date, including private investment, grants from Innovate UK and ESA, and backing from Techstars Space. The company’s initial work is with pump technology and a torch igniter. The company’s optimistic forecast calls for a test launch in late 2027. We’ll pencil that date in rather than putting it down in ink, if that’s OK. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Avio to build rocket motors for US military. Arlington-headquartered Avio USA was incorporated in April 2022. At the time, Italy-based Avio stated that the wholly owned subsidiary would be used to “explore business opportunities in the US market.” By 2023, the company revealed that it had identified “a significant production capacity gap relative to the substantial acceleration in demand requirements” in the area of tactical propulsion. This week the Italian rocket maker said it had begun design work on its first US-based solid rocket motor production facility, European Spaceflight reports.

Demand is rising … Avio USA is evaluating a number of possible locations in multiple US states for the several-hundred-acre production facility. A decision on the location of the facility is expected in the first half of 2025. “We are seeing significant demand for our capabilities from our current customers in multiple product lines, and this facility will be critical in creating our production capacity so we can meet the needs of our current and future customers as an independent supplier,” said Avio USA CEO James Syring. Avio will join several US startups in a hurry to ramp up solid rocket motors for missiles as the conflict in Ukraine continues. In the immortal words of Megadeth: Peace Sells … but Who’s Buying? (submitted by Ken the Bin)

ULA assessing fairing issues. A little more than a year ago, a snippet of video that wasn’t supposed to go public made its way onto United Launch Alliance’s live broadcast of an Atlas V rocket launch carrying three classified surveillance satellites for the US Space Force and the National Reconnaissance Office. The public saw video of the clamshell-like payload fairing falling away from the Atlas V rocket as it fired downrange from Cape Canaveral, Florida, on September 10, 2023. It wasn’t pretty. Numerous chunks of material, possibly insulation from the inner wall of the payload shroud’s two shells, fell off the fairing, Ars reports.

Issue still being looked at … We have heard murmurings about fairing issues on the Atlas V for a while now, but United Launch Alliance and Space Force officials have been tight-lipped. More than a year later, however, the company acknowledges it is still investigating the issue. A ULA spokesperson said the company continues to review data related to the fairing debris and will share information upon completion of the investigation. “We are working very closely with our customers and suppliers on the observations in advance of future launches to improve our capabilities,” the spokesperson said. “We have integrated some corrective actions and additional inspections of the hardware.” Payload fairing debris could pose a risk to sensitive components on the spacecraft that the shroud is supposed to protect.

China launches next space station crew. A Long March 2F rocket topped with the Shenzhou 19 crew spacecraft lifted off from the Jiuquan Satellite Launch Center on Tuesday carrying a crew of three Chinese astronauts, Space.com reports. Aboard were commander Cai Xuzhe, 48, who was a member of the Shenzhou 14 mission, and rookie astronauts Song Lingdong, 34, a former air force pilot, and Wang Haoze, also 34, a spaceflight engineer. About six hours after the launch, the Shenzhou 19 spacecraft docked with the Tiangong space station.

Keeping the station on track … The astronaut trio is set to spend six months in orbit aboard Tiangong, conducting various experiments and embarking on several extravehicular activities, or spacewalks. Shenzhou 19 is the 33rd spaceflight mission under China’s human spaceflight program. These missions include uncrewed test flights, crewed missions, launching Tiangong modules and smaller space lab precursor missions, next-generation crew spacecraft test flights, and Tianzhou cargo and refueling missions. China intends to keep Tiangong, which has about 20 percent of the mass of the International Space Station, flying for at least a decade. (submitted by Ken the Bin)

Firefly’s CEO to work “maniacally” to scale the company. Firefly’s previous CEO was in the job for less than two years before a shock exit in July after reported allegations of an inappropriate employee relationship. Now the company has a new top boss, Jason Kim, who left his job as chief executive of satellite-making subsidiary Millennium for Firefly. “I’m thrilled to be here,” Kim told CNBC in an interview. “I’m going to work maniacally to support this team so that we can achieve all of our visionary ideas.”

It starts with the engines … Kim is looking to fly more Alpha rockets and bring the Medium Launch Vehicle (MLV) online in 2026. Kim sees Firefly as having a key advantage—”an engine that works”—in its Reaver engines that power the Alpha rockets. And for MLV, Kim said Firefly took that “great engine technology” and “scaled it up to become Miranda, so you’re not starting from scratch” with a new engine. “We’re making huge strides on MLV,” Kim added. “We’ve had 50 Miranda engine tests already.” Although Alpha may not be reusable, the company has purposely designed the MLV for reusability. “We’re closer to how SpaceX tackled [rocket reuse],” Kim said. (submitted by Ken the Bin)

US Senator wants FAA to move faster. The Federal Aviation Administration must make “immediate changes” to the regulatory framework governing launch and re-entry, according to Sen. Jerry Moran (R-Kan.), a senior authorizer and appropriator who oversees the space sector, Payload reports. “Across the commercial space industry, concerns are abundant in every stage of FAA’s Office of Space Transportation of both its formal licensing process and its information pre-application review,” Moran wrote in a letter to FAA Administrator Michael Whitaker.

More funding may help … Referencing possible delays with NASA’s Artemis program, Moran called on the FAA to rapidly increase transparency and accountability, saying that America’s leadership in space depends on faster action. “It is irrational to think it often takes more time to complete licensing evaluations than actual rocket development and testing,” Moran wrote. The chief of the FAA’s space division, Kelvin Coleman, has previously said Congress could fix the issues with more funding. The  FAA’s Office of Space Transportation has an annual budget of $42 million.

Europe moves to address geo-return concerns in launch. In its most basic form, the European Space Agency’s geo-return policy ensures that companies in member states receive contracts proportional to their country’s financial contributions to ESA. While the policy does foster greater contributions to the agency, it can also add complexity to programs, requiring supply chains to be spread across multiple European countries. For commercial launch companies, this is almost certain to add cost to a public-private partnership with ESA.

No constraints … Now, European Spaceflight reports, ESA seeks to exempt a commercial launch competition from this geo-return policy. The program aims to incentivize the development of a diversified European commercial launch services market. ESA Director of Space Transportation Toni Tolker-Nielsen said, “There will be no constraints on geo-return in this request for proposals.” This would seem to be a positive step forward for private launch companies in Germany, the United Kingdom, Spain, France, and elsewhere. (submitted by Ken the Bin)

What are the next steps for Starship? In a feature, Ars explores the roadmap for SpaceX and the Starship rocket over the next three to five years and the path toward landing NASA astronauts on the Moon. The capture of a Super Heavy booster on October 13 at the company’s Starbase facility in South Texas brings the company closer to such a higher flight rate. SpaceX proved its titanic booster does not need cumbersome landing legs and can eliminate days of processing time otherwise needed to move a landed rocket back to the launch site. Less mass and shorter turnarounds are huge wins for Starship.

A long road ahead … Among the key milestones are: an in-flight relight of a Raptor engine, returning a Starship upper stage to land, reflying a Super Heavy booster, performing one or more in-flight refueling demonstrations, flying a long-duration mission around the Moon (probably 100 days or longer), landing an uncrewed version of Starship on the Moon, and, finally, landing humans as part of the Artemis program. If all goes well, it should be possible for NASA to fulfill the initial promise of the Artemis program and land two astronauts on the surface of the Moon in 2028. This is two years later than NASA’s current goal of September 2026 but would still represent a herculean task by SpaceX and the space agency. If there are significant setbacks, such as failed tower catches or mishaps during fueling in space, the program will doubtlessly face more delays.

New Glenn first stage rolls to the launch site. Blue Origin took another significant step toward the launch of its large New Glenn rocket on Tuesday night by rolling the first stage of the vehicle to a launch site at Cape Canaveral, Florida, Ars reports. Moving the rocket to the launch site is a key sign that the first stage is almost ready for its much-anticipated debut. Development of the New Glenn rocket would bring a third commercial heavy-lift rocket into the US market, after SpaceX’s Falcon Heavy and Starship vehicles. It would send another clear signal that the future of rocketry in the United States is commercially driven rather than government-led.

So when New Glenn? … The rocket must still undergo two key milestones: completing a wet dress rehearsal in which the vehicle will be fully fueled and its ground systems tested, followed by a hot-fire test during which the first stage’s seven BE-4 rocket engines will be ignited for several seconds. Blue Origin founder Jeff Bezos has been pushing the company hard to launch New Glenn for the first time this year, and the schedule is getting tight. Blue Origin already had to stand down from an October launch attempt and delay the launch of a small Mars-bound payload for NASA called ESCAPADE. Ars estimates the rocket will launch no earlier than early- to mid-December if all goes well.

Next three launches

Nov. 3: Falcon 9 | Starlink 6-77 | Cape Canaveral Space Force Station, Fla. | 20: 57 UTC

Nov. 4: H3 | Kirameki 3 | Tanegashima Space Center, Japan | 05: 48 UTC

Nov. 4: Electron | Changes in Latitudes, Changes in Attitudes| Māhia Peninsula, New Zealand | 09: 30 UTC

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Rocket Report: New Glenn shows out; ULA acknowledges some fairing issues Read More »

finally,-a-sign-of-life-for-europe’s-sovereign-satellite-internet-constellation

Finally, a sign of life for Europe’s sovereign satellite Internet constellation

The estimated 10 billion-plus euro cost of the IRIS² program is nearly double initial projections. European officials also confirmed the sovereign satellite network won’t begin providing services to European government customers until 2030, three years later than the commission’s previous schedule.

Rising costs and negotiations over how much governments and industry will pay for IRIS² have delayed the contract award for months. Earlier this year, press reports indicated the SpaceRISE consortium’s proposal for IRIS² carried a total cost of 12 billion euros. It seems the price has been negotiated down, at least by a small percentage, to around 10 billion.

It’s also worth noting that the EU will this year only commit to funding the IRIS² initiative through the end 0f 2027, when the commission’s seven-year budget framework expires. It’s almost certain the IRIS² program will require more government funding beyond 2027, but the European Commission said it will decide later on additional money, subject to the “availability of the corresponding appropriations.”

In April, a senior official in the German government, the EU’s top contributor, called for the IRIS² program to be restarted. Robert Habeck, Germany’s economy minister, called the proposed 12 billion euro price “exorbitant” and said the entire project was “ill-conceived” in a letter to Thierry Breton, then the EU’s internal market commissioner, according to a report in the Germany newspaper Handelsblatt.

Habeck’s protest obviously did not stop the European Commission from awarding the contract to the SpaceRISE consortium. The 12-year agreement will cover the development, deployment, and operation of at least 290 satellites placed at different orbital altitudes, from low-Earth orbit up to medium-Earth orbit several thousand miles above the planet.

At these higher altitudes, IRIS² can cover the globe with fewer satellites than Starlink, OneWeb, or Amazon Kuiper.

The commission’s press release said the agreement, the largest space contract in EU history, should be signed in December. At that time, “legal and financial commitment from both parties will be taken,” the commission said.

The SpaceRISE consortium includes numerous European satellite and telecom companies, including spacecraft manufacturers Airbus Defence and Space, Thales Alenia Space, and OHB. Telespazio, Deutsche Telekom, Orange, Hisdesat, and Thales SIX are also part of the industry group.

These companies are typically competitors in the satellite and telecom markets, as are SES, Eutelsat, and Hispasat, which head up the consortium. Getting all the contractors and subcontractors to play nice with one another will be no small feat.

Finally, a sign of life for Europe’s sovereign satellite Internet constellation Read More »

nasa’s-oldest-active-astronaut-is-also-one-of-the-most-curious-humans

NASA’s oldest active astronaut is also one of the most curious humans

For his most recent trip to the International Space Station, in lieu of bringing coffee or some other beverage in his “personal drink bag” allotment for the stay, NASA astronaut Don Pettit asked instead for a couple of bags of unflavored gelatin.

This was not for cooking purposes but rather to perform scientific experiments. How many of us would give up coffee for science?

Well, Donald Roy Pettit is not like most of us.

At the age of 69, Pettit is NASA’s oldest active astronaut and began his third long-duration stay on the space station last month. A lifelong tinkerer and gifted science communicator, he already is performing wonders up there, and we’ll get to his current activities in a moment. But just so you understand who we’re dealing with, the thing to know about Pettit is that he is insatiably curious, and wants to share the wonder of science and the natural world with others.

Here’s just one small example. During his last six-month increment in orbit, from late 2011 to the middle of 2012, Pettit had some Lego blocks he’d been using for student demonstrations. After the final one, he asked if he could use the Legos for a science experiment. He turned them into a belts-and-rollers-type Van de Graaff generator and produced groundbreaking work in electric fluids. This research was published in Physical Review Letters after Pettit returned to Earth. Most of us probably could not even spell Van de Graaff generator, and this dude is up there, in space, building them out of toys.

The way Pettit, a chemical engineer by training, explains things is that he has the “programmatic” scientific research he does for NASA, and then there’s everything else, often done during his limited free time.

“This is well-planned, well thought out, peer-reviewed, and uplinked to station with the supplies needed,” he said of programmatic research. “And then you have what I call science of opportunity. This is science which comes to mind while you are there, simply because you are there, and you can do it because you can. The scientific disciplines that I’ve dabbled in on the International Space Station include fluid physics, classic physics, chemistry, biology, plant growth, and Earth observations.”

Wafers of water ice. Credit: Don Pettit/NASA

NASA’s oldest active astronaut is also one of the most curious humans Read More »

if-you-thought-astra-was-going-to-go-away-quietly,-you-were-wrong

If you thought Astra was going to go away quietly, you were wrong

On Wednesday morning, a surprising email popped into my inbox with the following subject line: “Astra announces Department of Defense contract valued up to $44 Million.”

I had to read it a second time to make sure I got it right. Astra, the launch company? Astra, whose valuation went from $2.6 billion to $25 million after a series of launch failures? Astra, the company that was taken private in July at 50 cents a share?

Yes, it was that Astra.

This was curious, indeed. To get some answers, I spoke with the cofounder of Astra, Chris Kemp, who remains the company’s chief executive.

“If I have learned anything, it’s that you just don’t give up,” Kemp said. “You know, if you give up easily, this is not the place to be. Fortunately, I am surrounded by a team that has chosen not to give up.”

Rocket 4 becomes more real

I’ll be frank: When Kemp and his co-founder, Adam London, took Astra private this summer, I never expected to hear from the company again. Astra certainly was not the first launch company to fail, and it won’t be the last. But it is the first to seemingly resurrect itself in such a dramatic way.

To be clear, Astra is not back yet. The company remains in the phase of building and testing rocket stages and engines and does not have a launch vehicle ready to go. Its new booster, Rocket 4, will launch no earlier than the fourth quarter of 2025, Kemp said. (That date should probably be viewed with some skepticism).

The company has previously discussed Rocket 4, which is intended to carry 600 kg to low-Earth orbit, as far back as August 2022. But at the time, most of the launch industry, including this reporter, shrugged and moved along. After all, the company’s smaller vehicle, Rocket 3, failed on five of its seven orbital launch attempts. The general sentiment was that the new rocket would never fly.

However, even as Astra’s finances worsened and the company had to stave off bankruptcy by being taken private, not everyone dismissed the vision. In April 2023, the US Space Force awarded a task order for Rocket 4 to launch the STP-S29B mission. That was interesting, but it was just a single data point. Then came this week’s announcement that the US Department of Defense’s “Defense Innovation Unit” had awarded a grant worth up to $44 million to Astra for a “tactically responsive launch system.”

If you thought Astra was going to go away quietly, you were wrong Read More »

rocket-report:-sneak-peek-at-the-business-end-of-new-glenn;-france-to-fly-frog

Rocket Report: Sneak peek at the business end of New Glenn; France to fly FROG


“The vehicle’s max design gimbal condition is during ascent when it has to fight high-altitude winds.”

Blue Origin’s first New Glenn rocket, with seven BE-4 engines installed inside the company’s production facility near NASA’s Kennedy Space Center in Florida. Credit: Blue Origin

Welcome to Edition 7.17 of the Rocket Report! Next week marks 10 years since one of the more spectacular launch failures of this century. On October 28, 2014, an Antares rocket, then operated by Orbital Sciences, suffered an engine failure six seconds after liftoff from Virginia and crashed back onto the pad in a fiery twilight explosion. I was there and won’t forget seeing the rocket falter just above the pad, being shaken by the deafening blast, and then running for cover. The Antares rocket is often an afterthought in the space industry, but it has an interesting backstory touching on international geopolitics, space history, and novel engineering. Now, Northrop Grumman and Firefly Aerospace are developing a new version of Antares.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Astra gets a lifeline from DOD. Astra, the launch startup that was taken private again earlier this year for a sliver of its former value, has landed a new contract with the Defense Innovation Unit (DIU) to support the development of a next-gen launch system for time-sensitive space missions, TechCrunch reports. The contract, which the DIU awarded under its Novel Responsive Space Delivery (NRSD) program, has a maximum value of $44 million. The money will go toward the continued development of Astra’s Launch System 2, designed to perform rapid, ultra-low-cost launches.

Guarantees? … It wasn’t clear from the initial reporting how much money DIU is actually committing to Astra, which said the contract will fund continued development of Launch System 2. Launch System 2 includes a small-class launch vehicle with a similarly basic name, Rocket 4, and mobile ground infrastructure designed to be rapidly set up at austere spaceports. Adam London, founder and chief technology officer at Astra, said the contract award is a “major vote of confidence” in the company. If Astra can capitalize on the opportunity, this would be quite a remarkable turnaround. After going public at an initial valuation of $2.1 billion, or $12.90 per share, Astra endured multiple launch failures with its previous rocket and risked bankruptcy before the company’s co-founders, Chris Kemp and Adam London, took the company private again this year at a price of just $0.50 per share. (submitted by Ken the Bin and EllPeaTea)

Blue Origin debuts a new New Shepard. Jeff Bezos’ Blue Origin space venture successfully sent a brand-new New Shepard rocket ship on an uncrewed shakedown cruise Wednesday, with the aim of increasing the company’s capacity to take people on suborbital space trips, GeekWire reports. The capsule, dubbed RSS Karman Line, carried payloads instead of people when it lifted off from Blue Origin’s Launch Site One in West Texas. But if all the data collected during the 10-minute certification flight checks out, it won’t be long before crews climb aboard for similar flights.

Now there are two … With this week’s flight, Blue Origin now has two human-rated suborbital capsules in its fleet, along with two boosters. This should allow the company to ramp up the pace of its human missions, which have historically flown at a cadence of about one flight every two to three months. The new capsule, named for the internationally recognized boundary of space 62 miles (100 kilometers) above Earth, features upgrades to improve performance and ease reusability. (submitted by Ken the Bin and EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

China has a new space tourism company. Chinese launch startup Deep Blue Aerospace targets providing suborbital tourism flights starting in 2027, Space News reports. The company was already developing a partially reusable orbital rocket named Nebula-1 for satellite launches and recently lost a reusable booster test vehicle during a low-altitude test flight. While Deep Blue moves forward with more Nebula-1 testing before its first orbital launch, the firm is now selling tickets for rides to suborbital space on a six-person capsule. The first two tickets were expected to be sold Thursday in a promotional livestream event.

Architectural considerations … Deep Blue has a shot at becoming China’s first space tourism company and one of only a handful in the world, joining US-based Blue Origin and Virgin Galactic in the market for suborbital flights. Deep Blue’s design will be a single-stage reusable rocket and crew capsule, similar to Blue Origin’s New Shepard, capable of flying above the Kármán line and providing up to 10 minutes of microgravity experience for its passengers before returning to the ground. A ticket, presumably for a round trip, will cost about $210,000. (submitted by Ken the Bin)

France’s space agency aims to launch a FROG. French space agency CNES will begin flight testing a small reusable rocket demonstrator called FROG-H in 2025, European Spaceflight reports. FROG is a French acronym that translates to Rocket for GNC demonstration, and its purpose is to test landing algorithms for reusable launch vehicles. CNES manages the program in partnership with French nonprofits and universities. At 11.8 feet (3.6 meters) tall, FROG is the smallest launch vehicle prototype at CNES, which says it will test concepts and technologies at small scale before incorporating them into Europe’s larger vertical takeoff/vertical landing test rockets like Callisto and Themis. Eventually, the idea is for all this work to lead to a reusable European orbital-class rocket.

Building on experience … CNES flew a jet-powered demonstrator named FROG-T on five test flights beginning in May 2019, reaching a maximum altitude of about 100 feet (30 meters). FROG-H will be powered by a hydrogen peroxide rocket engine developed by the Łukasiewicz Institute of Aviation in Poland under a European Space Agency contract. The first flights of FROG-H are scheduled for early 2025. The structure of the FROG project seeks to “break free from traditional development methods” by turning to “teams of enthusiasts” to rapidly develop and test solutions through an experimental approach, CNES says on its website. (submitted by EllPeaTea and Ken the Bin)

Falcon 9 sweeps NSSL awards. The US Space Force’s Space Systems Command announced on October 18 it has ordered nine launches from SpaceX in the first batch of dozens of missions the military will buy in a new phase of competition for lucrative national security launch contracts, Ars reports. The parameters of the competition limited the bidders to SpaceX and United Launch Alliance (ULA). SpaceX won both task orders for a combined value of $733.5 million, or roughly $81.5 million per mission. Six of the nine missions will launch from Vandenberg Space Force Base, California, beginning as soon as late 2025. The other three will launch from Cape Canaveral Space Force Station, Florida.

Head-to-head … This was the first set of contract awards by the Space Force’s National Security Space Launch (NSSL) Phase 3 procurement round and represents one of the first head-to-head competitions between SpaceX’s Falcon 9 and ULA’s Vulcan rocket. The nine launches were divided into two separate orders, and SpaceX won both. The missions will deploy payloads for the National Reconnaissance Office and the Space Development Agency. (submitted by Ken the Bin)

SpaceX continues deploying NRO megaconstellation. SpaceX launched more surveillance satellites for the National Reconnaissance Office Thursday aboard a Falcon 9 rocket, Spaceflight Now reports. While the secretive spy satellite agency did not identify the number or exact purpose of the satellites, the Falcon 9 likely deployed around 20 spacecraft believed to be based on SpaceX’s Starshield satellite bus, a derivative of the Starlink spacecraft platform, with participation from Northrop Grumman. These satellites host classified sensors for the NRO.  This is the fourth SpaceX launch for the NRO’s new satellite fleet, which seeks to augment the agency’s bespoke multibillion-dollar spy satellites with a network of smaller, cheaper, more agile platforms in low-Earth orbit.

The century mark … This mission, officially designated NROL-167, was the 100th flight of a Falcon 9 rocket this year and the 105th SpaceX launch overall in 2024. The NRO has not said how many satellites will make up its fleet when completed, but the intelligence agency says it will be the US government’s largest satellite constellation in history. By the end of the year, the NRO expects to have 100 or more of these satellites in orbit, allowing the agency to transition from a demonstration mode to an operational mode to deliver intelligence data to military and government users. Many more launches are expected through 2028. (submitted by Ken the Bin)

ULA is stacking its third Vulcan rocket. United Launch Alliance has started assembling its next Vulcan rocket—the first destined to launch a US military payload—as the Space Force prepares to certify it to loft the Pentagon’s most precious national security satellites, Ars reports. Space Force officials expect to approve ULA’s Vulcan rocket for military missions without requiring another test flight, despite an unusual problem on the rocket’s second demonstration flight earlier this month, when one of Vulcan’s two strap-on solid-fueled boosters lost its nozzle shortly after liftoff.

Pending certification … Despite the nozzle failure, the Vulcan rocket continued climbing into space and eventually reached its planned injection orbit, and the Space Force and ULA declared the test flight a success. Still, engineers want to understand what caused the nozzle to break apart and decide on corrective actions before the Space Force clears the Vulcan rocket to launch a critical national security payload. This could take a little longer than expected due to the booster problem, but Space Force officials still hope to certify the Vulcan rocket in time to support a national security launch by the end of the year.

Blue Origin’s first New Glenn has all its engines. Blue Origin published a photo Thursday on X showing all seven first-stage BE-4 engines installed on the base of the company’s first New Glenn rocket. This is a notable milestone as Blue Origin proceeds toward the first launch of the heavy-lifter, possibly before the end of the year. But there’s a lot of work for Blue Origin to accomplish before then. These steps include rolling the rocket to the launch pad, running through propellant loading tests and practice countdowns, and then test-firing all seven BE-4 engines on the pad at Cape Canaveral Space Force Station, Florida.

Seven for seven … The BE-4 engines will consume methane fuel mixed with liquid oxygen for the first few minutes of the New Glenn flight, generating more than 3.8 million pounds of combined thrust. The seven BE-4s on New Glenn are similar to the BE-4 engines that fly two at a time on ULA’s Vulcan rocket. Dave Limp, Blue Origin’s CEO, said three of the seven engines on the New Glenn first stage have thrust vector control capability to provide steering during launch, reentry, and landing on the company’s offshore recovery vessel. “That gimbal capability, along with the landing gear and Reaction Control System thrusters, are key to making our booster fully reusable,” Limp wrote on X. “Fun fact: The vehicle’s max design gimbal condition is during ascent when it has to fight high-altitude winds.”

Next Super Heavy booster test-fired in Texas. SpaceX fired up the Raptor engines on its next Super Heavy booster, numbered Booster 13, Thursday evening at the company’s launch site in South Texas. This happened just 11 days after SpaceX launched and caught the Super Heavy booster on the previous Starship test flight and signals SpaceX could be ready for the next Starship test flight sometime in November. SpaceX has already test-fired the Starship upper stage for the next flight.

Great expectations … We expect the next Starship flight, which will be program’s sixth full-scale demo mission, will include another booster catch back at the launch tower at Starbase, Texas. SpaceX may also attempt to reignite a Raptor engine on the Starship upper stage while it is in space, demonstrating the capability to steer itself back into the atmosphere on future flights. So far, SpaceX has only launched Starships on long, arcing suborbital trajectories that carry the vehicle halfway around the world before reentry. In order to actually launch a Starship into a stable orbit around Earth, SpaceX will want to show it can bring the vehicle back so it doesn’t reenter the atmosphere in an uncontrolled manner. An uncontrolled reentry of a large spacecraft like Starship could pose a public safety risk.

Next three launches

Oct. 26: Falcon 9 | Starlink 10-8 | Cape Canaveral Space Force Station, Florida | 21: 47 UTC

Oct. 29: Falcon 9 | Starlink 9-9 | Vandenberg Space Force Base, California | 11: 30 UTC

Oct. 30: H3 | Kirameki 3 | Tanegashima Space Center, Japan | 06: 46 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Sneak peek at the business end of New Glenn; France to fly FROG Read More »

astronaut-hospitalized-after-returning-from-235-day-space-mission

Astronaut hospitalized after returning from 235-day space mission

NASA said Friday one its astronauts is in a hospital in Florida for medical observation after a “normal” predawn splashdown in the Gulf of Mexico inside a SpaceX capsule.

The mission’s other three crew members were cleared to return to their home base at Johnson Space Center in Houston after their own medical evaluations, NASA said.

The hospitalized astronaut “is in stable condition and under observation as a precautionary measure,” a NASA spokesperson said in a statement. The agency did not identify the astronaut or provide any more details about their condition, citing medical privacy protections.

Strapped into their seats onside SpaceX’s Crew Dragon Endeavour spacecraft, the four-person crew splashed down just south of Pensacola, Florida, at 3: 29 am EDT (07: 29 UTC) Friday, wrapping up a 235-day mission in low-Earth orbit.

NASA extended their stay at the International Space Station earlier this year to accommodate schedule changes caused by the troubled test flight of Boeing’s Starliner spacecraft, then to wait for better weather conditions in SpaceX’s recovery zones near Florida.

Commander Matthew Dominick, pilot Michael Barratt, mission specialist Jeanette Epps, and Russian cosmonaut Alexander Grebenkin were inside SpaceX’s Dragon spacecraft for reentry and splashdown. NASA said one of its astronauts “experienced a medical issue” after the splashdown, and all four crew members were flown to Ascension Sacred Heart Pensacola for medical evaluation.

Three of the crew members were later released and departed Pensacola on a NASA business jet to fly back to Houston, according to NASA. The unidentified astronaut remains at Ascension.

“We’re grateful to Ascension Sacred Heart for its support during this time, and we are proud of our team for its quick action to ensure the safety of our crew members,” the NASA spokesperson said. “NASA will provide additional information as it becomes available.”

Roscosmos cosmonaut Alexander Grebenkin, left, NASA astronauts Michael Barratt, second from left, Matthew Dominick, second from right, and Jeanette Epps, right are seen inside the SpaceX Dragon Endeavour spacecraft shortly after splashdown Friday morning.

Credit: NASA/Joel Kowsky

Roscosmos cosmonaut Alexander Grebenkin, left, NASA astronauts Michael Barratt, second from left, Matthew Dominick, second from right, and Jeanette Epps, right are seen inside the SpaceX Dragon Endeavour spacecraft shortly after splashdown Friday morning. Credit: NASA/Joel Kowsky

This mission, named Crew-8, was SpaceX’s eighth operational crew rotation flight to the space station under a multibillion-dollar commercial crew contract with NASA. This was the first flight to space for Dominick, Epps, and Grebenkin, and the third space mission for Barratt.

Roscosmos, the Russian space agency, released a photo of Grebenkin standing in Pensacola a few hours after splashdown. “After the space mission and splashdown, cosmonaut Alexander Grebenkin feels great!” Roscosmos posted on its Telegram channel.

Adapting to Earth

This is not the first time an astronaut has been hospitalized after returning to Earth, but it is uncommon. South Korean astronaut Yi So-yeon was hospitalized for back pain after experiencing higher-than-expected g-forces during reentry in a Russian Soyuz spacecraft in 2008.

Three NASA astronauts were hospitalized in Hawaii after splashing down at the end of the Apollo-Soyuz Test Project mission in 1975. The astronauts suffered lung irritation after breathing in toxic vapors from the Apollo spacecraft’s thrusters in the final moments before splashdown.

Astronaut hospitalized after returning from 235-day space mission Read More »

why-is-elon-musk-talking-to-vladimir-putin,-and-what-does-it-mean-for-spacex?

Why is Elon Musk talking to Vladimir Putin, and what does it mean for SpaceX?


NASA chief says ties between SpaceX CEO and Putin should be investigated.

Elon Musk wears a black “Make America Great Again” ball cap while attending a campaign rally with Republican presidential nominee, former President Donald Trump, in October. Credit: Anna Moneymaker/Getty Images

In a blockbuster story published Friday morning, The Wall Street Journal reports that Elon Musk has been in regular contact with Russian President Vladimir Putin for about two years, with the discussions covering a range of issues from geopolitics to business to personal matters.

There are no on-the-record sources confirming the regular conversations between Musk and Putin, and Musk did not comment to the news organization. A Putin spokesperson said the Russian leader and Musk have had just one telephone call. However, the report is plausibly true, and the Journal cites “several current and former US, European, and Russian officials.” This is also not the first time there have been reports of contact between Musk and Putin.

The new story about Musk’s direct links to an avowed enemy of the United States immediately raised concerns among some prominent US officials who work with the billionaire entrepreneur, including NASA Administrator Bill Nelson.

“I don’t know if that story is true,” Nelson said in a conversation with Semafor on Friday morning. “If it’s true there have been multiple conversations with Elon Musk and the president of Russia, then that would be concerning, particularly for NASA and the Department of Defense.” Nelson added that the report should be investigated.

To Russia, with love

Musk’s motivations for speaking directly with Putin are not immediately clear. His largest companies, SpaceX and Tesla, do not do business directly with the Russian government. In fact, the rise of SpaceX as a dominant player has substantially harmed Russia’s space business in multiple ways: it helped force US rival United Launch Alliance to stop buying Russian rocket engines, it reduced demand for Russian commercial launch services, and SpaceX’s Crew Dragon vehicle allowed NASA to stop spending hundreds of millions of dollars a year for Russian transportation to the International Space Station.

Unlike Tesla’s complicated interactions with China, which give that country some leverage over Musk’s finances, Russia has no such levers. The most plausible answer for why Musk is conversing with Putin is that he sees himself as a global power broker and wants to do bold things like solve the Ukraine crisis. Musk has ideas and views for how the world should be, and developing relationships with world leaders will help advance those ideas. Musk is also opportunistic and must believe that he can manage Putin in a way that is advantageous to his personal and business aims.

One concern for US policymakers is that this could represent a break in a long-running symbiotic relationship between Musk and America. For a couple of decades the United States’ and Musk’s ambitions—to build electric cars, reusable rockets, and solve the world’s big problems with technology—have moved forward more or less harmoniously. Musk thrived amid America’s ethos of freedom and capitalism. The nation benefited from world-leading technology and economic development.

Nowhere has this relationship borne more fruit than at SpaceX, which has almost singlehandedly assured US preeminence in space for at least the next decade and probably beyond. Musk builds the best rockets, operates the only proven US human spacecraft, and flies more than half of the active satellites in Earth orbit. In the wake of Russia’s invasion of Ukraine, Europe turned to SpaceX to get its most valuable satellites into space, and Starlink provided essential communications in Ukraine. NASA’s lunar program only succeeds if SpaceX’s Starship vehicle succeeds.

But in the last two years, the same time frame in which Musk has reportedly been in contact with Putin, the once symbiotic relationship between Musk and the United States has begun to fray. This has also coincided with Musk’s purchase of Twitter and increasing alignment with conservative politics.

Musk goes MAGA

Many Americans are celebrating Musk’s bromance with Republican presidential nominee former President Donald Trump. They appreciate his embrace of Republican politics and the more than $100 million he has invested in Trump winning the presidency. In characteristic Musk fashion, he has gone all-in on a cause he deems essential to the future of his interests and those of humanity, even temporarily living in Pennsylvania.

But for many other Americans, the response to Musk’s activities has been revulsion. He has used social network X (formerly Twitter) to push an increasingly partisan viewpoint and peddled a stream of ideas and theories that can accurately be described as misinformation. These people are increasingly uncomfortable with Musk’s power over the US space program and the country’s electric vehicle industry, and ability to influence geopolitical affairs through the Starlink constellation for which there is no viable competitor at present. The idea that Musk is regularly conversing with Putin, an avowed foe of the United States and Western democracies, is deeply uncomfortable.

After nursing a libertarian streak for decades, Musk has become ultra-political. He is loved. He is hated. Because he is so personally embodied by the brands of his biggest companies—much of Tesla’s stock value is predicated on Musk’s perceived ability to steer into the future, and for all intents and purposes, Musk is SpaceX—there are bound to be consequences not just for the man, but for his brands.

Musk’s increasingly partisan positions have already affected Tesla, potentially reducing sales to Democratic-leaning voters. But until recently, SpaceX has largely flown above the fray. However, that could change. During Musk’s recent showdown with Brazil, for example, the Starlink Internet service was caught in the crosshairs.

Implications for SpaceX

At a minimum, in the wake of Friday’s report, Musk will likely face increased calls for the revocation of his national security clearance. As the launch provider for sensitive Department of Defense missions, Musk has access to privileged information about the capabilities of spy satellites and other national security assets. He also has critical contracts with the US military for Starlink communication services under the Starshield business unit.

In addition, Musk’s political activities are playing out as the US Space Force is beginning to award contracts as part of the latest round of national security launch missions, known as NSSL Phase 3. It is possible the US military could lean more into the Vulcan rocket and United Launch Alliance.

Some of the more ardent critics of Musk’s behavior have called for the US government to force Musk to divest his interest in SpaceX. Musk founded SpaceX more than 22 years ago and remains the dominant shareholder, with total autonomy to make decisions. This would be a nuclear option and, in reality, probably would do more harm than good to SpaceX, which for years has thrived on Musk’s audacious goals and relentless pressure to achieve remarkable feats. It seems unlikely to occur at this time.

What seems clear is that the publication of Friday’s article reflects the concerns of some people within the US intelligence community about Musk’s behavior, his ability to conduct Cowboy diplomacy, and the power his money and technologies give him as an individual.

What happens next will, undoubtedly, depend to some extent on the results of the US presidential election next month. A Trump victory would likely give Musk carte blanche to continue pursuing his interests, with the clear message to US agencies to enable his businesses rather than to restrict them for regulatory reasons. Musk would likely enjoy increased power to pursue his aims until the end of the Trump presidency or until falling out with Trump. Such a scenario certainly cannot be ruled out among two people who are accustomed to calling the shots and not being told no.

Should Kamala Harris win the presidency, a lot would hinge on how Musk responds to the election. He could say some mea culpas and probably move on, but if he goes the election-denier route, he and his businesses probably would face heightened scrutiny. US regulatory agencies could act with more zeal, and Musk’s activities could be more closely investigated for violation of US laws. And NASA and the US Space Force could do more to ensure that other US companies can emerge to challenge SpaceX’s dominance.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Why is Elon Musk talking to Vladimir Putin, and what does it mean for SpaceX? Read More »

boeing-is-still-bleeding-money-on-the-starliner-commercial-crew-program

Boeing is still bleeding money on the Starliner commercial crew program


“We signed up to some things that are problematic.”

Boeing’s Starliner spacecraft backs away from the International Space Station on September 6 without its crew. Credit: NASA

Sometimes, it’s worth noting when something goes unsaid.

On Wednesday, Boeing’s new CEO, Kelly Ortberg, participated in his first quarterly conference call with investment analysts. Under fire from labor groups and regulators, Boeing logged a nearly $6.2 billion loss for the last three months, while the new boss pledged a turnaround for the troubled aerospace company.

What Ortberg didn’t mention in the call was the Starliner program. Starliner is a relatively small portion of Boeing’s overall business, but it’s a high-profile and unprofitable one.

Mounting losses

Boeing has reported recurring financial losses on the program and added $250 million to the tally with Wednesday’s quarterly report filed with the Securities and Exchange Commission. This brings the company’s total losses on Starliner to $1.85 billion, recorded in increments over the last few years as the program has faced technical problems and delays.

In its SEC filing, Boeing wrote: “Risk remains that we may record additional losses in future periods.”

Boeing runs the Starliner program under a fixed-price contract with NASA, meaning the government pays the contractor a set amount of money, and the company is on the hook for any cost overruns. These are favorable terms for the government because they divert financial risk to the contractor, usually resulting in lower costs if the program is successful.

Since the last Starliner test flight ended in a disappointing fashion, Boeing has released no updates on its plans for the future of the spacecraft. The company released a short written statement after Starliner landed in early September, saying managers would review data and “determine the next steps for the program.”

A week after Starliner landed, Boeing’s chief financial officer, Brian West, echoed that line. “There is important work to determine any next steps for the Starliner program, and we’ll evaluate that,” he said at a conference sponsored by Morgan Stanley.

A member of the Starliner recovery team removes cargo from the spacecraft after landing in New Mexico on September 6, without its two-person crew.

Credit: NASA/Aubrey Gemignani

A member of the Starliner recovery team removes cargo from the spacecraft after landing in New Mexico on September 6, without its two-person crew. Credit: NASA/Aubrey Gemignani

Starliner concluded its third test flight a little more than six weeks ago, leaving behind the two astronauts the craft ferried to the International Space Station earlier in the year. This was the first time people flew into orbit on a Starliner spacecraft.

NASA, which partnered with Boeing to develop the Starliner spacecraft, decided the Boeing capsule should return to Earth without its crew after the test flight encountered problems with overheating thrusters and helium leaks. The spacecraft safely reached the space station with NASA astronauts Butch Wilmore and Suni Williams in June, but agency officials were not comfortable with risking the crew’s safety on Starliner for the trip home. Instead, the duo will return to Earth on a SpaceX Dragon spacecraft early next year.

Boeing managers had a different opinion and lobbied for Starliner to return to Earth with Wilmore and Williams. Ultimately, the Starliner spacecraft parachuted to a successful landing at White Sands Space Harbor, New Mexico, on September 6, but there’s a lot of work ahead for Boeing to fix the thruster problems and helium leaks before the capsule can fly with people again. This will take many months—potentially a year or more—and will cost Boeing hundreds of millions of dollars, as shown in Wednesday’s SEC filing.

Doing less

In response to questions Wednesday from Wall Street investment firms, Ortberg, who took the CEO job in August, suggested it’s time for Boeing to look at cutting some of its losses and recalibrate how it pursues new business opportunities. Boeing’s previous CEO, Dave Calhoun, said last year the company would no longer enter into fixed-price development contracts.

“I think that that we’re better off being doing less and doing it better than doing more and not doing it well,” Ortberg said. “So we’re in the process of taking an evaluation of the portfolio. It’s something a new CEO always does when you come into a business.”

Most of Boeing’s financial loss in the third quarter of this year came from the company’s commercial airplane business. Beset by safety concerns with its 737 Max aircraft and a labor strike that has halted production at many of its airplane factories, Boeing posted its worst quarterly performance since the height of the COVID pandemic in 2020.

Even before the strike, the Federal Aviation Administration capped Boeing’s production rate for the 737 Max, limiting revenue for the commercial airplane business.

Ortberg didn’t specify any programs that Boeing might consider trimming or canceling, but said the company’s “core” business of commercial airplanes and military systems will stay.

“There are probably some things on the fringe there that we can be more efficient with, or that just distract us from our main goal here. So, more to come on that,” Ortberg said. “I don’t have a specific list of things that we’re going to keep and we’re not going to keep. That’s something for us to evaluate, and the process is underway.”

Kelly Ortberg, Boeing’s new CEO, is pictured in 2016 during his tenure as chief executive of Rockwell Collins.

Kelly Ortberg, Boeing’s new CEO, is pictured in 2016 during his tenure as chief executive of Rockwell Collins. Credit: Daniel Acker/Bloomberg via Getty Images

Apart from technical execution, Ortberg identified Boeing’s errors in cost and risk estimation as other reasons for the company’s poor performance on several fixed-price government contracts, including Starliner.

“We’re not going to be able to just wave the wand and clean up these troubled contracts,” he said. “We signed up to some things that are problematic.”

Ortberg said he is reluctant to ditch all of Boeing’s troubled contracts. “Even if we wanted to, I don’t think we can walk away from these contracts,” he said. “These are our core customers that need this capability. We’ve got long-term commitments to them. So walking away isn’t an answer to this.”

However, Orberg added that Boeing could reassess programs as they shift from one contract phase to the next. NASA’s commercial crew contract with Boeing has a maximum value of $4.6 billion, but that assumes the agency gives Boeing the green light to fly six operational Starliner missions.

So far, NASA has only authorized Boeing to begin detailed preparations for three. The latter half of the commercial crew contract remains a question mark, and could be an opportunity for Boeing to reevaluate the Starliner program without breaking its obligations to NASA. This is especially salient because NASA plans to decommission the International Space Station in 2030, and it’s not clear Boeing could fly all six of its Starliner missions before then while still alternating with SpaceX for crew transportation duties.

“We do have to get into a position where we’ve got a portfolio much more balanced with less risky programs and more profitable programs, and we’re going to be working that,” Ortberg said. “But I don’t think a wholesale walkaway is in the cards.”

This statement makes it sound like Boeing isn’t going to pull the plug on Starliner immediately. Still, Boeing hasn’t laid out its specific plans for Starliner, or even confirmed its intention to keep working on the program. This is puzzling.

Saying nothing

Ortberg was not asked about Starliner in Wednesday’s investor call. After the call, Ars asked a Boeing spokesperson if the company still has a long-term commitment to the Starliner program. The spokesperson replied that the company has nothing to share on the topic.

The Starliner test flight this year was supposed to pave the way for NASA to officially certify the Boeing crew capsule to begin flying in a slate of up to six operational crew rotation flights to the space station. Once certified, Boeing will become NASA’s second crew transportation provider alongside SpaceX, which has now launched nine operational crew missions for NASA, plus a handful more all-private astronaut missions.

NASA still wants to certify Boeing’s Starliner spacecraft to provide the agency with a second commercial option for getting astronauts into orbit. A fundamental goal set out for NASA’s commercial crew program more than a decade ago was to develop two dissimilar human-rated transportation systems for access to low-Earth orbit. The idea here is competition will drive down costs, and NASA will have a backup option if one of the commercial crew providers runs into difficulties.

However, NASA has not announced whether it will require Boeing to complete another test flight to achieve the certification milestone with Starliner. NASA is looking at slots to fly an unpiloted Starliner spacecraft on a cargo mission to the space station next year, perhaps to verify modifications to the ship’s propulsion system really fix the problems discovered on the test flight this year.

NASA is making moves while assuming Boeing will stay in the game. Astronauts are still assigned to train for the first operational Starliner mission, although it’s not likely to happen until the end of next year or in 2026. Earlier this month, NASA announced SpaceX will launch a four-person crew to the International Space Station no earlier than July of next year, taking a slot that the agency once hoped Boeing would use.

Bill Nelson, NASA’s administrator, told reporters in late August that he received assurances from Ortberg that Boeing intends to “move forward and fly Starliner in the future.” At the time, Ortberg was just a couple of weeks into his tenure at Boeing.

Two months later, Nelson’s secondhand assertion is still all we have.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Boeing is still bleeding money on the Starliner commercial crew program Read More »