Space

spacex-launches-military-satellites-tuned-to-track-hypersonic-missiles

SpaceX launches military satellites tuned to track hypersonic missiles

Trackers —

These satellites will participate in joint missile tracking exercises later this year.

SpaceX launched a Falcon 9 rocket Wednesday with six missile-tracking satellites for the US military.

Enlarge / SpaceX launched a Falcon 9 rocket Wednesday with six missile-tracking satellites for the US military.

Two prototype satellites for the Missile Defense Agency and four missile tracking satellites for the US Space Force rode a SpaceX Falcon 9 rocket into orbit Wednesday from Florida’s Space Coast.

These satellites are part of a new generation of spacecraft designed to track hypersonic missiles launched by China or Russia and perhaps emerging missile threats from Iran or North Korea, which are developing their own hypersonic weapons.

Hypersonic missiles are smaller and more maneuverable than conventional ballistic missiles, which the US military’s legacy missile defense satellites can detect when they launch. Infrared sensors on the military’s older-generation missile tracking satellites are tuned to pick out bright thermal signatures from missile exhaust.

The new threat paradigm

Hypersonic missiles represent a new challenge for the Space Force and the Missile Defense Agency (MDA). For one thing, ballistic missiles follow a predictable parabolic trajectory that takes them into space. Hypersonic missiles are smaller and comparatively dim, and they spend more time flying in Earth’s atmosphere. Their maneuverability makes them difficult to track.

A nearly 5-year-old military organization called the Space Development Agency (SDA) has launched 27 prototype satellites over the last year to prove the Pentagon’s concept for a constellation of hundreds of small, relatively low-cost spacecraft in low-Earth orbit. This new fleet of satellites, which the SDA calls the Proliferated Warfighter Space Architecture (PWSA), will eventually number hundreds of spacecraft to track missiles and relay data about their flight paths down to the ground. The tracking data will provide an early warning to those targeted by hypersonic missiles and help generate a firing solution for interceptors to shoot them down.

The SDA constellation combines conventional tactical radio links, laser inter-satellite communications, and wide-view infrared sensors. The agency, now part of the Space Force, plans to launch successive generations, or tranches, of small satellites, each introducing new technology. The SDA’s approach relies on commercially available spacecraft and sensor technology and will be more resilient to attack from an adversary than the military’s conventional space assets. Those legacy military satellites often cost hundreds of millions or billions of dollars apiece, with architectures that rely on small numbers of large satellites that might appear like a sitting duck to an adversary determined to inflict damage.

Four of the small SDA satellites and two larger spacecraft for the Missile Defense Agency were aboard a SpaceX Falcon 9 rocket when it lifted off from Cape Canaveral Space Force Station at 5: 30 pm EST (2230 UTC) Wednesday.

The rocket headed northeast from Cape Canaveral to place the six payloads into low-Earth orbit. Officials from the Space Force declared the launch a success later Wednesday evening.

The SDA’s four tracking satellites, built by L3Harris, are the last spacecraft the agency will launch in its prototype constellation, called Tranche 0. Beginning later this year, the SDA plans to kick off a rapid-fire launch campaign with SpaceX and United Launch Alliance to quickly build out its operational Tranche 1 constellation, with launches set to occur at one-month intervals to deploy approximately 150 satellites. Then, there will be a Tranche 2 constellation with more advanced sensor technologies.

The primary payloads aboard Wednesday’s launch were for the MDA. These two Hypersonic and Ballistic Tracking Space Sensor (HBTSS) satellites, one supplied by L3Harris and the other by Northrop Grumman, will demonstrate medium field-of-view sensors. Those sensors can’t cover as much territory as the SDA satellites but will provide more sensitive and detailed missile tracking data.

This illustration shows how the HBTSS satellites can track hypersonic missiles as they glide and maneuver through the atmosphere, evading detection by conventional missile tracking spacecraft, such as the Space Force's DSP and SBIRS satellites.

This illustration shows how the HBTSS satellites can track hypersonic missiles as they glide and maneuver through the atmosphere, evading detection by conventional missile tracking spacecraft, such as the Space Force’s DSP and SBIRS satellites.

“Our advanced satellites on orbit will bring the integrated and resilient missile warning and defense capabilities the US requires against adversaries developing more advanced maneuverable missiles,” said Christopher Kubasik, chairman and CEO of L3Harris. “L3Harris delivered this advanced missile tracking capability on behalf of MDA and SDA on orbit in just over three years after work was authorized to proceed. We are proud to be a critical part of the new space sensing architecture.”

The HBTSS satellites, valued at more than $300 million, and the SDA’s tracking prototypes will participate in joint military exercises in the coming months, where the wide-view SDA satellites will provide “cueing data” to the MDA’s HBTSS spacecraft. The narrower field of view of the HBTSS satellites can provide more specific, target-quality data to a ground-based interceptor, according to a report last year published by the Congressional Research Service. Future tranches, or generations, of SDA satellites will incorporate the medium field-of-view sensing capability flying on the MDA’s HBTSS satellites.

With SDA taking over the responsibility for making this technology operational, that will leave the MDA, which has historically flown its own missile tracking satellites, focused on next-generation sensor development, an MDA spokesperson told Ars.

Military officials decided only last year to place the four SDA satellites on the same launch as the MDA’s HBTSS mission. With all six satellites flying in the same orbital plane, there will be opportunities to see the same targets with both types of spacecraft and sensors. These targets may include scheduled US military missile tests or foreign launches.

“The intent to be able to work with cooperative and noncooperative targets to be able to do our demonstrations,” a senior SDA official said during a background briefing.

SpaceX launches military satellites tuned to track hypersonic missiles Read More »

spacex-takes-a-proactive-step-toward-responsible-behavior-in-orbit

SpaceX takes a proactive step toward responsible behavior in orbit

Clearing one’s orbit —

“We commend this commitment as a first step.”

A group of Starlink satellites assembled and ready for a launch.

Enlarge / SpaceX’s V2 Mini Starlink satellites awaiting launch.

SpaceX

SpaceX announced this week that it will voluntarily bring down about 100 of its first-generation Starlink satellites, which provide broadband Internet from low-Earth orbit, as part of its commitment to “space sustainability.”

The satellites are presently operational and serving Internet customers. However, in a statement, the company said, “The Starlink team identified a common issue in this small population of satellites that could increase the probability of failure in the future.”

This only represents a small fraction of the Starlink megaconstellation, which SpaceX has been launching on Falcon 9 rockets over the last half-decade. To date, SpaceX has put nearly 6,000 satellites into orbit a few hundred kilometers above the planet. This rapid growth in the company’s constellation has raised widespread concerns about the cluttering of low-Earth orbit and the potential for a profusion of debris.

Previously, SpaceX has initiated controlled de-orbits of 406 satellites. The vast majority of these have already entered Earth’s atmosphere and burnt up. However, 17 have become non-maneuverable. These are in decaying orbits and will eventually burn up in Earth’s atmosphere. Until such time, they are being tracked to prevent collisions with other satellites.

In its announcement this week, SpaceX is saying it will bring down about 100 additional Starlink satellites.

Why is SpaceX doing this?

The company said it is being proactive in deciding to bring down satellites that are currently operational.

“While this proactive approach comes at the cost of losing satellites that are serving users effectively, we believe it is the right thing to do to keep space safe and sustainable—SpaceX encourages all satellite owners and operators to safely de-orbit satellites before they become non-maneuverable,” the statement said.

If nothing else, this is a clever public relations move to get out ahead of satellite de-orbits that the space-tracking community would have spotted eventually. SpaceX is controlling the narrative, and it seems to have worked. The release of this information has, based upon several people I have spoken with, engendered goodwill in the community of scientists and activists who worry about orbital debris, clutter, and the sustainability of activity in low-Earth orbit.

However, there appears to be more to this announcement than simple public relations. SpaceX operates nearly two-thirds of all the active satellites in low-Earth orbit, and it is taking responsibility for reducing the likelihood of uncontrolled satellites whizzing around the planet hundreds of kilometers above the surface.

In this sense, SpaceX has taken an important step toward the establishment of a norm: proactive de-orbiting of one’s satellites.

What are the implications of it?

One of the fiercest protectors of low-Earth orbit is Moriba Jah, a co-founder and chief scientist at Privateer, a company that helps monitor congestion in orbit and seeks to enable sustainable growth of the new space economy. Jah told Ars he welcomed this step by SpaceX.

“Ensuring the safety and accessibility of space for all stakeholders is essential and we commend this commitment as a first step,” he said. “Proactive measures to deorbit satellites and share position information represent significant steps toward mitigating the risks associated with space debris.”

However, he added, this is just an interim step toward what should be a long-term goal—the recycling of satellites in space.

“While it may seem economically prudent to deorbit satellites and let them burn up in the atmosphere, the long-term implications of such practices on space sustainability, and the atmosphere itself, cannot be overlooked,” he said. “The long-term path to a circular space economy is in the adoption of reusable and recyclable satellites.”

This approach would reduce the potential for orbital debris and foster a culture of responsible space operations.

There has been some government leadership in this direction. The United States, primarily but not exclusively through NASA, has been pushing for in-space repairing and reviving of satellites to extend their useful lifetimes, including refurbishment activities. Additionally, the European Space Agency has embraced a “Zero Debris Charter” to drive the development of technologies required for no more debris to be left in orbit by 2030.

In releasing this statement, and proactively deorbiting its own spacecraft, the world’s largest operator of satellites has indicated that it wants to play ball.

SpaceX takes a proactive step toward responsible behavior in orbit Read More »

rocket-report:-us-military-still-wants-point-to-point;-india’s-big-2024-ambitions

Rocket Report: US military still wants point-to-point; India’s big 2024 ambitions

A Falcon 9 rocket launched NASA's PACE spacecraft this week.

Enlarge / A Falcon 9 rocket launched NASA’s PACE spacecraft this week.

SpaceX

Welcome to Edition 6.30 of the Rocket Report! Looking ahead, there are some interesting launches coming up in the middle of this month. Here are some we have our eyes on: Intuitive Machines’ lunar lander on a Falcon 9 and a re-flight of Japan’s big H3 rocket next week; then there’s an Electron launch of an intriguing Astroscale mission and NASA’s Crew-8 the following week. Good luck to all.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Was Transporter created to ‘kill’ small launch? SpaceX’s Transporter missions, which regularly fly 100 or more small satellites into low-Earth orbit on Falcon 9 rideshare missions, have unquestionably harmed small satellite launch companies. While companies like Rocket Lab or Virgin Orbit could offer smallsat operators a precise orbit, there was no way to compete on price. “The Transporter program was created a few years ago with, in my opinion, the sole purpose of trying to kill new entrants like us,” said Sandy Tirtey, director of global commercial launch services at Rocket Lab, during a panel at the SmallSat Symposium on Wednesday.

Low-price guarantee … The panel was covered by Space News, and the rest of the article includes a lot of comments from small launch providers about how they provide value with dedicated services and so forth—pretty typical fare. However, the story does not really explore Tirtley’s statement. So, was Transporter created to kill small launch companies? As someone who has reported a lot on SpaceX over the years, I’ll offer my two cents. I don’t think the program was created with this intent; rather, it filled a market need (only Electron and India’s PSLV were meeting commercial smallsat demand in any volume at the time). It also gave Falcon 9 more commercial missions. However, I do believe it was ultimately priced with the intent of cutting small launch off at the knees.

FAA investigating Virgin Galactic’s dropped pin. Virgin Galactic reported an anomaly on its most recent flight, Galactic 06, which took place two weeks ago from a spaceport in New Mexico. The company said it discovered a dropped pin during a post-flight review of the mission, which carried two pilots and four passengers to an altitude of 55.1 miles (88.7 km). This alignment pin, according to Virgin Galactic, helps ensure the VSS Unity spaceship is aligned to its carrier aircraft when mating the vehicles, Ars reports.

Corrective actions to be required … Virgin Galactic said it reported the anomaly to the Federal Aviation Administration (FAA) on January 31. On Tuesday, the FAA confirmed that there was no public property or injuries that resulted from the mishap. “The FAA is overseeing the Virgin Galactic-led mishap investigation to ensure the company complies with its FAA-approved mishap investigation plan and other regulatory requirements,” the federal agency said in a statement. Before VSS Unity can return to flight, the FAA must approve Virgin Galactic’s final report, including corrective actions to prevent a similar problem in the future. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

HyImpulse ships suborbital rocket to launch site. German launch startup HyImpulse has confirmed that its SR75 rocket and all related support systems have been boxed up and have embarked on the long journey to Australia, European Spaceflight reports. SR75 is a single-stage suborbital launch vehicle that is designed to be capable of delivering up to 250 kilograms to a maximum altitude of around 200 kilometers.

Testing a pathfinder … The debut flight of SR75 had initially been slated to occur from SaxaVord in the United Kingdom. In fact, HyImpulse had received approval for the flight from the UK Civil Aviation Authority in mid-2023. However, with financial issues forcing work on the site to be temporarily slowed, HyImpulse was forced to look elsewhere. The launch will now take place from the South Launch Koonibba Test Range in Australia, possibly as soon as March. The test will certify several critical elements of the company’s larger orbital SL1 rocket. (submitted by Ken the Bin)

Rocket Report: US military still wants point-to-point; India’s big 2024 ambitions Read More »

a-sleuthing-enthusiast-says-he-found-the-us-military’s-x-37b-spaceplane

A sleuthing enthusiast says he found the US military’s X-37B spaceplane

Found —

Officials didn’t disclose details about the X-37B’s orbit after its December launch.

File photo of an X-37B spaceplane.

Enlarge / File photo of an X-37B spaceplane.

Boeing

It turns out some of the informed speculation about the US military’s latest X-37B spaceplane mission was pretty much spot-on.

When the semi-classified winged spacecraft launched on December 28, it flew into orbit on top of a SpaceX Falcon Heavy rocket, which is much larger than the Atlas V and Falcon 9 rockets used to launch the X-37B on its previous missions.

This immediately sparked speculation that the X-37B would reach higher altitudes than its past flights, which remained in low-Earth orbit at altitudes of a few hundred miles. A discovery from Tomi Simola, a satellite tracking hobbyist living near Helsinki, Finland, appears to confirm this suspicion.

On Friday, Simola reported on social media and on SeeSat-L, a long-running online forum of satellite tracking enthusiasts, that he detected an unidentified object using a sky-watching camera. The camera is designed to continuously observe a portion of the sky to detect moving objects in space. A special software program helps identify known and unknown objects.

“Exciting news!” Simola posted on social media. “Orbital Test Vehicle 7 (OTV-7), which was launched to classified orbit last December, was seen by my SatCam! Here are images from the last two nights!”

Exciting news!

Orbital Test Vehicle 7 (OTV-7), which was launched to classified orbit last December, was seen by my SatCam!

Here are images from the last two nights! pic.twitter.com/3twOVdovVc

— Tomppa 🇺🇦 (@tomppa77) February 9, 2024

Mike McCants, one of the more experienced satellite observers and co-administrator of the SeeSat-L forum, agreed with Simola’s conclusion that he found the X-37B spaceplane.

“Congrats to Tomi Simola for locating the secret X-37B spaceplane,” posted Jonathan McDowell, an astrophysicist and widely respected expert in spaceflight activity.

Higher than ever

Amateur observations of the spaceplane indicate it is flying in a highly elliptical orbit ranging between 201 and 24,133 miles in altitude (323 and 38,838 kilometers). The orbit is inclined 59.1 degrees to the equator.

This is not far off the predictions from the hobbyist tracking community before the launch in December. At that time, enthusiasts used information about the Falcon Heavy’s launch trajectory and drop zones for the rocket’s core booster and upper stage to estimate the orbit it would reach with the X-37B spaceplane.

The Space Force has not released any information about the orbit of the X-37B. While it took hobbyists about six weeks to find the X-37B on this mission, it typically took less time for amateur trackers to locate it when it orbited at lower altitudes on its previous missions. Despite the secrecy, it’s difficult to imagine the US military’s adversaries in China and Russia didn’t already know where the spaceplane was flying.

Military officials usually don’t disclose details about the X-37B’s missions while they are in space, providing updates only before each launch and then after each landing.

This is the seventh flight of an X-3B spaceplane since the first one launched in 2010. In a statement before the launch in December, the Space Force said this flight of the X-37B is focused on “a wide range of test and experimentation objectives.” Flying in “new orbital regimes” is among the test objectives, military officials said.

The military has two Boeing-built X-37B spaceplanes, or Orbital Test Vehicles, in its inventory. They are reusable and designed to launch inside the payload fairing of a conventional rocket, spend multiple years in space with the use of solar power, and then return to Earth for a landing on a three-mile-long runway, either at Vandenberg Space Force Base in California or at NASA’s Kennedy Space Center in Florida.

It resembles a miniature version of NASA’s retired space shuttle orbiter, with wings, deployable landing gear, and black thermal protection tiles to shield its belly from the scorching heat of reentry. It measures 29 feet (about 9 meters) long, roughly a quarter of the length of NASA’s space shuttle, and it doesn’t carry astronauts.

The X-37B has a cargo bay inside the fuselage for payloads, with doors that open after launch and close before landing. There is also a service module mounted to the back end of the spaceplane to accommodate additional experiments, payloads, and small satellites that can deploy in orbit to perform their own missions.

All the Space Force has said about the payloads on the current X-37B flight is that its experiment package includes investigations into new “space domain awareness technologies.” NASA is flying an experiment on the X-37B to measure how plant seeds respond to sustained exposure to space radiation. The spaceplane’s orbit on this flight takes it through the Van Allen radiation belts.

The secrecy surrounding the X-37B has sparked much speculation about its purpose, some of which centers on ideas that the spaceplane is part of a classified weapons platform in orbit. More likely, analysts say, the X-37B is a testbed for new space technologies. The unusual elliptical orbit for this mission is similar to the orbit used for some of the Space Force’s satellites designed to detect and warn of ballistic missile launches.

McDowell said this could mean the X-37B is testing out an infrared sensor for future early warning satellites, but then he cautioned this would be “just a wild speculation.”

Speculation is about all we have to go on regarding the X-37B. But it seems we no longer need to speculate about where the X-37B is flying.

A sleuthing enthusiast says he found the US military’s X-37B spaceplane Read More »

building-robots-for-“zero-mass”-space-exploration

Building robots for “Zero Mass” space exploration

A robot performing construction on the surface of the moon against the black backdrop of space.

Sending 1 kilogram to Mars will set you back roughly $2.4 million, judging by the cost of the Perseverance mission. If you want to pack up supplies and gear for every conceivable contingency, you’re going to need a lot of those kilograms.

But what if you skipped almost all that weight and only took a do-it-all Swiss Army knife instead? That’s exactly what scientists at NASA Ames Research Center and Stanford University are testing with robots, algorithms, and highly advanced building materials.

Zero mass exploration

“The concept of zero mass exploration is rooted in self-replicating machines, an engineering concept John von Neumann conceived in the 1940s”, says Kenneth C. Cheung, a NASA Ames researcher. He was involved in the new study published recently in Science Robotics covering self-reprogrammable metamaterials—materials that do not exist in nature and have the ability to change their configuration on their own. “It’s the idea that an engineering system can not only replicate, but sustain itself in the environment,” he adds.

Based on this concept, Robert A. Freitas Jr. in the 1980s proposed a self-replicating interstellar spacecraft called the Von Neumann probe that would visit a nearby star system, find resources to build a copy of itself, and send this copy to another star system. Rinse and repeat.

“The technology of reprogrammable metamaterials [has] advanced to the point where we can start thinking about things like that. It can’t make everything we need yet, but it can make a really big chunk of what we need,” says Christine E. Gregg, a NASA Ames researcher and the lead author of the study.

Building blocks for space

One of the key problems with Von Neumann probes was that taking elements found in the soil on alien worlds and processing them into actual engineering components was resource-intensive and required huge amounts of energy. The NASA Ames team solved that with using prefabricated “voxels”—standardized reconfigurable building blocks.

The system derives its operating principles from the way nature works on a very fundamental level. “Think how biology, one of the most scalable systems we have ever seen, builds stuff,” says Gregg. “It does that with building blocks. There are on the order of 20 amino acids which your body uses to make proteins to make 200 different types of cells and then combines trillions of those cells to make organs as complex as my hair and my eyes. We are using the same strategy,” she adds.

To demo this technology, they built a set of 256 of those blocks—extremely strong 3D structures made with a carbon-fiber-reinforced polymer called StattechNN-40CF. Each block had fastening interfaces on every side that could be used to reversibly attach them to other blocks and form a strong truss structure.

A 3×3 truss structure made with these voxels had an average failure load of 900 Newtons, which means it could hold over 90 kilograms despite being incredibly light itself (its density is just 0.0103 grams per cubic centimeter). “We took these voxels out in backpacks and built a boat, a shelter, a bridge you could walk on. The backpacks weighed around 18 kilograms. Without technology like that, you wouldn’t even think about fitting a boat and a bridge in a backpack,” says Cheung. “But the big thing about this study is that we implemented this reconfigurable system autonomously with robots,” he adds.

Building robots for “Zero Mass” space exploration Read More »

humanity’s-most-distant-space-probe-jeopardized-by-computer-glitch

Humanity’s most distant space probe jeopardized by computer glitch

An annotated image showing the various parts and instruments of NASA's Voyager spacecraft design.

Enlarge / An annotated image showing the various parts and instruments of NASA’s Voyager spacecraft design.

Voyager 1 is still alive out there, barreling into the cosmos more than 15 billion miles away. However, a computer problem has kept the mission’s loyal support team in Southern California from knowing much more about the status of one of NASA’s longest-lived spacecraft.

The computer glitch cropped up on November 14, and it affected Voyager 1’s ability to send back telemetry data, such as measurements from the spacecraft’s science instruments or basic engineering information about how the probe was doing. So, there’s no insight into key parameters regarding the craft’s propulsion, power, or control systems.

“It would be the biggest miracle if we get it back. We certainly haven’t given up,” said Suzanne Dodd, Voyager project manager at NASA’s Jet Propulsion Laboratory, in an interview with Ars. “There are other things we can try. But this is, by far, the most serious since I’ve been project manager.”

Dodd became the project manager for NASA’s Voyager mission in 2010, overseeing a small cadre of engineers responsible for humanity’s exploration into interstellar space. Voyager 1 is the most distant spacecraft ever, speeding away from the Sun at 38,000 mph (17 kilometers per second).

Voyager 2, which launched 16 days before Voyager 1 in 1977, isn’t quite as far away. It took a more leisurely route through the Solar System, flying past Jupiter, Saturn, Uranus, and Neptune, while Voyager 1 picked up speed during an encounter with Saturn to overtake its sister spacecraft.

For the last couple of decades, NASA has devoted Voyager’s instruments to studying cosmic rays, the magnetic field, and the plasma environment in interstellar space. They’re not taking pictures anymore. Both probes have traveled beyond the heliopause, where the flow of particles emanating from the Sun runs into the interstellar medium.

There are no other operational spacecraft currently exploring interstellar space. NASA’s New Horizons probe, which flew past Pluto in 2015, is on track to reach interstellar space in the 2040s.

State-of-the-art 50 years ago

The latest problem with Voyager 1 lies in the probe’s Flight Data Subsystem (FDS), one of three computers on the spacecraft working alongside a command and control central computer and another device overseeing attitude control and pointing.

The FDS is responsible for collecting science and engineering data from the spacecraft’s network of sensors and then combining the information into a single data package in binary code—a series of ones and zeros. A separate component called the Telemetry Modulation Unit actually sends the data package back to Earth through Voyager’s 12-foot (3.7-meter) dish antenna.

In November, the data packages transmitted by Voyager 1 manifested a repeating pattern of ones and zeros as if it were stuck, according to NASA. Dodd said engineers at JPL have spent the better part of three months trying to diagnose the cause of the problem. She said the engineering team is “99.9 percent sure” the problem originated in the FDS, which appears to be having trouble “frame syncing” data.

A scanned 1970s-era photo of the Flight Data Subsystem computer aboard NASA's Voyager spacecraft.

Enlarge / A scanned 1970s-era photo of the Flight Data Subsystem computer aboard NASA’s Voyager spacecraft.

So far, the ground team believes the most likely explanation for the problem is a bit of corrupted memory in the FDS. However, because of the computer hangup, engineers lack detailed data from Voyager 1 that might lead them to the root of the issue. “It’s likely somewhere in the FDS memory,” Dodd said. “A bit got flipped or corrupted. But without the telemetry, we can’t see where that FDS memory corruption is.”

When it was developed five decades ago, Voyager’s Flight Data Subsystem was an innovation in computing. It was the first computer on a spacecraft to make use of volatile memory. Each Voyager spacecraft launched with two FDS computers, but Voyager 1’s backup FDS failed in 1981, according to Dodd.

The only signal Voyager 1’s Earthbound engineers have received since November is a carrier tone, which basically tells the team the spacecraft is still alive. There’s no indication of any other major problems. Changes in the carrier signal’s modulation indicate Voyager 1 is receiving commands uplinked from Earth.

“Unfortunately, we haven’t cracked the nut yet, or solved the problem, or gotten any telemetry back,” Dodd said.

Humanity’s most distant space probe jeopardized by computer glitch Read More »

virgin-galactic-and-the-faa-are-investigating-a-dropped-pin-on-last-spaceflight

Virgin Galactic and the FAA are investigating a dropped pin on last spaceflight

Rapid Unscheduled Dropped Pin —

“The FAA is overseeing the Virgin Galactic-led mishap investigation.”

White Knight Two carries the first SpaceShipTwo during a glide test.

White Knight Two carries the first SpaceShipTwo during a glide test.

Virgin Galactic

Virgin Galactic reported an anomaly on its most recent flight, Galactic 06, which took place 12 days ago from a spaceport in New Mexico.

In a statement released Monday, the company said it discovered a dropped pin during a post-flight review of the mission, which carried two pilots and four passengers to an altitude of 55.1 miles (88.7 km).

This alignment pin, according to Virgin Galactic, helps ensure the VSS Unity spaceship is aligned to its carrier aircraft when mating the vehicles on the ground during pre-flight procedures. The company said the alignment pin and a shear pin fitting assembly performed as designed during the mated portion of the flight, and only the alignment pin detached after the spaceship was released from the mothership.

“During mated flight, as the vehicles climb towards release altitude, the alignment pin helps transfer drag and other forces from the spaceship to the shear pin fitting assembly and into the pylon and center wing of the mothership,” the statement said. “The shear pin fitting assembly remained both attached and intact on the mothership with no damage. While both parts play a role during mated flight, they do not support the spaceship’s weight, nor do they have an active function once the spaceship is released.”

At no time, the company said, did the detached pin pose a safety threat to the spacecraft or the carrier aircraft. Additionally, as the flight occurred in restricted air space, the dropped pin did not threaten people or property on the ground.

The FAA gets involved

Virgin Galactic said it reported the anomaly to the Federal Aviation Administration (FAA) on January 31.

On Tuesday, the FAA confirmed that there was no public property or injuries that resulted from the mishap. “The FAA is overseeing the Virgin Galactic-led mishap investigation to ensure the company complies with its FAA-approved mishap investigation plan and other regulatory requirements,” the federal agency said in a statement.

Before VSS Unity can return to flight, the FAA must approve Virgin Galactic’s final report, including corrective actions to prevent a similar problem in the future.

The problem comes as Virgin Galactic plans to wind down its flight campaign with the VSS Unity and intends to move to its next-generation version of the spacecraft. These so-called “Delta-class” spaceships remain in development and are likely a couple of years away from making commercial flights.

VSS Unity has completed 11 spaceflights to date, reaching an impressive monthly cadence last year. However, the company is planning only one more mission before retiring the vehicle. This decision came as something of a surprise because the company’s president told Ars last August that the Unity airframe was capable of 500 to 1,000 flights.

This Galactic 07 mission, whose passengers and flight crew have yet to be announced, was scheduled for the second quarter of 2024. In its statement this week, Virgin Galactic said it remained committed to flying that mission.

Virgin Galactic and the FAA are investigating a dropped pin on last spaceflight Read More »

daily-telescope:-a-wolf-rayet-star-puts-on-a-howling-light-show

Daily Telescope: A Wolf-Rayet star puts on a howling light show

Hungry like the wolf —

I’d like to see it go boom.

The Crescent Nebula.

Enlarge / The Crescent Nebula.

1Zach1

Welcome to the Daily Telescope. There is a little too much darkness in this world and not enough light, a little too much pseudoscience and not enough science. We’ll let other publications offer you a daily horoscope. At Ars Technica, we’re going to take a different route, finding inspiration from very real images of a universe that is filled with stars and wonder.

Good morning. It’s February 2, and today’s image concerns an emission nebula about 5,000 light-years away in the Cygnus constellation.

Discovered more than 230 years ago by William Herschel, astronomers believe the Crescent Nebula is formed by the combination of an energetic stellar wind from a Wolf-Rayet star at its core, colliding with slower-moving material ejected earlier in the star’s lifetime. Ultimately, this should all go supernova, which will be quite spectacular.

Will you or I be alive to see it? Probably not.

But in the meantime, we can enjoy the nebula for what it is. This photo was captured by Ars reader 1Zach1 with an Astro-Tech AT80ED Refractor telescope. It was the product of 11 hours of integration, or 228 exposures each lasting three minutes. It was taken in rural southwestern Washington.

Have a great weekend, everyone.

Source: 1Zach1

Do you want to submit a photo for the Daily Telescope? Reach out and say hello.

Daily Telescope: A Wolf-Rayet star puts on a howling light show Read More »

why-interstellar-objects-like-‘oumuamua-and-borisov-may-hold-clues-to-exoplanets

Why interstellar objects like ‘Oumuamua and Borisov may hold clues to exoplanets

celestial nomads —

Two celestial interlopers in Solar System have scientists eagerly anticipating more.

The first interstellar interloper detected passing through the Solar System, 1l/‘Oumuamua, came within 24 million miles of the Sun in 2017

Enlarge / The first interstellar interloper detected passing through the Solar System, 1l/‘Oumuamua, came within 24 million miles of the Sun in 2017. It’s difficult to know exactly what ‘Oumuamua looked like, but it was probably oddly shaped and elongated, as depicted in this illustration.

On October 17 and 18, 2017, an unusual object sped across the field of view of a large telescope perched near the summit of a volcano on the Hawaiian island of Maui. The Pan-STARRS1 telescope was designed to survey the sky for transient events, like asteroid or comet flybys. But this was different: The object was not gravitationally bound to the Sun or to any other celestial body. It had arrived from somewhere else.

The mysterious object was the first visitor from interstellar space observed passing through the Solar System. Astronomers named it 1I/‘Oumuamua, borrowing a Hawaiian word that roughly translates to “messenger from afar arriving first.” Two years later, in August 2019, amateur astronomer Gennadiy Borisov discovered the only other known interstellar interloper, now called 2I/Borisov, using a self-built telescope at the MARGO observatory in Nauchnij, Crimea.

While typical asteroids and comets in the Solar System orbit the Sun, ‘Oumuamua and Borisov are celestial nomads, spending most of their time wandering interstellar space. The existence of such interlopers in the Solar System had been hypothesized, but scientists expected them to be rare. “I never thought we would see one,” says astrophysicist Susanne Pfalzner of the Jülich Supercomputing Center in Germany. At least not in her lifetime.

With these two discoveries, scientists now suspect that interstellar interlopers are much more common. Right now, within the orbit of Neptune alone, there could be around 10,000 ‘Oumuamua-size interstellar objects, estimates planetary scientist David Jewitt of UCLA, coauthor of an overview of the current understanding of interstellar interlopers in the 2023 Annual Review of Astronomy and Astrophysics.

Researchers are busy trying to answer basic questions about these alien objects, including where they come from and how they end up wandering the galaxy. Interlopers could also provide a new way to probe features of distant planetary systems.

But first, astronomers need to find more of them.

“We’re a little behind at the moment,” Jewitt says. “But we expect to see more.”

2I/Borisov appears as a fuzzy blue dot in front of a distant spiral galaxy (left) in this November 2019 image taken by the Hubble Space Telescope when the object was approximately 200 million miles from Earth.

Enlarge / 2I/Borisov appears as a fuzzy blue dot in front of a distant spiral galaxy (left) in this November 2019 image taken by the Hubble Space Telescope when the object was approximately 200 million miles from Earth.

Alien origins

At least since the beginning of the 18th century, astronomers have considered the possibility that interstellar objects exist. More recently, computer models have shown that the Solar System sent its own population of smaller bodies into the voids of interstellar space long ago due to gravitational interactions with the giant planets.

Scientists expected most interlopers to be exocomets composed of icy materials. Borisov fit this profile: It had a tail made of gases and dust created by ices that evaporated during its close passage to the Sun. This suggests that it originated in the outer region of a planetary system where temperatures were cold enough for gases like carbon monoxide to have frozen into its rocks. At some point, something tossed Borisov, roughly a kilometer across, out of its system.

One potential culprit is a stellar flyby. The gravity of a passing star can eject smaller bodies, known as planetesimals, from the outer reaches of a system, according to a recent study led by Pfalzner. A giant planet could also eject an object from the outer regions of a planetary system if an asteroid or comet gets close enough for the planet’s gravitational tug to speed up the smaller body enough for it to escape its star’s hold. Close approaches can also happen when planets migrate across their planetary systems, as Neptune is thought to have done in the early Solar System.

Why interstellar objects like ‘Oumuamua and Borisov may hold clues to exoplanets Read More »

rocket-report:-spacex-at-the-service-of-a-rival;-endeavour-goes-vertical

Rocket Report: SpaceX at the service of a rival; Endeavour goes vertical

Stacked —

The US military appears interested in owning and operating its own fleet of Starships.

Space shuttle<em> Endeavour</em>, seen here in protective wrapping, was mounted on an external tank and inert solid rocket boosters at the California Science Center.” src=”https://cdn.arstechnica.net/wp-content/uploads/2024/02/GFNrsMPWIAAWxNw-800×1000.jpeg”></img><figcaption>
<p><a data-height=Enlarge / Space shuttle Endeavour, seen here in protective wrapping, was mounted on an external tank and inert solid rocket boosters at the California Science Center.

Welcome to Edition 6.29 of the Rocket Report! Right now, SpaceX’s Falcon 9 rocket is the only US launch vehicle offering crew or cargo service to the International Space Station. The previous version of Northrop Grumman’s Antares rocket retired last year, forcing that company to sign a contract with SpaceX to launch its Cygnus supply ships to the ISS. And we’re still waiting on United Launch Alliance’s Atlas V (no fault of ULA) to begin launching astronauts on Boeing’s Starliner crew capsule to the ISS. Basically, it’s SpaceX or bust. It’s a good thing that the Falcon 9 has proven to be the most reliable rocket in history.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Virgin Galactic flies four passengers to the edge of space. Virgin Galactic conducted its first suborbital mission of 2024 on January 26 as the company prepares to end flights of its current spaceplane, Space News reports. The flight, called Galactic 06 by Virgin Galactic, carried four customers for the first time, along with its two pilots, on a suborbital hop over New Mexico aboard the VSS Unity rocket plane. Previous commercial flights had three customers on board, along with a Virgin Galactic astronaut trainer. The customers, which Virgin Galactic didn’t identify until after the flight, held US, Ukrainian, and Austrian citizenship.

Pending retirement … Virgin Galactic announced last year it would soon wind down flights of VSS Unity, citing the need to conserve its cash reserves for development of its next-generation Delta class of suborbital vehicles. Those future vehicles are intended to fly more frequently and at lower costs than Unity. After Galactic 06, Virgin Galactic said it will fly Unity again on Galactic 07 in the second quarter of the year with a researcher and private passengers. The company could fly Unity a final time later this year on the Galactic 08 mission. Since 2022, Virgin Galactic has been the only company offering commercial seats on suborbital spaceflights. The New Shepard rocket and spacecraft from competitor Blue Origin hasn’t flown people since a launch failure in September 2022. (submitted by Ken the Bin)

Iran launches second rocket in eight days. Iran launched a trio of small satellites into low-Earth orbit on January 28, Al Jazeera reports. This launch used Iran’s Simorgh rocket, which made its first successful flight into orbit after a series of failures dating back to 2017. The two-stage, liquid-fueled Simorgh rocket deployed three satellites. The largest of the group, named Mehda, was designed to measure the launch environments on the Simorgh rocket and test its ability to deliver multiple satellites into orbit. Two smaller satellites will test narrowband communication and geopositioning technology, according to Iran’s state media.

Back to back … This was a flight of redemption for the Simorgh rocket, which is managed by the civilian-run Iranian Space Agency. While the Simorgh design has repeatedly faltered, the Iranian military’s Islamic Revolutionary Guard Corps has launched two new orbital-class rockets in recent years. The military’s Qased launch vehicle delivered small satellites into orbit on three successful flights in 2020, 2022, and 2023. Then, on January 20, the military’s newest rocket, named the Qaem 100, put a small remote-sensing payload into orbit. Eight days later, the Iranian Space Agency finally achieved success with the Simorgh rocket. Previously, Iranian satellite launches have been spaced apart by at least several months. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Rocket Lab’s first launch of 2024. Rocket Lab was back in action on January 31, kicking off its launch year with a recovery Electron mission from New Zealand. This was its second return-to-flight mission following a mishap late last year, Spaceflight Now reports. Rocket Lab’s Electron rocket released four Space Situational Awareness (SSA) satellites into orbit for Spire Global and NorthStar Earth & Space. Peter Beck, Rocket Lab’s founder and CEO, said in a statement that the company has more missions on the books for 2024 than in any year before. Last year, Rocket Lab launched 10 flights of its light-class Electron launcher.

Another recovery … Around 17 minutes after liftoff, the Electron’s first-stage booster splashed down in the Pacific Ocean under parachute. A recovery vessel was stationed nearby downrange from the launch base at Mahia Peninsula, located on the North Island of New Zealand. Rocket Lab has ambitions of re-flying a first stage booster in its entirety. Last August, it demonstrated partial reuse with the re-flight of a Rutherford engine salvaged from a booster recovered on a prior mission. (submitted by Ken the Bin)

PLD Space wins government backing. PLD Space has won the second and final round of a Spanish government call to develop sovereign launch capabilities, European Spaceflight reports. Spain’s Center for Technological Development and Innovation announced on January 26 that it selected PLD Space, which is developing a small launch vehicle called Miura 5, to receive a 40.5-million euro loan from a government fund devoted to aiding the Spanish aerospace sector, with a particular emphasis on access to space. Last summer, the Spanish government selected PLD Space and Pangea Aerospace to each receive 1.5 million euros in a preliminary funding round to mature their designs. PLD Space won the second round of the loan competition.

Moving toward Miura 5 … “The technical decision in favor of PLD Space confirms that our technological development strategy is sound and is based on a solid business plan,” said Ezequiel Sanchez, PLD Space’s executive president. “Winning this public contract to create a strategic national capability reinforces our position as a leading company in securing Europe’s access to space.” Miura 5 will be capable of launching about a half-ton of payload mass into low-Earth orbit and is scheduled to make its debut launch from French Guiana in late 2025 or early 2026, followed by the start of commercial operations later in 2026. PLD Space will need to repay the loan through royalties over the first 10 years of the commercial operation of Miura 5. (submitted by Leika)

Rocket Report: SpaceX at the service of a rival; Endeavour goes vertical Read More »

starlab—with-half-the-volume-of-the-iss—will-fit-inside-starship’s-payload-bay

Starlab—with half the volume of the ISS—will fit inside Starship’s payload bay

It’s full of stars —

“Building and integrating in space is very expensive.”

An artist's concept of the Starlab space station.

Enlarge / An artist’s concept of the Starlab space station.

Starlab LLC

The Starlab commercial space station will launch on SpaceX’s Starship rocket, officials said this week.

Starlab is a joint venture between the US-based Voyager Space and the European-based multinational aerospace corporation Airbus. The venture is building a large station with a habitable volume equivalent to half the pressurized volume of the International Space Station and will launch the new station no earlier than 2028.

“SpaceX’s history of success and reliability led our team to select Starship to orbit Starlab,” Dylan Taylor, chairman and CEO of Voyager Space, said in a statement. “SpaceX is the unmatched leader for high-cadence launches and we are proud Starlab will be launched to orbit in a single flight by Starship.”

Fitting in a big fairing

Starlab will have a diameter of about 26 feet (8 meters). It is perhaps not a coincidence that Starship’s payload bay can accommodate vehicles up to 26 feet across in its capacious fairing. However, in an interview, Marshall Smith, the chief technology officer of Voyager Space, said the company looked at a couple of launch options.

“We looked at multiple launches to get Starlab into orbit, and eventually gravitated toward single launch options,” he said. “It saves a lot of the cost of development. It saves a lot of the cost of integration. We can get it all built and checked out on the ground, and tested and launch it with payloads and other systems. One of the many lessons we learned from the International Space Station is that building and integrating in space is very expensive.”

With a single launch on a Starship, the Starlab module should be ready for human habitation almost immediately, Smith said.

It's hard to believe the interior of Starlab will ever be this clean in space.

Enlarge / It’s hard to believe the interior of Starlab will ever be this clean in space.

Starlab LLC

Starlab is one of several privately developed space stations vying to become a commercial replacement for the International Space Station, which NASA is likely to retire in 2030. Among the other contenders are Axiom Space, Blue Origin, and Vast Space. SpaceX may also configure a human-rated version of Starship as a temporary space station.

NASA has provided seed funding to some of these companies, including Voyager Space, to begin designing and developing their stations. NASA is expected to hold a second round of competition next year, when it will select one or more companies to proceed with building and testing their stations.

Finding customers

Each company is developing a space station that will serve both government customers—NASA wants to continue flying at least a handful of astronauts in low-Earth orbit for research purposes—as well as private customers. The challenge for Starlab and other commercial stations is developing a customer base beyond NASA to support the expense of flying and operating stations.

The challenge is a huge one: NASA spent more than $100 billion constructing the International Space Station and has a $3 billion annual budget for operations and transportation of people and supplies to the station. The agency is likely to fund commercial space stations at a level of about $1 billion a year, so these companies must build their facilities relatively quickly at low cost and then find a diverse base of customers to offset expenses.

Starlab may have an advantage in this regard with its co-ownership by Airbus. One of the big questions surrounding the end of the International Space Station is what happens to the European astronauts who fly there now. The European Space Agency will likely be reticent about funding missions to private space stations owned and operated by US companies. The involvement by Airbus, therefore, makes Starlab attractive to European nations as a destination.

Starlab—with half the volume of the ISS—will fit inside Starship’s payload bay Read More »

rocket-report:-iran-reaches-orbit;-chinese-firm-achieves-impressive-landing-test

Rocket Report: Iran reaches orbit; Chinese firm achieves impressive landing test

First and second stages of Blue Origin's

Enlarge / First and second stages of Blue Origin’s “New Glenn” test vehicle.

Blue Origin

Welcome to Edition 6.28 of the Rocket Report! There’s a lot going on in the world of launch as always, but this week I want to take this space for a personal message. I have just announced the forthcoming publication of my second book, REENTRY, on the Falcon 9 rocket, Dragon spacecraft, and development of reusable launch. Full details here. I worked very hard to get the inside story.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Europe seeks to support small launch companies. The European Space Agency and European Commission have selected five launch companies to participate in a new program to provide flight opportunities for new technologies, a sign of a greater role the European Union intends to play in launch, Space News reports. The effort seeks to stimulate demand for European launch services by allowing companies to compete for missions in the European Union’s In-Orbit Demonstration and Validation technology program. Proposals for the program’s first phase are due to ESA at the end of February.

Getting a golden ticket … The agency expects to select up to three companies for initial contracts with a combined value of 75 million euros ($82 million) to begin design work on those vehicles. Four of the companies selected for the “Flight Ticket Initiative” are startups working on small launch vehicles: Isar Aerospace, Orbex, PLD Space, and Rocket Factory Augsburg. None of them has yet conducted an orbital launch, but they expect to do so within the next two years. The fifth company was Arianespace, which will offer rideshare launches on its Vega C and Ariane 6 rockets. (submitted by Ken the Bin and EllPeaTea)

Iran successfully launches Qaem 100 rocket. Iran said Saturday it had conducted a successful satellite launch into its highest orbit yet, the latest for a program the West fears improves Tehran’s ballistic missiles, the Associated Press reports. The Iranian Soraya satellite was placed in an orbit at some 750 kilometers (460 miles) above the Earth’s surface with its three-stage Qaem 100 rocket, the state-run IRNA news agency said. It did not immediately acknowledge what the satellite did, though telecommunications minister Isa Zarepour described the launch as having a 50-kilogram (110-pound) payload.

Qaem’s first orbital flight … The United States has previously said Iran’s satellite launches defy a UN Security Council resolution and called on Tehran to undertake no activity involving ballistic missiles capable of delivering nuclear weapons. UN sanctions related to Iran’s ballistic missile program expired last October. Iran has always denied seeking nuclear weapons and says its space program, like its nuclear activities, is for purely civilian purposes. This was the third launch of the Qaem rocket, which can loft up to 80 kg to low-Earth orbit. A suborbital test flight in 2022 was successful, but the first orbital attempt last March failed. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Chinese firm tests vertical landing. Chinese launch startup Landspace executed a first vertical takeoff and vertical landing with a test article Friday at a launch and recovery site at Jiuquan spaceport, Space News reports. The methane-liquid oxygen test article reached an altitude of around 350 meters during its roughly 60-second flight before setting down in a designated landing area. The landing had an accuracy of about 2.4 meters and a landing speed of less than 1 meter per second, the company said.

Part Starship, part Falcon 9 … The test is part of the development of the stainless-steel Zhuque-3 rocket first announced in November 2023. The company is aiming for the first flight of Zhuque-3 next year. It is an ambitious project: The rocket is intended to have a payload capacity of 21 tons to low-Earth orbit in expendable mode, and 18.3 tons when the rocket is recovered downrange. If Zhuque-3 comes to pass—and these are promising early results—this would be the closest thing to a Falcon 9 rocket anyone has yet developed. (submitted by Ken the Bin)

Rocket Report: Iran reaches orbit; Chinese firm achieves impressive landing test Read More »