Space

boeing-says-it-will-cut-sls-workforce-“due-to-external-factors”

Boeing says it will cut SLS workforce “due to external factors”

SLS, but smaller —

“Boeing is reviewing and adjusting current staffing levels.”

The SLS rocket is seen on its launch pad at Kennedy Space Center in August 2022.

Enlarge / The SLS rocket is seen on its launch pad at Kennedy Space Center in August 2022.

Trevor Mahlmann

On Thursday senior Boeing officials leading the Space Launch System program, including David Dutcher and Steve Snell, convened an all-hands meeting for the more than 1,000 employees who work on the rocket.

According to two people familiar with the meeting, the officials announced that there would be a significant number of layoffs and reassignments of people working on the program. They offered a handful of reasons for the cuts, including the fact that timelines for NASA’s Artemis lunar missions that will use the SLS rocket are slipping to the right.

Later on Thursday, in a statement provided to Ars, a Boeing spokesperson confirmed the cuts to Ars: “Due to external factors unrelated to our program performance, Boeing is reviewing and adjusting current staffing levels on the Space Launch System program.”

Better late than never?

For nearly a decade and a half, Boeing has led development of the core stage of the massive SLS rocket that NASA intends to use to launch the Orion spacecraft for its crewed Moon missions.

The contract has been lucrative for Boeing, and subject to considerable criticism over the years for its largesse, as NASA has spent tens of billions of dollars developing a rocket that reuses Space Shuttle main engines and other elements. Also, the rocket was originally supposed to make its debut in late 2016 or 2017, but did not actually fly for the first time until November 2022. And NASA’s Inspector General has characterized Boeing’s management of the SLS rocket program, at times, as “poor.”

However, when the SLS rocket made its debut a year and a half ago, it performed exceptionally well in lofting an uncrewed Orion spacecraft toward the Moon. After that mission NASA declared the rocket to be “operational,” and Boeing moved into production of the vehicle for future missions that will carry astronauts to the Moon.

So in some sense, these cuts were inevitable. Boeing required a lot of resources to design, develop, test, and write software for the rocket. Now that the development phase is over, it is natural that the company would be scaling down development activities for the core stage.

The Boeing statement did not say so, but sources told Ars that the cuts may eventually amount to hundreds of employees. They will be spread across the company’s rocket facilities in Alabama, Louisiana, and Florida, primarily. The cuts will hit both the core stage program as well as the Exploration Upper Stage program, a new upper stage for the rocket that is also beginning to move from development into production.

Waiting on other elements

When Boeing cites “external factors,” it is referring to the slipping timelines for NASA’s Artemis Program. In January officials with the space agency announced approximately one-year delays for both the Artemis II mission, a crewed lunar flyby, to September 2025; and Artemis III, a lunar landing, to September 2026. Neither of these schedules are set in stone, either. Further delays are possible for Artemis II, and likely for Artemis III if NASA sticks to the current mission plans.

Although the SLS rocket will be ready for the current schedule, barring a catastrophe, the other elements are in doubt. For Artemis II, NASA still has not cleared a heat shield issue with the Orion spacecraft. That must be resolved before the mission gets a green light to proceed next year.

The challenges are even greater for Artemis III. For that mission NASA needs to have a lunar lander—which is being provided by SpaceX with its Starship vehicle—in addition to spacesuits for the lunar surface provided by Axiom Space. Both of these elements remain solidly in the development phase.

Additionally, NASA is grappling with budget challenges. For the first time in more than a decade, the agency is facing budget cuts. This week the space agency’s administrator, Bill Nelson, told Congress, “With less money, we have to make some very tough choices.” Among these could be seeking to use future SLS funding to shore up other elements of Artemis.

One of the people familiar with Boeing’s internal meeting on Thursday said the space agency had come to the company earlier this year and said, in effect, that Boeing would receive less funding as SLS development wound down. The company was given the choice to “stretch” the funding it would receive, or pause for a year due to the delays in the Artemis mission. Boeing chose to stretch the funds, and that was a driver of the cuts this week.

It would be easy, but unfair, to blame SpaceX and Axiom for the delays to future Artemis missions. Congress created the SLS rocket with an authorization bill back in 2010, but Boeing actually had been receiving funding for related work dating back to 2007. By contrast, NASA did not start funding work on the Starship lunar lander until late 2021, and the Axiom spacesuits until 2022. In some sense, these developments are as technically demanding as the SLS rocket work, if not more so.

Boeing says it will cut SLS workforce “due to external factors” Read More »

spacex-and-northrop-are-working-on-a-constellation-of-spy-satellites

SpaceX and Northrop are working on a constellation of spy satellites

X marks the spot —

First launch of these operational vehicles may occur next month from California.

A Falcon 9 rocket launches a Starlink mission in January 2020.

Enlarge / A Falcon 9 rocket launches a Starlink mission in January 2020.

SpaceX

SpaceX is reportedly working with at least one major US defense contractor, Northrop Grumman, on a constellation of spy satellites for the National Reconnaissance Office.

According to Reuters, development of the network of hundreds of spy satellites by SpaceX is being coordinated with multiple contractors to avoid putting too much control of a highly sensitive intelligence program in the hands of one company.

“It is in the government’s interest to not be totally invested in one company run by one person,” one of the news agency’s sources said, most likely referring to SpaceX founder Elon Musk.

Northrop will provide sensors for a subset of the satellites in the constellation—at least 50 of them—and test those spacecraft at its own facility prior to their launch into orbit, Reuters reports.

A proliferated constellation

The news agency first disclosed the existence of SpaceX’s contract with the National Reconnaissance Office, which is responsible for operating US spy satellites, in March. The network is being built by SpaceX’s Starshield business unit under a $1.8 billion contract signed in 2021.

While this network will be separate from SpaceX’s Starlink Internet constellation, the National Reconnaissance Office contract is leveraging SpaceX’s capability to put a large number of Starlink satellites into orbit with its existing manufacturing facilities and the reusable Falcon 9 rocket. The current Starlink megaconstellation has more than 5,700 operational satellites.

This spysat constellation is considered to be “proliferated” because there will be swarms of satellites launched into low-Earth orbit to provide imaging and other capabilities, and these should be less vulnerable to enemy attack because of their large numbers.

Although no nation has ever attacked another nation’s satellites, major space powers, including the United States, Russia, and China, are clearly working on such measures. A good reference for these efforts is the Secure World Foundation’s annual Global Counterspace Capabilities report.

In its reporting, Reuters suggests that the high-quality imaging sensors on the SpaceX satellites in low-Earth orbit will exceed the resolution of some of the best US spy satellites at higher altitudes. They may also provide a superior alternative to the current use of drones and reconnaissance aircraft, which can be risky to fly in the airspace of other nations.

The first elements of this proliferated constellation are likely to launch next month from Vandenberg Space Force Base on the NROL-146 mission. According to Troy Meink, the National Reconnaissance Office’s principal deputy director, this will be the first of as many as six such launches in 2024.

“This launch will be the first launch of an actual operational system,” Meink said at the annual Space Symposium earlier this month. “This system will increase timeliness of access, diversity of communication paths and enhance our resilience.”

An uneasy partnership

Typically, in its 22 years of operation, SpaceX has eschewed deep partnerships with traditional aerospace contractors, including Northrop Grumman. Early on, in fact, SpaceX had a legal confrontation with Northrop over the pintle engine injector technology used in the Merlin rocket engine that powered the Falcon 1, and later Falcon 9 rocket. SpaceX counter-sued, saying Northrop had abused its position in an advisory role in the Air Force to spy on SpaceX. Eventually, the lawsuits were both dropped with no damages.

More than a decade later, SpaceX launched the “Zuma” satellite, an ultra-expensive classified spacecraft valued in excess of $3 billion and built by Northrop for the National Reconnaissance Office. The launch on a Falcon 9 rocket was successful in January 2018, but the spacecraft was subsequently lost. The failure was later blamed on a payload adaptor supplied by Northrop Grumman, although this has never been publicly confirmed.

It is clearly hoped by US government officials that this collaboration between SpaceX and Northrop will meet a happier fate.

SpaceX and Northrop are working on a constellation of spy satellites Read More »

rocket-report:-delta-iv’s-grand-finale;-angara-flies-another-dummy-payload

Rocket Report: Delta IV’s grand finale; Angara flies another dummy payload

The Angara A5 rocket launched this week from Vostochny for the first time.

Enlarge / The Angara A5 rocket launched this week from Vostochny for the first time.

Roscosmos

Welcome to Edition 6.39 of the Rocket Report! The big news this week came from United Launch Alliance, and the final mission of its Delta IV Heavy rocket. Both Stephen and I had thoughts about this launch, which is bittersweet, and we expressed them in stories linked below. It’s been a little less than 20 years since this big rocket debuted, and interesting to think how very much the launch industry has changed since then.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Rocket Lab to reuse flight tank. On Wednesday Rocket Lab said it is returning a previously flown Electron rocket first stage tank to the production line for the first time in preparation for reflying the stage. The company characterized this as a “significant” milestone as it seeks to make Electron the world’s first reusable small rocket. This stage was successfully launched and recovered as part of the ‘Four of a Kind’ mission earlier this year on January 31.

Iterating a path to reuse … The stage will now undergo final fit out and rigorous qualification for reuse. “Our key priority in pushing this stage back into the standard production flow for the first time is to ensure our systems and qualification processes are fit for accepting pre-flown boosters at scale,” said Rocket Lab founder and CEO Peter Beck. “If this stage successfully passes and is accepted for flight, we’ll consider opportunities for reflying it in the new year.” (submitted by Ken the Bin)

Virgin Orbit IP for sale on LinkedIn. In a post this week on the social networking site LinkedIn, former Virgin Orbit chief executive Dan Hart said that the Virgin Orbit IP library is being made available for licensing. “The flight-proven LauncherOne IP can accelerate launch and hypersonic system development schedules by years, and enable significant cost savings,” Hart wrote. “The innovative designs can also offer component/subsystem providers immediate product line expansion.”

Yours for a low, low price … The IP library includes all manner of goodies, including an FAA-approved flight termination system, the Newton 3 and Newton 4 engines, avionics, structures, and more. Price for access to all IP is $3 million for a nonexclusive license, Hart said. I have no idea whether that’s a good price or not.

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Virgin Galactic countersues Boeing. Virgin Galactic has filed a countersuit against Boeing over a project to develop a new mothership aircraft, arguing in part that Boeing performed poorly, Space News reports. The suit, filed last week in the US District Court for the Central District of California, comes two weeks after Boeing filed suit against Virgin Galactic, alleging that Virgin refused to pay more than $25 million in invoices on the project and misappropriated trade secrets.

Citing Boeing’s own record … The dispute revolves around a project announced in 2022 to develop a new aircraft that would replace Virgin’s existing VMS Eve as an air-launch platform. Virgin, in its suit, claims that Boeing performed “shoddy and incomplete” work on the initial phases of the project. “Boeing’s failures with respect to its agreement with Virgin Galactic are consistent with Boeing’s record of poor quality control and mismanagement,” the complaint states. (submitted by EllPeaTea)

Navy awards contract to Ursa Major. The rocket propulsion startup said Monday it has signed a contract with the United States Navy to develop and test solid fuel rocket engines in an effort to develop a next generation of solid rocket motor for the Navy’s standard missile program, Reuters reports. The agreement is part of a series of prototype engine contracts being awarded by the US Navy as it seeks to expand the industrial base for manufacturing them.

Broadening the US supplier base … The deal comes as the Navy is seeing a surge in missile demand due to the ongoing conflicts in Gaza and Yemen and the war in Ukraine. “Our new approach to manufacturing solid rocket motors allows Ursa Major to quickly develop high-performing motors at scale, driving volume and cost efficiencies to address this critical national need,” said Ursa Major Founder Joe Laurienti. (submitted by Ken the Bin)

Rocket Report: Delta IV’s grand finale; Angara flies another dummy payload Read More »

spacex’s-most-flown-reusable-rocket-will-go-for-its-20th-launch-tonight

SpaceX’s most-flown reusable rocket will go for its 20th launch tonight

File photo of a Falcon 9 rocket rolling out of its hangar at Cape Canaveral Space Force Station, Florida.

Enlarge / File photo of a Falcon 9 rocket rolling out of its hangar at Cape Canaveral Space Force Station, Florida.

For the first time, SpaceX will launch one of its reusable Falcon 9 boosters for a 20th time Friday night on a flight to deliver 23 more Starlink Internet satellites to orbit.

This milestone mission is scheduled to lift off at 9: 22 pm EDT Friday (01: 22 UTC Saturday) from Space Launch Complex 40 (SLC-40) at Cape Canaveral Space Force Station, Florida. Forecasters from the US Space Force predict “excellent” weather for the primetime launch.

Falcon 9 will blaze a familiar trail into space, following the same profile as dozens of past Starlink missions.

The rocket’s first-stage booster will shut off its nine kerosene-fueled Merlin engines about two-and-a-half minutes into the flight, reaching a top speed of more than 5,000 mph (8,000 km per hour). The first stage will detach from the Falcon 9’s upper stage, which will continue firing into orbit. The 15-story-tall Falcon 9 booster, meanwhile, will follow an arcing trajectory before braking for a vertical landing on a drone ship floating in the Atlantic Ocean near the Bahamas.

The 23 flat-packed Starlink spacecraft will deploy from the upper stage a little more than an hour after liftoff, bringing the total number of Starlinks in low-Earth orbit to more than 5,800 spacecraft.

A hunger for launch

Pretty much every day, SpaceX is either launching a rocket or rolling one out of the hangar to the launch pad. At this pace, SpaceX is redefining what is routine in the space industry, but the rapid-fire launch rate also means the company is continually breaking records, mostly its own.

Friday night’s launch will break another one of those records. This first-stage booster, designated by the tail number B1062, has flown 19 times since its first flight in November 2020. The booster will now be the first in SpaceX’s inventory to go for a 20th flight, breaking a tie with three other rockets as the company’s fleet leader.

When SpaceX debuted the latest version of its Falcon 9 rocket, the Falcon 9 Block 5, officials said the reusable first stage could fly 10 times with minimal refurbishment and perhaps additional flights with a more extensive overhaul. Now, SpaceX is certifying Falcon 9 boosters for 40 flights.

This particular rocket has not undergone any extended maintenance or long-term grounding. It has flown an average of once every two months since debuting three-and-a-half years ago. So the 20-flight milestone SpaceX will achieve Friday night means this rocket has doubled its original design life and, at the same time, has reached the halfway point of its extended service life.

In its career, this booster has launched eight people and 530 spacecraft, mostly Starlinks. The rocket’s first two flights launched GPS navigation satellites for the US military, then it launched two commercial human spaceflight missions with Dragon crew capsules. These were the all-private Inspiration4 mission and Axiom Mission 1, the first fully commercial crew flight to the International Space Station.

A SpaceX Falcon 9 rocket lifts off Sunday, April 7, on the Bandwagon 1 rideshare mission.

Enlarge / A SpaceX Falcon 9 rocket lifts off Sunday, April 7, on the Bandwagon 1 rideshare mission.

Remarkably, this will be the sixth Falcon 9 launch in less than eight days, more flights than SpaceX’s main US rival, United Launch Alliance, has launched in 17 months.

It will be the 38th Falcon 9 launch of the year and the 111th flight of a Falcon 9 or Falcon Heavy rocket—the 114th launch by SpaceX overall—in the last 365 days. More than a third of SpaceX’s Falcon 9 or Falcon Heavy missions, a number that will stand at 332 after Friday night’s flight, have launched in the past year.

This month, for the first time, SpaceX demonstrated it could launch two Falcon 9 rockets in less than five days from the company’s launch pad at Vandenberg Space Force Base, California. SpaceX has also cut the turnaround time between Falcon 9 rockets at Launch Complex 39A at NASA’s Kennedy Space Center. The company’s most-used launch pad, SLC-40, can handle two Falcon 9 flights in less than four days.

It’s not just launch pad turnaround. SpaceX uses its drone ships—two based in Florida and one in California—for most Falcon 9 landings. In order to meet the appetite for Falcon 9 launches, SpaceX is getting rockets back to port and re-deploying drone ships back to sea at a faster rate.

SpaceX’s most-flown reusable rocket will go for its 20th launch tonight Read More »

the-space-force-is-planning-what-could-be-the-first-military-exercise-in-orbit

The Space Force is planning what could be the first military exercise in orbit

Artist's illustration of two satellites performing rendezvous and proximity operations in low-Earth orbit.

Enlarge / Artist’s illustration of two satellites performing rendezvous and proximity operations in low-Earth orbit.

The US Space Force announced Thursday it is partnering with two companies, Rocket Lab and True Anomaly, for a first-of-its-kind mission to demonstrate how the military might counter “on-orbit aggression.”

On this mission, a spacecraft built and launched by Rocket Lab will chase down another satellite made by True Anomaly, a Colorado-based startup. “The vendors will exercise a realistic threat response scenario in an on-orbit space domain awareness demonstration called Victus Haze,” the Space Force’s Space Systems Command said in a statement.

This threat scenario could involve a satellite performing maneuvers that approach a US spacecraft or a satellite doing something else unusual or unexpected. In such a scenario, the Space Force wants to have the capability to respond, either to deter an adversary from taking action or to defend a US satellite from an attack.

Going up to take a look

“When another nation puts an asset up into space and we don’t quite know what that asset is, we don’t know what its intent is, we don’t know what its capabilities are, we need the ability to go up there and figure out what this thing is,” said Gen. Michael Guetlein, the Space Force’s vice chief of space operations.

This is what the Space Force wants to demonstrate with Victus Haze. For this mission, True Anomaly’s spacecraft will launch first, posing as a satellite from a potential adversary, like China or Russia. Rocket Lab will have a satellite on standby to go up and inspect True Anomaly’s spacecraft and will launch it when the Space Force gives the launch order.

“Pretty sporty,” said Even Rogers, co-founder and CEO of True Anomaly.

Then, if all goes according to plan, the two spacecraft will switch roles, with True Anomaly’s Jackal satellite actively maneuvering around Rocket Lab’s satellite. According to the Space Force, True Anomaly and Rocket Lab will deliver their spacecraft no later than the fall of 2025.

“If a near-peer competitor makes a movement, we need to have it in our quiver to make a counter maneuver, whether that be go up and do a show of force or go up and do space domain awareness or understand the characterization of the environment—what’s going on?” Guetlein said.

Victus Haze is the next in a series of military missions dedicated to validating Tactically Responsive Space (TacRS) capabilities. With these efforts, the Space Force and its commercial partners have shown how they can compress the time it takes to prepare and launch a satellite.

Last year, the Space Force partnered with Firefly Aerospace and Millennium Space Systems on the Victus Nox mission. The Victus Nox satellite was built and tested in less than a year and then readied for launch in less than 60 hours. Firefly successfully launched the spacecraft on its Alpha rocket 27 hours after receiving launch orders from the Space Force, a remarkable achievement in an industry where satellites take years to build and launch campaigns typically last weeks or months.

One of True Anomaly's first two Jackal

Enlarge / One of True Anomaly’s first two Jackal “autonomous orbital vehicles,” which launched in March on a SpaceX rideshare mission.

“We no longer have the luxury of time to wait years, even 10 or 15 years, to deliver some of these capabilities.” Guetlein said in a discussion in January hosted by the Center for Strategic and International Studies. “A tactically relevant timeline is a matter of weeks, days, or even hours.”

“Victus Haze is about continuing to break those paradigms and to show how we would rapidly put up a space domain awareness capability and operate it in real time against a threat,” Guetlein said.

The Victus Haze mission is more complicated than Victus Nox, involving two prime contractors, two spacecraft, and two rocket launches from different spaceports, all timed to occur with short timelines “to keep the demonstration as realistic as possible,” a Space Force spokesperson told Ars.

“This demonstration will ultimately prepare the United States Space Force to provide future forces to combatant commands to conduct rapid operations in response to adversary on-orbit aggression,” Space Systems Command said in a statement.

The Space Force is planning what could be the first military exercise in orbit Read More »

after-a-fiery-finale,-the-delta-rocket-family-now-belongs-to-history

After a fiery finale, the Delta rocket family now belongs to history

Delta 389 —

“It is bittersweet to see the last one, but there are great things ahead.”

In this video frame from ULA's live broadcast, three RS-68A engines power the Delta IV Heavy rocket into the sky over Cape Canaveral, Florida.

Enlarge / In this video frame from ULA’s live broadcast, three RS-68A engines power the Delta IV Heavy rocket into the sky over Cape Canaveral, Florida.

United Launch Alliance

The final flight of United Launch Alliance’s Delta IV Heavy rocket took off Tuesday from Cape Canaveral, Florida, with a classified spy satellite for the National Reconnaissance Office.

The Delta IV Heavy, one of the world’s most powerful rockets, launched for the 16th and final time Tuesday. It was the 45th and last flight of a Delta IV launcher and the final rocket named Delta to ever launch, ending a string of 389 missions dating back to 1960.

United Launch Alliance (ULA) tried to launch this rocket on March 28 but aborted the countdown about four minutes prior to liftoff due to trouble with nitrogen pumps at an off-site facility at Cape Canaveral. The nitrogen is necessary for purging parts inside the Delta IV rocket before launch, reducing the risk of a fire or explosion during the countdown.

The pumps, operated by Air Liquide, are part of a network that distributes nitrogen to different launch pads at the Florida spaceport. The nitrogen network has caused problems before, most notably during the first launch campaign for NASA’s Space Launch System rocket in 2022. Air Liquide did not respond to questions from Ars.

A flawless liftoff

With a solution in place, ULA gave the go-ahead for another launch attempt Tuesday. After a smooth countdown, the final Delta IV Heavy lifted off from Cape Canaveral Space Force Station at 12: 53 pm EDT (16: 53 UTC).

Three hydrogen-fueled RS-68A engines made by Aerojet Rocketdyne flashed to life in the final seconds before launch and throttled up to produce more than 2 million pounds of thrust. The ignition sequence was accompanied by a dramatic hydrogen fireball, a hallmark of Delta IV Heavy launches, that singed the bottom of the 235-foot-tall (71.6-meter) rocket, turning a patch of its orange insulation black. Then, 12 hold-down bolts fired and freed the Delta IV Heavy for its climb into space with a top-secret payload for the US government’s spy satellite agency.

Heading east from Florida’s Space Coast, the Delta IV Heavy appeared to perform well in the early phases of its mission. After fading from view from ground-based cameras, the rocket’s two liquid-fueled side boosters jettisoned around four minutes into the flight, a moment captured by onboard video cameras. The core stage engine increased power to fire for a couple more minutes. Nearly six minutes after liftoff, the core stage was released, and the Delta IV upper stage took over for a series of burns with its RL10 engine.

At that point, ULA cut the public video and audio feeds from the launch control center, and the mission flew into a news blackout. The final portions of rocket launches carrying National Reconnaissance Office (NRO) satellites are usually performed in secret.

In all likelihood, the Delta IV Heavy’s upper stage was expected to fire its engine at least three times to place the classified NRO satellite into a circular geostationary orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator. In this orbit, the spacecraft will move in lock-step with the planet’s rotation, giving the NRO’s newest spy satellite constant coverage over a portion of the Earth.

It will take about six hours for the rocket’s upper stage to deploy its payload into this high-altitude orbit and only then will ULA and the NRO declare the launch a success.

Eavesdropping from space

While the payload is classified, experts can glean a few insights from the circumstances of its launch. Only the largest NRO spy satellites require a launch on a Delta IV Heavy, and the payload on this mission is “almost certainly” a type of satellite known publicly as an “Advanced Orion” or “Mentor” spacecraft, according to Marco Langbroek, an expert Dutch satellite tracker.

The Advanced Orion satellites require the combination of the Delta IV Heavy rocket’s lift capability, long-duration upper stage, and huge, 65-foot-long (19.8-meter) trisector payload fairing, the largest payload enclosure of any operational rocket. In 2010, Bruce Carlson, then-director of the NRO, referred to the Advanced Orion platform as the “largest satellite in the world.”

When viewed from Earth, these satellites shine with the brightness of an eighth-magnitude star, making them easily visible with small binoculars despite their distant orbits, according to Ted Molczan, a skywatcher who tracks satellite activity.

“The satellites feature a very large parabolic unfoldable mesh antenna, with estimates of the size of this antenna ranging from 20 to 100 (!) meters,” Langbroek writes on his website, citing information leaked by Edward Snowden.

The purpose of these Advanced Orion satellites, each with mesh antennas that unfurl to a diameter of up to 330 feet (100 meters), is to listen in on communications and radio transmissions from US adversaries, and perhaps allies. Six previous Delta IV Heavy missions also likely launched Advanced Orion or Mentor satellites, giving the NRO a global web of listening posts parked high above the planet.

With the last Delta IV Heavy off the launch pad, ULA has achieved a goal of its corporate strategy sent into motion a decade ago, when the company decided to retire the Delta IV and Atlas V rockets in favor of a new-generation rocket named Vulcan. The first Vulcan rocket successfully launched in January, so the last few months have been a time of transition for ULA, a 50-50 joint venture owned by Boeing and Lockheed Martin.

“This is such an amazing piece of technology: 23 stories tall, half a million gallons of propellant, two and a quarter million pounds of thrust, and the most metal of all rockets, setting itself on fire before it goes to space,” Bruno said of the Delta IV Heavy before its final launch. “Retiring it is (key to) the future, moving to Vulcan, a less expensive, higher-performance rocket. But it’s still sad.”

“Everything that Delta has done … is being done better on Vulcan, so this is a great evolutionary step,” said Bill Cullen, ULA’s launch systems director. “It is bittersweet to see the last one, but there are great things ahead.”

After a fiery finale, the Delta rocket family now belongs to history Read More »

here-are-the-winners-and-losers-when-it-comes-to-clouds-for-monday’s-eclipse

Here are the winners and losers when it comes to clouds for Monday’s eclipse

Happy hunting —

News you can use in regard to chasing cloud-free skies.

Cloud cover forecast for 2 pm ET on Monday, April 8.

Enlarge / Cloud cover forecast for 2 pm ET on Monday, April 8.

Tomer Burg

The best opportunity to view a total Solar eclipse in the United States for the next two decades is nearly at hand. Aside from making sure you’re in the path of totality, the biggest question for most eclipse viewers has been, will it be cloudy?

This has posed a challenge to the meteorological community. That’s because clouds are notoriously difficult to forecast for a number of reasons. The first is that they are localized features, sometimes on the order of a few miles or km across, which is smaller than the resolution of global models that provide forecasts five, seven, or more days out.

Weather models also struggle with predicting clouds because they can form anywhere from a few thousand feet (2,000 meters) above the ground to 50,000 feet (15,000 meters), and therefore they require good information about conditions in the atmosphere near the surface all the way into the stratosphere. The problem is that the combination of ground-based observations, weather balloons, data from aircraft, and satellites do not provide the kind of comprehensive atmospheric profile needed at locations around the world for completely accurate cloud forecasting.

Finally, there is the issue of partly cloudy skies and the transience of clouds themselves. Most places, most days, have a mixture of sunshine and cloudy skies. So let’s say the forecast looks pretty good for your location. According to forecasters there is only a 30 percent skycover forecast for Monday afternoon. Sounds great! But if a large cloud moves over the Sun during the few minutes of totality, it won’t matter if the day was mostly sunny.

With that in mind, here’s the forecast at three days out, with some strategies for finding the clear skies on Monday.

The forecast

The cloud forecast has actually been remarkably consistent for the last several days, in general terms. Texas has looked rather poor for visibility, the central region of the United States including bits of Missouri, Arkansas, Illinois, and Indiana have looked fairly good, areas along Lake Erie have been iffy, and the northeastern United States has looked optimal.

Our highest confidence area is northern New York, Vermont, New Hampshire, and Maine. The reason is that high pressure will be firmly in place for these locations on Monday, virtually guaranteeing mostly sunny skies. If you want to be confident of seeing the eclipse in North America, this is the place to be. But there is a catch—isn’t there always? A snowstorm this week, which may persist into Saturday morning, has made travel difficult. Conditions should improve by Sunday, however.

Rising pressures in the central United States will also make for good viewing conditions. The band of totality running from Northern Arkansas through Indiana is not guaranteed to have clear skies, but the odds are favorable for most locations here.

The Lake Erie region, including Cleveland, is probably the biggest wildcard in the national forecast. The atmospheric setup here is fairly complex, with the region just on the edge of high pressure ridging that will help keep skies clear. I’d be cautiously optimistic.

Finally there’s Texas. The forecast overall has been poor since I’ve began tracking it for the last two weeks. (And as I live in Texas, I’ve been following it closely.) The global models with the best predictive value—the European-based ECMWF and US-based GFS—have shown consistently cloudy skies across much of the state on Monday, with a non-zero chance of rain. I do think there will be some breaks in the clouds at the time of the eclipse, perhaps in locations near Dallas or to the west of Austin, and hopefully some of the cloud cover will be thin, high clouds. But whereas the skies at night are big and bright in Texas, the solar eclipse viewing conditions might just bite.

Some strategies for Monday

There are a lot of helpful resources online for tracking cloud cover over the weekend. One of the best hacks is to search the web for the nearest city or town, i.e. “NWS Cleveland, Ohio” and find the “forecaster discussion” section of the National Weather Service website. This will give you a credible local forecaster’s outlook on conditions. Most have been doing a great job of providing eclipse context in twice-daily discussions.

A meteorologist at the University of Oklahoma, Tomer Burg, has set up an excellent website to provide both an overview of the eclipse and a probabilistic outlook for localized conditions. Your best bets are the national blend of models forecast for average cloud cover (direct link), and a city dashboard that provides key information for more than 100 locations about precise eclipse timing and sky cover.

Good luck, Austin!

Enlarge / Good luck, Austin!

Tomer Burg

Finally, if you’re in the path of totality and are expected to have partly to mostly cloudy skies, don’t despair. There’s always a chance the forecast will change, even a few days out. There’s always a chance for a break in the clouds at the right time. There’s always a chance the clouds will be thin and high, with the disk of the Sun shining through.

And finally, if it is thickly overcast, it will still get eerily dark outside in the middle of the day. It will get noticeably colder. Animals will do nighttime things. So it will be special, but unfortunately not special.

Here are the winners and losers when it comes to clouds for Monday’s eclipse Read More »

rocket-report:-blue-origin-to-resume-human-flights;-progress-for-polaris-dawn

Rocket Report: Blue Origin to resume human flights; progress for Polaris Dawn

The wait is over —

“The pacing item in our supply chain is the BE-4.”

Ed Dwight stands in front of an F-104 jet fighter in 1963.

Enlarge / Ed Dwight stands in front of an F-104 jet fighter in 1963.

Welcome to Edition 6.38 of the Rocket Report! Ed Dwight was close to joining NASA’s astronaut corps more than 60 years ago. With an aeronautical engineering degree and experience as an Air Force test pilot, Dwight met the qualifications to become an astronaut. He was one of 26 test pilots the Air Force recommended to NASA for the third class of astronauts in 1963, but he wasn’t selected. Now, the man who would have become the first Black astronaut will finally get a chance to fly to space.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Ed Dwight named to Blue Origin’s next human flight. Blue Origin, Jeff Bezos’ space company, announced Thursday that 90-year-old Ed Dwight, who almost became the first Black astronaut in 1963, will be one of six people to fly to suborbital space on the company’s next New Shepard flight. Dwight, a retired Air Force captain, piloted military fighter jets and graduated test pilot school, following a familiar career track as many of the early astronauts. He was on a short list of astronaut candidates the Air Force provided NASA, but the space agency didn’t include him. It took 20 more years for the first Black American to fly to space. Dwight’s ticket with Blue Origin is sponsored by Space for Humanity, a nonprofit that seeks to expand access to space for all people. Five paying passengers will join Dwight for the roughly 10-minute up-and-down flight to the edge of space over West Texas. Kudos to Space for Humanity and Blue Origin for making this happen.

Return to flight … This mission, named NS-25, will be the first time Blue Origin flies with human passengers since August 2022. Blue Origin hasn’t announced a launch date yet for NS-25. On an uncrewed launch the following month, an engine failure destroyed a New Shepard booster and grounded Blue Origin’s suborbital rocket program for more than 15 months. New Shepard returned to flight December 19 on another research flight, again without anyone onboard. As the mission name suggests, this will be the 25th flight of a New Shepard rocket and the seventh flight with people. Blue Origin has a history of flying aviation pioneers and celebrities. On the first human flight with New Shepard in 2021, the passengers included company founder Jeff Bezos and famed female aviator Wally Funk. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Revisit Astra’s 2020 rocket explosion. In March 2020, as the world was under the grip of COVID, Astra blew up a rocket in remote Alaska and didn’t want anyone to see it. New video published by TechCrunch shows Astra’s Rocket 3 vehicle exploding on its launch pad. This was one of several setbacks that have brought the startup to its knees. The explosion, which occurred at Alaska’s Pacific Spaceport Complex, was simply reported as an “anomaly” at the time, an industry term for pretty much any issue that deviates from the expected outcome, TechCrunch reports. Satellite imagery of the launch site showed burn scars, suggesting an explosion, but the footage published this week confirms the reality of the event. This was Astra’s first orbital-class rocket, and it blew up during a fueling rehearsal.

A sign of things to come … Astra eventually flew its Rocket 3 small satellite launcher seven times, but only two of the flights actually reached orbit. This prompted Astra to abandon its Rocket 3 program and focus on developing a larger rocket, Rocket 4. But the future of this new rocket is in doubt. Astra’s co-founders are taking the company private after its market value and stock price tanked, and it’s not clear where the company will go from here. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Russia’s plan to “restore” its launch industry. Yuri Borisov, chief of the Russian space agency Roscosmos, has outlined a strategy for Russia to regain a dominant position in the global launch market, Ars reports. This will include the development of a partially reusable replacement for the Soyuz rocket called Amur-CNG. The country’s spaceflight enterprise is also working on “ultralight” boosters that will incorporate an element of reusability. In an interview posted on the Roscosmos website, Borisov said he hopes Russia will have a “completely new fleet of space vehicles” by the 2028-2029 timeframe. Russia has previously discussed plans to develop the Amur rocket (the CNG refers to the propellant, liquified methane). The multi-engine vehicle looks somewhat similar to SpaceX’s Falcon 9 rocket in that preliminary designs incorporated landing legs and grid fins to enable a powered first-stage landing.

Reason to doubt … Russia’s launch industry was a global leader a couple of decades ago when prices were cheap relative to Western rockets. But the heavy-lift Proton rocket is nearing retirement after concerns about its reliability, and the still-reliable Soyuz is now excluded from the global market after Russia’s invasion of Ukraine. In the 2000s and 2010s, Russia’s position in the market was supplanted by the European Ariane 5 rocket and then SpaceX’s Falcon 9. Roscosmos originally announced the medium-lift Amur rocket program in 2020 for a maiden flight in 2026. Since then, the rocket has encountered a nearly year-for-year delay in its first test launch. I’ll believe it when I see it. The only new, large rocket Russia has developed in nearly 40 years, the expendable Angara A5, is still launching dummy payloads on test flights a decade after its debut.

Rocket Report: Blue Origin to resume human flights; progress for Polaris Dawn Read More »

nasa-knows-what-knocked-voyager-1-offline,-but-it-will-take-a-while-to-fix

NASA knows what knocked Voyager 1 offline, but it will take a while to fix

Hope returns —

“Engineers are optimistic they can find a way for the FDS to operate normally.”

A Voyager space probe in a clean room at the Jet Propulsion Laboratory in 1977.

Enlarge / A Voyager space probe in a clean room at the Jet Propulsion Laboratory in 1977.

Engineers have determined why NASA’s Voyager 1 probe has been transmitting gibberish for nearly five months, raising hopes of recovering humanity’s most distant spacecraft.

Voyager 1, traveling outbound some 15 billion miles (24 billion km) from Earth, started beaming unreadable data down to ground controllers on November 14. For nearly four months, NASA knew Voyager 1 was still alive—it continued to broadcast a steady signal—but could not decipher anything it was saying.

Confirming their hypothesis, engineers at NASA’s Jet Propulsion Laboratory (JPL) in California confirmed a small portion of corrupted memory caused the problem. The faulty memory bank is located in Voyager 1’s Flight Data System (FDS), one of three computers on the spacecraft. The FDS operates alongside a command-and-control central computer and another device overseeing attitude control and pointing.

The FDS duties include packaging Voyager 1’s science and engineering data for relay to Earth through the craft’s Telemetry Modulation Unit and radio transmitter. According to NASA, about 3 percent of the FDS memory has been corrupted, preventing the computer from carrying out normal operations.

Optimism growing

Suzanne Dodd, NASA’s project manager for the twin Voyager probes, told Ars in February that this was one of the most serious problems the mission has ever faced. That is saying something because Voyager 1 and 2 are NASA’s longest-lived spacecraft. They launched 16 days apart in 1977, and after flying by Jupiter and Saturn, Voyager 1 is flying farther from Earth than any spacecraft in history. Voyager 2 is trailing Voyager 1 by about 2.5 billion miles, although the probes are heading out of the Solar System in different directions.

Normally, engineers would try to diagnose a spacecraft malfunction by analyzing data it sent back to Earth. They couldn’t do that in this case because Voyager 1 has been transmitting data packages manifesting a repeating pattern of ones and zeros. Still, Voyager 1’s ground team identified the FDS as the likely source of the problem.

The Flight Data Subsystem was an innovation in computing when it was developed five decades ago. It was the first computer on a spacecraft to use volatile memory. Most of NASA’s missions operate with redundancy, so each Voyager spacecraft launched with two FDS computers. But the backup FDS on Voyager 1 failed in 1982.

Due to the Voyagers’ age, engineers had to reference paper documents, memos, and blueprints to help understand the spacecraft’s design details. After months of brainstorming and planning, teams at JPL uplinked a command in early March to prompt the spacecraft to send back a readout of the FDS memory.

The command worked, and Voyager.1 responded with a signal different from the code the spacecraft had been transmitting since November. After several weeks of meticulous examination of the new code, engineers pinpointed the locations of the bad memory.

“The team suspects that a single chip responsible for storing part of the affected portion of the FDS memory isn’t working,” NASA said in an update posted Thursday. “Engineers can’t determine with certainty what caused the issue. Two possibilities are that the chip could have been hit by an energetic particle from space or that it simply may have worn out after 46 years.”

Voyager 1’s distance from Earth complicates the troubleshooting effort. The one-way travel time for a radio signal to reach Voyager 1 from Earth is about 22.5 hours, meaning it takes roughly 45 hours for engineers on the ground to learn how the spacecraft responded to their commands.

NASA also must use its largest communications antennas to contact Voyager 1. These 230-foot-diameter (70-meter) antennas are in high demand by many other NASA spacecraft, so the Voyager team has to compete with other missions to secure time for troubleshooting. This means it will take time to get Voyager 1 back to normal operations.

“Although it may take weeks or months, engineers are optimistic they can find a way for the FDS to operate normally without the unusable memory hardware, which would enable Voyager 1 to begin returning science and engineering data again,” NASA said.

NASA knows what knocked Voyager 1 offline, but it will take a while to fix Read More »

it-could-well-be-a-blockbuster-hurricane-season,-and-that’s-not-a-good-thing

It could well be a blockbuster hurricane season, and that’s not a good thing

It only takes one —

Although not quite literally, the Atlantic Ocean is on fire right now.

As of late March, much of the Atlantic Ocean was seeing temperatures far above normal.

Enlarge / As of late March, much of the Atlantic Ocean was seeing temperatures far above normal.

Weathermodels.com

The Atlantic hurricane season does not begin for another eight weeks, but we are deep in the heart of hurricane season prediction season.

On Thursday, the most influential of these forecasts was issued by Phil Klotzbach, a hurricane scientist at Colorado State University. To put a fine point on it, Klotzbach and his team foresee an exceptionally busy season in the Atlantic basin, which encompasses the Atlantic Ocean, Caribbean Sea, and Gulf of Mexico.

“We anticipate that the 2024 Atlantic basin hurricane season will be extremely active,” Klotzbach wrote in his forecast discussion.

The Colorado State forecast calls for 23 named storms, more than 50 percent higher than a typical season of 14.4 named storms; and 11 hurricanes, above a normal total of seven. Additionally, the forecast predicts that the season’s accumulated cyclone energy—a summation of the duration and intensity of storms across the whole basin—will be 70 percent greater than normal. If the forecast is accurate, the year 2024 would rank among the top 10 most active Atlantic hurricane seasons in a century and a half of records.

This forecast is not out of line with other seasonal predictions. Dozens of organizations, from private groups to individual forecasters to media properties, issue these kinds of seasonal predictions. But Colorado State’s is the longest-running and most influential, and its release underscores what is indeed expected to be a very busy season for tropical storms, hurricanes, and major hurricanes.

What’s driving this?

Klotzbach cites two major factors driving the busy year. The primary one is sea surface temperatures in the eastern and central Atlantic, where tropical systems develop. These seas are seeing record warm temperatures for April—indeed, in many places, the Atlantic is already as warm as it typically would be in June. Undoubtedly climate change is a central factor behind this warming.

Warm seas are one precursor to tropical systems, but they are just one condition necessary for a low-pressure system to organize into a tropical depression.

Another is low wind shear, as cross-directional winds can literally shear a storm apart. While it is not possible to forecast wind shear months ahead of a season, the presence of El Niño or La Niña in the Pacific Ocean is a pretty useful indicator.

In this case, there’s more bad news. The present (weak) El Niño in the Pacific is likely to transition into a La Niña by this summer, especially in August or September. That matters because these are typically the most frenetic months for activity, and with a La Niña in place, wind shear is likely to be lower overall in the Atlantic basin.

This is the first of several forecasts Klotzbach will issue for the upcoming season, and although predictions in April typically have lower skill, it is difficult to ignore the signals out there. “While the skill of this prediction is low, our confidence is higher than normal this year for an early April forecast given how hurricane-favorable the large-scale conditions appear to be,” he wrote.

What does this mean?

Most coastal areas along the Atlantic, Caribbean, and Gulf will not be affected by a hurricane in any given year. I live and work in Houston, which is the largest city in the Atlantic basin that regularly sees significant hurricane threats. But even here, in the subtropics, we only see large, direct impacts from a hurricane or tropical storm about every 10 years.

What a busy season does is load the dice. More activity means a greater likelihood that one of those storms will venture closer to where one lives. So the threat of a hurricane is there every year; it’s just that the threat is greater in some years.

There is an old, oft-repeated adage in hurricane forecasting circles: “It only takes one.” This means that even during a slow season if there’s just one hurricane and it hits you, it was a busy hurricane season for you. We experienced this in Houston back in 1983 when the very first named storm of the year, a hurricane named Alicia, made landfall near the city on August 17. There ended up being just four named storms in 1984, but unfortunately for Houston, one of them struck here.

A busy forecast like this doesn’t mean a whole lot for coastal residents. We really need to be prepared every year, knowing our vulnerabilities to a hurricane, knowing when we need to evacuate, where we would go, and what we would need to take.

However, it does have implications for first responders and government organizations tasked with dealing with hurricane aftermath, such as the Federal Emergency Management Agency. Thus, it seems prudent that the recently passed federal budget for fiscal year 2024 tucked $20.3 billion into the agency’s Disaster Relief Fund.

It could well be a blockbuster hurricane season, and that’s not a good thing Read More »

pentagon-calls-for-tighter-integration-between-military-and-commercial-space

Pentagon calls for tighter integration between military and commercial space

Aerial view of the Pentagon on March 31.

Enlarge / Aerial view of the Pentagon on March 31.

Photo by Daniel Slim/AFP via Getty Images

A strategy document released by the Pentagon this week lays out where the US military can most effectively rely on the commercial space industry and what missions should remain in government hands.

“This marks a new effort to harness the remarkable innovation of the commercial space sector to enhance our resilience and strengthen integrated deterrence as a department,” said John Plumb, assistant secretary of defense for space policy.

The Space Force already buys a lot from the commercial space industry. The military doesn’t build or own satellite launch vehicles—those come from commercial companies. While the Space Force operates government-owned reconnaissance and surveillance satellites, it also buys supplementary data and imagery from the commercial industry.

“To protect our men and women in uniform and to ensure the space services they rely on will be available when needed, the department has a responsibility to leverage all tools available, and those tools include commercial solutions,” Plumb said Tuesday. “From launch to space domain awareness to satellite communications and more, the commercial sector’s ability to innovate, to scale production and to rapidly refresh their technology is opening the door to all kinds of possibilities.”

The Pentagon defines the commercial space sector as companies that develop capabilities for sale on the commercial market, where the military is one of many customers. This is separate from the Pentagon’s procurement of government-owned airplanes and satellites from the defense industry.

Ripe for exploitation

Build or buy is an age-old question facing everyone from homeowners to billion-dollar enterprises. When it comes to space, the Pentagon is buying more than ever. The military’s new strategy document outlines 13 mission areas for national security space, and while the commercial space industry is rapidly growing, the Pentagon predominately buys commercial services in only one of those mission areas.

“Out of those 13, the only that’s clearly primarily commercial now is SAML.. which is Space Access, Mobility and Logistics, and space access is launch,” Plumb said. “So SpaceX, Firefly, Rocket Lab, all these different companies doing commercial launch, that’s where the commercial sector clearly can provide services.”

A SpaceX Falcon 9 rocket lifts off February 14 with satellites for the US military's Missile Defense Agency. Another Falcon 9 awaits launch in the foreground.

Enlarge / A SpaceX Falcon 9 rocket lifts off February 14 with satellites for the US military’s Missile Defense Agency. Another Falcon 9 awaits launch in the foreground.

Currently, the military classifies six mission areas as a hybrid of government and commercial capabilities:

  • Cyberspace operations
  • Satellite communications
  • Spacecraft operations,
  • Intelligence, surveillance, and reconnaissance
  • Space domain awareness (tracking of space objects)
  • Environmental monitoring.

In the remaining six mission areas, “a preponderance of functions must be performed by the government, while a select few could be performed by the commercial sector,” officials wrote in the commercial space strategy. In these areas, there is not yet a viable commercial market outside of the government, or commercial capabilities don’t match the government’s needs. These areas include:

  • Command and control (including nuclear command, control, and communications)
  • Electromagnetic warfare
  • Nuclear detonation detection
  • Missile warning
  • Position, navigation, and timing (GPS).

A major tenet of the commercial space strategy is for the military to support the development of new commercial space capabilities. This could involve supporting technology demonstrations and funding scientific research. Over time, new technology and new markets could bring more mission areas into the hybrid or commercial lists.

“I think what this strategy hopes to do is say, yes, continue working on bringing commercial entities in,” Plumb said. “This is actually a thing we want you to do, not just a thing you should be experimenting with.”

Pentagon calls for tighter integration between military and commercial space Read More »

with-payload-questions,-it’s-likely-vulcan-will-not-launch-again-until-fall

With payload questions, it’s likely Vulcan will not launch again until fall

LLAP —

United Launch Alliance may seek certification from the Space Force after one flight.

The first Vulcan rocket lifts off from Space Launch Complex 41 at Cape Canaveral Space Force Station.

Enlarge / The first Vulcan rocket lifts off from Space Launch Complex 41 at Cape Canaveral Space Force Station.

After the impressive debut of the Vulcan rocket in January, it is unclear when the heavy lift vehicle will fly again. The uncertainty is due to a couple of factors, including the rocket’s readiness and, perhaps more critically, what will fly on top of it.

United Launch Alliance, which assembles and launches the Vulcan rocket, has long maintained that it would launch the Dream Chaser spacecraft for Sierra Space on the rocket’s second mission. This would allow the rocket company to obtain enough data about the performance of Vulcan to earn certification for national security payloads.

An indication of the emphasis the company has put on earning certification from the Space Force—launching military payloads is the primary justification for the existence of Vulcan—comes from the names it chose for the first two launches, Cert-1 and Cert-2.

But what happens if the payload is not ready for Cert-2, as increasingly looks likely to be the case?

Chasing Dreams

After a long development period, Sierra Space’s Dream Chaser vehicle is making credible progress toward the launch pad. It is currently undergoing environmental testing at a NASA facility in Ohio, including vibration tests.

On NASA’s internal schedule for missions to the International Space Station, the Dream Chaser mission to supply cargo to the orbiting laboratory currently has a “planning” date of September. However, this is not a firm date and is subject to slippage.

In fact, there is skepticism within the space agency about a fall launch. According to one source, during a recent meeting to integrate planning for space station activities, there were significant inconsistencies in the schedule that Sierra Space officials laid out for NASA.

It is possible that Dream Chaser will not be ready to launch until 2025, and then its flight will be subject to the space station schedule, which must coordinate arriving crew and cargo vehicles from SpaceX, Northrop Grumman, Boeing, and Russia.

Vulcan wants to fly sooner

United Launch Alliance would very much like to fly the Vulcan rocket sooner, in order to exit the certification phase and begin flying contracted missions for the US Space Force. Immediately after the Cert-1 mission, the launch of an Astrobotic lunar lander on January 8, the company was keeping open the possibility of a spring launch.

The company planned to set aside 60 days to review data from the “Cert-1” certification mission. If the data looked good from that flight, the plan was to move into preparations for the next launch. United Launch Alliance Vice President Gary Wentz said the earliest opportunity to launch the Cert-2 mission was “April-ish.”

As is commonplace in the launch industry, that schedule proved optimistic. However, given that Vulcan appeared to perform very well on its debut launch, a midsummer target seems realistic for the rocket’s readiness. That leaves three or four months to complete production of the core stage, which still lacks engines.

“The pacing item in our supply chain is the BE-4,” United Launch Alliance chief executive Tory Bruno said about Vulcan during a conference call with reporters in March. The BE-4 rocket engines, two of which power Vulcan’s first stage, are manufactured by Blue Origin. “The reason the BE-4 is a little bit behind everyone else is because it took a little bit longer to get it developed and finished. It is now. We have wonderful facilities at the BE-4 factory in Huntsville, which was just built and expanded, they literally doubled their factory size to do this. So they have to catch up now to everyone else in building ahead.”

United Launch Alliance did not respond to a request for comment for this story about the Vulcan rocket’s readiness or a potential shuffling of the launch manifest. A source said the company is willing to wait until September to launch Dream Chaser. But if the vehicle is not ready by then, Vulcan will likely seek out alternatives.

One-flight certification

Two sources said United Launch Alliance had asked Space Systems Command, the Los Angeles-based unit responsible for military access to space, for at least a partial certification of Vulcan based on data from its initial launch. This would potentially allow Vulcan to carry national security payloads on its second flight or perhaps Defense Innovation Unit payloads such as Blue Origin’s DarkSky-1 mission.

A spokesperson for Space Systems Command declined to respond to questions from Ars about an expedited certification process.

Previously, Col. Douglas Pentecost of the Space Force said United Launch Alliance had chosen the Vulcan certification path requiring the least amount of launches: two. By contrast, Blue Origin has agreed to a three-flight certification process, which requires less paperwork. There is also a six-flight option and even a 14-flight option for certification. The latter option essentially means that if your rocket flies 14 times, it earns certification.

Nevertheless, there is a precedent for a single-flight certification. In 2018, the Air Force agreed to certify SpaceX’s Falcon Heavy rocket after its debut launch in February of that year. That decision was controversial enough that it generated a review by the Department of Defense Inspector General, which found that the military had “generally complied” with its procurement rules.

It’s worth noting, however, that the Falcon Heavy did not carry a military payload on its next two flights. The initial certification appears to have been conditional on the success of the next two commercial missions.

With payload questions, it’s likely Vulcan will not launch again until fall Read More »