Space

rocket-report:-firefly’s-ceo-steps-down;-artemis-ii-core-stage-leaves-factory

Rocket Report: Firefly’s CEO steps down; Artemis II core stage leaves factory

Vaya con dios —

Rocket Factory Augsburg completed qualification of its upper stage for a first launch this year.

The core stage for NASA's second Space Launch System rocket rolls aboard a barge that will take it from New Orleans to Kennedy Space Center in Florida.

Enlarge / The core stage for NASA’s second Space Launch System rocket rolls aboard a barge that will take it from New Orleans to Kennedy Space Center in Florida.

Welcome to Edition 7.03 of the Rocket Report! One week ago, SpaceX suffered a rare failure of its workhorse Falcon 9 rocket. In fact, it was the first time the latest version of the Falcon 9, known as the Block 5, has ever failed on its prime mission after nearly 300 launches. The world’s launch pads have been silent since the grounding of the Falcon 9 fleet after last week’s failure. This isn’t surprising, but it’s noteworthy. After all, the Falcon 9 has flown more this year than all of the world’s other rockets combined and is fundamental to much of what the world does in space.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Astra finally goes private, again. A long-simmering deal for Astra’s founders to take the company private has been finalized, the company announced Thursday, capping the rocket launch company’s descent from blank-check darling to delisting in three years, Bloomberg reports. The launch company’s valuation peaked at $3.9 billion in 2021, the year it went public, and was worth about $12.2 million at the end of March, according to data compiled by Bloomberg. Astra’s chief executive officer, Chris Kemp, and chief technology officer, Adam London, founded the company in 2016 with the goal of essentially commoditizing launch services for small satellites. But Astra’s rockets failed to deliver and fell short of orbit five times in seven tries.

Spiraling … Astra’s stock price tanked after the spate of launch failures, drying up its funding spigot as Kemp tried to pivot toward a slightly larger, more reliable rocket. Astra acquired a company named Apollo Fusion in 2021, entering a new business segment to produce electric thrusters for small satellites. But Astra’s launch business faltered, and last November Kemp and London submitted an offer to retake ownership of the company. Astra announced the closure of the take-private deal Thursday, with Kemp and London acquiring the company’s outstanding shares for 50 cents per share in cash, below the stock’s final listing price of 53 cents. “We will now focus all of our attention on a successful launch of Rocket 4, delivering satellite engines to our customers, and building a company of consequence,” Kemp said. (submitted by EllPeaTea and Ken the Bin)

Firefly chief leaves company. Launch startup Firefly Aerospace parted ways with CEO Bill Weber, Payload reports. The announcement of Weber’s departure late Wednesday came two days after Payload reported Firefly was investigating claims of an alleged inappropriate relationship between him and a female employee. “Firefly Aerospace’s Board of Directors announced that Bill Weber is no longer serving as CEO of the company, effective immediately,” the company said in a statement Wednesday night. Peter Schumacher takes over as interim CEO while Firefly searches for a new permanent chief executive. Schumacher was an interim CEO at Firefly before Weber’s hiring in 2022.

Two days and gone … Payload published the first report of Weber’s alleged improper relationship with a female employee Monday. Two days later, Weber was gone. Payload reported an executive brought his concerns about the alleged relationship to Firefly’s board and resigned because he lost confidence in leadership at the company. Citing four current and former employees, Payload reported Firefly’s culture became “chaotic” since Weber took the helm in 2022 after its acquisition by AE Industrial Partners. The Texas-based company achieved some success during Weber’s tenure, with four orbital launches of its Alpha rocket, although two of the flights ended up in lower-than-planned orbits. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Themis hop tests delayed to next year. The initial hop tests of the European Themis reusable booster, developed by ArianeGroup and funded by ESA, won’t start until next year, European Spaceflight reports. The Swedish Space Corporation, which operates the space center in Sweden where Themis will initially fly, confirmed the schedule change. Once ArianeGroup moves on to higher altitude flights, the testing will be moved to the Guiana Space Center. ESA awarded the first development contract for the Themis booster in 2019, and the first hop tests were then scheduled for 2022. Themis’ hops will be similar to SpaceX’s Grasshopper rocket, which performed a series of up-and-down atmospheric test flights before SpaceX started recovering and reusing Falcon 9 boosters.

Fate of Themis … The Themis booster is powered by the methane-fueled Prometheus engine, also funded by ESA. A large European reusable rocket is unlikely to fly until the 2030s, but a subsidiary of ArianeGroup named MaiaSpace is developing a smaller partially reusable two-stage rocket slated to debut as soon as next year. The Maia rocket will use a modified Themis booster as its first stage. “As a result, for MaiaSpace, the continued and rapid development of the Themis program is essential to ensure it can hit its projected target of an inaugural flight of Maia in 2025,” European Spaceflight reports. (submitted by Ken the Bin)

Rocket Report: Firefly’s CEO steps down; Artemis II core stage leaves factory Read More »

nasa-built-a-moon-rover-but-can’t-afford-to-get-it-to-the-launch-pad

NASA built a Moon rover but can’t afford to get it to the launch pad

NASA completed assembling the VIPER rover last month at the Johnson Space Center in Houston.

Enlarge / NASA completed assembling the VIPER rover last month at the Johnson Space Center in Houston.

NASA has spent $450 million designing and building a first-of-its-kind robot to drive into eternally dark craters at the Moon’s south pole, but the agency announced Wednesday it will cancel the rover due to delays and cost overruns.

“NASA intends to discontinue the VIPER mission,” said Nicky Fox, head of the agency’s science mission directorate. “Decisions like this are never easy, and we haven’t made this one, in any way, lightly. In this case, the projected remaining expenses for VIPER would have resulted in either having to cancel or disrupt many other missions in our Commercial Lunar Payload Services (CLPS) line.”

NASA has terminated science missions after development delays and cost overruns before, but it’s rare to cancel a mission with a spacecraft that is already built.

The Volatiles Investigating Polar Exploration Rover (VIPER) mission was supposed to be a robotic scout for NASA’s Artemis program, which aims to return astronauts to the lunar surface in the next few years. VIPER was originally planned to launch in late 2023 and was slated to fly to the Moon aboard a commercial lander provided by Pittsburgh-based Astrobotic, which won a contract from NASA in 2020 to deliver the VIPER rover to the lunar surface. Astrobotic is one of 14 companies in the pool of contractors for NASA’s CLPS program, with the goal of transporting government-sponsored science payloads to the Moon.

But VIPER has been delayed at least two years—the most recent schedule projected a launch in September 2025—causing its cost to grow from $433 million to more than $609 million. The ballooning costs automatically triggered a NASA review to determine whether to proceed with the mission or cancel it. Ultimately, officials said they determined NASA couldn’t pay the extra costs for VIPER without affecting other Moon missions.

“Therefore, we’ve made the decision to forego this particular mission, the VIPER mission, in order to be able to sustain the entire program,” Fox said.

“We’re disappointed,” said John Thornton, CEO of Astrobotic. “It’s certainly difficult news… VIPER has been a great team to work with, and we’re disappointed we won’t get the chance to fly them to the Moon.”

NASA said it will consider “expressions of interest” submitted by US industry and international partners by August 1 for use of the existing VIPER rover at no cost to the government. If NASA can’t find anyone to take over VIPER who can pay to get it to the Moon, the agency plans to disassemble the rover and harvest instruments and components for future lunar missions.

Scientists were dismayed by VIPER’s cancellation.

“It’s absurd, to be honest with you,” said Clive Neal, a planetary geologist at the University of Notre Dame. “It made no sense to me in terms of the economics. You’re canceling a mission that is complete, built, ready to go. It’s in the middle of testing.”

“This is a bad mistake,” wrote Phil Metzger, a planetary physicist at the University of Central Florida, in a post on X. “This was the premier mission to measure lateral and vertical variations of lunar ice in the soil. It would have been revolutionary. Other missions don’t replace what is lost here.”

Built with nowhere to go

Engineers at NASA’s Johnson Space Center in Houston finished assembling the VIPER rover last month, and managers gave approval to put the craft through environmental testing to make sure VIPER could withstand the acoustics and vibrations of launch and the extreme temperature swings it would encounter in space.

Instead, NASA has canceled the mission after spending $450 million to get it to this point. “This is a very tough decision, but it is a decision based on budgetary concerns in a very constrained budget environment,” Fox told reporters Wednesday.

VIPER is about the size of a golf cart, with four wheels, headlights, a drill, and three science instruments to search for water ice in depressions near the Moon’s south pole that have been shaded from sunlight for billions of years. This has allowed these so-called permanently shadowed regions to become cold traps, allowing water ice to accumulate at or near the surface, where it could be accessible for future astronauts to use as drinking water or an oxygen source or to convert into electricity and rocket fuel.

But first, scientists need to know exactly where the water is located and how easy it is to reach. VIPER was supposed to be the next step in mapping resources on the Moon, providing ground truth measurements to corroborate remote sensing data from satellites in lunar orbit.

But late parts deliveries delayed construction of the VIPER rover, and in 2022, NASA ordered additional testing of Astrobotic’s Griffin lunar lander to improve the chances of a successful landing with VIPER. This delayed VIPER’s launch from late 2023 until late 2024, and at the beginning of this year, more supply chain issues with the VIPER rover and the Griffin lander pushed back the launch until September 2025.

This most recent delay raised the projected cost of VIPER more than 30 percent over the original cost of the mission, prompting a NASA termination review. While the rover is now fully assembled, NASA still needed to put it through a lengthy series of tests, complete development of the ground systems to control VIPER on the Moon, and deliver the craft to Astrobotic for integration onto the Griffin lander.

The remaining work to complete VIPER and operate it for 100 days on the lunar surface would have cost around $84 million, according to Kearns.

NASA built a Moon rover but can’t afford to get it to the launch pad Read More »

elon-musk-says-spacex-and-x-will-relocate-their-headquarters-to-texas

Elon Musk says SpaceX and X will relocate their headquarters to Texas

Home base at Starbase —

The billionaire blamed a California gender identity law for moving SpaceX and X headquarters.

A pedestrian walks past a flown Falcon 9 booster at SpaceX headquarters in Hawthorne, California, on Tuesday, the same day Elon Musk said he will relocate the headquarters to Texas.

Enlarge / A pedestrian walks past a flown Falcon 9 booster at SpaceX headquarters in Hawthorne, California, on Tuesday, the same day Elon Musk said he will relocate the headquarters to Texas.

Elon Musk said Tuesday that he will move the headquarters of SpaceX and his social media company X from California to Texas in response to a new gender identity law signed by California Governor Gavin Newsom.

Musk’s announcement, made via a post on X, follows his decision in 2021 to move the headquarters of the electric car company Tesla from Palo Alto, California, to Austin, Texas, in the wake of coronavirus lockdowns in the Bay Area the year before. Now, two of Musk’s other major holdings are making symbolic moves out of California: SpaceX to the company’s Starbase launch facility near Brownsville, Texas, and X to Austin.

The new gender identity law, signed by Governor Newsom, a Democrat, on Monday, bars school districts in California from requiring teachers to disclose a change in a student’s gender identification or sexual orientation to their parents without the child’s permission. Musk wrote on X that the law was the “final straw” prompting the relocation to Texas, where the billionaire executive and his companies could take advantage of lower taxes and light-touch regulations.

Earlier this year, SpaceX transferred its incorporation from Delaware to Texas after a Delaware judge invalidated his pay package at Tesla.

“Because of this law and the many others that preceded it, attacking both families and companies, SpaceX will now move its HQ from Hawthorne, California, to Starbase, Texas,” Musk wrote Tuesday on X.

The first-in-the-nation law in California is a flashpoint in the struggle between conservative school boards concerned about parental rights and proponents for the privacy rights of LGBTQ people.

“I did make it clear to Governor Newsom about a year ago that laws of this nature would force families and companies to leave California to protect their children,” wrote Musk, who on Saturday endorsed former President Donald Trump, the Republican nominee in this year’s presidential election.

In a statement, Newsom’s office said the law “does not allow a student’s name or gender identity to be changed on an official school record without parental consent” and “does not take away or undermine parents’ rights.”

What does this mean for SpaceX?

Musk’s comments on X didn’t mention details about the implications of his companies’ moves to Texas. However, while Tesla’s corporate headquarters relocated to Texas in 2021, the company still produces cars in California and announced a new engineering hub in Palo Alto last year. The situation with SpaceX is likely to be similar.

Since Musk bought Twitter in 2022, he renamed it X, rewrote the network’s policies on content moderation, and laid off most of the company’s staff, reducing its workforce to around 1,500 employees. With vast manufacturing capacities, SpaceX currently has more than 13,000 employees, so a relocation for Musk’s space company would affect more people and potentially be more disruptive than one at X.

SpaceX’s current headquarters in Hawthorne, California, serves as a factory, engineering design center, and mission control for the company’s rockets and spacecraft. Relocating these facilities wouldn’t be easy, but SpaceX may not need to.

Elon Musk says SpaceX and X will relocate their headquarters to Texas Read More »

nato-allies-pledge-$1-billion-to-promote-sharing-of-space-based-intel

NATO allies pledge $1 billion to promote sharing of space-based intel

Breaking barriers —

Agreement marks the largest investment in space-based capabilities in NATO’s history.

Heads of state pose for a group photo at an event Tuesday celebrating the 75th anniversary of NATO.

Enlarge / Heads of state pose for a group photo at an event Tuesday celebrating the 75th anniversary of NATO.

During their summit in Washington, DC, this week, NATO member states committed more than $1 billion to improve the sharing of intelligence from national and commercial reconnaissance satellites.

The agreement is a further step toward integrating space assets into NATO military commands. It follows the bloc’s adoption of an official space policy in 2019, which recognized space as a fifth war-fighting domain alongside air, land, maritime, and cyberspace. The next step was the formation of the NATO Space Operations Center in 2020 to oversee space support for NATO military operations.

On June 25, NATO announced the establishment of a “space branch” in its Allied Command Transformation, which identifies trends and incorporates emerging capabilities into the alliance’s security strategy.

Breaking down barriers

The new intelligence-sharing agreement was signed on July 9 by representatives from 17 NATO nations, including the United States, to support the Alliance Persistent Surveillance from Space (APSS) program. In a statement, NATO called the agreement “the largest multinational investment in space-based capabilities in NATO’s history.”

The agreement for open sharing of intelligence data comes against the backdrop of NATO’s response to the Russian invasion of Ukraine. Space-based capabilities, including battlefield surveillance and communications, have proven crucial to both sides in the war.

“The ongoing war in Ukraine has further underscored intelligence’s growing dependence on space-based data and assets,” NATO said.

The program will improve NATO’s ability to monitor activities on the ground and at sea with unprecedented accuracy and timeliness, the alliance said in a statement. The 17 parties to the agreement pledged more than $1 billion transition the program into an implementation phase over the next five years. Six of the 17 signatories currently operate or plan to launch their own national reconnaissance satellites, while several more nations are home to companies operating commercial space-based surveillance satellites.

The APSS program won’t involve the development and launch of any NATO spy satellites. Instead, each nation will make efforts to share observations from their own government and commercial satellites.

Luxembourg, one of the smallest NATO member states, set up the APSS program with an initial investment of roughly $18 million (16.5 million euros) in 2023. At the time, NATO called the program a “data-centric initiative” aimed at bringing together intelligence information for easier dissemination among allies and breaking down barriers of secrecy and bureaucracy.

“APSS is not about creating NATO-owned and operated space assets,” officials wrote in the program’s fact sheet. “It will make use of existing and future space assets in allied countries, and connect them together in a NATO virtual constellation called ‘Aquila.'”

Another element of the program involves processing and sharing intelligence information through cloud solutions and technologies. NATO said AI analytical tools will also better manage growing amounts of surveillance data from space, and ensure decision-makers get faster access to time-sensitive observations.

“The APSS initiative may be regarded as a game changer for NATO’s intelligence, surveillance and reconnaissance. It will largely contribute to build NATO’s readiness and reduce its dependency on other intelligence and surveillance capabilities,” said Ludwig Decamps, general manager of the NATO Communications and Information Agency.

NATO allies pledge $1 billion to promote sharing of space-based intel Read More »

rocket-report:-chinese-firm-suffers-another-failure;-ariane-6-soars-in-debut

Rocket Report: Chinese firm suffers another failure; Ariane 6 soars in debut

The Ariane 6 rocket takes flight for the first time on July 9, 2024.

Enlarge / The Ariane 6 rocket takes flight for the first time on July 9, 2024.

ESA – S. Corvaja

Welcome to Edition 7.02 of the Rocket Report! The highlight of this week was the hugely successful debut of Europe’s Ariane 6 rocket. They will address the upper stage issue, I am sure. Given Europe’s commitment to zero debris, stranding the second stage is not great. But for a debut launch of a large new vehicle, this was really promising.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Chinese launch company suffers another setback. Chinese commercial rocket firm iSpace suffered a launch failure late Wednesday in a fresh setback for the company, Space News reports. The four-stage Hyperbola-1 solid rocket lifted off from Jiuquan spaceport in the Gobi Desert at 7: 40 pm ET (23: 40 UTC) on Wednesday. Beijing-based iSpace later issued a release stating that the rocket’s fourth stage suffered an anomaly. The statement did not reveal the name nor nature of the payloads lost on the flight.

Early troubles are perhaps to be expected … Beijing Interstellar Glory Space Technology Ltd., or iSpace, made history in 2019 as the first privately funded Chinese company to reach orbit, with the solid-fueled Hyperbola-1. However the rocket suffered three consecutive failures following that feat. The company recovered with two successful flights in 2023 before the latest failure. The loss could add to reliability concerns over China’s commercial launch industry as it follows Space Pioneer’s recent catastrophic static-fire explosion. (submitted by EllPeaTea)

Feds backtrack on former Firefly investor. A long, messy affair between US regulators and a Ukrainian businessman named Max Polyakov seems to have finally been resolved, Ars reports. On Tuesday, Polyakov’s venture capital firm Noosphere Venture Partners announced that the US government has released him and his related companies from all conditions imposed upon them in the run-up to the Russian invasion of Ukraine. This decision comes more than two years after the Committee on Foreign Investment in the United States and the US Air Force forced Polyakov to sell his majority stake in the Texas-based launch company Firefly.

Not a spy … This rocket company was founded in 2014 by an engineer named Tom Markusic, who ran into financial difficulty as he sought to develop the Alpha rocket. Markusic had to briefly halt Firefly’s operations before Polyakov, a colorful and controversial Ukrainian businessman, swooped in and provided a substantial infusion of cash into the company. “The US government quite happily allowed Polyakov to pump $200 million into Firefly only to decide he was a potential spy just as the company’s first rocket was ready to launch,” Ashlee Vance, a US journalist who chronicled Polyakov’s rise, told Ars. It turns out, Polyakov wasn’t a spy.

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Pentagon ICBM costs soar. The price tag for the Pentagon’s next-generation nuclear-tipped Sentinel ICBMs has ballooned by 81 percent in less than four years, The Register reports. This triggered a mandatory congressional review. On Monday, the Department of Defense released the results of this review, with Under-secretary of Defense for Acquisition and Sustainment William LaPlante saying the Sentinel missile program met established criteria for being allowed to continue after his “comprehensive, unbiased review of the program.”

Trust us, the military says … The Sentinel project is the DoD’s attempt to replace its aging fleet of ground-based nuclear-armed Minuteman III missiles (first deployed in 1970) with new hardware. When it passed its Milestone B decision (authorization to enter the engineering and manufacturing phase) in September 2020, the cost was a fraction of the $141 billion the Pentagon now estimates Sentinel will cost, LaPlante said. To give that some perspective, the proposed annual budget for the Department of Defense for its fiscal 2025 is nearly $850 billion. (submitted by EllPeaTea)

Rocket Report: Chinese firm suffers another failure; Ariane 6 soars in debut Read More »

spacex’s-unmatched-streak-of-perfection-with-the-falcon-9-rocket-is-over

SpaceX’s unmatched streak of perfection with the Falcon 9 rocket is over

Numerous pieces of ice fell off the second stage of the Falcon 9 rocket during its climb into orbit from Vandenberg Space Force Base, California.

Enlarge / Numerous pieces of ice fell off the second stage of the Falcon 9 rocket during its climb into orbit from Vandenberg Space Force Base, California.

SpaceX

A SpaceX Falcon 9 rocket suffered an upper stage engine failure and deployed a batch of Starlink Internet satellites into a perilously low orbit after launch from California Thursday night, the first blemish on the workhorse launcher’s record in more than 300 missions since 2016.

Elon Musk, SpaceX’s founder and CEO, posted on X that the rocket’s upper stage engine failed when it attempted to reignite nearly an hour after the Falcon 9 lifted off from Vandenberg Space Force Base, California, at 7: 35 pm PDT (02: 35 UTC).

Frosty evidence

After departing Vandenberg to begin SpaceX’s Starlink 9-3 mission, the rocket’s reusable first stage booster propelled the Starlink satellites into the upper atmosphere, then returned to Earth for an on-target landing on a recovery ship parked in the Pacific Ocean. A single Merlin Vacuum engine on the rocket’s second stage fired for about six minutes to reach a preliminary orbit.

A few minutes after liftoff of SpaceX’s Starlink 9-3 mission, veteran observers of SpaceX launches noticed an unusual build-up of ice around the top of the Merlin Vacuum engine, which consumes a propellant mixture of super-chilled kerosene and cryogenic liquid oxygen. The liquid oxygen is stored at a temperature of several hundred degrees below zero.

Numerous chunks of ice fell away from the rocket as the upper stage engine powered into orbit, but the Merlin Vacuum, or M-Vac, engine appeared to complete its first burn as planned. A leak in the oxidizer system or a problem with insulation could lead to ice accumulation, although the exact cause, and its possible link to the engine malfunction later in flight, will be the focus of SpaceX’s investigation into the failure.

A second burn with the upper stage engine was supposed to raise the perigee, or low point, of the rocket’s orbit well above the atmosphere before releasing 20 Starlink satellites to continue climbing to their operational altitude with their own propulsion.

“Upper stage restart to raise perigee resulted in an engine RUD for reasons currently unknown,” Musk wrote in an update two hours after the launch. RUD (rapid unscheduled disassembly) is a term of art in rocketry that usually signifies a catastrophic or explosive failure.

“Team is reviewing data tonight to understand root cause,” Musk continued. “Starlink satellites were deployed, but the perigee may be too low for them to raise orbit. Will know more in a few hours.”

Telemetry from the Falcon 9 rocket indicated it released the Starlink satellites into an orbit with a perigee just 86 miles (138 kilometers) above Earth, roughly 100 miles (150 kilometers) lower than expected, according to Jonathan McDowell, an astrophysicist and trusted tracker of spaceflight activity. Detailed orbital data from the US Space Force was not immediately available.

Ripple effects

While ground controllers scramble to salvage the 20 Starlink satellites, SpaceX engineers began probing what went wrong with the second stage’s M-Vac engine. For SpaceX and its customers, the investigation into the rocket malfunction is likely the more pressing matter.

SpaceX could absorb the loss of 20 Starlink satellites relatively easily. The company’s satellite assembly line can produce 20 Starlink spacecraft in a few days. But the Falcon 9 rocket’s dependability and high flight rate have made it a workhorse for NASA, the US military, and the wider space industry. An investigation will probably delay several upcoming SpaceX flights.

The first in-flight failure for SpaceX’s Falcon rocket family since June 2015, a streak of 344 consecutive successful launches until tonight.

A lot of unusual ice was observed on the Falcon 9’s upper stage during its first burn tonight, some of it falling into the engine plume. https://t.co/1vc3P9EZjj pic.twitter.com/fHO73MYLms

— Stephen Clark (@StephenClark1) July 12, 2024

Depending on the cause of the problem and what SpaceX must do to fix it, it’s possible the company can recover from the upper stage failure and resume launching Starlink satellites soon. Most of SpaceX’s launches aren’t for external customers, but deploy satellites for the company’s own Starlink network. This gives SpaceX a unique flexibility to quickly return to flight with the Falcon 9 without needing to satisfy customer concerns.

The Federal Aviation Administration, which licenses all commercial space launches in the United States, will require SpaceX to conduct a mishap investigation before resuming Falcon 9 flights.

“The FAA will be involved in every step of the investigation process and must approve SpaceX’s final report, including any corrective actions,” an FAA spokesperson said. “A return to flight is based on the FAA determining that any system, process, or procedure related to the mishap does not affect public safety.”

Two crew missions are supposed to launch on SpaceX’s human-rated Falcon 9 rocket in the next six weeks, but those launch dates are now in doubt.

The all-private Polaris Dawn mission, commanded by billionaire Jared Isaacman, is scheduled to launch on a Falcon 9 rocket on July 31 from NASA’s Kennedy Space Center in Florida. Isaacman and three commercial astronaut crewmates will spend five days in orbit on a mission that will include the first commercial spacewalk outside their Crew Dragon capsule, using new pressure suits designed and built by SpaceX.

NASA’s next crew mission with SpaceX is slated to launch from Florida aboard a Falcon 9 rocket around August 19. This team of four astronauts will replace a crew of four who have been on the International Space Station since March.

Some customers, especially NASA’s commercial crew program, will likely want to see the results of an in-depth inquiry and require SpaceX to string together a series of successful Falcon 9 flights with Starlink satellites before clearing their own missions for launch. SpaceX has already launched 70 flights with its Falcon family of rockets since January 1, an average cadence of one launch every 2.7 days, more than the combined number of orbital launches by all other nations this year.

With this rapid-fire launch cadence, SpaceX could quickly demonstrate the fitness of any fixes engineers recommend to resolve the problem that caused Thursday night’s failure. But investigations into rocket failures often take weeks or months. It was too soon, early on Friday, to know the true impact of the upper stage malfunction on SpaceX’s launch schedule.

SpaceX’s unmatched streak of perfection with the Falcon 9 rocket is over Read More »

scientists-built-real-life-“stillsuit”-to-recycle-astronaut-urine-on-space-walks

Scientists built real-life “stillsuit” to recycle astronaut urine on space walks

shot of Fremen woman in a stillsuit kneeling

Enlarge / The Fremen on Arrakis wear full-body “stillsuits” that recycle absorbed sweat and urine into potable water.

Warner Bros.

The Fremen who inhabit the harsh desert world of Arrakis in Frank Herbert’s Dune must rely on full-body “stillsuits” for their survival, which recycle absorbed sweat and urine into potable water. Now science fiction is on the verge of becoming science fact: Researchers from Cornell University have designed a prototype stillsuit for astronauts that will recycle their urine into potable water during spacewalks, according to a new paper published in the journal Frontiers in Space Technologies.

Herbert provided specific details about the stillsuit’s design when planetologist Liet Kynes explained the technology to Duke Leto Atreides I:

It’s basically a micro-sandwich—a high-efficiency filter and heat-exchange system. The skin-contact layer’s porous. Perspiration passes through it, having cooled the body … near-normal evaporation process. The next two layers … include heat exchange filaments and salt precipitators. Salt’s reclaimed. Motions of the body, especially breathing and some osmotic action provide the pumping force. Reclaimed water circulates to catchpockets from which you draw it through this tube in the clip at your neck… Urine and feces are processed in the thigh pads. In the open desert, you wear this filter across your face, this tube in the nostrils with these plugs to ensure a tight fit. Breathe in through the mouth filter, out through the nose tube. With a Fremen suit in good working order, you won’t lose more than a thimbleful of moisture a day…

The Illustrated Dune Encyclopedia interpreted the stillsuit as something akin to a hazmat suit, without the full face covering. In David Lynch’s 1984 film, Dune, the stillsuits were organic and very form-fitting compared to the book description, almost like a second skin. The stillsuits in Denis Villeneuve’s most recent film adaptations (Dune Part 1 and Part 2) tried to hew more closely to the source material, with “micro-sandwiches” of acrylic fibers and porous cottons and embedded tubes for better flexibility.

Dune, the stillsuits were organic and very form-fitting.” height=”401″ src=”https://cdn.arstechnica.net/wp-content/uploads/2024/07/stillsuit2-640×401.jpg” width=”640″>

Enlarge / In David Lynch’s 1984 film, Dune, the stillsuits were organic and very form-fitting.

Universal Pictures

The Cornell team is not the first to try to build a practical stillsuit. Hacksmith Industries did a “one day build” of a stillsuit just last month, having previously tackled Thor’s Stormbreaker ax, Captain America’s electromagnetic shield, and a plasma-powered lightsaber, among other projects. The Hacksmith team dispensed with the icky urine and feces recycling aspects and focused on recycling sweat and moisture from breath.

Their version consists of a waterproof baggy suit (switched out for a more form-fitting bunny suit in the final version) with a battery-powered heat exchanger in the back. Any humidity condenses on the suit’s surface and drips into a bottle attached to a CamelBak bladder. There’s a filter mask attached to a tube that allows the wearer to breathe in filtered air, but it’s one way; the exhaled air is redirected to the condenser so the water content can be harvested into the CamelBak bladder and then sent back to the mask so the user can drink it. It’s not even close to achieving Herbert’s stated thimbleful a day in terms of efficiency since it mostly recycles moisture from sweat on the wearer’s back. But it worked.

Scientists built real-life “stillsuit” to recycle astronaut urine on space walks Read More »

nasa’s-flagship-mission-to-europa-has-a-problem:-vulnerability-to-radiation

NASA’s flagship mission to Europa has a problem: Vulnerability to radiation

Tripping transistors —

“What keeps me awake right now is the uncertainty.”

An artist's illustration of the Europa Clipper spacecraft during a flyby close to Jupiter's icy moon.

Enlarge / An artist’s illustration of the Europa Clipper spacecraft during a flyby close to Jupiter’s icy moon.

The launch date for the Europa Clipper mission to study the intriguing moon orbiting Jupiter, which ranks alongside the Cassini spacecraft to Saturn as NASA’s most expensive and ambitious planetary science mission, is now in doubt.

The $4.25 billion spacecraft had been due to launch in October on a Falcon Heavy rocket from Kennedy Space Center in Florida. However, NASA revealed that transistors on board the spacecraft may not be as radiation-hardened as they were believed to be.

“The issue with the transistors came to light in May when the mission team was advised that similar parts were failing at lower radiation doses than expected,” the space agency wrote in a blog post Thursday afternoon. “In June 2024, an industry alert was sent out to notify users of this issue. The manufacturer is working with the mission team to support ongoing radiation test and analysis efforts in order to better understand the risk of using these parts on the Europa Clipper spacecraft.”

The moons orbiting Jupiter, a massive gas giant planet, exist in one of the harshest radiation environments in the Solar System. NASA’s initial testing indicates that some of the transistors, which regulate the flow of energy through the spacecraft, could fail in this environment. NASA is currently evaluating the possibility of maximizing the transistor lifetime at Jupiter and expects to complete a preliminary analysis in late July.

To delay or not to delay

NASA’s update is silent on whether the spacecraft could still make its approximately three-week launch window this year, which gets Clipper to the Jovian system in 2030.

Ars reached out to several experts familiar with the Clipper mission to gauge the likelihood that it would make the October launch window, and opinions were mixed. The consensus view was between a 40 to 60 percent chance of becoming comfortable enough with the issue to launch this fall. If NASA engineers cannot become confident with the existing setup, the transistors would need to be replaced.

The Clipper mission has launch opportunities in 2025 and 2026, but these could lead to additional delays. This is due to the need for multiple gravitational assists. The 2024 launch follows a “MEGA” trajectory, including a Mars flyby in 2025 and an Earth flyby in late 2026—Mars-Earth Gravitational Assist. If Clipper launches a year late, it would necessitate a second Earth flyby. A launch in 2026 would revert to a MEGA trajectory. Ars has asked NASA for timelines of launches in 2025 and 2026 and will update if they provide this information.

Another negative result of delays would be costs, as keeping the mission on the ground for another year likely would result in another few hundred million dollars in expenses for NASA, which would blow a hole in its planetary science budget.

NASA’s blog post this week is not the first time the space agency has publicly mentioned these issues with the metal-oxide-semiconductor field-effect transistor, or MOSFET. At a meeting of the Space Studies Board in early June, Jordan Evans, project manager for the Europa Clipper Mission, said it was his No. 1 concern ahead of launch.

“What keeps me awake at night”

“The most challenging thing we’re dealing with right now is an issue associated with these transistors, MOSFETs, that are used as switches in the spacecraft,” he said. “Five weeks ago today, I got an email that a non-NASA customer had done some testing on these rad-hard parts and found that they were going before (the specifications), at radiation levels significantly lower than what we qualified them to as we did our parts procurement, and others in the industry had as well.”

At the time, Evans said things were “trending in the right direction” with regard to the agency’s analysis of the issue. It seems unlikely that NASA would have put out a blog post five weeks later if the issue were still moving steadily toward a resolution.

“What keeps me awake right now is the uncertainty associated with the MOSFETs and the residual risk that we will take on with that,” Evans said in June. “It’s difficult to do the kind of low-dose rate testing in the timeframes that we have until launch. So we’re gathering as much data as we can, including from missions like Juno, to better understand what residual risk we might launch with.”

These are precisely the kinds of issues that scientists and engineers don’t want to find in the final months before the launch of such a consequential mission. The stakes are incredibly high—imagine making the call to launch Clipper only to have the spacecraft fail six years later upon arrival at Jupiter.

NASA’s flagship mission to Europa has a problem: Vulnerability to radiation Read More »

nasa-update-on-starliner-thruster-issues:-this-is-fine

NASA update on Starliner thruster issues: This is fine

Boeing's Starliner spacecraft on final approach to the International Space Station last month.

Enlarge / Boeing’s Starliner spacecraft on final approach to the International Space Station last month.

Before clearing Boeing’s Starliner crew capsule to depart the International Space Station and head for Earth, NASA managers want to ensure the spacecraft’s problematic control thrusters can help guide the ship’s two-person crew home.

The two astronauts who launched June 5 on the Starliner spacecraft’s first crew test flight agree with the managers, although they said Wednesday that they’re comfortable with flying the capsule back to Earth if there’s any emergency that might require evacuation of the space station.

NASA astronauts Butch Wilmore and Suni Williams were supposed to return to Earth weeks ago, but managers are keeping them at the station as engineers continue probing thruster problems and helium leaks that have plagued the mission since its launch.

“This is a tough business that we’re in,” Wilmore, Starliner’s commander, told reporters Wednesday in a news conference from the space station. “Human spaceflight is not easy in any regime, and there have been multiple issues with any spacecraft that’s ever been designed, and that’s the nature of what we do.”

Five of the 28 reaction control system thrusters on Starliner’s service module dropped offline as the spacecraft approached the space station last month. Starliner’s flight software disabled the five control jets when they started overheating and losing thrust. Four of the thrusters were later recovered, although some couldn’t reach their full power levels as Starliner came in for docking.

Wilmore, who took over manual control for part of Starliner’s approach to the space station, said he could sense the spacecraft’s handling qualities diminish as thrusters temporarily failed. “You could tell it was degraded, but still, it was impressive,” he said. Starliner ultimately docked to the station in autopilot mode.

In mid-June, the Starliner astronauts hot-fired the thrusters again, and their thrust levels were closer to normal.

“What we want to know is that the thrusters can perform; if whatever their percentage of thrust is, we can put it into a package that will get us a deorbit burn,” said Williams, a NASA astronaut serving as Starliner’s pilot. “That’s the main purpose that we need [for] the service module: to get us a good deorbit burn so that we can come back.”

These small thrusters aren’t necessary for the deorbit burn itself, which will use a different set of engines to slow Starliner’s velocity enough for it to drop out of orbit and head for landing. But Starliner needs enough of the control jets working to maneuver into the proper orientation for the deorbit firing.

This test flight is the first time astronauts have flown in space on Boeing’s Starliner spacecraft, following years of delays and setbacks. Starliner is NASA’s second human-rated commercial crew capsule, and it’s poised to join SpaceX’s Crew Dragon in a rotation of missions ferrying astronauts to and from the space station through the rest of the decade.

But first, Boeing and NASA need to safely complete the Starliner test flight and resolve the thruster problems and helium leaks plaguing the spacecraft before moving forward with operational crew rotation missions. There’s a Crew Dragon spacecraft currently docked to the station, but Steve Stich, NASA’s commercial crew program manager, told reporters Wednesday that, right now, Wilmore and Williams still plan to come home on Starliner.

“The beautiful thing about the commercial crew program is that we have two vehicles, two different systems, that we could use to return crew,” Stich said. “So we have a little bit more time to go through the data and then make a decision as to whether we need to do anything different. But the prime option today is to return Butch and Suni on Starliner. Right now, we don’t see any reason that wouldn’t be the case.”

Mark Nappi, Boeing’s Starliner program manager, said officials identified more than 30 actions to investigate five “small” helium leaks and the thruster problems on Starliner’s service module. “All these items are scheduled to be completed by the end of next week,” Nappi said.

“It’s a test flight, and the first with crew, and we’re just taking a little extra time to make sure that we understand everything before we commit to deorbit,” Stich said.

NASA update on Starliner thruster issues: This is fine Read More »

congress-apparently-feels-a-need-for-“reaffirmation”-of-sls-rocket

Congress apparently feels a need for “reaffirmation” of SLS rocket

Stuart Smalley is here to help with daily affirmations of SLS.

Enlarge / Stuart Smalley is here to help with daily affirmations of SLS.

Aurich Lawson | SNL

There is a curious section in the new congressional reauthorization bill for NASA that concerns the agency’s large Space Launch System rocket.

The section is titled “Reaffirmation of the Space Launch System,” and in it Congress asserts its commitment to a flight rate of twice per year for the rocket. The reauthorization legislation, which cleared a House committee on Wednesday, also said NASA should identify other customers for the rocket.

“The Administrator shall assess the demand for the Space Launch System by entities other than NASA and shall break out such demand according to the relevant Federal agency or nongovernment sector,” the legislation states.

Congress directs NASA to report back, within 180 days of the legislation passing, on several topics. First, the legislators want an update on NASA’s progress toward achieving a flight rate of twice per year for the SLS rocket, and the Artemis mission by which this capability will be in place.

Additionally, Congress is asking for NASA to study demand for the SLS rocket and estimate “cost and schedule savings for reduced transit times” for deep space missions due to the “unique capabilities” of the rocket. The space agency also must identify any “barriers or challenges” that could impede use of the rocket by other entities other than NASA, and estimate the cost of overcoming those barriers.

Is someone afraid?

There is a fair bit to unpack here, but the inclusion of this section—there is no “reaffirmation” of the Orion spacecraft, for example—suggests that either the legacy space companies building the SLS rocket, local legislators, or both feel the need to protect the SLS rocket. As one source on Capitol Hill familiar with the legislation told Ars, “It’s a sign that somebody’s afraid.”

Congress created the SLS rocket 14 years ago with the NASA Authorization Act of 2010. The large rocket kept a river of contracts flowing to large aerospace companies, including Boeing and Northrop Grumman, who had been operating the Space Shuttle. Congress then lavished tens of billions of dollars on the contractors over the years for development, often authorizing more money than NASA said it needed. Congressional support was unwavering, at least in part because the SLS program boasts that it has jobs in every state.

Under the original law, the SLS rocket was supposed to achieve “full operational capability” by the end of 2016. The first launch of the SLS vehicle did not take place until late 2022, six years later. It was entirely successful. However, due to various reasons, the rocket will not fly again until September 2025 at the earliest.

Congress apparently feels a need for “reaffirmation” of SLS rocket Read More »

beryl-is-just-the-latest-disaster-to-strike-the-energy-capital-of-the-world

Beryl is just the latest disaster to strike the energy capital of the world

Don’t know what you’ve got until it’s gone —

It’s pretty weird to use something I’ve written about in the abstract for so long.

Why yes, that Starlink dish is precariously perched to get around tree obstructions.

Enlarge / Why yes, that Starlink dish is precariously perched to get around tree obstructions.

Eric Berger

I’ll readily grant you that Houston might not be the most idyllic spot in the world. The summer heat is borderline unbearable. The humidity is super sticky. We don’t have mountains or pristine beaches—we have concrete.

But we also have a pretty amazing melting pot of culture, wonderful cuisine, lots of jobs, and upward mobility. Most of the year, I love living here. Houston is totally the opposite of, “It’s a nice place to visit, but you wouldn’t want to live there.” Houston is not a particularly nice place to visit, but you might just want to live here.

Except for the hurricanes.

Houston is the largest city in the United States to be highly vulnerable to hurricanes. At a latitude of 29.7 degrees, the city is solidly in the subtropics, and much of it is built within 25 to 50 miles of the Gulf of Mexico. Every summer, with increasing dread, we watch tropical systems develop over the Atlantic Ocean and then move into the Gulf.

For some meteorologists and armchair forecasters, tracking hurricanes is fulfilling work and a passionate hobby. For those of us who live near the water along the upper Texas coast, following the movements of these storms is gut-wrenching stuff. A few days before a potential landfall, I’ll find myself jolting awake in the middle of the night by the realization that new model data must be available. When you see a storm turning toward you, or intensifying, it’s psychologically difficult to process.

Beryl the Bad

It felt like we were watching Beryl forever. It formed into a tropical depression on June 28, became a hurricane the next day, and by June 30, it was a major hurricane storming into the Caribbean Sea. Beryl set all kinds of records for a hurricane in late June and early July. Put simply, we have never seen an Atlantic storm intensify so rapidly, or so much, this early in the hurricane season. Beryl behaved as if it were the peak of the Atlantic season, in September, rather than the beginning of July—normally a pretty sleepy time for Atlantic hurricane activity. I wrote about this for Ars Technica a week ago.

At the time, it looked as though the greater Houston area would be completely spared by Beryl, as the most reliable modeling data took the storm across the Yucatan Peninsula and into the southern Gulf of Mexico before a final landfall in northern Mexico. But over time, the forecast began to change, with the track moving steadily up the Texas coast.

I was at a dinner to celebrate the birthday of my cousin’s wife last Friday when I snuck a peek at my phone. It was about 7 pm local time. We were at a Mexican restaurant in Galveston, and I knew the latest operational run of the European model was about to come out. This was a mistake, as the model indicated a landfall about 80 miles south of Houston, which would bring the core of the storm’s strongest winds over Houston.

I had to fake joviality for the rest of the night, while feeling sick to my stomach.

Barreling inland

The truth is, Beryl could have been much worse. After weakening due to interaction with the Yucatan Peninsula on Friday, Beryl moved into the Gulf of Mexico just about when I was having that celebratory dinner on Friday evening. At that point, it was a strong tropical storm with 60 mph sustained winds. It had nearly two and a half days over open water to re-organize, and that seemed likely. Beryl had Saturday to shrug off dry air and was expected to intensify significantly on Sunday. It was due to make landfall on Monday morning.

The track for Beryl continued to look grim over the weekend—although its landfall would occur well south of Houston, Beryl’s track inland would bring its center and core of strongest winds over the most densely populated part of the city. However, we took some solace from a lack of serious intensification on Saturday and Sunday. Even at 10 pm local time on Sunday, less than six hours before Beryl’s landfall near Matagorda, it was still not a hurricane.

However, in those final hours Beryl did finally start to get organized in a serious way. We have seen this before as hurricanes start to run up on the Texas coast, where frictional effects from its outer bands aid intensification. In the last six hours Beryl intensified into a Category 1 hurricane, with 80-mph sustained winds. The eyewall of the storm closed, and Beryl was poised for rapid intensification. Then it ran aground.

Normally, as a hurricane traverses land it starts to weaken fairly quickly. But Beryl didn’t. Instead, the storm maintained much of its strength and bulldozed right into the heart of Houston with near hurricane-force sustained winds and higher gusts. I suspect what happened is that Beryl, beginning to deepen, had a ton of momentum at landfall, and it took time for interaction with land to reverse that momentum and begin slowing down its winds.

First the lights went out. Then the Internet soon followed. Except for storm chasers, hurricanes are miserable experiences. There is the torrential rainfall and rising water. But most ominous of all, at least for me, are the howling winds. When stronger gusts come through, even sturdily built houses shake. Trees whip around violently. It is such an uncontrolled, violent fury that one must endure. Losing a connection to the outside world magnifies one’s sense of helplessness.

In the end, Beryl knocked out power to about 2.5 million customers across the Houston region, including yours truly. Because broadband Internet service providers generally rely on these electricity services to deliver Internet, many customers lost connectivity. Even cell phone towers, reduced to batteries or small generators, were often only capable of delivering text and voice services.

Beryl is just the latest disaster to strike the energy capital of the world Read More »

rocket-report:-firefly-delivers-for-nasa;-polaris-dawn-launching-this-month

Rocket Report: Firefly delivers for NASA; Polaris Dawn launching this month

No holds barred —

The all-private Polaris Dawn spacewalk mission is set for launch no earlier than July 31.

Four kerosene-fueled Reaver engines power Firefly's Alpha rocket off the pad at Vandenberg Space Force Base, California.

Enlarge / Four kerosene-fueled Reaver engines power Firefly’s Alpha rocket off the pad at Vandenberg Space Force Base, California.

Welcome to Edition 7.01 of the Rocket Report! We’re compiling this week’s report a day later than usual due to the Independence Day holiday. Ars is beginning its seventh year publishing this weekly roundup of rocket news, and there’s a lot of it this week despite the holiday here in the United States. Worldwide, there were 122 launches that flew into Earth orbit or beyond in the first half of 2024, up from 91 in the same period last year.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Firefly launches its fifth Alpha flight. Firefly Aerospace placed eight CubeSats into orbit on a mission funded by NASA on the first flight of the company’s Alpha rocket since an upper stage malfunction more than half a year ago, Space News reports. The two-stage Alpha rocket lifted off from Vandenberg Space Force Base in California late Wednesday, two days after an issue with ground equipment aborted liftoff just before engine ignition. The eight CubeSats come from NASA centers and universities for a range of educational, research, and technology demonstration missions. This was the fifth flight of Firefly’s Alpha rocket, capable of placing about a metric ton of payload into low-Earth orbit.

Anomaly resolution … This was the fifth flight of an Alpha rocket since 2021 and the fourth Alpha flight to achieve orbit. But the last Alpha launch in December failed to place its Lockheed Martin payload into the proper orbit due to a problem during the relighting of its second-stage engine. On this week’s launch, Alpha deployed its NASA-sponsored payloads after a single burn of the second stage, then completed a successful restart of the engine for a plane change maneuver. Engineers traced the problem on the last Alpha flight to a software error. (submitted by Ken the Bin)

Two companies added to DoD’s launch pool. Blue Origin and Stoke Space Technologies — neither of which has yet reached orbit — have been approved by the US Space Force to compete for future launches of small payloads, Breaking Defense reports. Blue Origin and Stoke Space join a roster of launch companies eligible to compete for launch task orders the Space Force puts up for bid through the Orbital Services Program-4 (OSP-4) contract. Under this contract, Space Systems Command buys launch services for payloads 400 pounds (180 kilograms) or greater, enabling launch from 12 to 24 months of the award of a task order. The OSP-4 contract has an “emphasis on small orbital launch capabilities and launch solutions for Tactically Responsive Space mission needs,” said Lt. Col. Steve Hendershot, chief of Space Systems Command’s small launch and targets division.

An even dozen … Blue Origin aims to launch its orbital-class New Glenn rocket for the first time as soon as late September, while Stoke Space aims to fly its Nova rocket on an orbital test flight next year. The addition of these two companies means there are 12 providers eligible to bid on OSP-4 task orders. The other companies are ABL Space Systems, Aevum, Astra, Firefly Aerospace, Northrop Grumman, Relativity Space, Rocket Lab, SpaceX, United Launch Alliance, and X-Bow. (submitted by Ken the Bin and brianrhurley)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Italian startup test-fires small rocket. Italian rocket builder Sidereus Space Dynamics has completed the first integrated system test of its EOS rocket, European Spaceflight reports. This test occurred Sunday, culminating in a firing of the rocket’s kerosene/liquid oxygen MR-5 main engine for approximately 11 seconds. The EOS rocket is a novel design, utilizing a single-stage-to-orbit architecture, with the reusable booster returning to Earth from orbit for recovery under a parafoil. The rocket stands less than 14 feet (4.2 meters) tall and will be capable of delivering about 29 pounds (13 kilograms) of payload to low-Earth orbit.

A lean operation … After it completes integrated testing on the ground, the company will conduct the first low-altitude EOS test flights. Founded in 2019, Sidereus has raised 6.6 million euros ($7.1 million) to fund the development of the EOS rocket. While this is a fraction of the funding other European launch startups like Isar Aerospace, MaiaSpace, and Orbex have attracted, the Sidereus’s CEO, Mattia Barbarossa, has previously stated that the company intends to “reshape spaceflight in a fraction of the time and with limited resources.” (submitted by EllPeaTea and Ken the Bin)

Rocket Report: Firefly delivers for NASA; Polaris Dawn launching this month Read More »