Space

faulty-valve-scuttles-starliner’s-first-crew-launch

Faulty valve scuttles Starliner’s first crew launch

The Atlas V rocket and Starliner spacecraft on their launch pad Monday.

Enlarge / The Atlas V rocket and Starliner spacecraft on their launch pad Monday.

Astronauts Butch Wilmore and Suni Williams climbed into their seats inside Boeing’s Starliner spacecraft Monday night in Florida, but trouble with the capsule’s Atlas V rocket kept the commercial ship’s long-delayed crew test flight on the ground.

Around two hours before launch time, shortly after 8: 30 pm EDT (00: 30 UTC), United Launch Alliance’s launch team stopped the countdown. “The engineering team has evaluated, the vehicle is not in a configuration where we can proceed with flight today,” said Doug Lebo, ULA’s launch conductor.

The culprit was a misbehaving valve on the rocket’s Centaur upper stage, which has two RL10 engines fed by super-cold liquid hydrogen and liquid oxygen propellants.

“We saw a self-regulating valve on the LOX (liquid oxygen) side had a bit of a buzz; it was moving in a strange behavior,” said Steve Stich, NASA’s commercial crew program manager. “The flight rules had been laid out for this flight ahead of time. With the crew at the launch pad, the proper action was to scrub.”

The next opportunity to launch Starliner on its first crew test flight will be Friday night at 9 pm EDT (01: 00 UTC Saturday). NASA announced overnight that officials decided to skip a launch opportunity Tuesday night to allow engineers more time to study the valve problem and decide whether they need to replace it.

Work ahead

Everything else was going smoothly in the countdown Monday night. This mission will also be the first time astronauts have flown on ULA’s Atlas V rocket, which has logged 99 successful flights since 2002. It is the culmination of nearly a decade-and-a-half of development by Boeing, which has a $4.2 billion contract with NASA to ready Starliner for crew missions, then carry out six long-duration crew ferry flights to and from the International Space Station.

This crew test flight will last at least eight days, taking Wilmore and Williams to the space station to verify Starliner’s readiness for operational missions. Once Starliner flies, NASA will have two human-rated spacecraft on contract. SpaceX’s Crew Dragon has been in service since 2020.

When officials scrubbed Monday night’s launch attempt, Wilmore and Williams were already aboard the Starliner spacecraft on top of the Atlas V rocket at Cape Canaveral Space Force Station, Florida. The Boeing and ULA support team helped them out of the capsule and drove them back to crew quarters at the nearby Kennedy Space Center to wait for the next launch attempt.

“I promised Butch and Suni a boring evening,” said Tory Bruno, ULA’s CEO. “I didn’t mean for it to be quite this boring, but we’re going to follow our rules, and we’re going to make sure that the crew is safe.”

When the next launch attempt actually occurs depends on whether ULA engineers determine they can resolve the problem without rolling the Atlas V rocket back to its hangar for repairs.

The valve in question vents gas from the liquid oxygen tank on the Centaur upper stage to maintain the tank at proper pressures. This is important for two reasons. The tank needs to be at the correct pressure for the RL10 engines to receive propellant during the flight, and the Centaur upper stage itself has ultra-thin walls to reduce weight, and requires pressure to maintain structural integrity.

Faulty valve scuttles Starliner’s first crew launch Read More »

the-surprise-is-not-that-boeing-lost-commercial-crew-but-that-it-finished-at-all

The surprise is not that Boeing lost commercial crew but that it finished at all

Boeing really is going —

“The structural inefficiency was a huge deal.”

Boeing's Starliner spacecraft is lifted to be placed atop an Atlas V rocket for its first crewed launch.

Enlarge / Boeing’s Starliner spacecraft is lifted to be placed atop an Atlas V rocket for its first crewed launch.

United Launch Alliance

NASA’s senior leaders in human spaceflight gathered for a momentous meeting at the agency’s headquarters in Washington, DC, almost exactly ten years ago.

These were the people who, for decades, had developed and flown the Space Shuttle. They oversaw the construction of the International Space Station. Now, with the shuttle’s retirement, these princely figures in the human spaceflight community were tasked with selecting a replacement vehicle to send astronauts to the orbiting laboratory.

Boeing was the easy favorite. The majority of engineers and other participants in the meeting argued that Boeing alone should win a contract worth billions of dollars to develop a crew capsule. Only toward the end did a few voices speak up in favor of a second contender, SpaceX. At the meeting’s conclusion, NASA’s chief of human spaceflight at the time, William Gerstenmaier, decided to hold off on making a final decision.

A few months later, NASA publicly announced its choice. Boeing would receive $4.2 billion to develop a “commercial crew” transportation system, and SpaceX would get $2.6 billion. It was not a total victory for Boeing, which had lobbied hard to win all of the funding. But the company still walked away with nearly two-thirds of the money and the widespread presumption that it would easily beat SpaceX to the space station.

The sense of triumph would prove to be fleeting. Boeing decisively lost the commercial crew space race, and it proved to be a very costly affair.

With Boeing’s Starliner spacecraft finally due to take flight this week with astronauts on board, we know the extent of the loss, both in time and money. Dragon first carried people to the space station nearly four years ago. In that span, the Crew Dragon vehicle has flown thirteen public and private missions to orbit. Because of this success, Dragon will end up flying 14 operational missions to the station for NASA, earning a tidy fee each time, compared to just six for Starliner. Through last year, Boeing has taken $1.5 billion in charges due to delays and overruns with its spacecraft development.

So what happened? How did Boeing, the gold standard in human spaceflight for decades, fall so far behind on crew? This story, based largely on interviews with unnamed current and former employees of Boeing and contractors who worked on Starliner, attempts to provide some answers.

The early days

When the contracts were awarded, SpaceX had the benefit of working with NASA to develop a cargo variant of Dragon, which by 2014 was flying regular missions to the space station. But the company had no experience with human spaceflight. Boeing, by contrast, had decades of spaceflight experience, but it had to start from scratch with Starliner.

Each faced a deeper cultural challenge. A decade ago, SpaceX was deep into several major projects, including developing a new version of the Falcon 9 rocket, flying more frequently, experimenting with landing and reuse, and doing cargo supply missions. This new contract meant more money but a lot more work. A NASA engineer who worked closely with both SpaceX and Boeing in this time frame recalls visiting SpaceX and the atmosphere being something like a frenzied graduate school, where all of the employees were being pulled in different directions. Getting engineers to focus on Crew Dragon was difficult.

But at least SpaceX was in its natural environment. Boeing’s space division had never won a large fixed-price contract. Its leaders were used to operating in a cost-plus environment, in which Boeing could bill the government for all of its expenses and earn a fee. Cost overruns and delays were not the company’s problem—they were NASA’s. Now Boeing had to deliver a flyable spacecraft for a firm, fixed price.

Boeing struggled to adjust to this environment. When it came to complicated space projects, Boeing was used to spending other people’s money. Now, every penny spent on Starliner meant one less penny in profit (or, ultimately, greater losses). This meant that Boeing allocated fewer resources to Starliner than it needed to thrive.

“The difference between the two company’s cultures, design philosophies, and decision-making structures allowed SpaceX to excel in a fixed-price environment, where Boeing stumbled, even after receiving significantly more funding,” said Lori Garver in an interview. She was deputy administrator of NASA from 2009 to 2013 during the formative years of the commercial crew program and is the author of Escaping Gravity.

So Boeing faced financial pressure from the beginning. At the same time, it was confronting major technical challenges. Building a human spacecraft is very difficult. Some of the biggest hurdles would be flight software and propulsion.

The surprise is not that Boeing lost commercial crew but that it finished at all Read More »

ai-in-space:-karpathy-suggests-ai-chatbots-as-interstellar-messengers-to-alien-civilizations

AI in space: Karpathy suggests AI chatbots as interstellar messengers to alien civilizations

The new golden record —

Andrej Karpathy muses about sending a LLM binary that could “wake up” and answer questions.

Close shot of Cosmonaut astronaut dressed in a gold jumpsuit and helmet, illuminated by blue and red lights, holding a laptop, looking up.

On Thursday, renowned AI researcher Andrej Karpathy, formerly of OpenAI and Tesla, tweeted a lighthearted proposal that large language models (LLMs) like the one that runs ChatGPT could one day be modified to operate in or be transmitted to space, potentially to communicate with extraterrestrial life. He said the idea was “just for fun,” but with his influential profile in the field, the idea may inspire others in the future.

Karpathy’s bona fides in AI almost speak for themselves, receiving a PhD from Stanford under computer scientist Dr. Fei-Fei Li in 2015. He then became one of the founding members of OpenAI as a research scientist, then served as senior director of AI at Tesla between 2017 and 2022. In 2023, Karpathy rejoined OpenAI for a year, leaving this past February. He’s posted several highly regarded tutorials covering AI concepts on YouTube, and whenever he talks about AI, people listen.

Most recently, Karpathy has been working on a project called “llm.c” that implements the training process for OpenAI’s 2019 GPT-2 LLM in pure C, dramatically speeding up the process and demonstrating that working with LLMs doesn’t necessarily require complex development environments. The project’s streamlined approach and concise codebase sparked Karpathy’s imagination.

“My library llm.c is written in pure C, a very well-known, low-level systems language where you have direct control over the program,” Karpathy told Ars. “This is in contrast to typical deep learning libraries for training these models, which are written in large, complex code bases. So it is an advantage of llm.c that it is very small and simple, and hence much easier to certify as Space-safe.”

Our AI ambassador

In his playful thought experiment (titled “Clearly LLMs must one day run in Space”), Karpathy suggested a two-step plan where, initially, the code for LLMs would be adapted to meet rigorous safety standards, akin to “The Power of 10 Rules” adopted by NASA for space-bound software.

This first part he deemed serious: “We harden llm.c to pass the NASA code standards and style guides, certifying that the code is super safe, safe enough to run in Space,” he wrote in his X post. “LLM training/inference in principle should be super safe – it is just one fixed array of floats, and a single, bounded, well-defined loop of dynamics over it. There is no need for memory to grow or shrink in undefined ways, for recursion, or anything like that.”

That’s important because when software is sent into space, it must operate under strict safety and reliability standards. Karpathy suggests that his code, llm.c, likely meets these requirements because it is designed with simplicity and predictability at its core.

In step 2, once this LLM was deemed safe for space conditions, it could theoretically be used as our AI ambassador in space, similar to historic initiatives like the Arecibo message (a radio message sent from Earth to the Messier 13 globular cluster in 1974) and Voyager’s Golden Record (two identical gold records sent on the two Voyager spacecraft in 1977). The idea is to package the “weights” of an LLM—essentially the model’s learned parameters—into a binary file that could then “wake up” and interact with any potential alien technology that might decipher it.

“I envision it as a sci-fi possibility and something interesting to think about,” he told Ars. “The idea that it is not us that might travel to stars but our AI representatives. Or that the same could be true of other species.”

AI in space: Karpathy suggests AI chatbots as interstellar messengers to alien civilizations Read More »

nasa-hasn’t-landed-on-the-moon-in-decades—china-just-sent-its-third-in-six-years

NASA hasn’t landed on the Moon in decades—China just sent its third in six years

Marching on —

China is going. NASA is talking about going. What gives?

A Long March 5 rocket carrying the Chang'e-6 lunar probe blasts off from the Wenchang Space Launch Center on May 3, 2024 in Wenchang, China.

Enlarge / A Long March 5 rocket carrying the Chang’e-6 lunar probe blasts off from the Wenchang Space Launch Center on May 3, 2024 in Wenchang, China.

Li Zhenzhou/VCG via Getty Images

China is going back to the Moon for more samples.

On Friday the country launched its largest rocket, the Long March 5, carrying an orbiter, lander, ascent vehicle, and a return spacecraft. The combined mass of the Chang’e-6 spacecraft is about 8 metric tons, and it will attempt to return rocks and soil from the far side of the Moon—something scientists have never been able to study before in-depth.

The mission’s goal is to bring about 2 kg (4.4 pounds) of rocks back to Earth a little more than a month from now.

Chang’e-6 builds upon the Chinese space program’s successful lunar program. In 2019, the Chang’e-4 mission made a soft landing on the far side of the Moon, the first time this had ever been done by a spacecraft. The far side is more challenging than the near side, because line-of-sight communications are not possible with Earth.

Then, in late 2020, the Chang’e-5 mission landed on the near side of the Moon and successfully collected 1.7 kg of rocks. These were subsequently blasted off the surface of the Moon and returned to China where they have been studied since. It marked the first time in half a century, since efforts by the United States and Soviet Union, that samples were returned from the Moon.

Ambitious plans

The latest Chinese flight to the Moon launched Friday will synthesize the country’s learnings from its last two missions, by collecting and returning samples from the far side of the Moon.

“If the Chang’e-6 mission can achieve its goal, it will provide scientists with the first direct evidence to understand the environment and material composition of the far side of the moon, which is of great significance,” said Wu Weiren, an academician of the Chinese Academy of Engineering and chief designer of China’s lunar exploration program.

This mission follows the launch and deployment of the Queqiao-2 relay satellite in March, which will serve as a bridge between communications from the far side of the Moon to operators back on Earth. China has also announced two future lunar missions, Chang’e-7 and Chang’e-8, later this decade. These robotic missions will land near the lunar South Pole, test lunar resources, and prepare the way for future crewed missions.

Nominally, China’s current plan calls for the first landing of two taikonauts on the surface of the Moon in 2029 or 2030. Eventually it wants to establish a lunar outpost.

China’s lunar missions are not operating in a vacuum—OK, technically, they are—but the point here is that China’s exploration efforts are proceeding alongside a parallel effort by the United States, NASA, and about three dozen partners under the auspices of the Artemis program.

Can NASA compete?

After decades of focusing its exploration efforts elsewhere, NASA finally turned back to the Moon about seven years ago. Since that time it has worked alongside the commercial space industry to develop a plan for a sustainable return to the lunar surface.

From the outside, China’s lunar program appears to be in the lead. It is difficult to argue about the string of successes with the Chang’e lunar program and the unprecedented landing on the far side of the Moon. If Chang’e-6 proves successful, that will be another strike in favor of China’s lunar program.

But to its credit, NASA is not simply seeking to replicate the glories of its Apollo lunar program in the 1960s and early 1970s. China’s first lunar mission with astronauts, for example, is intended to land two taikonauts on the Moon for just a few hours. The vehicles will be fully expendable, as were the Apollo rockets and spacecraft more than half a century ago.

NASA is taking a different approach, working with industry to develop a fleet of commercial cargo landers—such as Intuitive Machines’ largely successful Odysseus mission earlier this year—as well as larger human landers built by SpaceX and Blue Origin. This overall “architecture” is far more complex, requiring myriad launches to refuel spacecraft in orbit. It will likely take several years longer to get to the first lunar landing missions, either later this decade or earlier in the 2030s. But should NASA persist and succeed in this approach, it will open up a highway to the Moon the likes of which could only be dreamed of during the Apollo era. Imagine a flotilla of spacecraft going to and from the Moon. That’s the vision.

So it’s a competition between China’s embrace of a traditional approach versus NASA’s efforts to open the way into some kind of new future. Watching how this lunar competition unfolds over the next decade will be one of the most fascinating stories to follow.

NASA hasn’t landed on the Moon in decades—China just sent its third in six years Read More »

rocket-report:-astroscale-chases-down-dead-rocket;-ariane-6-on-the-pad

Rocket Report: Astroscale chases down dead rocket; Ariane 6 on the pad

RIP B1060 —

Rocket Factory Augsburg, a German launch startup, nears a test-firing of its booster.

This image captured by Astroscale's ADRAS-J satellite shows the discarded upper stage from a Japanese H-IIA rocket.

Enlarge / This image captured by Astroscale’s ADRAS-J satellite shows the discarded upper stage from a Japanese H-IIA rocket.

Welcome to Edition 6.42 of the Rocket Report! Several major missions are set for launch in the next few months. These include the first crew flight on Boeing’s Starliner spacecraft, set for liftoff on May 6, and the next test flight of SpaceX’s Starship rocket, which could happen before the end of May. Perhaps as soon as early summer, SpaceX could launch the Polaris Dawn mission with four private astronauts, who will perform the first fully commercial spacewalk in orbit. In June or July, Europe’s new Ariane 6 rocket is slated to launch for the first time. Rest assured, Ars will have it all covered.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

German rocket arrives at Scottish spaceport. Rocket Factory Augsburg has delivered a booster for its privately developed RFA One rocket to SaxaVord Spaceport in Scotland, the company announced on X. The first stage for the RFA One rocket was installed on its launch pad at SaxaVord to undergo preparations for a static fire test. The booster arrived at the Scottish launch site with five of its kerosene-fueled Helix engines. The remaining four Helix engines, for a total of nine, will be fitted to the RFA One booster at SaxaVord, the company said.

Aiming to fly this year… RFA hopes to launch its first orbital-class rocket by the end of 2024. The UK’s Civil Aviation Authority last month granted a range license to SaxaVord Spaceport to allow the spaceport operator to control the sea and airspace during a launch. RFA is primarily privately funded but has won financial support from the European Space Agency, the UK Space Agency, and the German space agency, known as DLR. The RFA One rocket will have three stages, stand nearly 100 feet (30 meters) tall, and can carry nearly 2,900 pounds (1,300 kilograms) of payload into a polar Sun-synchronous orbit.

Arianespace wins ESA launch contract. The European Space Agency has awarded Arianespace a contract to launch a joint European-Chinese space science satellite in late 2025, European Spaceflight reports. The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a 4,850-pound (2,200-kilogram) spacecraft that will study Earth’s magnetic environment on a global scale. The aim of the mission is to build a more complete understanding of the Sun-Earth connection. On Tuesday, ESA officially signed a contract for Arianespace to launch SMILE aboard a Vega C rocket, which is built by the Italian rocket-maker Avio.

But it may not keep it … In late 2023, ESA member states agreed to allow Avio to market and manage the launch of Vega C flights independent of Arianespace. When the deal was initially struck, 17 flights were contracted through Arianespace to be launched aboard Vega vehicles. While these missions are still managed by Arianespace, Avio is working with the launch provider to strike a deal that would allow the Italian rocket builder to assume the management of all Vega flights. The Vega C rocket has been grounded since a launch failure in 2022 forced Avio to redesign the nozzle of the rocket’s solid-fueled second-stage motor. Vega C is scheduled to return to flight before the end of 2024. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Update on ABL’s second launch. ABL Space Systems expected to launch its second light-class RS1 rocket earlier this year, but the company encountered an anomaly during ground testing at the launch site in Alaska, according to Aria Alamalhodaei of TechCrunch. Kevin Sagis, ABL’s chief engineer, said there is “no significant delay” in the launch of the second RS1 rocket, but the company has not announced a firm schedule. “During ground testing designed to screen the vehicle for flight, an issue presented that caused us to roll back to the hangar,” Sagis said, according to Alamalhodaei. “We have since resolved and dispositioned the issue. There was no loss of hardware and we have validated vehicle health back out on the pad. We are continuing with preparations for static fire and launch.”

Nearly 16 months without a launch … ABL’s first RS1 test flight in January 2023 ended seconds after liftoff with the premature shutdown of its liquid-fueled engines. The rocket crashed back onto its launch pad in Alaska. An investigation revealed a fire in the aft end of the RS1 booster burned through wiring harnesses, causing the rocket to lose power and shut off its engines. Engineers believe the rocket’s mobile launch mount was too small, placing the rocket too close to the ground when it ignited its engines. This caused the hot engine exhaust to recirculate under the rocket and led to a fire in the engine compartment as it took off.

Rocket Report: Astroscale chases down dead rocket; Ariane 6 on the pad Read More »

two-giants-in-the-satellite-telecom-industry-join-forces-to-counter-starlink

Two giants in the satellite telecom industry join forces to counter Starlink

M&A —

SES is buying Intelsat, the world’s first commercial satellite operator, for $3.1 billion.

The Intelsat 901 satellite is seen by a Northrop Grumman servicing vehicle in 2020.

Enlarge / The Intelsat 901 satellite is seen by a Northrop Grumman servicing vehicle in 2020.

Facing competition from Starlink and other emerging satellite broadband networks, the two companies that own most of the traditional commercial communications spacecraft in geostationary orbit announced plans to join forces Tuesday.

SES, based in Luxembourg, will buy Intelsat for $3.1 billion. The acquisition will create a combined company boasting a fleet of some 100 multi-ton satellites in geostationary orbit, a ring of spacecraft located more than 22,000 miles (nearly 36,000 kilometers) over the equator. This will be more than twice the size of the fleet of the next-largest commercial geostationary satellite operator.

The problem is that demand is waning for communication services through large geostationary (GEO) satellites. There are some large entrenched customers, like video media companies and the military, that will continue to buy telecom capacity on geostationary satellites. But there’s a growing demand among consumers, and some segments of the corporate and government markets, for the types of services offered by constellations of smaller satellites flying closer to Earth.

The biggest of these constellations, by far, is SpaceX’s Starlink network, with more than 5,800 active satellites in its low-Earth orbit fleet a few hundred miles above Earth. Each of the Starlink satellites is smaller than a conventional geostationary platform, but linked together with laser communication terminals, thousands of these spacecraft pack enough punch to eclipse the capacity of internet networks anchored by geostationary satellites. Starlink now has more than 2.6 million subscribers, according to SpaceX.

Satellites in low-Earth orbit (LEO) offer some advantages over geostationary satellites. Because they are closer to users on the ground, low-Earth orbit satellites provide signals with lower latency. The satellites for these constellations can be mass-produced at relatively low cost, compared to a single geostationary satellite, which often costs $250 million or more to build and launch.

“In a fast-moving and competitive satellite communication industry, this transaction expands our multi-orbit space network, spectrum portfolio, ground infrastructure around the world, go-to-market capabilities, managed service solutions, and financial profile,” said Adel Al-Saleh, CEO of SES, in a statement announcing the acquisition of Intelsat.

A trend of consolidation

Some of the largest legacy operators in geostationary orbit have made moves over the last decade to respond to the new competition.

The only operational low-Earth orbit internet constellation besides Starlink was launched by OneWeb, which primarily sells capacity to existing internet providers, who then distribute services to individual consumers. This is in contrast to SpaceX’s approach with Starlink providing services direct to homes and businesses.

Eutelsat, the third-largest operator of geostationary satellites, merged with OneWeb last year, creating a company with a blended offering of GEO and LEO services. Viasat, a pioneer in satellite internet services using dedicated spacecraft in geostationary orbit, last year purchased Inmarsat, which specialized in providing connectivity to airplanes and ships.

SES’s acquisition of Intelsat stands apart due to the size of their satellite fleets. Founded in 1985, SES currently operates 43 geostationary satellites, plus 26 broadband spacecraft in medium-Earth orbit (MEO) a few thousand miles above Earth. These MEO satellites operate in a kind of middle ground between LEO and GEO satellites, offering lower-latency than geostationary networks, while still flying high enough to not require hundreds or thousands of spacecraft to blanket the globe.

Intelsat has 57 geostationary satellites, primarily for television and video relay services. Al-Saleh said the combined company will offer coverage over 99 percent of the world, and provide services through a range of communication bands. For now, LEO broadband satellites in the Starlink and OneWeb networks beam signals to user terminals in Ku-band.

Al-Saleh said the combined networks of SES and Intelsat will span Ka-band, Ku-band, X-band, C-band, UHF, and secure bands tailored for military use. “That gives us a unique position in the market place to be able to deliver to our clients,” he said.

SES and Intelsat have 13 new satellites on order, including six GEO spacecraft and seven broadband MEO satellites. Intelsat also brings to the table access to OneWeb’s LEO constellation. Earlier this year, Intelsat announced it reserved $250 million of capacity on OneWeb’s network over the next six years, with an option to purchase double that amount.

This illustration shows the relative locations of satellites in geostationary orbit, medium-Earth orbit, and low-Earth orbit.

Enlarge / This illustration shows the relative locations of satellites in geostationary orbit, medium-Earth orbit, and low-Earth orbit.

“We will create a stronger expanded network capabilities that are multi-orbit,” Al-Saleh said in an earnings call Tuesday. “We are not just a GEO player. We are an all-orbit player.”

Internet signals coming from a GEO satellite, like a Viasat spacecraft, typically have a latency of about 600 milliseconds. Al-Saleh said SES’s O3b network in medium-Earth orbit provides signals with a latency of about 120 milliseconds. According to SpaceX, Starlink latency ranges between 25 and 60 milliseconds.

A satellite pioneer

Intelsat has a storied history. Founded in 1964 as an intergovernmental organization, Intelsat operated the first commercial communications satellite in geostationary orbit. It became a private company in 2001, then went public in 2013 before filing for bankruptcy in 2020. Intelsat emerged from bankruptcy proceedings as a private company in 2022.

“Over the past two years, the Intelsat team has executed a remarkable strategic reset,” said David Wajsgras, CEO of Intelsat, in a statement. “We have reversed a 10-year negative trend to return to growth, established a new and game-changing technology roadmap, and focused on productivity and execution to deliver competitive capabilities.”

SES and Intelsat expect the acquisition to close in the second half of 2025, pending regulatory approvals. The boards of both companies unanimously approved the transaction.

Both companies maintain hundreds of millions of dollars of business with the US government each year, and the military’s appetite for commercial satellite communications is going up. “I think many of the satellite players are seeing the benefit of that, not just us,” Al-Saleh said. “You can look at our competitors. You can look at Starlink. You can look at others. We’re all seeing an uptick in demand.”

Al-Saleh said he doesn’t foresee any roadblocks from the Pentagon or any government regulators before closing the transaction next year.

SES and Intelsat revealed last year there were in talks to combine. According to Al-Saleh, SES looked at multiple opportunities for mergers or acquisitions to make use of a multibillion-dollar windfall from the Federal Communications Commission tied to the auction of C-band satellite spectrum for cellular networks.

“It was clear to us that this particular transaction, if we’re able to successfully close it with the right type of value, is the most compelling proposition we had on the table,” he said.

Two giants in the satellite telecom industry join forces to counter Starlink Read More »

nasa-lays-out-how-spacex-will-refuel-starships-in-low-earth-orbit

NASA lays out how SpaceX will refuel Starships in low-Earth orbit

Artist's illustration of two Starships docked belly-to-belly in orbit.

Enlarge / Artist’s illustration of two Starships docked belly-to-belly in orbit.

SpaceX

Some time next year, NASA believes SpaceX will be ready to link two Starships in orbit for an ambitious refueling demonstration, a technical feat that will put the Moon within reach.

SpaceX is under contract with NASA to supply two human-rated Starships for the first two astronaut landings on the Moon through the agency’s Artemis program, which aims to return people to the lunar surface for the first time since 1972. The first of these landings, on NASA’s Artemis III mission, is currently targeted for 2026, although this is widely viewed as an ambitious schedule.

Last year, NASA awarded a contract to Blue Origin to develop its own human-rated Blue Moon lunar lander, giving Artemis managers two options for follow-on missions.

Designers of both landers were future-minded. They designed Starship and Blue Moon for refueling in space. This means they can eventually be reused for multiple missions, and ultimately, could take advantage of propellants produced from resources on the Moon or Mars.

Amit Kshatriya, who leads the “Moon to Mars” program within NASA’s exploration division, outlined SpaceX’s plan to do this in a meeting with a committee of the NASA Advisory Council on Friday. He said the Starship test program is gaining momentum, with the next test flight from SpaceX’s Starbase launch site in South Texas expected by the end of May.

“Production is not the issue,” Kshatriya said. “They’re rolling cores out. The engines are flowing into the factory. That is not the issue. The issue is it is a significant development challenge to do what they’re trying to do … We have to get on top of this propellant transfer problem. It is the right problem to try and solve. We’re trying to build a blueprint for deep space exploration.”

Road map to refueling

Before getting to the Moon, SpaceX and Blue Origin must master the technologies and techniques required for in-space refueling. Right now, SpaceX is scheduled to attempt the first demonstration of a large-scale propellant transfer between two Starships in orbit next year.

There will be at least several more Starship test flights before then. During the most recent Starship test flight in March, SpaceX conducted a cryogenic propellant transfer test between two tanks inside the vehicle. This tank-to-tank transfer of liquid oxygen was part of a demonstration supported with NASA funding. Agency officials said this demonstration would allow engineers to learn more about how the fluid behaves in a low-gravity environment.

Kshatriya said that while engineers are still analyzing the results of the cryogenic transfer demonstration, the test on the March Starship flight “was successful by all accounts.”

“That milestone is behind them,” he said Friday. Now, SpaceX will move out with more Starship test flights. The next launch will try to check off a few more capabilities SpaceX didn’t demonstrate on the March test flight.

These will include a precise landing of Starship’s Super Heavy booster in the Gulf of Mexico, which is necessary before SpaceX tries to land the booster back at its launch pad in Texas. Another objective will likely be the restart of a single Raptor engine on Starship in flight, which SpaceX didn’t accomplish on the March flight due to unexpected roll rates on the vehicle as it coasted through space. Achieving an in-orbit engine restart—necessary to guide Starship toward a controlled reentry—is a prerequisite for future launches into a stable higher orbit, where the ship could loiter for hours, days, or weeks to deploy satellites and attempt refueling.

In the long run, SpaceX wants to ramp up the Starship launch cadence to many daily flights from multiple launch sites. To achieve that goal, SpaceX plans to recover and rapidly reuse Starships and Super Heavy boosters, building on expertise from the partially reusable Falcon 9 rocket. Elon Musk, SpaceX’s founder and CEO, is keen on reusing ships and boosters as soon as possible. Earlier this month, Musk said he is optimistic SpaceX can recover a Super Heavy booster in Texas later this year and land a Starship back in Texas sometime next year.

NASA lays out how SpaceX will refuel Starships in low-Earth orbit Read More »

rocket-report:-sls-workforce-cuts;-new-glenn-launch-to-launch-in-the-early-fall

Rocket Report: SLS workforce cuts; New Glenn launch to launch in the early fall

All the news that’s fit to lift —

“This is a vital component in our preparations for launch.”

The flight hardware core stage for Europe’s new rocket, Ariane 6, is moved onto the launch pad for the first time this week. A launch is possible some time this summer.

Enlarge / The flight hardware core stage for Europe’s new rocket, Ariane 6, is moved onto the launch pad for the first time this week. A launch is possible some time this summer.

ESA-M. Pédoussaut

Welcome to Edition 6.41 of the Rocket Report! As I finish up this edition I’m listening to the post-Flight Readiness Review news conference for Boeing’s Crew Flight Test. It sounds like everything remains on track for a launch attempt on May 6, at 10: 34 pm ET. It’s exciting to see this important milestone for Boeing and the US human spaceflight program so near to hand.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Shetland spaceport advancing toward launch. SaxaVord Spaceport in Scotland is on track to launch the United Kingdom’s first vertical rocket into orbit, the BBC reports. The Civil Aviation Authority has granted a range license to the Scottish spaceport, which will allow the company to control the sea and airspace during launch. Previously, the site received a spaceport license in December 2023. Ambitiously, the facility aims to launch up to 30 rockets every year.

From Germany to Scotland with love … “This is a vital component in our preparations for launch,” said Frank Strang, chief executive of SaxaVord Spaceport. “As Western Europe’s only fully licensed vertical launch spaceport, we are now preparing to make more space history with the beginning of orbital launch operations well underway.” Germany-based rocket manufacturer Rocket Factory Augsburg could be the first to launch an orbital mission from Shetland later this year. (submitted by Ken the Bin)

Rocket Lab launches 5th Electron this year. Rocket Lab launched a South Korean smallsat and a NASA solar sail experiment on the company’s fifth flight of the year on Tuesday, Space News reports. NEONSAT-1, the primary payload of the mission, is an imaging satellite with a mass of about 100 kilograms. The spacecraft is part of a constellation of 11 spacecraft called New-space Earth Observation Satellite Constellation for National Safety, with the other 10 to be launched by South Korea’s Nuri rocket in 2026 and 2027.

Better get busy … This was the first Electron launch in more than a month after a mission for the National Reconnaissance Office on March 21 from Rocket Lab’s Launch Complex 2 in Virginia. Company executives said in an earnings call in February that the company has 22 Electron launches planned for the year, two of which are of its HASTE suborbital version. That would be an impressive total if Rocket Lab can achieve it. (submitted by Jay500001)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

PLD Space has raised 120 million euros. The Spanish launch startup revealed this week that it has raised 120 million euros to date, providing the funding needed to launch its orbital Miura 5 rocket by the end of 2025. Last October the company’s smaller, suborbital Miura 1 rocket made what the company characterized as a “successful” test flight, reaching an altitude of 46 km. By my very rough rule of thumb, a launch company must have at least $100 million in funding to have a fighting chance to reach orbit.

Building new buildings … The Miura 5 vehicle is intended to have a capacity of up to 250 kg in low-Earth orbit. The new funding will mainly be used for the expansion of PLD Space’s infrastructure, increasing the size of its facilities from 169,000 to 834,000 square meters. The company also plans to begin building a launch site for the Miura 5 rocket in Kourou, French Guiana, later this year. (submitted by Ken the Bin and EllPeaTea)

SpaceX lands 300th Falcon booster. With the launch of a Starlink mission on Tuesday evening and subsequent return of the Falcon 9 first stage, SpaceX recorded its 300th successful booster landing. In the Falcon fleet’s lifetime, SpaceX has now landed about 85 percent of the Falcon rockets it has launched, Ars reports. These days, more than 90 percent of all its missions launch on previously flown boosters. So, rocket recycling is totally a thing.

Saving a lot of metal … Landing 300 rockets means SpaceX has preserved 2,700 Merlin rocket engines. In round numbers, the dry mass of a Falcon 9 first stage is about 50 metric tons, so the landing of all these rockets has prevented 15,000 metric tons of metal and other materials from being dumped into the oceans. To put this number further into perspective, only a handful of rockets have ever launched more than 300 times, and they are all Russian.

China launches astronaut mission. A Long March 2F rocket lifted off from the Jiuquan Satellite Launch Center in the Gobi Desert on Thursday, carrying the Shenzhou 18 spacecraft and its three-person crew into orbit, Space.com reports. Shenzhou 18 is commanded by Ye Guangfu, 43, who was part of the Shenzhou 13 mission three years ago. Fighter pilots Li Cong, 34, and Li Guangsu, 36, both spaceflight rookies, make up the rest of the crew.

A change in control … The three will spend around six months in space. Their spacecraft is scheduled to reach the Tiangong space station 6.5 hours after launch. The trio will be greeted aboard the orbital outpost by Tang Hongbo, Tang Shengjie, and Jiang Xinlin, who make up the Shenzhou 17 crew. The latter three will soon complete their six months in orbit. (submitted by Ken the Bin and EllPeaTea)

Rocket Report: SLS workforce cuts; New Glenn launch to launch in the early fall Read More »

nasa-still-doesn’t-understand-root-cause-of-orion-heat-shield-issue

NASA still doesn’t understand root cause of Orion heat shield issue

Flight rationale —

“When we stitch it all together, we’ll either have flight rationale or we won’t.”

NASA's Orion spacecraft descends toward the Pacific Ocean on December 11, 2021, at the end of the Artemis I mission.

Enlarge / NASA’s Orion spacecraft descends toward the Pacific Ocean on December 11, 2021, at the end of the Artemis I mission.

NASA

NASA officials declared the Artemis I mission successful in late 2021, and it’s hard to argue with that assessment. The Space Launch System rocket and Orion spacecraft performed nearly flawlessly on an unpiloted flight that took it around the Moon and back to Earth, setting the stage for the Artemis II, the program’s first crew mission.

But one of the things engineers saw on Artemis I that didn’t quite match expectations was an issue with the Orion spacecraft’s heat shield. As the capsule streaked back into Earth’s atmosphere at the end of the mission, the heat shield ablated, or burned off, in a different manner than predicted by computer models.

More of the charred material than expected came off the heat shield during the Artemis I reentry, and the way it came off was somewhat uneven, NASA officials said. Orion’s heat shield is made of a material called Avcoat, which is designed to burn off as the spacecraft plunges into the atmosphere at 25,000 mph (40,000 km per hour). Coming back from the Moon, Orion encountered temperatures up to 5,000° Fahrenheit (2,760° Celsius), hotter than a spacecraft sees when it reenters the atmosphere from low-Earth orbit.

Despite heat shield issue, the Orion spacecraft safely splashed down in the Pacific Ocean. Engineers discovered the uneven charring during post-flight inspections.

No answers yet

Amit Kshatriya, who oversees development for the Artemis missions in NASA’s exploration division, said Friday that the agency is still looking for the root cause of the heat shield issue. Managers want to be sure they understand the cause before proceeding with Artemis II, which will send astronauts Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen on a 10-day flight around the far side of the Moon.

This will be the first time humans fly near the Moon since the last Apollo mission in 1972. In January, NASA announced a delay in the launch of Artemis II from late 2024 until September 2025, largely due to the unresolved investigation into the heat shield issue.

“We are still in the middle of our investigation on the performance of the heat shield from Artemis I,” Kshatriya said Friday in a meeting with a committee of the NASA Advisory Council.

Engineers have performed sub-scale heat shield tests in wind tunnels and arc jet facilities to better understand what led to the uneven charring on Artemis I. “We’re getting close to the final answer in terms of that cause,” Kshatriya said.

NASA officials previously said it is unlikely they will need to make changes to the heat shield already installed on the Orion spacecraft for Artemis II, but haven’t ruled it out. A redesign or modifications to the Orion heat shield on Artemis II would probably delay the mission by at least a year.

Instead, engineers are analyzing all of the possible trajectories the Orion spacecraft could fly when it reenters the atmosphere at the end of the Artemis II mission. On Artemis I, Orion flew a skip reentry profile, where it dipped into the atmosphere, skipped back into space, and then made a final descent into the atmosphere, sort of like a rock skipping across a pond. This profile allows Orion to make more precise splashdowns near recovery teams in the Pacific Ocean and reduces g-forces on the spacecraft and the crew riding inside. It also splits up the heat load on the spacecraft into two phases.

The Apollo missions flew a direct reentry profile. There is also a reentry mode available called a ballistic entry, in which the spacecraft would fly through the atmosphere unguided.

Ground teams at NASA's Kennedy Space Center in Florida moved the Orion spacecraft for the Artemis II mission into an altitude chamber earlier this month.

Enlarge / Ground teams at NASA’s Kennedy Space Center in Florida moved the Orion spacecraft for the Artemis II mission into an altitude chamber earlier this month.

The charred material began flying off the heat shield in the first phase of the skip reentry. Engineers are looking at how the skip reentry profile affected the performance of the Orion heat shield. NASA wants to understand how the Orion heat shield would perform during each of the possible reentry trajectories for Artemis II.

“What we have the analysis teams off doing is saying, ‘OK, independent of what the constraints are going to be, what can we tolerate?” Kshatriya said.

Once officials understand the cause of the heat shield charring, engineers will determine what kind of trajectory Artemis II needs to fly on reentry to minimize risk to the crew. Then, managers will look at building what NASA calls flight rationale. Essentially, this is a process of convincing themselves the spacecraft is safe to fly.

“When we stitch it all together, we’ll either have flight rationale or we won’t,” Kshatriya said.

Assuming NASA approves the flight rationale for Artemis II, there will be additional discussions about how to ensure Orion heat shields are safe to fly on downstream Artemis missions, which will have higher-speed reentry profiles as astronauts return from landings on the Moon.

In the meantime, preparations on the Orion spacecraft for Artemis II continue at NASA’s Kennedy Space Center. The crew and service modules for Artemis II were mated together earlier this year, and the entire Orion spacecraft is now inside a vacuum chamber for environmental testing.

NASA still doesn’t understand root cause of Orion heat shield issue Read More »

russia-stands-alone-in-vetoing-un-resolution-on-nuclear-weapons-in-space

Russia stands alone in vetoing UN resolution on nuclear weapons in space

ASAT —

“The United States assesses that Russia is developing a new satellite carrying a nuclear device.”

A meeting of the UN Security Council on April 14.

Enlarge / A meeting of the UN Security Council on April 14.

Russia vetoed a United Nations Security Council resolution Wednesday that would have reaffirmed a nearly 50-year-old ban on placing weapons of mass destruction into orbit, two months after reports Russia has plans to do just that.

Russia’s vote against the resolution was no surprise. As one of the five permanent members of the Security Council, Russia has veto power over any resolution that comes before the body. China abstained from the vote, and 13 other members of the Security Council voted in favor of the resolution.

If it passed, the resolution would have affirmed a binding obligation in Article IV of the 1967 Outer Space Treaty, which says nations are “not to place in orbit around the Earth any objects carrying nuclear weapons or any other kinds of weapons of mass destruction.”

Going nuclear

Russia is one of 115 parties to the Outer Space Treaty. The Security Council vote Wednesday follows reports in February that Russia is developing a nuclear anti-satellite weapon.

“The United States assesses that Russia is developing a new satellite carrying a nuclear device,” said Jake Sullivan, President Biden’s national security advisor. “We have heard President Putin say publicly that Russia has no intention of deploying nuclear weapons in space. If that were the case, Russia would not have vetoed this resolution.”

The United States and Japan proposed the joint resolution, which also called on nations not to develop nuclear weapons or any other weapons of mass destruction designed to be placed into orbit around the Earth. In a statement, US and Japanese diplomats highlighted the danger of a nuclear detonation in space. Such an event would have “grave implications for sustainable development, and other aspects of international peace and security,” US officials said in a press release.

With its abstention from the vote, “China has shown that it would rather defend Russia as its junior partner, than safeguard the global nonproliferation regime,” said Linda Thomas-Greenfield, the US ambassador to the UN.

US government officials have not offered details about the exact nature of the anti-satellite weapon they say Russia is developing. A nuclear explosion in orbit would destroy numerous satellites—from many countries—and endanger astronauts. Space debris created from a nuclear detonation could clutter orbital traffic lanes needed for future spacecraft.

The Soviet Union launched more than 30 military satellites powered by nuclear reactors. Russia’s military space program languished in the first couple of decades after the fall of the Soviet Union, and US intelligence officials say it still lags behind the capabilities possessed by the US Space Force and the Chinese military.

Russia’s military funding has largely gone toward the war in Ukraine for the last two years, but Putin and other top Russian officials have raised threats of nuclear force and attacks on space assets against adversaries. Russia’s military launched a cyberattack against a commercial satellite communications network when it invaded Ukraine in 2022.

Russia has long had an appetite for anti-satellite (ASAT) weapons. The Soviet Union experimented with “co-orbital” ASATs in the 1960s and 1970s. When deployed, these co-orbital ASATs would have attacked enemy satellites by approaching them and detonating explosives or using a grappling arm to move the target out of orbit.

Russian troops at the Plesetsk Cosmodrome in far northern Russia prepare for the launch of a Soyuz rocket with the Kosmos 2575 satellite in February.

Enlarge / Russian troops at the Plesetsk Cosmodrome in far northern Russia prepare for the launch of a Soyuz rocket with the Kosmos 2575 satellite in February.

Russian Ministry of Defense

In 1987, the Soviet Union launched an experimental weapons platform into orbit to test laser technologies that could be used against enemy satellites. Russia shot down one of its own satellites in 2021 in a widely condemned “direct ascent” ASAT test. This Russian direct ascent ASAT test followed demonstrations of similar capability by China, the United States, and India. Russia’s military has also demonstrated satellites over the last decade that could grapple onto an adversary’s spacecraft in orbit, or fire a projectile to take out an enemy satellite.

These ASAT capabilities could destroy or disable one enemy satellite at a time. The US Space Force is getting around this threat by launching large constellations of small satellites to augment the military’s much larger legacy communications, surveillance, and missile warning spacecraft. A nuclear ASAT weapon could threaten an entire constellation or render some of space inaccessible due to space debris.

Russia’s ambassador to the UN, Vasily Nebenzya, called this week’s UN resolution “an unscrupulous play of the United States” and a “cynical forgery and deception.” Russia and China proposed an amendment to the resolution that would have banned all weapons in space. This amendment got the support of about half of the Security Council but did not pass.

Outside the 15-member Security Council, the original resolution proposed by the United States and Japan won the support of more than 60 nations as co-sponsors.

“Regrettably, one permanent member decided to silence the critical message we wanted to send to the present and future people of the world: Outer space must remain a domain of peace, free of weapons of mass destruction, including nuclear weapons,” said Kazuyuki Yamazaki, Japan’s ambassador to the UN.

Russia stands alone in vetoing UN resolution on nuclear weapons in space Read More »

nasa-officially-greenlights-$3.35-billion-mission-to-saturn’s-moon-titan

NASA officially greenlights $3.35 billion mission to Saturn’s moon Titan

Artist's illustration of Dragonfly soaring over the dunes of Titan.

Enlarge / Artist’s illustration of Dragonfly soaring over the dunes of Titan.

NASA has formally approved the robotic Dragonfly mission for full development, committing to a revolutionary project to explore Saturn’s largest moon with a quadcopter drone.

Agency officials announced the outcome of Dragonfly’s confirmation review last week. This review is a checkpoint in the lifetime of most NASA projects and marks the moment when the agency formally commits to the final design, construction, and launch of a space mission. The outcome of each mission’s confirmation review typically establishes a budgetary and schedule commitment.

“Dragonfly is a spectacular science mission with broad community interest, and we are excited to take the next steps on this mission,” said Nicky Fox, associate administrator of NASA’s science mission directorate. “Exploring Titan will push the boundaries of what we can do with rotorcraft outside of Earth.”

In the case of Dragonfly, NASA confirmed the mission with a total lifecycle cost of $3.35 billion and a launch date of July 2028. That is roughly twice the mission’s original proposed cost and a delay of more than two years from when the mission was originally selected in 2019, according to NASA.

Busting the cost cap

Rising costs are not necessarily a surprise on a mission as innovative as Dragonfly. After reaching Titan, the eight-bladed rotorcraft lander will soar from place to place on Saturn’s hazy moon, exploring environments rich in organic molecules, the building blocks of life.

Dragonfly will be the first mobile robot explorer to land on any other planetary body besides the Moon and Mars, and only the second flying drone to explore another planet. NASA’s Ingenuity helicopter on Mars was the first. Dragonfly will be more than 200 times as massive as Ingenuity and will operate six times farther from Earth.

Despite its distant position in the cold outer Solar System, Titan appears to be reminiscent of the ancient Earth. A shroud of orange haze envelops Saturn’s largest moon, and Titan’s surface is covered with sand dunes and methane lakes.

Titan’s frigid temperatures—hovering near minus 290° Fahrenheit (minus 179° Celsius)—mean water ice behaves like bedrock. NASA’s Cassini spacecraft, which flew past Titan numerous times before its mission ended in 2017, discovered weather systems on the hazy moon. Observations from Cassini found evidence for hydrocarbon rains and winds that appear to generate waves in Titan’s methane lakes.

Clearly, Titan is an exotic world. Most of what scientists know about Titan comes from measurements collected by Cassini and the European Space Agency’s Huygens probe, which Cassini released to land on Titan in 2005. Huygens returned the first pictures from Titan’s surface, but it only transmitted data for 72 minutes.

Dragonfly will explore Titan for around three years, flying tens of kilometers about once per month to measure the prebiotic chemistry of Titan’s surface, study its soupy atmosphere, and search for biosignatures that could be indications of life. The mission will visit more than 30 locations within Titan’s equatorial region, according to a presentation by Elizabeth Turtle, Dragonfly’s principal investigator at the Johns Hopkins University Applied Physics Laboratory.

“The Dragonfly mission is an incredible opportunity to explore an ocean world in a way that we have never done before,” Turtle said in a statement. “The team is dedicated and enthusiastic about accomplishing this unprecedented investigation of the complex carbon chemistry that exists on the surface of Titan and the innovative technology bringing this first-of-its-kind space mission to life.”

However, this high level of ambition comes at a high cost. NASA selected Dragonfly to proceed into initial development in 2019. Turtle’s science team proposed Dragonfly to NASA through the agency’s New Frontiers program, which has developed a series of medium-class Solar System exploration missions. The New Frontiers program has an impressive pedigree, beginning with the New Horizons mission that flew by Pluto in 2015, the Juno mission to Jupiter, and the OSIRIS-REx asteroid sample return mission.

NASA officially greenlights $3.35 billion mission to Saturn’s moon Titan Read More »

nasa-may-alter-artemis-iii-to-have-starship-and-orion-dock-in-low-earth-orbit

NASA may alter Artemis III to have Starship and Orion dock in low-Earth orbit

This image taken by NASA's Orion spacecraft shows its view just before the vehicle flew behind the Moon in 2022.

Enlarge / This image taken by NASA’s Orion spacecraft shows its view just before the vehicle flew behind the Moon in 2022.

NASA

Although NASA is unlikely to speak about it publicly any time soon, the space agency is privately considering modifications to its Artemis plan to land astronauts on the surface of the Moon later this decade.

Multiple sources have confirmed that NASA is studying alternatives to the planned Artemis III landing of two astronauts on the Moon, nominally scheduled for September 2026, due to concerns about hardware readiness and mission complexity.

Under one of the options, astronauts would launch into low-Earth orbit inside an Orion spacecraft and rendezvous there with a Starship vehicle, separately launched by SpaceX. During this mission, similar to Apollo 9, a precursor to the Apollo 11 lunar landing, the crew would validate the ability of Orion and Starship to dock and test habitability inside Starship. The crew would then return to Earth. In another option NASA is considering, a crew would launch in Orion and fly to a small space station near the Moon, the Lunar Gateway, and then return to Earth.

To discuss these options, Ars asked for an interview with Catherine Koerner, a deputy associate administrator who oversees Exploration Systems Development for NASA. Instead, the space agency offered a noncommittal statement.

“NASA continues to work toward the Artemis II crewed test flight in September of 2025 and the Artemis III test flight to land astronauts near the lunar South Pole in September of 2026,” the statement read. “The agency evaluates element progress and status on a daily basis and uses that data to make decisions at the right time for each mission as a part of prudent programmatic and mission management. Should a particular hardware element not be available to support a mission as scheduled or planned, NASA will evaluate the readiness of available hardware for options to make those decisions with crew safety as the number one priority.”

An unrealistic timeline

The space agency’s date for Artemis II is optimistic but potentially feasible if NASA can resolve the Orion spacecraft’s heat shield issues. A lunar landing in September 2026, however, seems completely unrealistic. The biggest stumbling blocks for Artemis III are the lack of a lander, which SpaceX is developing through its Starship program, and spacesuits for forays onto the lunar surface by Axiom Space. It is not clear when the lander or the suits, which NASA only began funding in the last two to three years, will be ready.

There are also concerns about the complexity of Artemis III. It will require a number of previously untested steps, including an Orion-Starship rendezvous and docking in lunar orbit; humans flying inside of Starship in space; Starship going down to the surface and coming back up to dock with Orion; and more. Mission planners would be more comfortable if they could, in NASA parlance, “buy down the risk” of Artemis III by validating some of these delicate maneuvers before the lunar landing mission.

This is why NASA has asked SpaceX to look at a mission where Orion would rendezvous with the Starship vehicle in orbit around Earth. Such a mission—whether called Artemis IIS or Artemis III—would solve a lot of problems for the space agency and appears to be the preferred option at this time. Critically, it would verify the ability of the two spacecraft to dock in an environment where, if there were a problem, it would be much easier for the crew to return safely home. It would also validate the ability of astronauts to live inside Starship and perform some ascent and descent maneuvers.

NASA may alter Artemis III to have Starship and Orion dock in low-Earth orbit Read More »