soyuz

rocket-report:-“no-man’s-land”-in-rocket-wars;-isaacman-lukewarm-on-sls

Rocket Report: “No man’s land” in rocket wars; Isaacman lukewarm on SLS


China’s approach to space junk is worrisome as it begins launching its own megaconstellations.

A United Launch Alliance Atlas V rocket rolls to its launch pad in Florida in preparation for liftoff with 27 satellites for Amazon’s Kuiper broadband network. Credit: United Launch Alliance

Welcome to Edition 7.39 of the Rocket Report! Not getting your launch fix? Buckle up. We’re on the cusp of a boom in rocket launches as three new megaconstellations have either just begun or will soon begin deploying thousands of satellites to enable broadband connectivity from space. If the megaconstellations come to fruition, this will require more than a thousand launches in the next few years, on top of SpaceX’s blistering Starlink launch cadence. We discuss the topic of megaconstellations in this week’s Rocket Report.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

So, what is SpinLaunch doing now? Ars Technica has mentioned SpinLaunch, the company that literally wants to yeet satellites into space, in previous Rocket Report newsletters. This company enjoyed some success in raising money for its so-crazy-it-just-might-work idea of catapulting rockets and satellites into the sky, a concept SpinLaunch calls “kinetic launch.” But SpinLaunch is now making a hard pivot to small satellites, a move that, on its face, seems puzzling after going all-in on kinetic launch and even performing several impressive hardware tests, throwing a projectile to altitudes of up to 30,000 feet. Ars got the scoop, with the company’s CEO detailing why and how it plans to build a low-Earth orbit telecommunications constellation with 280 satellites.

Traditional versus kinetic … The planned constellation, named Meridian, is an opportunity for SpinLaunch to diversify away from being solely a launch company, according to David Wrenn, the company’s CEO. We’ve observed this in a number of companies that started out as rocket developers before branching out to satellite manufacturing or space services. Wrenn said SpinLaunch could loft all of the Meridian satellites on a single large conventional rocket, or perhaps two medium-lift rockets, and then maintain the constellation with its own kinetic launch system. A satellite communications network presents a better opportunity for profit, Wrenn said. “The launch market is relatively small compared to the economic potential of satellite communication,” he said. “Launch has generally been more of a cost center than a profit center. Satcom will be a much larger piece of the overall industry.”

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Peter Beck suggests Electron is here to stay. The conventional wisdom is that the small launch vehicle business isn’t a big moneymaker. There is really only one company, Rocket Lab, that has gained traction in selling dedicated rides to orbit for small satellites. Rocket Lab’s launcher, Electron, can place payloads of up to a few hundred pounds into orbit. As soon as Rocket Lab had some success, SpaceX began launching rideshare missions on its much larger Falcon 9 rocket, cobbling together dozens of satellites on a single vehicle to spread the cost of the mission among many customers. This offers customers a lower price point than buying a dedicated launch on Electron. But Peter Beck, Rocket Lab’s founder and CEO, says his company has found a successful market providing dedicated launches for small satellites, despite price pressure from SpaceX, Space News reports. “Dedicated small launch is a real market, and it should not be confused with rideshare,” he argued. “It’s totally different.”

No man’s land … Some small satellite companies that can afford the extra cost of a dedicated launch realize the value of controlling their schedule and orbit, traits that a dedicated launch offers over a rideshare, Beck said. It’s easy to blame SpaceX for undercutting the prices of Rocket Lab and other players in this segment of the launch business, but Beck said companies that have failed or withdrawn from the small launch market didn’t have a good business plan, a good product, or good engineering. He added that the capacity of the Electron vehicle is well-suited for dedicated launch, whereas slightly larger rockets in the one-ton-to-orbit class—a category that includes Firefly Aerospace’s Alpha and Isar Aerospace’s Spectrum rockets—are an ill fit. The one-ton performance range is “no man’s land” in the market, Beck said. “It’s too small to be a useful rideshare mission, and it’s too big to be a useful dedicated rocket” for smallsats. (submitted by EllPeaTea)

ULA scrubs first full-on Kuiper launch. A band of offshore thunderstorms near Florida’s Space Coast on Wednesday night forced United Launch Alliance to scrub a launch attempt of the first of dozens of missions on behalf of its largest commercial customer, Amazon, Spaceflight Now reports. The mission will use an Atlas V rocket to deploy 27 satellites for Amazon’s Project Kuiper network. It’s the first launch of what will eventually be more than 3,200 operational Kuiper satellites beaming broadband connectivity from space, a market currently dominated by SpaceX’s Starlink. As of Thursday, ULA hadn’t confirmed a new launch date, but airspace warning notices released by the FAA suggest the next attempt might occur Monday, April 14.

What’s a few more days? … This mission has been a long time coming. Amazon announced the Kuiper megaconstellation in 2019, and the company says it’s investing at least $10 billion in the project (the real number may be double that). Problems in manufacturing the Kuiper satellites, which Amazon is building in-house, delayed the program’s first full-on launch by a couple of years. Amazon launched a pair of prototype satellites in 2023, but the operational versions are different, and this mission fills the capacity of ULA’s Atlas V rocket. Amazon has booked more than 80 launches with ULA, Arianespace, Blue Origin, and SpaceX to populate the Kuiper network. (submitted by EllPeaTea)

Space Force swaps ULA for SpaceX. For the second time in six months, SpaceX will deploy a US military satellite that was sitting in storage, waiting for a slot on United Launch Alliance’s launch schedule, Ars reports. Space Systems Command, which oversees the military’s launch program, announced Monday that it is reassigning the launch of a Global Positioning System satellite from ULA’s Vulcan rocket to SpaceX’s Falcon 9. This satellite, designated GPS III SV-08 (Space Vehicle-08), will join the Space Force’s fleet of navigation satellites beaming positioning and timing signals for military and civilian users around the world. The move allows the GPS satellite to launch as soon as the end of May, the Space Force said. The military executed a similar rocket swap for a GPS mission that launched on a Falcon 9 in December.

Making ULA whole … The Space Force formally certified ULA’s Vulcan rocket for national security missions last month, so Vulcan may finally be on the cusp of delivering for the military. But there are several military payloads in the queue to launch on Vulcan before GPS III SV-08, which was already completed and in storage at its Lockheed Martin factory in Colorado. Meanwhile, SpaceX is regularly launching Falcon 9 rockets with ample capacity to add the GPS mission to the manifest. In exchange for losing the contract to launch this particular GPS satellite, the Space Force swapped a future GPS mission that was assigned to SpaceX to fly on ULA’s Vulcan instead.

Russia launches a former Navy SEAL to space. Jonny Kim, a former Navy SEAL, Harvard Medical School graduate, and now a NASA astronaut, blasted off with two cosmonaut crewmates aboard a Russian Soyuz rocket early Tuesday, CBS News reports. Three hours later, Kim and his Russian crewmates—Sergey Ryzhikov and Alexey Zubritsky—chased down the International Space Station and moved in for a picture-perfect docking aboard their Soyuz MS-27 spacecraft. “It was the trip of a lifetime and an honor to be here,” Kim told flight controllers during a traditional post-docking video conference.

Rotating back to Earth … Ryzhikov, Zubritsky, and Kim joined a crew of seven living aboard the International Space Station, temporarily raising the lab’s crew complement to 10 people. The new station residents are replacing an outgoing Soyuz crew—Alexey Ovchinin, Ivan Wagner, and Don Pettit—who launched to the ISS last September and who plan to return to Earth aboard their own spacecraft April 19 to wrap up a 219-day stay in space. This flight continues the practice of launching US astronauts on Russian Soyuz missions, part of a barter agreement between NASA and the Russian space agency that also reserves a seat on SpaceX Dragon missions for Russian cosmonauts.

China is littering in LEO. China’s construction of a pair of communications megaconstellations could cloud low Earth orbit with large spent rocket stages for decades or beyond, Space News reports. Launches for the government’s Guowang and Shanghai-backed but more commercially oriented Qianfan (Thousand Sails) constellation began in the second half of 2024, with each planned to consist of over 10,000 satellites, demanding more than a thousand launches in the coming years. Placing this number of satellites is enough to cause concern about space debris because China hasn’t disclosed its plans for removing the spacecraft from orbit at the end of their missions. It turns out there’s another big worry: upper stages.

An orbital time bomb … While Western launch providers typically deorbit their upper stages after dropping off megaconstellation satellites in space, China does not. This means China is leaving rockets in orbits high enough to persist in space for more than a century, according to Jim Shell, a space domain awareness and orbital debris expert at Novarum Tech. Space News reported on Shell’s commentary in a social media post, where he wrote that orbital debris mass in low-Earth orbit “will be dominated by PRC [People’s Republic of China] upper stages in short order unless something changes (sigh).” So far, China has launched five dedicated missions to deliver 90 Qianfan satellites into orbit. Four of these missions used China’s Long March 6A rocket, with an upper stage that has a history of breaking up in orbit, exacerbating the space debris problem. (submitted by EllPeaTea)

SpaceX wins another lunar lander launch deal. Intuitive Machines has selected a SpaceX Falcon 9 rocket to launch a lunar delivery mission scheduled for 2027, the Houston Chronicle reports. The upcoming IM-4 mission will carry six NASA payloads, including a European Space Agency-led drill suite designed to search for water at the lunar south pole. It will also include the launch of two lunar data relay satellites that support NASA’s so-called Near Space Network Services program. This will be the fourth lunar lander mission for Houston-based Intuitive Machines under the auspices of NASA’s Commercial Lunar Payload Services program.

Falcon 9 has the inside track … SpaceX almost certainly offered Intuitive Machines the best deal for this launch. The flight-proven Falcon 9 rocket is reliable and inexpensive compared to competitors and has already launched two Intuitive Machines missions, with a third one set to fly late this year. However, there’s another factor that made SpaceX a shoe-in for this contract. SpaceX has outfitted one of its launch pads in Florida with a unique cryogenic loading system to pump liquid methane and liquid oxygen propellants into the Intuitive Machines lunar lander as it sits on top of its rocket just before liftoff. The lander from Intuitive Machines uses these super-cold propellants to feed its main engine, and SpaceX’s infrastructure for loading it makes the Falcon 9 rocket the clear choice for launching it.

Time may finally be running out for SLS. Jared Isaacman, President Trump’s nominee for NASA administrator, said Wednesday in a Senate confirmation hearing that he wants the space agency to pursue human missions to the Moon and Mars at the same time, an effort that will undoubtedly require major changes to how NASA spends its money. My colleague Eric Berger was in Washington for the hearing and reported on it for Ars. Senators repeatedly sought Isaacman’s opinion on the Space Launch System, the NASA heavy-lifter designed to send astronauts to the Moon. The next SLS mission, Artemis II, is slated to launch a crew of four astronauts around the far side of the Moon next year. NASA’s official plans call for the Artemis III mission to launch on an SLS rocket later this decade and attempt a landing at the Moon’s south pole.

Limited runway … Isaacman sounded as if he were on board with flying the Artemis II mission as envisioned—no surprise, then, that the four Artemis II astronauts were in the audience—and said he wanted to get a crew of Artemis III to the lunar surface as quickly as possible. But he questioned why it has taken NASA so long, and at such great expense, to get its deep space human exploration plans moving. In one notable exchange, Isaacman said NASA’s current architecture for the Artemis lunar plans, based on the SLS rocket and Orion spacecraft, is probably not the ideal “long-term” solution to NASA’s deep space transportation plans. The smart reading of this is that Isaacman may be willing to fly the Artemis II and Artemis III missions as conceived, given that much of the hardware is already built. But everything that comes after this, including SLS rocket upgrades and the Lunar Gateway, could be on the chopping block.

Welcome to the club, Blue Origin. Finally, the Space Force has signaled it’s ready to trust Jeff Bezos’ space company, Blue Origin, for launching the military’s most precious satellites, Ars reports. Blue Origin received a contract on April 4 to launch seven national security missions for the Space Force between 2027 and 2032, an opening that could pave the way for more launch deals in the future. These missions will launch on Blue Origin’s heavy-lift New Glenn rocket, which had a successful debut test flight in January. The Space Force hasn’t certified New Glenn for national security launches, but military officials expect to do so sometime next year. Blue Origin joins SpaceX and United Launch Alliance in the Space Force’s mix of most-trusted launch providers.

A different class … The contract Blue Origin received last week covers launch services for the Space Force’s most critical space missions, requiring rocket certification and a heavy dose of military oversight to ensure reliability. Blue Origin was already eligible to launch a separate batch of missions the Space Force set aside to fly on newer rockets. The military is more tolerant of risk on these lower-priority missions, which include launches of “cookie-cutter” satellites for the Pentagon’s large fleet of missile-tracking satellites and a range of experimental payloads.

Why is SpaceX winning so many Space Force contracts? In less than a week, the US Space Force awarded SpaceX a $5.9 billion deal to make Elon Musk’s space company the Pentagon’s leading launch provider, replacing United Launch Alliance in the top position. Then, the Space Force assigned most of this year’s most lucrative launch contracts to SpaceX. As we mentioned earlier in the Rocket Report, the military also swapped a ULA rocket for a SpaceX launch vehicle for an upcoming GPS mission. So, is SpaceX’s main competitor worried Elon Musk is tipping the playing field for lucrative government contracts by cozying up to President Trump?

It’s all good, man … Tory Bruno, ULA’s chief executive, doesn’t seem too worried in his public statements, Ars reports. In a roundtable with reporters this week at the annual Space Symposium conference in Colorado, Bruno was asked about Musk’s ties with Trump. “We have not been impacted by our competitor’s position advising the president, certainly not yet,” Bruno said. “I expect that the government will follow all the rules and be fair and follow all the laws, and so we’re behaving that way.” The reason Bruno can say Musk’s involvement in the Trump administration so far hasn’t affected ULA is simple. SpaceX is cheaper and has a ready-made line of Falcon 9 and Falcon Heavy rockets available to launch the Pentagon’s satellites. ULA’s Vulcan rocket is now certified to launch military payloads, but it reached this important milestone years behind schedule.

Two Texas lawmakers are still fighting the last war. NASA has a lot to figure out in the next couple of years. Moon or Mars? Should, or when should, the Space Launch System be canceled? Can the agency absorb a potential 50 percent cut to its science budget? If Senators John Cornyn and Ted Cruz get their way, NASA can add moving a space shuttle to its list. The Lone Star State’s two Republican senators introduced the “Bring the Space Shuttle Home Act” on Thursday, CollectSpace reports. If passed by Congress and signed into law, the bill would direct NASA to take the space shuttle Discovery from the national collection at the Smithsonian National Air and Space Museum and transport it to Space Center Houston, a museum and visitor attraction next to Johnson Space Center, home to mission control and NASA’s astronaut training base. Discovery has been on display at the Smithsonian since 2012. NASA awarded museums in California, Florida, and New York the other three surviving shuttle orbiters.

Dollars and nonsense … Moving a space shuttle from Virginia to Texas would be a logistical nightmare, cost an untold amount of money, and would create a distraction for NASA when its focus should be on future space exploration. In a statement, Cruz said Houston deserves one of NASA’s space shuttles because of the city’s “unique relationship” with the program. Cornyn alleged in a statement that the Obama administration blocked Houston from receiving a space shuttle for political reasons. NASA’s inspector general found no evidence of this. On the contrary, transferring a space shuttle to Texas now would be an unequivocal example of political influence. The Boeing 747s that NASA used to move space shuttles across the country are no longer flightworthy, and NASA scrapped the handling equipment needed to prepare a shuttle for transport. Moving the shuttle by land or sea would come with its own challenges. “I can easily see this costing a billion dollars,” Dennis Jenkins, a former shuttle engineer who directed NASA’s shuttle transition and retirement program more than a decade ago, told CollectSpace in an interview. On a personal note, the presentation of Discovery at the Smithsonian is remarkable to see in person, with aerospace icons like the Concorde and the SR-71 spy plane under the same roof. Space Center Houston can’t match that.

Next three launches

April 12: Falcon 9 | Starlink 12-17 | Kennedy Space Center, Florida | 01: 15 UTC

April 12: Falcon 9 | NROL-192 | Vandenberg Space Force Base, California | 12: 17 UTC

April 14: Falcon 9 | Starlink 6-73 | Cape Canaveral Space Force Station, Florida | 01: 59 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: “No man’s land” in rocket wars; Isaacman lukewarm on SLS Read More »

rocket-report:-australia-says-yes-to-the-launch;-russia-delivers-for-iran

Rocket Report: Australia says yes to the launch; Russia delivers for Iran


The world’s first wooden satellite arrived at the International Space Station this week.

A Falcon 9 booster fires its engines on SpaceX’s “tripod” test stand in McGregor, Texas. Credit: SpaceX

Welcome to Edition 7.19 of the Rocket Report! Okay, we get it. We received more submissions from our readers on Australia’s approval of a launch permit for Gilmour Space than we’ve received on any other news story in recent memory. Thank you for your submissions as global rocket activity continues apace. We’ll cover Gilmour in more detail as they get closer to launch. There will be no Rocket Report next week as Eric and I join the rest of the Ars team for our 2024 Technicon in New York.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Gilmour Space has a permit to fly. Gilmour Space Technologies has been granted a permit to launch its 82-foot-tall (25-meter) orbital rocket from a spaceport in Queensland, Australia. The space company, founded in 2012, had initially planned to lift off in March but was unable to do so without approval from the Australian Space Agency, the Australian Broadcasting Corporation reports. The government approved Gilmour’s launch permit Monday, although the company is still weeks away from flying its three-stage Eris rocket.

A first for Australia … Australia hosted a handful of satellite launches with US and British rockets from 1967 through 1971, but Gilmour’s Eris rocket would become the first all-Australian launch vehicle to reach orbit. The Eris rocket is capable of delivering about 670 pounds (305 kilograms) of payload mass into a Sun-synchronous orbit. Eris will be powered by hybrid rocket engines burning a solid fuel mixed with a liquid oxidizer, making it unique among orbital-class rockets. Gilmour completed a wet dress rehearsal, or practice countdown, with the Eris rocket on the launch pad in Queensland in September. The launch permit becomes active after 30 days, or the first week of December. “We do think we’ve got a good chance of launching at the end of the 30-day period, and we’re going to give it a red hot go,” said Adam Gilmour, the company’s co-founder and CEO. (submitted by Marzipan, mryall, ZygP, Ken the Bin, Spencer Willis, MarkW98, and EllPeaTea)

North Korea tests new missile. North Korea apparently completed a successful test of its most powerful intercontinental ballistic missile on October 31, lofting it nearly 4,800 miles (7,700 kilometers) into space before the projectile fell back to Earth, Ars reports. This solid-fueled, multi-stage missile, named the Hwasong-19, is a new tool in North Korea’s increasingly sophisticated arsenal of weapons. It has enough range—perhaps as much as 9,320 miles (15,000 kilometers), according to Japan’s government—to strike targets anywhere in the United States. It also happens to be one of the largest ICBMs in the world, rivaling the missiles fielded by the world’s more established nuclear powers.

Quid pro quo? … The Hwasong-19 missile test comes as North Korea deploys some 10,000 troops inside Russia to support the country’s war against Ukraine. The budding partnership between Russia and North Korea has evolved for several years. Russian President Vladimir Putin has met with North Korean leader Kim Jong Un on multiple occasions, most recently in Pyongyang in June. This has fueled speculation about what Russia is offering North Korea in exchange for the troops deployed on Russian soil. US and South Korean officials have some thoughts. They said North Korea is likely to ask for technology transfers in diverse areas related to tactical nuclear weapons, ICBMs, and reconnaissance satellites.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Virgin Galactic is on the hunt for cash. Virgin Galactic is proposing to raise $300 million in additional capital to accelerate production of suborbital spaceplanes and a mothership aircraft the company says can fuel its long-term growth, Space News reports. The company, founded by billionaire Richard Branson, suspended operations of its VSS Unity suborbital spaceplane earlier this year. VSS Unity hit a monthly flight cadence carrying small groups of space tourists and researchers to the edge of space, but it just wasn’t profitable. Now, Virgin Galactic is developing larger Delta-class spaceplanes it says will be easier and cheaper to turn around between flights.

All-in with Delta … Michael Colglazier, Virgin Galactic’s CEO, announced the company’s appetite for fundraising in a quarterly earnings call with investment analysts Wednesday. He said manufacturing of components for Virgin Galactic’s first two Delta-class ships, which the company says it can fund with existing cash, is proceeding on schedule at a factory in Arizona. Virgin Galactic previously said it would use revenue from paying passengers on its first two Delta-class ships to pay for development of future vehicles. Instead, Virgin Galactic now says it wants to raise money to speed up work on the third and fourth Delta-class vehicles, along with a second airplane mothership to carry the spaceplanes aloft before they release and fire into space. (submitted by Ken the Bin and EllPeaTea)

ESA breaks its silence on Themis. The European Space Agency has provided a rare update on the progress of its Themis reusable booster demonstrator project, European Spaceflight reports. ESA is developing the Themis test vehicle for atmospheric flights to fine-tune technologies for a future European reusable rocket capable of vertical takeoffs and vertical landings. Themis started out as a project led by CNES, the French space agency, in 2018. ESA member states signed up to help fund the project in 2019, and the agency awarded ArianeGroup a contract to move forward with Themis in 2020. At the time, the first low-altitude hop test was expected to take place in 2022.

Some slow progress … Now, the first low-altitude hop is scheduled for 2025 from Esrange Space Centre in Sweden, a three-year delay. This week, ESA said engineers have completed testing of the Themis vehicle’s main systems, and assembly of the demonstrator is underway in France. A single methane-fueled Prometheus engine, also developed by ArianeGroup, has been installed on the rocket. Teams are currently adding avionics, computers, electrical systems, and cable harnesses. Themis’ stainless steel propellant tanks have been manufactured, tested, and cleaned and are now ready to be installed on the Themis demonstrator. Then, the rocket will travel by road from France to the test site in Sweden for its initial low-altitude hops. After those flights are complete, officials plan to add two more Prometheus engines to the rocket and ship it to French Guiana for high-altitude test flights. (submitted by Ken the Bin and EllPeaTea)

SpaceX will give the ISS a boost. A Cargo Dragon spacecraft docked to the International Space Station on Tuesday morning, less than a day after lifting off from Florida. As space missions go, this one is fairly routine, ferrying about 6,000 pounds (2,700 kilograms) of cargo and science experiments to the space station. One thing that’s different about this mission is that it delivered to the station a tiny 2 lb (900 g) satellite named LignoSat, the first spacecraft made of wood, for later release outside the research complex. There is one more characteristic of this flight that may prove significant for NASA and the future of the space station, Ars reports. As early as Friday, NASA and SpaceX have scheduled a “reboost and attitude control demonstration,” during which the Dragon spacecraft will use some of the thrusters at the base of the capsule. This is the first time the Dragon spacecraft will be used to move the space station.

Dragon’s breath … Dragon will fire a subset of its 16 Draco thrusters, each with about 90 pounds of thrust, for approximately 12.5 minutes to make a slight adjustment to the orbital trajectory of the roughly 450-ton space station. SpaceX and NASA engineers will analyze the results from the demonstration to determine if Dragon could be used for future space station reboost opportunities. The data will also inform the design of the US Deorbit Vehicle, which SpaceX is developing to perform the maneuvers required to bring the space station back to Earth for a controlled, destructive reentry in the early 2030s. For NASA, demonstrating Dragon’s ability to move the space station will be another step toward breaking free of reliance on Russia, which is currently responsible for providing propulsion to maneuver the orbiting outpost. Northrop Grumman’s Cygnus supply ship also previously demonstrated a reboost capability. (submitted by Ken the Bin and N35t0r)

Russia launches Soyuz in service of Iran. Russia launched a Soyuz rocket Monday carrying two satellites designed to monitor the space weather around Earth and 53 small satellites, including two Iranian ones, Reuters reports. The primary payloads aboard the Soyuz-2.1b rocket were two Ionosfera-M satellites to probe the ionosphere, an outer layer of the atmosphere near the edge of space. Solar activity can alter conditions in the ionosphere, impacting communications and navigation. The two Iranian satellites on this mission were named Kowsar and Hodhod. They will collect high-resolution reconnaissance imagery and support communications for Iran.

A distant third … This was only the 13th orbital launch by Russia this year, trailing far behind the United States and China. We know of two more Soyuz flights planned for later this month, but no more, barring a surprise military launch (which is possible). The projected launch rate puts Russia on pace for its quietest year of launch activity since 1961, the year Yuri Gagarin became the first person to fly in space. A major reason for this decline in launches is the decisions of Western governments and companies to move their payloads off of Russian rockets after the invasion of Ukraine. For example, OneWeb stopped launching on Soyuz in 2022, and the European Space Agency suspended its partnership with Russia to launch Soyuz rockets from French Guiana. (submitted by Ken the Bin)

H3 deploys Japanese national security satellite. Japan launched a defense satellite Monday aimed at speedier military operations and communication on an H3 rocket and successfully placed it into orbit, the Associated Press reports. The Kirameki 3 satellite will use high-speed X-band communication to support Japan’s defense ministry with information and data sharing, and command and control services. The satellite will serve Japanese land, air, and naval forces from its perch in geostationary orbit alongside two other Kirameki communications satellites.

Gaining trust … The H3 is Japan’s new flagship rocket, developed by Mitsubishi Heavy Industries (MHI) and funded by the Japan Aerospace Exploration Agency (JAXA). The launch of Kirameki 3 marked the third consecutive successful launch of the H3 rocket, following a debut flight in March 2023 that failed to reach orbit. This was the first time Japan’s defense ministry put one of its satellites on the H3 rocket. The first two Kirameki satellites launched on a European Ariane 5 and a Japanese H-IIA rocket, which the H3 will replace. (submitted by Ken the Bin, tsunam, and EllPeaTea)

Rocket Lab enters the race for military contracts. Rocket Lab is aiming to chip away at SpaceX’s dominance in military space launch, confirming its bid to compete for Pentagon contracts with its new medium-lift rocket, Neutron, Space News reports. Last month, the Space Force released a request for proposals from launch companies seeking to join the military’s roster of launch providers in the National Security Space Launch (NSSL) program. The Space Force will accept bids for launch providers to “on-ramp” to the NSSL Phase 3 Lane 1 contract, which doles out task orders to launch companies for individual missions. In order to win a task order, a launch provider must be on the Phase 3 Lane 1 contract. Currently, SpaceX, United Launch Alliance, and Blue Origin are the only rocket companies eligible. SpaceX won all of the first round of Lane 1 task orders last month.

Joining the club … The Space Force is accepting additional risk for Lane 1 missions, which largely comprise repeat launches deploying a constellation of missile-tracking and data-relay satellites for the Space Development Agency. A separate class of heavy-lift missions, known as Lane 2, will require rockets to undergo a thorough certification by the Space Force to ensure their reliability. In order for a launch company to join the Lane 1 roster, the Space Force requires bidders to be ready for a first launch by December 2025. Peter Beck, Rocket Lab’s founder and CEO, said he thinks the Neutron rocket will be ready for its first launch by then. Other new medium-lift rockets, such as Firefly Aerospace’s MLV and Relativity’s Terran-R, almost certainly won’t be ready to launch by the end of next year, leaving Rocket Lab as the only company that will potentially join incumbents SpaceX, ULA, and Blue Origin. (submitted by Ken the Bin)

Next Starship flight is just around the corner. Less than a month has passed since the historic fifth flight of SpaceX’s Starship, during which the company caught the booster with mechanical arms back at the launch pad in Texas. Now, another test flight could come as soon as November 18, Ars reports. The improbable but successful recovery of the Starship first stage with “chopsticks” last month, and the on-target splashdown of the Starship upper stage halfway around the world, allowed SpaceX to avoid an anomaly investigation by the Federal Aviation Administration. Thus, the company was able to press ahead on a sixth test flight if it flew a similar profile. And that’s what SpaceX plans to do, albeit with some notable additions to the flight plan.

Around the edges … Perhaps the most significant change to the profile for Flight 6 will be an attempt to reignite a Raptor engine on Starship while it is in space. SpaceX tried to do this on a test flight in March but aborted the burn because the ship’s rolling motion exceeded limits. A successful demonstration of a Raptor engine relight could pave the way for SpaceX to launch Starship into a higher stable orbit around Earth on future test flights. This is required for SpaceX to begin using Starship to launch Starlink Internet satellites and perform in-orbit refueling experiments with two ships docked together. (submitted by EllPeaTea)

China’s version of Starship. China has updated the design of its next-generation heavy-lift rocket, the Long March 9, and it looks almost exactly like a clone of SpaceX’s Starship rocket, Ars reports. The Long March 9 started out as a conventional-looking expendable rocket, then morphed into a launcher with a reusable first stage. Now, the rocket will have a reusable booster and upper stage. The booster will have 30 methane-fueled engines, similar to the number of engines on SpaceX’s Super Heavy booster. The upper stage looks remarkably like Starship, with flaps in similar locations. China intends to fly this vehicle for the first time in 2033, nearly a decade from now.

A vehicle for the Moon … The reusable Long March 9 is intended to unlock robust lunar operations for China, similar to the way Starship, and to some extent Blue Origin’s Blue Moon lander, promises to support sustained astronaut stays on the Moon’s surface. China says it plans to land its astronauts on the Moon by 2030, initially using a more conventional architecture with an expendable rocket named the Long March 10, and a lander reminiscent of NASA’s Apollo lunar lander. These will allow Chinese astronauts to remain on the Moon for a matter of days. With Long March 9, China could deliver massive loads of cargo and life support resources to sustain astronauts for much longer stays.

Ta-ta to the tripod. The large three-legged vertical test stand at SpaceX’s engine test site in McGregor, Texas, is being decommissioned, NASA Spaceflight reports. Cranes have started removing propellant tanks from the test stand, nicknamed the tripod, towering above the Central Texas prairie. McGregor is home to SpaceX’s propulsion test team and has 16 test cells to support firings of Merlin, Raptor, and Draco engines multiple times per day for the Falcon 9 rocket, Starship, and Dragon spacecraft.

Some history … The tripod might have been one of SpaceX’s most important assets in the company’s early years. It was built by Beal Aerospace for liquid-fueled rocket engine tests in the late 1990s. Beal Aerospace folded, and SpaceX took over the site in 2003. After some modifications, SpaceX installed the first qualification version of its Falcon 9 rocket on the tripod for a series of nine-engine test-firings leading up to the rocket’s inaugural flight in 2010. SpaceX test-fired numerous new Falcon 9 boosters on the tripod before shipping them to launch sites in Florida or California. Most recently, the tripod was used for testing of Raptor engines destined to fly on Starship and the Super Heavy booster.

Next three launches

Nov. 9:  Long March 2C | Unknown Payload | Jiuquan Satellite Launch Center, China | 03: 40 UTC

Nov. 9: Falcon 9 | Starlink 9-10 | Vandenberg Space Force Base, California | 06: 14 UTC

Nov. 10:  Falcon 9 | Starlink 6-69 | Cape Canaveral Space Force Station, Florida | 21: 28 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Australia says yes to the launch; Russia delivers for Iran Read More »

rocket-report:-china-leaps-into-rocket-reuse;-19-people-are-currently-in-orbit

Rocket Report: China leaps into rocket reuse; 19 people are currently in orbit

Ascendant —

Launch startups in China and Europe are borrowing ideas and rhetoric from SpaceX.

Landspace's reusable rocket test vehicle lifts off from the Jiuquan Satellite Launch Center on Wednesday, September 11, 2024.

Enlarge / Landspace’s reusable rocket test vehicle lifts off from the Jiuquan Satellite Launch Center on Wednesday, September 11, 2024.

Welcome to Edition 7.11 of the Rocket Report! Outside of companies owned by American billionaires, the most imminent advancements in reusable rockets are coming from China’s quasi-commercial launch industry. This industry is no longer nascent. After initially relying on solid-fueled rocket motors apparently derived from Chinese military missiles, China’s privately funded launch firms are testing larger launchers, with varying degrees of success, and now performing hop tests reminiscent of SpaceX’s Grasshopper and F9R Dev1 programs more than a decade ago.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Landspace hops closer to a reusable rocket. Chinese private space startup Landspace has completed a 10-kilometer (33,000-foot) vertical takeoff and vertical landing test on its Zhuque-3 (ZQ-3) reusable rocket testbed, including a mid-flight engine reignition at near supersonic conditions, Aviation Week & Space Technology reports. The 18.3-meter (60-foot) vehicle took off from the Jiuquan launch base in northwestern China, ascended to 10,002 meters, and then made a vertical descent and achieved an on-target propulsive landing 3.2 kilometers (2 miles) from the launch pad. Notably, the rocket’s methane-fueled variable-thrust engine intentionally shutdown in flight, then reignited for descent, as engines would operate on future full-scale booster flybacks. The test booster used grid fins and cold gas thrusters to control itself when its main engine was dormant, according to Landspace.

“All indicators met the expected design” … Landspace hailed the test as a major milestone in the company’s road to flying its next rocket, the Zhuque-3, as soon as next year. With nine methane-fueled main engines, the Zhuque-3 will initially be able to deliver 21 metric tons (46,300 pounds) of payload into low-Earth orbit with its booster flying in expendable mode. In 2026, Landspace aims to begin recovering Zhuque-3 first-stage boosters for reuse. Landspace is one of several Chinese companies working seriously on reusable rocket designs. Another Chinese firm, Deep Blue Aerospace, says it plans a 100-kilometer (62-mile) suborbital test of a reusable booster soon, ahead of the first flight of its medium-class Nebula-1 rocket next year. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Isar Aerospace sets low bar for success on first launch. Daniel Metzler, CEO of German launch startup Isar Aerospace, stated that the first flight of the Spectrum rocket would be a success if it didn’t destroy the launch site, European Spaceflight reports. During an interview at the Handelsblatt innovation conference, Metzler was asked what he would consider a successful inaugural flight of Spectrum. “For me, the first flight will be a success if we don’t blow up the launch site,” explained Metzler. “That would probably be the thing that would set us back the most in terms of technology and time.” This tempering of expectations sounds remarkably similar to statements made by Elon Musk about SpaceX’s first flight of the Starship rocket last year.

In the catbird seat? … Isar Aerospace could be in a position to become the first in a new crop of European commercial launch companies to attempt its first orbital flight. Another German company, Rocket Factory Augsburg, recently gave up on a possible launch this year after the booster for its first launch caught fire and collapsed during a test at a launch site in Scotland. Isar plans to launch its two-stage Spectrum rocket, designed to carry up to 1,000 kilograms (2,200 pounds) of payload into low-Earth orbit, from Andøya Spaceport in Norway. Isar hasn’t publicized any schedule for the first flight of Spectrum, but there are indications the publicity-shy company is testing hardware at the Norwegian spaceport. (submitted by Ken the Bin)

FAA to introduce new orbital debris rules. The Federal Aviation Administration is moving ahead with efforts to develop rules for the disposal of upper stages as another Centaur upper stage breaks apart in orbit, Space News reports. The FAA released draft regulations on the matter for public comment one year ago, and the head of the agency’s commercial spaceflight division recently said the rules are a “high priority for our organization.” The rules would direct launch operators to dispose of upper stages in one of five ways, from controlled reentries to placement in graveyard or “disposal” orbits not commonly used by operational satellites. One change the FAA might make to the draft rules is to reduce the required timeline for an uncontrolled reentry of a disposed upper stage from no more than 25 years to a shorter timeline. “We got a lot of comments that said it should be a lot less,” said Kelvin Coleman, head of the FAA’s commercial spaceflight office. “We’re taking that into consideration.”

Upper stages are a problem … Several recent breakups involving spent upper stages in orbit have highlighted the concern that dead rocket bodies could create unnecessary space junk. Last month, the upper stage from a Chinese Long March 6A disintegrated in low-Earth orbit, creating at least 300 pieces of space debris. More recently, a Centaur upper stage from a United Launch Alliance Atlas V rocket broke apart in a much higher orbit, resulting in more than 40 pieces of debris. This was the fourth time one of ULA’s Centaur upper stages has broken up since 2018. (submitted by Ken the Bin)

Rocket Report: China leaps into rocket reuse; 19 people are currently in orbit Read More »

rocket-report:-starship-could-fly-again-in-may;-ariane-6-coming-together

Rocket Report: Starship could fly again in May; Ariane 6 coming together

Eating their lunch —

“I think we’re really going to focus on getting reentry right.”

Nine kerosene-fueled Rutherford engines power Rocket Lab's Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Enlarge / Nine kerosene-fueled Rutherford engines power Rocket Lab’s Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Welcome to Edition 6.36 of the Rocket Report! SpaceX wants to launch the next Starship test flight as soon as early May, the company’s president and chief operating officer said this week. The third Starship test flight last week went well enough that the Federal Aviation Administration—yes, the FAA, the target of many SpaceX fans’ frustrations—anticipates a simpler investigation and launch licensing process than SpaceX went through before its previous Starship flights. However, it looks like we’ll have to wait a little longer for Starship to start launching real satellites.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Starship could threaten small launch providers. Officials from several companies operating or developing small satellite launch vehicles are worried that SpaceX’s giant Starship rocket could have a big impact on their marketability, Space News reports. Starship’s ability to haul more than 100 metric tons of payload mass into low-Earth orbit will be attractive not just for customers with heavy satellites but also for those with smaller spacecraft. Aggregating numerous smallsats on Starship will mean lower prices than dedicated small satellite launch companies can offer and could encourage customers to build larger satellites with cheaper parts, further eroding business opportunities for small launch providers.

Well, yeah … SpaceX’s dedicated rideshare missions are already reshaping the small satellite launch market. The price per kilogram of payload on a Falcon 9 rocket launching a Transporter mission is less than the price per unit on a smaller rocket, like Rocket Lab’s Electron, Firefly’s Alpha, or Europe’s Vega. Companies operating only in the smallsat launch market tout the benefits of their services, often pointing to their ability to deliver payloads into bespoke orbits, rather than dropping off bunches of satellites into more standardized orbits. But the introduction of Orbital Transfer Vehicles for last-mile delivery services has made SpaceX’s Transporter missions, and potentially Starship rideshares, more attractive. “With Starship, OTVs can become the best option for smallsats,” said Marino Fragnito, senior vice president and head of the Vega business unit at Arianespace. If Starship is able to achieve the very low per-kilogram launch prices proposed for it, “then it will be difficult for small launch vehicles,” Fragnito said.

Rocket Lab launches again from Virginia. Rocket Lab’s fourth launch from Wallops Island, Virginia, and the company’s first there in nine months, took off early Thursday with a classified payload for the National Reconnaissance Office, the US government’s spy satellite agency, Space News reports. A two-stage Electron rocket placed the NRO’s payload into low-Earth orbit, and officials declared it a successful mission. The NRO did not disclose any details about the payload, but in a post-launch statement, the agency suggested the mission was conducting technology demonstrations of some kind. “The knowledge gained from this research will advance innovation and enable the development of critical new technology,” said Chris Scolose, director of the NRO.

A steady customer for Rocket Lab … The National Reconnaissance Office has become a regular customer of Rocket Lab. The NRO has historically launched larger spacecraft, such as massive bus-sized spy satellites, but like the Space Force, is beginning to launch larger numbers of small satellites. This mission, designated NROL-123 by the NRO, was the fifth and last mission under a Rapid Acquisition of a Small Rocket (RASR) contract between NRO and Rocket Lab, dating back to 2020. It was also Rocket Lab’s second launch in nine days, following an Electron flight last week from its primary base in New Zealand. Overall, it was the 46th launch of a light-class Electron rocket since it debuted in 2017. Rocket Lab is building a launch pad for its next-generation Neutron rocket at Wallops. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Night flight for Astrobotic’s Xodiac. The Xodiac rocket, a small terrestrial vertical takeoff and vertical landing technology testbed, made its first night flight, Astrobotic says in a statement. The liquid-fueled Xodiac is designed for vertical hops and can host prototype sensors and other payloads, particularly instruments in development to assist in precision landings on other worlds. This first tethered night flight of Xodiac in Mojave, California, was in preparation for upcoming flight testing with the NASA TechLeap Prize’s Nighttime Precision Landing Challenge. These flights will begin in April, allowing NASA to test the ability of sensors to map a landing field designed to simulate the Moon’s surface in near-total darkness.

Building on the legacy of Masten … Xodiac has completed more than 160 successful flights, dating back to the vehicle’s original owner, Masten Space Systems. Masten filed for bankruptcy in 2022, and the company was acquired by Astrobotic a couple of months later. Astrobotic’s primary business area is in developing and flying robotic Moon landers, so it has a keen interest in mastering automated landing and navigation technologies like those it is testing with NASA on Xodiac. David Masten, founder of Masten Space Systems, is now chief engineer for Astrobotic’s propulsion and test department. “The teams will demonstrate their systems over the LSPG (Lunar Surface Proving Ground) at night to simulate landing on the Moon during the lunar night or in shadowed craters.” (submitted by Ken the Bin)

Rocket Report: Starship could fly again in May; Ariane 6 coming together Read More »