Science

spacex-launches-mission-to-bring-starliner-astronauts-back-to-earth

SpaceX launches mission to bring Starliner astronauts back to Earth

Ch-ch-changes —

SpaceX is bringing back propulsive landings with its Dragon capsule, but only in emergencies.

Updated

SpaceX's Crew Dragon spacecraft climbs away from Cape Canaveral Space Force Station, Florida, on Saturday atop a Falcon 9 rocket.

Enlarge / SpaceX’s Crew Dragon spacecraft climbs away from Cape Canaveral Space Force Station, Florida, on Saturday atop a Falcon 9 rocket.

NASA/Keegan Barber

NASA astronaut Nick Hague and Russian cosmonaut Aleksandr Gorbunov lifted off Saturday from Florida’s Space Coast aboard a SpaceX Dragon spacecraft, heading for a five-month expedition on the International Space Station.

The two-man crew launched on top of SpaceX’s Falcon 9 rocket at 1: 17 pm EDT (17: 17 UTC), taking an advantage of a break in stormy weather to begin a five-month expedition in space. Nine kerosene-fueled Merlin engines powered the first stage of the flight on a trajectory northeast from Cape Canaveral Space Force Station, then the booster detached and returned to landing at Cape Canaveral as the Falcon 9’s upper stage accelerated SpaceX’s Crew Dragon Freedom spacecraft into orbit.

“It was a sweet ride,” Hague said after arriving in space. With a seemingly flawless launch, Hague and Gorbunov are on track to arrive at the space station around 5: 30 pm EDT (2130 UTC) Sunday.

Empty seats

This is SpaceX’s 15th crew mission since 2020, and SpaceX’s 10th astronaut launch for NASA, but Saturday’s launch was unusual in a couple of ways.

“All of our missions have unique challenges and this one, I think, will be memorable for a lot of us,” said Ken Bowersox, NASA’s associate administrator for space operations.

First, only two people rode into orbit on SpaceX’s Crew Dragon spacecraft, rather than the usual complement of four astronauts. This mission, known as Crew-9, originally included Hague, Gorbunov, commander Zena Cardman, and NASA astronaut Stephanie Wilson.

But the troubled test flight of Boeing’s Starliner spacecraft threw a wrench into NASA’s plans. The Starliner mission launched in June with NASA astronauts Butch Wilmore and Suni Williams. Boeing’s spacecraft reached the space station, but thruster failures and helium leaks plagued the mission, and NASA officials decided last month it was too risky to being the crew back to Earth on Starliner.

NASA selected SpaceX and Boeing for multibillion-dollar commercial crew contracts in 2014, with each company responsible for developing human-rated spaceships to ferry astronauts to and from the International Space Station. SpaceX flew astronauts for the first time in 2020, and Boeing reached the same milestone with the test flight that launched in June.

Ultimately, the Starliner spacecraft safely returned to Earth on September 6 with a successful landing in New Mexico. But it left Wilmore and Williams behind on the space station with the lab’s long-term crew of seven astronauts and cosmonauts. The space station crew rigged two temporary seats with foam inside a SpaceX Dragon spacecraft currently docked at the outpost, where the Starliner astronauts would ride home if they needed to evacuate the complex in an emergency.

NASA astronaut Nick Hague and Russian cosmonaut Aleksandr Gorbunov in their SpaceX pressure suits.

Enlarge / NASA astronaut Nick Hague and Russian cosmonaut Aleksandr Gorbunov in their SpaceX pressure suits.

NASA/Kim Shiflett

This is a temporary measure to allow the Dragon spacecraft to return to Earth with six people instead of the usual four. NASA officials decided to remove two of the astronauts from the next SpaceX crew mission to free up normal seats for Wilmore and Williams to ride home in February, when Crew-9 was already slated to end its mission.

The decision to fly the Starliner spacecraft back to Earth without its crew had several second order effects on space station operations. Managers at NASA’s Johnson Space Center in Houston had to decide who to bump from the Crew-9 mission, and who to keep on the crew.

Nick Hague and Aleksandr Gorbunov ended up keeping their seats on the Crew-9 flight. Hague originally trained as the pilot on Crew-9, and NASA decided he would take Zena Cardman’s place as commander. Hague, a 49-year-old Space Force colonel, is a veteran of one long-duration mission on the International Space Station, and also experienced a rare in-flight launch abort in 2018 due to a failure of a Russian Soyuz rocket.

NASA announced the original astronaut assignments for the Crew-9 mission in January. Cardman, a 36-year-old geobiologist, would have been the first rookie astronaut without test pilot experience to command a NASA spaceflight. Three-time space shuttle flier Stephanie Wilson, 58, was the other astronaut removed from the Crew-9 mission.

The decision on who to fly on Crew-9 was a “really close call,” said Bowersox, who oversees NASA’s spaceflight operations directorate. “They were thinking very hard about flying Zena, but in this situation, it made sense to have somebody who had at least one flight under their belt.”

Gorbunov, a 34-year-old Russian aerospace engineer making his first flight to space, moved over to take pilot’s seat in the Crew Dragon spacecraft, although he remains officially designated a mission specialist. His remaining presence on the crew was preordained because of an international agreement between NASA and Russia’s space agency that provides seats for Russian cosmonauts on US crew missions and US astronauts on Russian Soyuz flights to the space station.

Bowersox said NASA will reassign Cardman and Wilson to future flights.

NASA astronauts Suni Williams and Butch Wilmore, seen in their Boeing flight suits before their launch.

Enlarge / NASA astronauts Suni Williams and Butch Wilmore, seen in their Boeing flight suits before their launch.

Operational flexibility

This was also the first launch of astronauts from Space Launch Complex-40 (SLC-40) at Cape Canaveral, SpaceX’s busiest launch pad. SpaceX has outfitted the launch pad with the equipment necessary to support launches of human spaceflight missions on the Crew Dragon spacecraft, including a more than 200-foot-tall tower and a crew access arm to allow astronauts to board spaceships on top of Falcon 9 rockets.

SLC-40 was previously based on a “clean pad” architecture, without any structures to service or access Falcon 9 rockets while they were vertical on the pad. SpaceX also installed slide chutes to give astronauts and ground crews an emergency escape route away from the launch pad in an emergency.

SpaceX constructed the crew tower last year and had it ready for the launch of a Dragon cargo mission to the space station in March. Saturday’s launch demonstrated the pad’s ability to support SpaceX astronaut missions, which have previously all departed from Launch Complex-39A (LC-39A) at NASA’s Kennedy Space Center, a few miles north of SLC-40.

Bringing human spaceflight launch capability online at SLC-40 gives SpaceX and NASA additional flexibility in their scheduling. For example, LC-39A remains the only launch pad configured to support flights of SpaceX’s Falcon Heavy rocket. SpaceX is now preparing LC-39A for a Falcon Heavy launch October 10 with NASA’s Europa Clipper mission, which only has a window of a few weeks to depart Earth this year and reach its destination at Jupiter in 2030.

With SLC-40 now certified for astronaut launches, SpaceX and NASA teams are able to support the Crew-9 and Europa Clipper missions without worrying about scheduling conflicts. The Florida spaceport now has three launch pads certified for crew flights—two for SpaceX’s Dragon and one for Boeing’s Starliner—and NASA will add a fourth human-rated launch pad with the Artemis II mission to the Moon late next year.

“That’s pretty exciting,” said Pam Melroy, NASA’s deputy administrator. “I think it’s a reflection of where we are in our space program at NASA, but also the capabilities that the United States has developed.”

Earlier this week, Hague and Gorbunov participated in a launch day dress rehearsal, when they had the opportunity to familiarize themselves with SLC-40. The launch pad has the same capabilities as LC-39A, but with a slightly different layout. SpaceX also test-fired the Falcon 9 rocket Tuesday evening, before lowering the rocket horizontal and moving it back into a hangar for safekeeping as the outer bands of Hurricane Helene moved through Central Florida.

Inside the hangar, SpaceX technicians discovered sooty exhaust from the Falcon 9’s engines accumulated on the outside of the Dragon spacecraft during the test-firing. Ground teams wiped the soot off of the craft’s solar arrays and heat shield, then repainted portions of the capsule’s radiators around the edge of Dragon’s trunk section before rolling the vehicle back to the launch pad Friday.

“It’s important that the radiators radiate heat in the proper way to space, so we had to put some some new paint on to get that back to the right emissivity and the right reflectivity and absorptivity of the solar radiation that hit those panels so it will reject the heat properly,” said Bill Gerstenmaier, SpaceX’s vice president of build and flight reliability.

Gerstenmaier also outlined a new backup ability for the Crew Dragon spacecraft to safely splash down even if all of its parachutes fail to deploy on final descent back to Earth. This involves using the capsule’s eight powerful SuperDraco thrusters, normally only used in the unlikely instance of a launch abort, to fire for a few seconds and slow Dragon’s speed for a safe splashdown.

A hover test using SuperDraco thrusters on a prototype Crew Dragon spacecraft in 2015.

Enlarge / A hover test using SuperDraco thrusters on a prototype Crew Dragon spacecraft in 2015.

SpaceX

“The way it works is, in the case where all the parachutes totally fail, this essentially fires the thrusters at the very end,” Gerstenmaier said. “That essentially gives the crew a chance to land safely, and essentially escape the vehicle. So it’s not used in any partial conditions. We can land with one chute out. We can land with other failures in the chute system. But this is only in the case where all four parachutes just do not operate.”

When SpaceX first designed the Crew Dragon spacecraft more than a decade ago, the company wanted to use the SuperDraco thrusters to enable the capsule to perform propulsive helicopter-like landings. Eventually, SpaceX and NASA agreed to change to a more conventional parachute-assisted splashdown.

The SuperDracos remained on the Crew Dragon spacecraft to push the capsule away from its Falcon 9 rocket during a catastrophic launch failure. The eight high-thrust engines burn hydrazine and nitrogen tetroxide propellants that combust when making contact with one another.

The backup option has been activated for some previous commercial Crew Dragon missions, but not for a NASA flight, according to Gerstenmaier. The capability “provides a tolerable landing for the crew,” he added. “So it’s a true deep, deep contingency. I think our philosophy is, rather than have a system that you don’t use, even though it’s not maybe fully certified, it gives the crew a chance to escape a really, really bad situation.”

Steve Stich, NASA’s commercial crew program manager, said the emergency propulsive landing capability will be enabled for the return of the Crew-8 mission, which has been at the space station since March. With the arrival of Hague and Gorbunov on Crew-9—and the extension of Wilmore and Williams’ mission—the Crew-8 mission is slated to depart the space station and splash down in early October.

This story was updated after confirmation of a successful launch.

SpaceX launches mission to bring Starliner astronauts back to Earth Read More »

can-addressing-gut-issues-treat-long-covid-in-children?

Can addressing gut issues treat long COVID in children?

Child holding his stomach

Frazao Studio Latino/ Getty Images

Four years after the outbreak of the COVID-19 pandemic, doctors and researchers are still seeking ways to help patients with long COVID, the persistent and often debilitating symptoms that can continue long after a COVID-19 infection.

In adults, the most common long COVID symptoms include fatigue and brain fog, but for children the condition can look different. A study published last month suggests preteens are more likely to experience symptoms such as headaches, stomach pain, trouble sleeping, and attention difficulties. Even among children, effects seem to vary by age. “There seems to be some differences between age groups, with less signs of organ damage in younger children and more adultlike disease in adolescents,” says Petter Brodin, professor of pediatric immunology at Imperial College London.

While vast sums have been devoted to long COVID research—the US National Institutes of Health have spent more than a billion dollars on research projects and clinical trials—research into children with the condition has been predominantly limited to online surveys, calls with parents, and studies of electronic health records. This is in spite of a recent study suggesting that between 10 and 20 percent of children may have developed long COVID following an acute infection, and another report finding that while many have recovered, some still remain ill three years later.

Now, what’s believed to be the first clinical trial specifically aimed at children and young adults with long COVID is underway, recruiting subjects aged 7 to 21 on which to test a potential treatment. It builds on research that suggests long COVID in children may be linked to the gut.

In May 2021, Lael Yonker, a pediatric pulmonologist at Massachusetts General Hospital in Boston, published a study of multisystem inflammatory syndrome in children (MIS-C), which she says is now regarded as a more severe and acute version of long COVID. It showed that these children had elevated levels of a protein called zonulin, a sign of a so-called leaky gut. Higher levels of zonulin are associated with greater permeability in the intestine, which could enable SARS-CoV-2 viral particles to leak out of the intestines and into the bloodstream instead of being excreted out of the body. From there, they could trigger inflammation.

As Yonker began to see more and more children with long COVID, she theorized that many of the gastrointestinal and neurological symptoms they were experiencing might be linked. But her original study also pointed to a possible solution. When she gave the children with MIS-C a drug called larazotide, an existing treatment for people with issues relating to a leaky gut, the levels of viral particles in their blood decreased and their symptoms improved.

Can addressing gut issues treat long COVID in children? Read More »

ibm-opens-its-quantum-computing-stack-to-third-parties

IBM opens its quantum-computing stack to third parties

Image of a large collection of copper-colored metal plates and wires, all surrounding a small, black piece of silicon.

Enlarge / The small quantum processor (center) surrounded by cables that carry microwave signals to it, and the refrigeration hardware.

As we described earlier this year, operating a quantum computer will require a significant investment in classical computing resources, given the amount of measurements and control operations that need to be executed and interpreted. That means that operating a quantum computer will also require a software stack to control and interpret the flow of information from the quantum side.

But software also gets involved well before anything gets executed. While it’s possible to execute algorithms on quantum hardware by defining the full set of commands sent to the hardware, most users are going to want to focus on algorithm development, rather than the details of controlling any single piece of quantum hardware. “If everyone’s got to get down and know what the noise is, [use] performance management tools, they’ve got to know how to compile a quantum circuit through hardware, you’ve got to become an expert in too much to be able to do the algorithm discovery,” said IBM’s Jay Gambetta. So, part of the software stack that companies are developing to control their quantum hardware includes software that converts abstract representations of quantum algorithms into the series of commands needed to execute them.

IBM’s version of this software is called Qiskit (although it was made open source and has since been adopted by other companies). Recently, IBM made a couple of announcements regarding Qiskit, both benchmarking it in comparison to other software stacks and opening it up to third-party modules. We’ll take a look at what software stacks do before getting into the details of what’s new.

What’s the software stack do?

It’s tempting to view IBM’s Qiskit as the equivalent of a compiler. And at the most basic level, that’s a reasonable analogy, in that it takes algorithms defined by humans and converts them to things that can be executed by hardware. But there are significant differences in the details. A compiler for a classical computer produces code that the computer’s processor converts to internal instructions that are used to configure the processor hardware and execute operations.

Even when using what’s termed “machine language,” programmers don’t directly control the hardware; programmers have no control over where on the hardware things are executed (ie, which processor or execution unit within that processor), or even the order instructions are executed in.

Things are very different for quantum computers, at least at present. For starters, everything that happens on the processor is controlled by external hardware, which typically act by generating a series of laser or microwave pulses. So, software like IBM’s Qiskit or Microsoft’s Q# act by converting the code they’re given into commands that are sent to hardware that’s external to the processor.

These “compilers” must also keep track of exactly which part of the processor things are happening on. Quantum computers act by performing specific operations (called gates) on individual or pairs of qubits; to do that, you have to know exactly which qubit you’re addressing. And, for things like superconducting qubits, where there can be device-to-device variations, which hardware qubits you end up using can have a significant effect on the outcome of the calculations.

As a result, most things like Qiskit provide the option of directly addressing the hardware. If a programmer chooses not to, however, the software can transform generic instructions into a precise series of actions that will execute whatever algorithm has been encoded. That involves the software stack making choices about which physical qubits to use, what gates and measurements to execute, and what order to execute them in.

The role of the software stack, however, is likely to expand considerably over the next few years. A number of companies are experimenting with hardware qubit designs that can flag when one type of common error occurs, and there has been progress with developing logical qubits that enable error correction. Ultimately, any company providing access to quantum computers will want to modify its software stack so that these features are enabled without requiring effort on the part of the people designing the algorithms.

IBM opens its quantum-computing stack to third parties Read More »

black-hole-jet-appears-to-boost-rate-of-nova-explosions

Black hole jet appears to boost rate of nova explosions

Image of a bright point against a dark background, with a wavy, lumpy line of material extending diagonally from the point to the opposite corner of the image.

Enlarge / One of the jets emitted by galaxy M87’s central black hole.

The intense electromagnetic environment near a black hole can accelerate particles to a large fraction of the speed of light and sends the speeding particles along jets that extend from each of the object’s poles. In the case of the supermassive black holes found in the center of galaxies, these jets are truly colossal, blasting material not just out of the galaxy, but possibly out of the galaxy’s entire neighborhood.

But this week, scientists have described how the jets may be doing some strange things inside of a galaxy, as well. A study of the galaxy M87 showed that nova explosions appear to be occurring at an unusual high frequency in the neighborhood of one of the jets from the galaxy’s central black hole. But there’s absolutely no mechanism to explain why this might happen, and there’s no sign that it’s happening at the jet that’s traveling in the opposite direction.

Whether this effect is real, and whether we can come up with an explanation for it, may take some further observations.

Novas and wedges

M87 is one of the larger galaxies in our local patch of the Universe, and its central black hole has active jets. During an earlier period of regular observations, the Hubble Space Telescope had found that stellar explosions called novas appeared to be clustered around the jet.

This makes very little sense. Novas occur in systems with a large, hydrogen-rich star, with a nearby white dwarf in orbit. Over time, the white dwarf draws hydrogen off the surface of its companion, until it reaches a critical mass on its surface. At that point, a thermonuclear explosion blasts the remaining material off the white dwarf, and the cycle resets. Since the rate of material transfer tends to be fairly stable, novas in a stellar system will often repeat at regular intervals. And it’s not at all clear why a black hole’s jet would alter that regularity.

So, some of the people involved in the first study got time on the Hubble to go back and have another look. And for a big chunk of a year, every five days, Hubble was pointed at M87, allowing it to capture novas before they faded back out. All told, this picked up 94 novas that occurred near the center of the galaxy. Combined with 41 that had been identified during earlier work, this left a collection of 135 novas in this galaxy. The researchers then plotted these relative to the black hole and its jets.

The area containing the jet (upper right) experiences significantly more novas than the rest of the galaxy's core.

The area containing the jet (upper right) experiences significantly more novas than the rest of the galaxy’s core.

Lessing et. al.

Dividing the area around the center of the galaxy into 10 equal segments, the researchers counted the novas that occurred in each. In the nine segments that didn’t include the jet on the side of the galaxy facing Earth, the average number of novas was 12. In the segment that included the jet, the count was 25. Another way to look at this is that the highest count in a non-jet segment was only 16—and that was in a segment immediately next to the one with the jet in it. The researchers calculate the odds of this arrangement occurring at random as being about one in 1,310 (meaning less than 0.1 percent).

To get a separate measure of how unusual this is, the researchers placed 8 million novas around the center of the galaxy, with the distribution being random but biased to match the galaxy’s brightness under the assumption that novas will be more frequent in areas with more stars. This was then used to estimate how often novas should be expected in each of these segments. They then used a wide variety of wedges: “In order to reduce noise and avoid p-hacking when choosing the size of the wedge, we average the results for wedges between 30 and 45 degrees wide.”

Overall, the enhancement near the jet was low for either very narrow or very wide wedges, as you might expect—narrow wedges crop out too much of the area affected by the jet, while wide ones include a lot of space where you get the normal background rate. Things peak in the area of wedges that are 25 degrees wide, where the enrichment near the jet is about 2.6-fold. So, this appears to be real.

Black hole jet appears to boost rate of nova explosions Read More »

more-unidentified-illnesses-linked-to-unexplained-bird-flu-case-in-missouri

More unidentified illnesses linked to unexplained bird flu case in Missouri

Unknowns —

The update raises questions about how the health investigation is going.

A warning sign outside a laboratory testing the H5N1 bird flu virus at The Pirbright Institute in Woking, UK, on Monday, March 13, 2023.

Enlarge / A warning sign outside a laboratory testing the H5N1 bird flu virus at The Pirbright Institute in Woking, UK, on Monday, March 13, 2023.

More than a month after a person in Missouri mysteriously fell ill with H5-type bird flu, investigators in the state are still identifying people who became ill after contact with the patient, raising questions about the diligence of the ongoing health investigation.

On September 6, Missouri’s health department reported the state’s first human case of H5-type bird flu, one that appears closely related to the H5N1 bird flu currently causing a nationwide outbreak among dairy cows. But the infected person had no known contact with infected animals—unlike all of the other 13 human cases identified amid the dairy outbreak this year. Those previous cases have all occurred in dairy- or poultry-farm workers. In fact, Missouri has not reported bird flu in its dairy herds nor recent poultry outbreaks.

Given the unexplained source of infection, health investigators in the state have been working to track the virus both backward in time—to try to identify the source—and forward—to identify any potential onward spread. The bird flu patient was initially hospitalized on August 22 but recovered and had been released by the time the state publicly reported the case.

In an update Friday, September 27, the Centers for Disease Control and Prevention relayed that Missouri officials have now identified four more health care workers who experienced mild respiratory illnesses after caring for the person with bird flu. None of the four workers were tested for flu at the time of their illnesses and all have since recovered.

Testing new cases for antibodies to H5N1

The four newly identified cases bring the total number of health care workers who fell ill after contact to six. Missouri investigators had previously identified two other health care workers who developed mild respiratory symptoms. One of those workers was tested for flu around the time of their illness—and tested negative. But the other, like the four newly identified cases, was not tested. That person has since submitted a blood sample to test for bird flu antibodies, which would indicate a previous infection.

In addition, a household contact of the bird flu patient also fell ill at the same time as the patient, suggesting a possible common source of the infection.

The illnesses are concerning, given the fear that H5N1 bird flu could begin spreading from human to human and spark a widespread outbreak or even a pandemic. However, it can’t be overlooked that a plethora of other respiratory viruses are around—and SARS-CoV-2 transmission was relatively high in Missouri at the time—it’s impossible to draw any conclusions at this point about whether the illnesses were bird flu infections.

But, the illnesses do clearly raise concern about the health investigation, which is being conducted by Missouri officials. “The slow trickle of info is the most concerning part,” infectious disease expert Krutika Kuppalli wrote on social media Friday. The CDC can get involved at the request of a state, but such a request has not been made. For now, the CDC is only providing technical assistance from Atlanta.

In its update today, the CDC emphasized that “to date, only one case of influenza A(H5N1) has been detected in Missouri. No contacts of that case have tested positive for influenza A(H5N1).” The agency added that blood testing results for H5 antibodies are pending.

Currently, 239 dairy herds in 14 states have been infected with H5N1.

More unidentified illnesses linked to unexplained bird flu case in Missouri Read More »

study:-cats-in-little-crocheted-hats-shed-light-on-feline-chronic-pain

Study: Cats in little crocheted hats shed light on feline chronic pain

For the fashion-forward cat —

The custom-made caps hold electrodes in place and reduce motion artifacts during EEGs.

A cat wearing a crocheted hat custom-made to record brain activity

Enlarge / “When you spend more time putting electrodes back on than you do actually recording the EEGs, you get creative.”

Alienor Delsart

Our feline overlords aren’t particularly known for obeying commands from mere humans, which can make it difficult to study their behaviors in controlled laboratory settings. So a certain degree of ingenuity is required to get usable results—like crocheting adorable little hats for kitties taking part in electroencephalogram (EEG) experiments. That’s what researchers at the University of Montreal in Quebec, Canada, did to learn more about assessing chronic pain in cats—and they succeeded. According to their recent paper published in the Journal of Neuroscience Methods, it’s the first time scientists have recorded the electrical activity in the brains of conscious cats.

According to the authors, one-quarter of adult cats suffer from osteoarthritis and chronic pain that worsens with age. There are currently limited treatment options, namely, non-steroidal anti-inflammatory drugs, which can have significant side effects for the cats. An injectable monoclonal antibody tailored for cats has recently been developed to neutralize excessive nerve growth factor, but other alternative treatment options like supplements and regenerative medicine have yet to be tested. Nor has the effectiveness of certain smells or lighting in altering pain perception in felines been tested.

That was the Montreal team’s primary objective for their experiments. Initially, they tried to place electrodes on the heads of 11 awake adult cats with osteoarthritis, but the cats kept shaking off the electrodes.

“When you spend more time putting electrodes back on than you do actually recording the EEGs, you get creative,” co-author Aliénor Delsart of the University of Montreal told New Scientist. So he and his co-authors tapped a graduate student with crocheting skills to make the little hats. Not only did the hats hold the electrodes in place, but the cats also stopped trying to chew the wires.

With that problem solved, the real experiments could begin, designed to record brain activity of cats in response to smelling certain substances or seeing different wavelengths of colored light. The kitty subjects were housed as a group in an environment with lighting, temperature, and humidity controls, along with perches, beds, scratching posts, and cat toys.

Electrodes were attached with no need to shave the cats’ hair, thanks to a conductive paste to improve electrode/skin contact. First they recorded the basal activity before moving to exposure to sensory stimuli: a grapefruit smell for olfactory stimulation, and red, blue, and green lighting in a darkened room for visual stimulation.

Granted, there were still a few motion artifacts in that data; two cats were excluded from the data analysis for that reason. And the authors acknowledged the small sample size and largely descriptive nature of their analysis, which they deemed appropriate for what is essentially a test of the feasibility of their approach. The study met the group’s primary objectives: to assess whether the EEG method was feasible with conscious cats and whether the resulting analytical methods were an efficient means to characterize how the cats responded to specific sensory stimuli. “This opens new avenues for investigating chronic pain mechanisms and developing novel therapeutic strategies,” the authors concluded.

Journal of Neuroscience Methods, 2024. DOI: 10.1016/j.jneumeth.2024.110254  (About DOIs).

Study: Cats in little crocheted hats shed light on feline chronic pain Read More »

the-war-of-words-between-spacex-and-the-faa-keeps-escalating

The war of words between SpaceX and the FAA keeps escalating

Elon Musk, SpaceX's founder and CEO, has called for the resignation of the FAA administrator.

Enlarge / Elon Musk, SpaceX’s founder and CEO, has called for the resignation of the FAA administrator.

The clash between SpaceX and the Federal Aviation Administration escalated this week, with Elon Musk calling for the head of the federal regulator to resign after he defended the FAA’s oversight and fines levied against the commercial launch company.

The FAA has said it doesn’t expect to determine whether to approve a launch license for SpaceX’s next Starship test flight until late November, two months later than the agency previously communicated to Musk’s launch company. Federal regulators are reviewing changes to the rocket’s trajectory necessary for SpaceX to bring Starship’s giant reusable Super Heavy booster back to the launch pad in South Texas. This will be the fifth full-scale test flight of Starship but the first time SpaceX attempts such a maneuver on the program.

This week, SpaceX assembled the full Starship rocket on its launch pad at the company’s Starbase facility near Brownsville, Texas. “Starship stacked for Flight 5 and ready for launch, pending regulatory approval,” SpaceX posted on X.

Apart from the Starship regulatory reviews, the FAA last week announced it is proposing more than $633,000 in fines on SpaceX due to alleged violations of the company’s launch license associated with two flights of the company’s Falcon 9 rocket from Florida. It is rare for the FAA’s commercial spaceflight division to fine launch companies.

Michael Whitaker, the FAA’s administrator, discussed the agency’s ongoing environmental and safety reviews of SpaceX’s Starship rocket in a hearing before a congressional subcommittee in Washington Tuesday. During the hearing, which primarily focused on the FAA’s oversight of Boeing’s commercial airplane business, one lawmaker asked Whitaker the FAA’s relationship with SpaceX.

Public interest

“I think safety is in the public interest and that’s our primary focus,” said Michael Whitaker, the FAA administrator, in response to questions from Rep. Kevin Kiley, a California Republican. “It’s the only tool we have to get compliance on safety matters,” he said, referring to the FAA’s fines.

The stainless-steel Super Heavy booster is larger than a Boeing 747 jumbo jet. SpaceX says the flight path to return the first stage of the rocket to land will mean a “slightly larger area could experience a sonic boom,” and a stainless-steel ring that jettisons from the top of the booster, called the hot-staging ring, will fall in a different location in the Gulf of Mexico just offshore from the rocket’s launch and landing site.

The FAA, which is primarily charged with ensuring rocket launches don’t endanger the public, is consulting with other agencies on these matters, along with issues involving SpaceX’s discharge of water into the environment around the Starship launch pad in Texas. The pad uses water to cool a steel flame deflector that sits under the 33 main engines of Starship’s Super Heavy booster.

SpaceX says fines levied against it this year by the Texas Commission on Environmental Quality (TCEQ) and the Environmental Protection Agency (EPA) related to the launch pad’s water system were “entirely tied to disagreements over paperwork” and not any dumping of pollutants into the environment around the Starship launch site.

SpaceX installed the water-cooled flame deflector under the Starship launch mount after the engine exhaust rocket’s first test flight excavated a large hole in the ground. Gwynne Shotwell, SpaceX’s president and chief operating officer, summed up her view of the issue in a hearing with Texas legislators in Austin on Tuesday.

“To protect that from happening again, we built this kind of upside-down shower head to basically cool the flame as the rocket was lifting off,” she said. “That was licensed and permitted by TCEQ. The EPA came in afterwards and didn’t like the license or the permit that we had for that, and wanted to turn it into a federal permit, which we are working on now.”

“We work very closely with organizations such as TCEQ,” Shotwell said. “You may have read a little bit of nonsense in the papers recently about that, but we’re working quite well with them.”

The war of words between SpaceX and the FAA keeps escalating Read More »

these-3d-printed-pipes-inspired-by-shark-intestines-outperform-tesla-valves

These 3D-printed pipes inspired by shark intestines outperform Tesla valves

“You don’t get to beat Tesla every day” —

Prototypes control fluid flow in a preferred direction with no need for moving parts.

some of the research team’s 3D-printed pipes alongside a plastic toy shark.

Enlarge / Shark intestines are naturally occurring Tesla valves; scientists have figured out how to mimic their unique structure.

Sarah L. Keller/University of Washington

Scientists at the University of Washington have re-created the distinctive spiral shapes of shark intestines in 3D-printed pipes in order to study the unique fluid flow inside the spirals. Their prototypes kept fluids flowing in one preferred direction with no need for flaps to control that flow and performed significantly better than so-called “Tesla valves,” particularly when made of soft polymers, according to a new paper published in the Proceedings of the National Academy of Sciences.

As we’ve reported previously, in 1920, Serbian-born inventor Nikola Tesla designed and patented what he called a “valvular conduit“: a pipe whose internal design ensures that fluid will flow in one preferred direction, with no need for moving parts, making it ideal for microfluidics applications, among other uses. The key to Tesla’s ingenious valve design is a set of interconnected, asymmetric, tear-shaped loops.

In his patent application, Tesla described this series of 11 flow-control segments as being made of “enlargements, recessions, projections, baffles, or buckets which, while offering virtually no resistance to the passage of fluid in one direction, other than surface friction, constitute an almost impassable barrier to its flow in the opposite direction.” And because it achieves this with no moving parts, a Tesla valve is much more resistant to the wear and tear of frequent operation.

Tesla claimed that water would flow through his valve 200 times slower in one direction than another, which may have been an exaggeration. A team of scientists at New York University built a working Tesla valve in 2021, in accordance with the inventor’s design, and tested that claim by measuring the flow of water through the valve in both directions at various pressures. The scientists found the water only flowed about two times slower in the nonpreferred direction.

Flow rate proved to be a critical factor. The valve offered very little resistance at slow flow rates, but once that rate increased above a certain threshold, the valve’s resistance would increase as well, generating turbulent flows in the reverse direction, thereby “plugging” the pipe with vortices and disruptive currents. So it actually works more like a switch and can also help smooth out pulsing flows, akin to how AC/DC converters turn alternating currents into direct currents. That may even have been Tesla’s original intent in designing the valve, given that his biggest claim to fame is inventing both the AC motor and an AC/DC converter.

It helps to be a shark

Different kinds of sharks have intestines with different spiral patterns that favor fluid flow in one direction.

Enlarge / Different kinds of sharks have intestines with different spiral patterns that favor fluid flow in one direction.

Ido Levin

The Tesla valve also provides a useful model for how food moves through the digestive system of many species of shark. In 2020, Japanese researchers reconstructed micrographs of histological sections from a species of catshark into a three-dimensional model, offering a tantalizing glimpse of the anatomy of a scroll-type spiral intestine. The following year, scientists took CT scans of shark intestines and concluded that the intestines are naturally occurring Tesla valves.

That’s where the work of UW postdoc Ido Levin and his co-authors comes in. They had questions about the 2021 research in particular. “Flow asymmetry in a pipe with no moving flaps has tremendous technological potential, but the mechanism was puzzling,” said Levin. “It was not clear which parts of the shark’s intestinal structure contributed to the asymmetry and which served only to increase the surface area for nutrient uptake.”

Levin et al. 3D-printed several pipes with an internal helical structure mimicking that of shark intestines, varying certain geometrical parameters like the number of turns or the pitch angle of the helix. It was admittedly an idealized structure, so the team was delighted when the first batch, made from rigid materials, produced the hoped-for flow asymmetry. After further fine-tuning of the parameters, the rigid printed pipes produced flow asymmetries that matched or exceeded Tesla valves.

Eight of the team’s 3D-printed prototypes with various interior helices.

Enlarge / Eight of the team’s 3D-printed prototypes with various interior helices.

Ido Levin/University of Washington

But the researchers weren’t done yet. “[Prior work] showed that if you connect these intestines in the same direction as a digestive tract, you get a faster flow of fluid than if you connect them the other way around. We thought this was very interesting from a physics perspective,” said Levin last year while presenting preliminary results at the 67th Annual Biophysical Society Meeting. “One of the theorems in physics actually states that if you take a pipe, and you flow fluid very slowly through it, you have the same flow if you invert it. So we were very surprised to see experiments that contradict the theory. But then you remember that the intestines are not made out of steel—they’re made of something soft, so while fluid flows through the pipe, it deforms it.”

That gave Levin et al. the idea to try making their pipes out of soft deformable polymers—the softest commercially available ones that could also be used for 3D printing. That batch of pipes performed seven times better on flow asymmetry than any prior measurements of Tesla valves. And since actual shark intestines are about 100 times softer than the polymers they used, the team thinks they can achieve even better performance, perhaps with hydrogels when they become more widely available as 3D printing continues to evolve. The biggest challenge, per the authors, is finding soft materials that can withstand high deformations.

Finally, because the pipes are three-dimensional, they can accommodate larger fluid volumes, opening up applications in larger commercial devices. “Chemists were already motivated to develop polymers that are simultaneously soft, strong and printable,” said co-author Alshakim Nelson, whose expertise lies in developing new types of polymers. “The potential use of these polymers to control flow in applications ranging from engineering to medicine strengthens that motivation.”

PNAS, 2024. DOI: 10.1073/pnas.2406481121 (About DOIs).

These 3D-printed pipes inspired by shark intestines outperform Tesla valves Read More »

spread-of-deadly-eee-virus-explodes-5-fold-in-new-york;-one-death-reported

Spread of deadly EEE virus explodes 5-fold in New York; one death reported

Viral spread —

Normally only 2 or 3 counties have EEE-positive mosquitoes; there’s 15 this year.

An entomologist for the Louisville Metro Department of Public Health and Wellness in a swampland area on August 25, 2021 in Louisville, Kentucky collecting various mosquito species, and testing the samples for mosquito-borne diseases, such as EEE.

Enlarge / An entomologist for the Louisville Metro Department of Public Health and Wellness in a swampland area on August 25, 2021 in Louisville, Kentucky collecting various mosquito species, and testing the samples for mosquito-borne diseases, such as EEE.

New York is facing an unusual boom in mosquitoes toting the deadly eastern equine encephalitis (EEE) virus, which has already led to one rare death in the state and a declaration of an “imminent threat” by officials.

While the state’s surveillance system typically picks up EEE-positive mosquitoes in two or three counties each year, this year there have been 15 affected counties, which are scattered all across New York, State Health Commissioner James McDonald said this week.

“Eastern equine encephalitis is different this year,” McDonald said, noting the deadly nature of the infection, which has a mortality rate of between 30 and 50 percent. “Mosquitoes, once a nuisance, are now a threat,” McDonald added. “I urge all New Yorkers to prevent mosquito bites by using insect repellents, wearing long-sleeved clothing, and removing free-standing water near their homes. Fall is officially here, but mosquitoes will be around until we see multiple nights of below-freezing temperatures.”

On Monday, McDonald issued a Declaration of an Imminent Threat to Public Health for EEE, and Governor Kathy Hochul announced statewide actions to prevent infections. At the same time as the declaration, the officials reported the death of a New Yorker who developed EEE. The case, which was confirmed in Ulster County on September 20, is the state’s first EEE case since 2015.

The disease is very rare in New York. Between 1971 and 2024, there were only 12 cases of EEE reported in the state; seven cases were fatal.

Rare but deadly

EEE is generally rare in the US, with an average of only 11 cases reported per year, according to the Centers for Disease Control and Prevention. The virus lurks in wild birds and spreads to people and other animals via mosquitoes. The virus is particularly deadly in horses—as its name suggests—with mortality rates up to 90 percent. In people, most bites from a mosquito carrying the EEE virus do not lead to EEE. In fact, the CDC estimates that only about 4–5 percent of infected people develop the disease; most remain asymptomatic.

Fo those who develop EEE, the virus travels from the mosquito bite into the lymph system and spreads from there to cause a systemic infection. Initial symptoms are unspecific, including fever, headache, malaise, chills, joint pain, nausea, and vomiting. This can progress to inflammation of the brain and neurological symptoms, including altered mental state and seizures. Children under the age of 15 and adults over the age of 50 are most at risk.

The CDC estimates that about 30 percent of people who develop severe EEE die of the disease. But, with small numbers of cases over time, the reported mortality rates can vary. In Massachusetts, for instance, about 50 percent of the cases have been fatal. Among those who survive neuro-invasive disease, many are left severely disabled, and some die within a few years due to complications. There is no vaccine for EEE and no specific treatments.

Overall numbers

While New York seems to be experiencing an unusual surge of EEE-positive mosquitoes, the country as a whole is not necessarily seeing an uptick in cases. Only 10 cases from six states have been reported to the CDC this year. That count does not include the New York case, which would bring the total to 11, around the country’s average number of cases per year.

In addition to New York, the states that have reported cases are Massachusetts, Vermont, New Jersey, Rhode Island, Wisconsin, and New Hampshire. Most cases have been in the Northeast, where cases are typically reported between mid-June and early October before freezing temperatures kill off mosquito populations.

The death in New York is at least the second EEE death this year. In August, New Hampshire’s health department reported the death of an EEE case, and local media reports identified the person as a previously healthy 41-year-old man from Hampstead.

EEE gained attention last month when a small town in Massachusetts urged residents to follow an evening curfew to avoid mosquito bites.  The move came after the state announced its first EEE case this year (the state’s case count is now at four) and declared a “critical risk level” in four communities.

Between 2003 and 2023, the highest tally of cases in a year was in 2019, when states reported 38 EEE cases.

Spread of deadly EEE virus explodes 5-fold in New York; one death reported Read More »

radiation-should-be-able-to-deflect-asteroids-as-large-as-4-km-across

Radiation should be able to deflect asteroids as large as 4 km across

Image of a large, circular chamber covered filled with a lot of mechanical equipment, all of which is lit by blue internal glows and covered with massive, branching trails of lightning.

Enlarge / Sandia National Labs’ Z machine in action.

The old joke about the dinosaurs going extinct because they didn’t have a space program may be overselling the need for one. It turns out you can probably divert some of the more threatening asteroids with nothing more than the products of a nuclear weapons program. But it doesn’t work the way you probably think it does.

Obviously, nuclear weapons are great at destroying things, so why not asteroids? That won’t work because a lot of the damage that nukes generate comes from the blast wave as it propagates through the atmosphere. And the environment around asteroids is notably short on atmosphere, so blast waves won’t happen. But you can still use a nuclear weapon’s radiation to vaporize part of the asteroid’s surface, creating a very temporary, very hot atmosphere on one side of the asteroid. This should create enough pressure to deflect the asteroid’s orbit, potentially causing it to fly safely past Earth.

But will it work? Some scientists at Sandia National Lab have decided to tackle a very cool question with one of the cooler bits of hardware on Earth: the Z machine, which can create a pulse of X-rays bright enough to vaporize rock. They estimate that a nuclear weapon can probably impart enough force to deflect asteroids as large as 4 kilometers across.

No nukes! (Just a nuclear simulation)

The Z machine is at the heart of Sandia’s Z Pulsed Power Facility. It’s basically a mechanism for storing a whole lot of electrical energy—up to 22 megajoules—and releasing it nearly instantaneously. Anything in the immediate vicinity experiences extremely intense electromagnetic fields. Among other things, this can be used to heavily ionize materials, like the argon gas used here, generating intense X-rays. These served as a stand-in for the radiation generated by a nuclear weapon.

For an asteroid, the researcher used disks of rock, either quartz or fused silica. (Notably, they only did one sample of each but got reasonably consistent results from them.) Mere mortals might have stuck the disk on a device that could register the force it experienced and left it at that. But these scientists were made of sterner stuff and decided that this wouldn’t really replicate the asteroid experience of floating freely in space.

To mimic that, the researchers held the rock disks in place using thin pieces of foil. These would vaporize almost instantly as the X-ray burst arrives, leaving the rock briefly suspended in the air. While gravity would have its way, the events triggered by the radiation evaporating away a bunch of the rock would be over before the sample experienced any significant downward acceleration. Its movement during this time, and thus the force imparted to it by the evaporation of its surface, was tracked by a laser interferometer placed on the far side of the disk from the X-ray source.

With all that set, all that was left was to fire up the Z machine and vaporize some rock.

Radiation should be able to deflect asteroids as large as 4 km across Read More »

nasa-is-ready-to-start-buying-vulcan-rockets-from-united-launch-alliance

NASA is ready to start buying Vulcan rockets from United Launch Alliance

Full stack —

The second test flight of the Vulcan rocket is scheduled for liftoff on October 4.

The first stage of ULA's second Vulcan rocket was raised onto its launch platform August 11 at Cape Canaveral Space Force Station, Florida.

Enlarge / The first stage of ULA’s second Vulcan rocket was raised onto its launch platform August 11 at Cape Canaveral Space Force Station, Florida.

United Launch Alliance is free to compete for NASA contracts with its new Vulcan rocket after a successful test flight earlier this year, ending a period where SpaceX was the only company competing for rights to launch the agency’s large science missions.

For several years, ULA was unable to bid for NASA launch contracts after the company sold all of its remaining Atlas V rockets to other customers, primarily for Amazon’s Project Kuiper Internet network. ULA could not submit its new Vulcan rocket, which will replace the Atlas V, for NASA to consider in future launch contracts until the Vulcan completed at least one successful flight, according to Tim Dunn, senior launch director at NASA’s Launch Services Program.

The Vulcan rocket’s first certification flight on January 8, called Cert-1, was nearly flawless, demonstrating the launcher’s methane-fueled BE-4 engines built by Blue Origin and an uprated twin-engine Centaur upper stage. A second test flight, known as Cert-2, is scheduled to lift off no earlier than October 4 from Cape Canaveral Space Force Station, Florida. Assuming the upcoming launch is as successful as the first one, the US Space Force aims to launch its first mission on a Vulcan rocket by the end of the year.

The Space Force has already booked 25 launches on ULA’s Vulcan rocket for military payloads and spy satellites for the National Reconnaissance Office. But these missions won’t launch until Vulcan completes its second test flight, clearing the way for the Space Force to certify ULA’s new rocket for national security missions.

Back in the game

NASA’s Launch Services Program (LSP) is responsible for selecting and overseeing launch providers for the agency’s robotic science missions. NASA’s near-term options for launching large missions include SpaceX’s Falcon 9 and Falcon Heavy rockets, ULA’s Vulcan, and Blue Origin’s New Glenn launcher.

However, only SpaceX’s rockets have been available for NASA bids since 2021, when ULA sold all of its remaining Atlas V rockets to Amazon. For example, ULA did not submit proposals for the launch of a GOES weather satellite or NASA’s Roman Space Telescope, two of the more lucrative launch contracts the agency has awarded in the last couple of years. NASA selected SpaceX’s Falcon Heavy, the only eligible rocket, for both missions.

This is a notable role reversal for SpaceX and ULA, a 50-50 joint venture between Boeing and Lockheed Martin that was the sole launch provider for large NASA science missions and military satellites for nearly a decade. SpaceX launched its first mission for NASA’s Launch Services Program in January 2016.

The situation changed with the first flight of the Vulcan rocket in January.

“They certainly demonstrated a huge success earlier this year flying Cert-1,” Dunn told Ars in an interview. “They needed a successful flight to then bid for future missions, so that allowed them to be in a position to bid on our missions.”

NASA has not yet formally certified the Vulcan rocket to launch one of the agency’s science missions, but that would not stop NASA from selecting Vulcan for a contract. Some of NASA’s next big science missions up for launch contract awards include the nuclear-powered Dragonfly mission to explore Saturn’s moon Titan and an asteroid-hunting telescope named NEO Surveyor.

The second Vulcan flight next month will move ULA’s rocket toward certification by the Space Force and NASA.

“A second Cert flight that will then demonstrate a few other capabilities of the rocket allows more data for our certification team that is working in concert with the US Space Force’s certification team,” Dunn said. “We’re doing a lot of shared, intergovernmental collaborations in the certification work, so it allows us all more data, more confidence in that launch vehicle to meet all the needs that we believe we will have in the coming decade-plus.”

Two strap-on solid-fueled boosters and twin BE-4 main engines on ULA's second Vulcan rocket.

Enlarge / Two strap-on solid-fueled boosters and twin BE-4 main engines on ULA’s second Vulcan rocket.

Blue Origin’s New Glenn could also compete for contracts to launch NASA’s larger, more expensive missions after it completes at least one successful flight. Blue Origin is currently eligible for bids to launch NASA’s smaller missions, such as the ESCAPADE mission to Mars already assigned to New Glenn. NASA is willing to accept more risk for launching these types of lower-cost missions.

ULA capped off the assembly of its second Vulcan rocket at Cape Canaveral on Saturday when technicians lifted the launcher’s payload fairing atop Vulcan’s first-stage booster and Centaur upper stage. For its second launch, Vulcan will carry a dummy payload instead of a real satellite. The second Vulcan flight was initially supposed to launch Sierra Space’s first Dream Chaser spaceplane to the International Space Station, but Dream Chaser isn’t ready, and the Space Force is eager for ULA to get moving and finish the certification process.

The head of Space Systems Command, Lt. Gen. Philip Garrant, told Ars last week that he is “optimistic” ULA will be in a position to launch its first Space Force missions with the Vulcan rocket by the end of this year. ULA has already delivered Vulcan rocket parts for the next two missions to Cape Canaveral, but the Cert-2 launch needs to go off without a hitch.

“We’re working very closely with ULA on that, as well as the manifest for the following missions,” Garrant said. “All of the rocket parts are at the launch locations, ready to go, but clearly the priority is the certification flight and making sure that the launch vehicle is certified. But we are optimistic that we’re going to get those launches off.”

NASA is ready to start buying Vulcan rockets from United Launch Alliance Read More »

satellite-images-suggest-test-of-russian-“super-weapon”-failed-spectacularly

Satellite images suggest test of Russian “super weapon” failed spectacularly

  • The Sarmat missile silo seen before last week’s launch attempt.

    Maxar Technologies

  • A closer view of the Sarmat missile silo before last week’s launch attempt.

    Maxar Technologies

  • Fire trucks surround the Sarmat missile silo in this view from space on Saturday, September 21.

    Maxar Technologies

Late last week, Russia’s military planned to launch a Sarmat intercontinental ballistic missile (ICBM) on a test flight from the Plesetsk Cosmodrome. Imagery from commercial satellites captured over the weekend suggest the missile exploded before or during launch.

This is at least the second time an RS-28 Sarmat missile has failed in less than two years, dealing a blow to the country’s nuclear forces days after the head of the Russian legislature issued a veiled threat to use the missile against Europe if Western allies approved Ukraine’s use of long-range weapons against Russia.

Commercial satellite imagery collected by Maxar and Planet show before-and-after views of the Sarmat missile silo at Plesetsk, a military base about 500 miles (800 kilometers) north of Moscow. The view from one of Maxar’s imaging satellites Saturday revealed unmistakable damage at the launch site, with a large crater centered on the opening to the underground silo.

The crater is roughly 200 feet (62 meters) wide, according to George Barros, a Russia and geospatial intelligence analyst at the Institute for the Study of War. “Extensive damage in and around the launch pad can be seen which suggests that the missile exploded shortly after ignition or launch,” Barros wrote on X.

“Additionally, small fires continue to burn in the forest to the east of the launch complex and four fire trucks can be seen near the destroyed silo,” Barros added.

An RS-28 Sarmat missile fires out of its underground silo on its first full-scale test flight in April 2022.

Enlarge / An RS-28 Sarmat missile fires out of its underground silo on its first full-scale test flight in April 2022.

Russian Ministry of Defense

The Sarmat missile is Russia’s largest ICBM, with a height of 115 feet (35 meters). It is capable of delivering nuclear warheads to targets more than 11,000 miles (18,000 kilometers) away, making it the longest-range missile in the world. The three-stage missile burns hypergolic hydrazine and nitrogen tetroxide propellants, and is built by the Makeyev Design Bureau. The Sarmat, sometimes called the Satan II, replaces Russia’s long-range R-36M missile developed during the Cold War.

“According to Russian media, Sarmat can reportedly load up to 10 large warheads, 16 smaller ones, a combination of warheads and countermeasures, or hypersonic boost-glide vehicle,” the Center for Strategic and International Studies writes on its website.

The secret is out

Western analysts still don’t know exactly when the explosion occurred. Russia issued warnings last week for pilots to keep out of airspace along the flight path of a planned missile launch from the Plesetsk Cosmodrome. Russia published similar notices before previous Sarmat missile tests, alerting observers that another Sarmat launch was imminent. The warnings were canceled Thursday, two days before satellite imagery showed the destruction at the launch site.

“It is possible that the launch attempt was undertaken on September 19th, with fires persisting for more than 24 hours,” wrote Pavel Podvig, a senior researcher at the United Nations Institute for Disarmament Research in Geneva, on his Russian Nuclear Forces blog site. “Another possibility is that the test was scrubbed on the 19th and the incident happened during the subsequent defueling of the missile. The character of destruction suggests that the missile exploded in the silo.”

James Acton, a senior fellow at the Carnegie Endowment for International Peace, wrote on X that the before-and-after imagery of the Sarmat missile silo was “very persuasive that there was a big explosion.”

Satellite images suggest test of Russian “super weapon” failed spectacularly Read More »