russia

the-missile-meant-to-strike-fear-in-russia’s-enemies-fails-once-again

The missile meant to strike fear in Russia’s enemies fails once again

Therefore, it’s no wonder Russian officials like to talk up Sarmat’s capabilities. Russian President Vladimir Putin has called Sarmat a “truly unique weapon” that will “provide food for thought for those who, in the heat of frenzied aggressive rhetoric, try to threaten our country.” Dmitry Rogozin, then the head of Russia’s space agency, called the Sarmat missile a “superweapon” after its first test flight in 2022.

So far, what’s unique about the Sarmat missile is its propensity for failure. The missile’s first full-scale test flight in 2022 apparently went well, but the program has suffered a string of consecutive failures since then, most notably a catastrophic explosion last year that destroyed the Sarmat missile’s underground silo in northern Russia.

The Sarmat is supposed to replace Russia’s aging R-36M2 strategic ICBM fleet, which was built in Ukraine. The RS-28, sometimes called the Satan II, is a “product solely of Russian industry cooperation,” according to Russia’s Ministry of Defense.

The video of the missile failure last week lacks the resolution to confirm whether it was a Sarmat missile or the older-model R-36M2, analysts agree it was most likely a Sarmat. The missile silo used for Friday’s test was recently renovated, perhaps to convert it to support Sarmat tests after the destruction of the new missile’s northern launch site last year.

“Work there began in Spring 2025, after the ice thawed,” wrote Etienne Marcuz, an analyst on strategic armaments at the Foundation for Strategic Research, a French think tank. The “urgent renovation” of the missile silo at Dombarovsky lends support for the hypothesis that last week’s accident involved the Sarmat, and not the R-36M2, which was last tested more than 10 years ago, Marcuz wrote on X.

“If this is indeed another Sarmat failure, it would be highly detrimental to the medium-term future of Russian deterrence,” Marcuz continued. “The aging R-36M2 missiles, which carry a significant portion of Russia’s strategic warheads, are seeing their replacement pushed even further into the future, while their maintenance—previously handled by Ukraine until 2014—remains highly uncertain.”

In this pool photograph distributed by the Russian state media agency Sputnik, Russia’s President Vladimir Putin chairs a Security Council meeting at the Kremlin in Moscow on November 5, 2025. Credit: Gavriil Grigorov/Pool/AFP via Getty Images

Podvig, the UN researcher who also runs the Russian Nuclear Forces blog site, agrees with Marcuz’s conclusions. With the R-36M2 missile soon to retire, “it is extremely unlikely that the Rocket Forces would want to test launch them,” Podvig wrote on his website. “This leaves Sarmat.”

The failure adds fresh uncertainty to the readiness of Russia’s nuclear arsenal. If this were actually a test of one of Russia’s older ICBMs, the result would raise questions about hardware decay and obsolescence. In the more likely case of a Sarmat test flight, it would be the latest in a series of problems that have delayed its entry into service since 2018.

The missile meant to strike fear in Russia’s enemies fails once again Read More »

before-a-soyuz-launch-thursday-someone-forgot-to-secure-a-20-ton-service-platform

Before a Soyuz launch Thursday someone forgot to secure a 20-ton service platform

Thursday was the Thanksgiving holiday in the United States and so far NASA has not commented on the implications of damage to Site 31 in Kazakhstan.

However one source familiar with the agency’s relationship with Russia said there are multiple concerns. In the long-term, as Manber said, this will test Russia’s commitment to the partnership. But in the near-term there are concerns about the lack of Progress launches.

Progress is key to flying ISS

Not only does this cargo vehicle bring supplies to the Russian segment of the station, it is used as a primary means to reboost the space station’s altitude. It also services the Russian thruster attitude control system which works alongside the US control moment gyroscopes to maintain the station’s attitude and orientation. Notably, the Russian control system “desaturates” the US gyroscopes by removing their excess angular momentum.

This could potentially be accomplished by docked vehicles, at a high fuel cost, the source said. Moreover, the US cargo supply ships, SpaceX’s Dragon and Northrop Grumman’s Cygnus, have also demonstrated the capability to reboost the space station. But long-term it is not immediately clear whether US vehicles could completely make up for the loss of Progress vehicles.

According to an internal schedule there are two Progress vehicles due to launch between now and July 2027, followed by the next crewed Soyuz mission next summer.

The at least temporary loss of Site 31 will only place further pressure on SpaceX. The company currently flies NASA’s only operational crewed vehicle capable of reaching the space station, and the space agency recently announced that Boeing’s Starliner vehicle needs to fly an uncrewed mission before potentially carrying crew again. Moreover, due to rocket issues, SpaceX’s Falcon 9 vehicle is the only rocket currently available to launch both Dragon and Cygnus supply missions to the space station. For a time, SpaceX may also now be called upon to backstop Russia as well.

Before a Soyuz launch Thursday someone forgot to secure a 20-ton service platform Read More »

russia’s-soyuz-5-will-soon-come-alive.-but-will-anyone-want-to-fly-on-it?

Russia’s Soyuz 5 will soon come alive. But will anyone want to fly on it?

The Soyuz 5 rocket, also named Irtysh for a river that flows through Russia and Kazakhstan, answers to that purpose. Its first stage is powered by a single RD-171MV engine, which at sea level has three times the thrust of a single Raptor 3 engine, and is part of a family of engines that are the most powerful liquid-fueled rocket engines in the world. The RD-171MV uses only Russian components.

Russian officials also plan to use the Soyuz 5 rocket as the “boost” stage of a super-heavy lift rocket, known as Yenisei, that would be used for a human lunar program. However the Yenisei rocket seems to be one of those Russian space initiatives that is forever mired in a nebulous development stage—often talked about as a national priority, but rarely advanced.

What market is there?

But the Soyuz 5 rocket now is very real, and it should launch within the next month. The question is, what market will it serve? Russia presently has the Soyuz 2, which has about half the lift capacity, for crew and cargo missions to the International Space Station, as well as the launch of smaller spacecraft. There is also the line of Angara rockets that has come online during the last decade.

The Soyuz 5 slots in between the Soyuz 2 and Angara A5 rocket in terms of performance. So what demand is there for a rocket with 18 tons of capacity to low-Earth orbit? One concern is that the number of geostationary satellites launched annually, once the bread and butter of the Proton vehicle, has dropped precipitously.

Another is Russia’s invasion of Ukraine, which has taken Russian rockets off the table for many Western satellite operators. At the same time, international competition in the medium-lift market has stiffened. China has an increasing number of government and commercial options, and India’s launch offerings are growing as well. And for any company or country mostly concerned about price, Russia almost certainly can’t beat the reusable Falcon 9 booster offered by SpaceX.

Russia’s Soyuz 5 will soon come alive. But will anyone want to fly on it? Read More »

wipers-from-russia’s-most-cut-throat-hackers-rain-destruction-on-ukraine

Wipers from Russia’s most cut-throat hackers rain destruction on Ukraine

One of the world’s most ruthless and advanced hacking groups, the Russian state-controlled Sandworm, launched a series of destructive cyberattacks in the country’s ongoing war against neighboring Ukraine, researchers reported Thursday.

In April, the group targeted a Ukrainian university with two wipers, a form of malware that aims to permanently destroy sensitive data and often the infrastructure storing it. One wiper, tracked under the name Sting, targeted fleets of Windows computers by scheduling a task named DavaniGulyashaSdeshka, a phrase derived from Russian slang that loosely translates to “eat some goulash,” researchers from ESET said. The other wiper is tracked as Zerlot.

A not-so-common target

Then, in June and September, Sandworm unleashed multiple wiper variants against a host of Ukrainian critical infrastructure targets, including organizations active in government, energy, and logistics. The targets have long been in the crosshairs of Russian hackers. There was, however, a fourth, less common target—organizations in Ukraine’s grain industry.

“Although all four have previously been documented as targets of wiper attacks at some point since 2022, the grain sector stands out as a not-so-frequent target,” ESET said. “Considering that grain export remains one of Ukraine’s main sources of revenue, such targeting likely reflects an attempt to weaken the country’s war economy.”

Wipers have been a favorite tool of Russian hackers since at least 2012, with the spreading of the NotPetya worm. The self-replicating malware originally targeted Ukraine, but eventually caused international chaos when it spread globally in a matter of hours. The worm resulted in tens of billions of dollars in financial damages after it shut down thousands of organizations, many for days or weeks.

Wipers from Russia’s most cut-throat hackers rain destruction on Ukraine Read More »

after-russian-spaceport-firm-fails-to-pay-bills,-electric-company-turns-the-lights-off

After Russian spaceport firm fails to pay bills, electric company turns the lights off

The fall and rise of PSO Kazan

As minor as this dispute may seem, it’s remarkable that PSO Kazan is working on a spaceport in Russia at all.

PSO Kazan won the contract to build the launch site’s second pad, 1A for the Angara rocket, in December 2017. The pad was due to be completed in time for an Angara launch in 2021. The company is owned by a Russian billionaire from the city of Kazan, Ravil Ziganshin, previously known for building sports arenas in the Republic of Tatarstan on the other side of the country from Vostochny.

The adventure into spaceport construction did not go well. According to Russian Space Web, the contract for spaceport construction was not signed until October 2018. Months later, amid allegations of criminal activity and delays, Roscosmos moved to cancel the contract with PSO Kazan.

Other firms emerged as bidders on the contract to build the Angara launch pad, among them the Crocus Group. However, they and others later backed out, saying the Russian government was offering to pay far less money than it would actually cost to build the launch site.

“I said I was ready, but not for that amount of money,” Aras Agalarov, founder of the Crocus Group, explained in an interview at the time. “When they asked me, I said there were two pieces of news. The first was that the second phase of the cosmodrome could be built in two years. The second was that it couldn’t be built with the money allocated. If you increase the cost, you’ll get everything in two years. If not, I’m sorry.”

A toxic reputation?

And so Roscosmos—under the leadership of Dmitry Rogozin at the time—went crawling back to PSO Kazan to lead construction of the Angara launch pad.

“Independent observers were puzzled by the sudden about-face and wondered whether Roscosmos had such a toxic reputation in the construction business that it had failed to attract any other contender for the job and, as a result, the State Corporation had no choice but to keep the original contractor on the hook,” Russian Space Web concluded about the decision.

After years of delays and cost overruns, the Angara pad was eventually completed, with its first launch last November. There does not appear to be too much demand, however, as there has not yet been a second launch from the A1 pad since.

After Russian spaceport firm fails to pay bills, electric company turns the lights off Read More »

nato-boss-mocks-russian-navy,-which-is-on-the-hunt-for-red-october-“the-nearest-mechanic”

NATO boss mocks Russian navy, which is on the hunt for Red October “the nearest mechanic”

When one of its Kilo-class, diesel-electric submarines recently surfaced off the coast of France, Russia denied that there was a problem with the vessel. The sub was simply surfacing to comply with maritime transit rules governing the English Channel, the Kremlin said—Russia being, of course, a noted follower of international law.

But social media accounts historically linked to Russian security forces suggested a far more serious problem on the submarine Novorossiysk. According to The Maritime Executive, “Rumors began to circulate on well-informed social media channels that the Novorossiysk had suffered a fuel leak. They suggested the vessel lacked onboard capabilities and was forced to surface to empty flooded compartments. Some reports said it was a dangerous fuel leak aboard the vessel, which was commissioned in 2012.”

France 24 quoted further social media reports as saying, “The submarine has neither the spare parts nor the qualified specialists onboard to fix the malfunction,” and it “now poses an explosion hazard.”

When the Novorossiysk surfaced off the coast of France a few days ago, it headed north and was promptly shadowed by a French warship, then an English ship, and finally a Dutch hydrographic recording vessel and an NH90 combat helicopter. The Dutch navy said in a statement that the Novorossiysk and “the tugboat Yakov Grebelskiy,” which was apparently towing it, have left the Dutch Exclusive Economic Zone. Although Russian ships have the right to transit international waters, the Dutch wanted to show “vigilance” in “preventing Russian ships from sabotaging submarine infrastructure.”

NATO boss mocks Russian navy, which is on the hunt for Red October “the nearest mechanic” Read More »

putin-oks-plan-to-turn-russian-spacecraft-into-flying-billboards

Putin OKs plan to turn Russian spacecraft into flying billboards

These are tough times for Russia’s civilian space program. In the last few years, Russia has cut back on the number of Soyuz crew missions it is sending to the International Space Station, and a replacement for the nearly 60-year-old Soyuz spacecraft remains elusive.

While the United States and China are launching more space missions than ever before, Russia’s once-dominant launch cadence is on a downhill slide.

Russia’s access to global markets dried up after Russian President Vladimir Putin launched the country’s invasion of Ukraine in February 2022. The fallout from the invasion killed several key space partnership between Russia and Europe. Russia’s capacity to do new things in space seems to be focused on military programs like anti-satellite weapons.

The Roscosmos State Corporation for Space Activities, Russia’s official space agency, may have a plan to offset the decline. Late last month, Putin approved changes to federal laws governing advertising and space activities to “allow for the placement of advertising on spacecraft,” Roscosmos posted on its official Telegram account.

We’ve seen this before

The Russian State Duma, dominated by Putin loyalists, previously approved the amendments.

“According to the amendments, Roscosmos has been granted the right, effective January 1, 2026, to place advertising on space objects owned by both the State Corporation itself and federally,” Roscosmos said. “The amendments will create a mechanism for attracting private investment in Russian space exploration and reduce the burden on the state budget.”

The law requires that advertising symbols not affect spacecraft safety. The Russian government said it will establish a fee structure for advertising on federally owned space objects.

Roscosmos didn’t say this, but advertisers eligible for the offer will presumably be limited to Russia and its allies. Any ads from the West would likely violate sanctions.

Rocket-makers have routinely applied decals, stickers, and special paint jobs to their vehicles. This is a particularly popular practice in Russia. Usually, these logos represent customers and suppliers. Sometimes they honor special occasions, like the 60th anniversary of the first human spaceflight mission by Soviet cosmonaut Yuri Gagarin and the 80th anniversary of the end of World War II.

Putin OKs plan to turn Russian spacecraft into flying billboards Read More »

two-of-the-kremlin’s-most-active-hack-groups-are-collaborating,-eset-says

Two of the Kremlin’s most active hack groups are collaborating, ESET says

But ESET said its most likely hypothesis is that Turla and Gamaredon were working together. “Given that both groups are part of the Russian FSB (though in two different Centers), Gamaredon provided access to Turla operators so that they could issue commands on a specific machine to restart Kazuar, and deploy Kazuar v2 on some others,” the company said.

Friday’s post noted that Gamaredon has been seen collaborating with other hack groups previously, specifically in 2020 with a group ESET tracks under the name InvisiMole.

In February, ESET said, company researchers spotted four distinct Gamaredon-Turla co-compromises in Ukraine. On all of the machines, Gamaredon deployed a wide range of tools, including those tracked under the names PteroLNK, PteroStew, PteroOdd, PteroEffigy, and PteroGraphin. Turla, for its part, installed version 3 of its proprietary malware Kazuar.

ESET software installed on one of the compromised devices observed Turla issuing commands through the Gamaredon implants.

“PteroGraphin was used to restart Kazuar, possibly after Kazuar crashed or was not launched automatically,” ESET said. “Thus, PteroGraphin was probably used as a recovery method by Turla. This is the first time that we have been able to link these two groups together via technical indicators (see First chain: First chain: Restart of Kazuar v3).”

Then, in April and again in June, ESET said it detected Kazuar v2 installers being deployed by Gamaredon malware. In all the cases, ESET software was installed after the compromises, so it wasn’t possible to recover the payloads. Nonetheless, the firm said it believes an active collaboration between the groups is the most likely explanation.

“All those elements, and the fact that Gamaredon is compromising hundreds if not thousands of machines, suggest that Turla is interested only in specific machines, probably ones containing highly sensitive intelligence,” ESET speculated.

Two of the Kremlin’s most active hack groups are collaborating, ESET says Read More »

rocket-report:-russia’s-rocket-engine-predicament;-300th-launch-to-the-iss

Rocket Report: Russia’s rocket engine predicament; 300th launch to the ISS


North Korea test-fired a powerful new solid rocket motor for its next-generation ICBM.

A Soyuz-2.1a rocket is propelled by kerosene-fueled RD-107A and RD-108A engines after lifting off Thursday with a resupply ship bound for the International Space Station. Credit: Roscosmos

Welcome to Edition 8.10 of the Rocket Report! Dear readers, if everything goes according to plan, four astronauts are less than six months away from traveling around the far side of the Moon and breaking free of low-Earth orbit for the first time in more than 53 years. Yes, there are good reasons to question NASA’s long-term plans for the Artemis lunar programthe woeful cost of the Space Launch System rocket, the complexity of new commercial landers, and a bleak budget outlook. But many of us who were born after the Apollo Moon landings have been waiting for this moment our whole lives. It is almost upon us.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

North Korea fires solid rocket motor. North Korea said Tuesday it had conducted the final ground test of a solid-fuel rocket engine for a long-range ballistic missile in its latest advancement toward having an arsenal that could viably threaten the continental United States, the Associated Press reports. The test Monday observed by leader Kim Jong Un was the ninth of the solid rocket motor built with carbon fiber and capable of producing 1,971 kilonewtons (443,000 pounds) of thrust, more powerful than past models, according to the North’s official Korean Central News Agency.

Mobility and flexibility … Solid-fueled intercontinental ballistic missiles, or ICBMs, have advantages over liquid-fueled missiles, which have historically comprised the bulk of North Korea’s inventory. Solid rocket motors can be stored for longer periods of time and are easier to conceal, transport, and launch on demand. The new solid rocket motor will be used on a missile called the Hwasong-20, according to North Korean state media. The AP reports some analysts say North Korea may conduct another ICBM test around the end of the year, showcasing its military strength ahead of a major ruling party congress expected in early 2026.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Astrobotic eyes Andøya. US-based lunar logistics company Astrobotic and Norwegian spaceport operator Andøya Space have signed a term sheet outlining the framework for a Launch Site Agreement, European Spaceflight reports. The agreement, once finalized, will facilitate flights of Astrobotic’s Xodiac lander testbed from the Andøya Space facilities. The Xodiac vertical takeoff, vertical landing rocket was initially developed by Masten Space Systems to simulate landing on the Moon and Mars. When Masten filed for bankruptcy in 2022, Astrobotic acquired its intellectual property and assets, including the Xodiac vehicle.

Across the pond … So far, the small Xodiac rocket has flown on low-altitude atmospheric hops from Mojave, California, reaching altitudes of up to 500 meters, or 1,640 feet. The agreement between Astrobotic and Andøya paves the way for “several” Xodiac flight campaigns from Andøya Space facilities on the Norwegian coast. “Xodiac’s presence at Andøya represents a meaningful step toward delivering reliable, rapid, and cost-effective testing and demonstration capabilities to the European space market,” said Astrobotic CEO John Thornton.

Ursa Major breaks ground in Colorado. Ursa Major on Wednesday said it has broken ground on a new 400-acre site where it will test and qualify large-scale solid rocket motors for current and future missiles, including the Navy’s Standard Missile fleet, Defense Daily reports. The new site in Weld County, Colorado, north of Denver, will be ready for testing to begin in the fourth quarter of 2025. Ursa Major will be able to conduct full-scale static firings, and drop and temperature storage testing for current and future missile systems.

Seeking SRM options … Ursa Major said the new facility will support national and missile defense programs. The company’s portfolio includes solid rocket motors (SRMs) ranging from 2 inches to 22 inches in diameter for missiles like the Stinger, Javelin, and air-defense interceptors. Ursa Major aims to join industry incumbents Northrop Grumman, L3Harris, and newcomer Anduril as a major supplier of SRMs to the government. “This facility represents a major step forward in our ability to deliver qualified SRMs that are scalable, flexible, and ready to meet the evolving threat environment,” said Dan Jablonsky, CEO of Ursa Major, in a statement. “It’s a clear demonstration of our commitment and ability to rapidly advance and expand the American-made solid rocket motor industrial base that the country needs, ensuring warfighters will have the quality and quantity of SRMs needed to meet mission demands.”

Falcon 9 launches first satellites in a military megaconstellation. The first 21 satellites in a constellation that could become a cornerstone for the Pentagon’s Golden Dome missile-defense shield successfully launched from California Wednesday aboard a SpaceX Falcon 9 rocket, Ars reports. The Falcon 9 took off from Vandenberg Space Force Base, California, and headed south over the Pacific Ocean, reaching an orbit over the poles before releasing the 21 military-owned satellites to begin several weeks of activations and checkouts.

First of many … These 21 satellites will boost themselves to a final orbit at an altitude of roughly 600 miles (1,000 kilometers). The Pentagon plans to launch 133 more satellites over the next nine months to complete the build-out of the Space Development Agency’s first-generation, or Tranche 1, constellation of missile-tracking and data-relay satellites. Military officials have worked for six years to reach this moment. The Space Development Agency (SDA) was established during the first Trump administration, which made plans for an initial set of demonstration satellites that launched a couple of years ago. In 2022, the Pentagon awarded contracts for the first 154 operational spacecraft, including the ones launched Wednesday. “Back in 2019, when the SDA was stood up, it was to do two things. One was to make sure that we can do beyond line of sight targeting, and the other was to pace the threat, the emerging threat, in the missile-warning and missile-tracking domain. That’s what the focus has been,” said Gurpartap “GP” Sandhoo, the SDA’s acting director.

Another Falcon 9 was delayed three times. SpaceX scrubbed launching a communications satellite from an Indonesian company for a third consecutive day Wednesday, Spaceflight Now reports. Possible technical issues got in the way of a launch attempt Wednesday evening after back-to-back days of weather delays at Cape Canaveral Space Force Station, Florida. The Falcon 9 finally launched Thursday evening with the Boeing-built Nusantara Lima communications satellite, targeting a geosynchronous transfer orbit. It’s the latest satellite from the Indonesian company Pasifik Satelit Nusantara.

A declining market … This was just the fifth geosynchronous communications satellite to launch on a commercial rocket this year, all by SpaceX. There were 21 such satellites that launched on commercial vehicles in 2015, including SpaceX’s Falcon 9, Europe’s Ariane 5, Russia’s Proton, ULA’s Atlas V, and Japan’s H-IIA. Much of the world’s launch capacity today is used to deploy smaller communications satellites into low-Earth orbit, primarily for broadband connectivity rather than for the video broadcast market once dominated by higher-altitude geosynchronous satellites.

Putin urges Russia to build more rocket engines. Russian President Vladimir Putin urged aerospace industry leaders on September 5 to press on with efforts to develop booster rocket engines for space launch vehicles and build on Russia’s longstanding reputation as a leader in space technology, Reuters reports. Putin, who spent the preceding days in China and the Russian far eastern port of Vladivostok, flew to the southern Russian city of Samara, where he met industry specialists and toured the Kuznetsov design bureau engine manufacturing plant.

A shell of its former self … “It is important to consistently renew production capacity in terms of engines for booster rockets,” Russian news agencies quoted Putin as saying during the visit. “And in doing so, we must not only meet our own current and future needs but also move actively on world markets and be successful competitors.” The Kuznetsov plant in Samara builds medium-class RD-107 and RD-108 engines for Russia’s Soyuz-2 rockets, which launch Russian military satellites and crew and cargo to the International Space Station. Their designs can be traced to the dawn of the Space Age nearly 70 years ago. Meanwhile, the outlook for heavier-duty Russian rocket engines is murky, at best. Russia’s most-flown large rocket engine in the post-Cold War era, the RD-180, produced by a company called Energomash, is out of production after the end of sales to the United States.

India nabs a noteworthy launch contract. Astroscale, a satellite servicing and space debris mitigation company based in Japan, has selected India’s Polar Satellite Launch Vehicle (PSLV) to deliver a small satellite named ISSA-J1 to orbit in 2027. This is an interesting mission. The ISSA-J1 spacecraft will fly up to two large pieces of satellite debris in orbit to image and inspect them. ISSA-J1, developed in partnership with the Japanese government, is one in a series of Astroscale missions testing different ways of approaching, monitoring, capturing, and refueling other objects in space. The launch agreement was signed between Astroscale and NewSpace India Limited, the commercial arm of India’s space agency.

Rideshare not an option … “We selected NSIL after thorough evaluations of more than 10 launch service providers over the past year, considering technical capabilities, track record, cost, and other elements,” said Eddie Kato, president and managing director of Astroscale Japan. India’s PSLV is right-sized for a mission like this. ISSA-J1 is a rarity in that it must launch on a dedicated rocket because it has to reach a specific orbit to line up with the pieces of space debris it will approach and inspect. Rideshare launches, such as those that routinely fly on SpaceX’s Falcon 9 rocket, are cheaper but go to standard orbits popular for many different types of satellite missions. A dedicated launch on a Falcon 9 would presumably have been more expensive than a flight on India’s smaller PSLV. Rocket Lab’s Electron, another rocket popular for dedicated launches of small satellites, lacks the performance required for Astroscale’s mission.

Russian cargo en route to ISS. Another cargo ship is flying to humanity’s orbital outpost with the successful launch of Russia’s Progress MS-32 supply freighter Thursday from the Baikonur Cosmodrome in Kazakhstan, NASASpaceflight.com reports. The supply ship launched aboard a Soyuz-2.1a rocket and arrived in orbit about nine minutes later, kicking off a two-day pursuit of the International Space Station. This was the 300th launch of an assembly, crew, or cargo mission to the ISS since 1998, including a handful of missions that didn’t reach the complex due to rocket or spacecraft failures.

Important stuff … The Progress MS-32 cargo craft will dock with the aft port of the space station’s Russian Zvezda service module Saturday. The payloads flying on the Progress mission include food, experiments, clothing, water, air, and propellant to be pumped into the space station’s onboard tanks. The spacecraft will also reboost the lab’s orbit.

Metallic tiles? Not so great. It has been two weeks since SpaceX’s last Starship test flight, and engineers have diagnosed issues with its heat shield, identified improvements, and developed a preliminary plan for the next time the ship heads into space, Ars reports. Bill Gerstenmaier, a SpaceX executive in charge of build and flight reliability, presented the findings Monday at the American Astronautical Society’s Glenn Space Technology Symposium in Cleveland. The test flight went “extremely well,” Gerstenmaier said, but he noted some important lessons learned with the ship’s heat shield.

Crunch wrap reigns supreme “We were essentially doing a test to see if we could get by with non-ceramic tiles, so we put three metal tiles on the side of the ship to see if they would provide adequate heat control, because they would be simpler to manufacture and more durable than the ceramic tiles. It turns out they’re not,” Gerstenmaier said. “The metal tiles… didn’t work so well.” One bright spot with the heat shield was the performance of a new experimental material around and under the tiles. “We call it crunch wrap,” Gerstenmaier said. “It’s like a wrapping paper that goes around each tile.” On the next Starship flight, SpaceX will likely cover more parts of the heat shield with this crunch wrap material. Gerstenmaier said the inaugural flight of Starship Version 3, with upgraded engines and more fuel, is now set to occur next year.

An SLS compromise might be afoot in DC. The Trump administration is seeking to cancel NASA’s Space Launch System rocket after two more flights, but key lawmakers in Congress, including Republican Sen. Ted Cruz of Texas, aren’t ready to go along.  So is this an impasse? Possibly not, as sources say the White House and Congress may not be all that far apart on how to handle this. The solution involves canceling part of the SLS rocket now, but not all of it, Ars reports.

Goodbye EUS? … The compromise might be to cancel a large new upper stage for the SLS rocket called the Exploration Upper Stage. This would save NASA billions of dollars, and the agency could instead procure commercial upper stages, such as those built by United Launch Alliance or Blue Origin, to fly on SLS rockets after NASA’s Artemis III mission. It would also eliminate the need for NASA to finish building an expensive new launch tower at Kennedy Space Center, Florida. The upper stage flying on the first three SLS missions is no longer in production. Sources indicated to Ars that Blue Origin has already begun work on a modified version of its New Glenn upper stage that could fit within the shroud of the SLS rocket.

Next three launches

Sept. 13: Soyuz-2.1b | Glonass-K1 No. 18L | Plesetsk Cosmodrome, Russia | 02: 30 UTC

Sept. 13: Falcon 9 | Starlink 17-10 | Vandenberg Space Force Base, California | 15: 41 UTC

Sept. 14: Falcon 9 | Cygnus NG-23 | Cape Canaveral Space Force Station, Florida | 22: 11 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Russia’s rocket engine predicament; 300th launch to the ISS Read More »

putin:-“immortality”-coming-soon-through-continuous-organ-transplants

Putin: “Immortality” coming soon through continuous organ transplants

In a later press conference, Putin confirmed the discussion and said that “life expectancy will increase significantly” in the near future and “we should also think about this” in terms of political and economic consequences. (In Russia, life expectancy has actually decreased significantly in recent years, and the overall population is declining.)

The brief snippets of conversation suggest that immortality is on the minds of the world’s strongmen, though it’s interesting to see how it takes a different form than in Silicon Valley, where robots and software are more often seen as the key to longevity instead of, say, recurring organ transplants into an aging bag of skin.

Shows like Upload and Alien: Earth present visions of a world in which consciousness can be scanned by machines and perhaps even loaded into other machines. Meanwhile, Putin and Xi are thinking more about repeated organ transplants and life extension rather than “the Singularity.”

So, which dystopic future are we more likely to get? (Yes, I am presuming, based on the current state of the world, that the near future will be pretty dystopic. I think it’s a good bet.) Clones being raised for organ transplants, as in Kazuo Ishiguro’s novel Never Let Me Go? Or some kind of “download your consciousness into this machine” situation in which the mind of Elon Musk inhabits one of his beloved Tesla robots for all eternity? Given either alternative, I’m not entirely sure I’d want to live forever.

Putin: “Immortality” coming soon through continuous organ transplants Read More »

the-curious-case-of-russia’s-charm-offensive-with-nasa-this-week

The curious case of Russia’s charm offensive with NASA this week

Although NASA and its counterpart in Russia, Roscosmos, continue to work together on a daily basis, the leaders of the two organizations have not held face-to-face meetings since the middle of the first Trump administration, back in October 2018.

A lot has changed in the nearly eight years since then, including the Russian invasion of Ukraine, the rocky departure of Roscosmos leader Dmitry Rogozin in 2022 who was subsequently dispatched to the front lines of the war, several changes in NASA leadership, and more.

This drought in high-level meetings was finally broken this week when the relatively new leader of Roscosmos, Roscosmos Director General Dmitry Bakanov, visited the United States to view the launch of the Crew-11 mission from Florida, which included cosmonaut Oleg Platonov. Bakanov has also met with some of NASA’s human spaceflight leaders at Johnson Space Center in Houston.

Notably, NASA has provided almost no coverage of the visit. However, the state-operated Russian news service, TASS, has published multiple updates. For example, on Thursday at Kennedy Space Center, TASS reported that Bakanov and Acting NASA Administrator Sean Duffy discussed the future of the International Space Station.

Future of ISS partnership

“The conversation went quite well,” Bakanov is quoted as saying. “We agreed to continue using the ISS until 2028. It’s important that the new NASA chief confirmed this. We will work on the deorbiting process until 2030.”

A separate TASS report also quoted Duffy as saying NASA and Roscosmos should continue to work together despite high geopolitical tensions on Earth.

“What’s unique is we might find disagreement with conflict here, which we have,” Duffy said. “We have wild disagreement with the Russians on Ukraine, but what you see is we find points of agreement and points of partnership, which is what we have with the International Space Station and Russians, and so through hard times, we don’t throw those relationships away. We’re going to continue to work on the problems that we have here, but we’re going to continue to build alliances and partnerships and friendships as humanity continues to advance in space exploration.”

The curious case of Russia’s charm offensive with NASA this week Read More »

ars-spoke-with-the-military’s-chief-orbital-traffic-cop—here’s-what-we-learned

Ars spoke with the military’s chief orbital traffic cop—here’s what we learned


“We have some 2,000 or 2,200 objects that I call the ‘red order of battle.'”

Col. Raj Agrawal participates in a change of command ceremony to mark his departure from Mission Delta 2 at Peterson Space Force Base, Colorado. Col. Barry Croker became the new commander of Mission Delta 2 on July 3.

For two years, Col. Raj Agrawal commanded the US military unit responsible for tracking nearly 50,000 human-made objects whipping through space. In this role, he was keeper of the orbital catalog and led teams tasked with discerning whether other countries’ satellites, mainly China and Russia, are peaceful or present a military threat to US forces.

This job is becoming more important as the Space Force prepares for the possibility of orbital warfare.

Ars visited with Agrawal in the final weeks of his two-year tour of duty as commander of Mission Delta 2, a military unit at Peterson Space Force Base, Colorado. Mission Delta 2 collects and fuses data from a network of sensors “to identify, characterize, and exploit opportunities and mitigate vulnerabilities” in orbit, according to a Space Force fact sheet.

This involves operating radars and telescopes, analyzing intelligence information, and “mapping the geocentric space terrain” to “deliver a combat-ready common operational picture” to military commanders. Agrawal’s job has long existed in one form or another, but the job description is different today. Instead of just keeping up with where things are in space—a job challenging enough—military officials now wrestle with distinguishing which objects might have a nefarious purpose.

From teacher to commander

Agrawal’s time at Mission Delta 2 ended on July 3. His next assignment will be as Space Force chair at the National Defense University. This marks a return to education for Agrawal, who served as a Texas schoolteacher for eight years before receiving his commission as an Air Force officer in 2001.

“Teaching is, I think, at the heart of everything I do,” Agrawal said. 

He taught music and math at Trimble Technical High School, an inner city vocational school in Fort Worth. “Most of my students were in broken homes and unfortunate circumstances,” Agrawal said. “I went to church with those kids and those families, and a lot of times, I was the one bringing them home and taking them to school. What was [satisfying] about that was a lot of those students ended up living very fulfilling lives.”

Agrawal felt a calling for higher service and signed up to join the Air Force. Given his background in music, he initially auditioned for and was accepted into the Air Force Band. But someone urged him to apply for Officer Candidate School, and Agrawal got in. “I ended up on a very different path.”

Agrawal was initially accepted into the ICBM career field, but that changed after the September 11 attacks. “That was a time with anyone with a name like mine had a hard time,” he said. “It took a little bit of time to get my security clearance.”

Instead, the Air Force assigned him to work in space operations. Agrawal quickly became an instructor in space situational awareness, did a tour at the National Reconnaissance Office, then found himself working at the Pentagon in 2019 as the Defense Department prepared to set up the Space Force as a new military service. Agrawal was tasked with leading a team of 100 people to draft the first Space Force budget.

Then, he received the call to report to Peterson Space Force Base to take command of what is now Mission Delta 2, the inheritor of decades of Air Force experience cataloging everything in orbit down to the size of a softball. The catalog was stable and predictable, lingering below 10,000 trackable objects until 2007. That’s when China tested an anti-satellite missile, shattering an old Chinese spacecraft into more than 3,500 pieces large enough to be routinely detected by the US military’s Space Surveillance Network.

This graph from the European Space Agency shows the growing number of trackable objects in orbit. Credit: European Space Agency

Two years later, an Iridium communications satellite collided with a defunct Russian spacecraft, adding thousands more debris fragments to low-Earth orbit. A rapid uptick in the pace of launches since then has added to the problem, further congesting busy orbital traffic lanes a hundred miles above the Earth. Today, the orbital catalog numbers roughly 48,000 objects.

“This compiled data, known as the space catalog, is distributed across the military, intelligence community, commercial space entities, and to the public, free of charge,” officials wrote in a fact sheet describing Mission Delta 2’s role at Space Operations Command. Deltas are Space Force military units roughly equivalent to a wing or group command in the Air Force.

The room where it happens

The good news is that the US military is getting better at tracking things in space. A network of modern radars and telescopes on the ground and in space can now spot objects as small as a golf ball. Space is big, but these objects routinely pass close to one another. At speeds of nearly 5 miles per second, an impact will be catastrophic.

But there’s a new problem. Today, the US military must not only screen for accidental collisions but also guard against an attack on US satellites in orbit. Space is militarized, a fact illustrated by growing fleets of satellites—primarily American, Chinese, and Russian—capable of approaching another country’s assets in orbit, and in some cases, disable or destroy them. This has raised fears at the Pentagon that an adversary could take out US satellites critical for missile warning, navigation, and communications, with severe consequences impacting military operations and daily civilian life.

This new reality compelled the creation of the Space Force in 2019, beginning a yearslong process of migrating existing Air Force units into the new service. Now, the Pentagon is posturing for orbital warfare by investing in new technologies and reorganizing the military’s command structure.

Today, the Space Force is responsible for predicting when objects in orbit will come close to one another. This is called a conjunction in the parlance of orbital mechanics. The US military routinely issues conjunction warnings to commercial and foreign satellite operators to give them an opportunity to move their satellites out of harm’s way. These notices also go to NASA if there’s a chance of a close call with the International Space Station (ISS).

The first Trump administration approved a new policy to transfer responsibility for these collision warnings to the Department of Commerce, allowing the military to focus on national security objectives.

But the White House’s budget request for next year would cancel the Commerce Department’s initiative to take over collision warnings. Our discussion with Agrawal occurred before the details of the White House budget were made public last month, and his comments reflect official Space Force policy at the time of the interview. “In uniform, we align to policy,” Agrawal wrote on his LinkedIn account. “We inform policy decisions, but once they’re made, we align our support accordingly.”

US Space Force officials show the 18th Space Defense Squadron’s operations floor to officials from the German Space Situational Awareness Centre during an “Operator Exchange” event at Vandenberg Space Force Base, California, on April 7, 2022. Credit: US Space Force/Tech. Sgt. Luke Kitterman

Since our interview, analysts have also noticed an uptick in interesting Russian activity in space and tracked a suspected Chinese satellite refueling mission in geosynchronous orbit.

Let’s rewind the tape to 2007, the time of China’s game-changing anti-satellite test. Gen. Chance Saltzman, today the Space Force’s Chief of Space Operations, was a lieutenant colonel in command of the Air Force’s 614th Space Operations Squadron at the time. He was on duty when Air Force operators first realized China had tested an anti-satellite missile. Saltzman has called the moment a “pivot point” in space operations. “For those of us that are neck-deep in the business, we did have to think differently from that day on,” Saltzman said in 2023.

Agrawal was in the room, too. “I was on the crew that needed to count the pieces,” he told Ars. “I didn’t know the significance of what was happening until after many years, but the Chinese had clearly changed the nature of the space environment.”

The 2007 anti-satellite test also clearly changed the trajectory of Agrawal’s career. We present part of our discussion with Agrawal below, and we’ll share the rest of the conversation tomorrow. The text has been lightly edited for brevity and clarity.

Ars: The Space Force’s role in monitoring activities in space has changed a lot in the last few years. Can you tell me about these changes, and what’s the difference between what you used to call Space Situational Awareness, and what is now called Space Domain Awareness?

Agrawal: We just finished our fifth year as a Space Force, so as a result of standing up a military service focused on space, we shifted our activities to focus on what the joint force requires for combat space power. We’ve been doing space operations for going on seven decades. I think a lot of folks think that it was a rebranding, as opposed to a different focus for space operations, and it couldn’t be further from the truth. Compared to Space Domain Awareness (SDA), Space Situational Awareness (SSA) is kind of the knowledge we produce with all these sensors, and anybody can do space situational awareness. You have academia doing that. You’ve got commercial, international partners, and so on. But Space Domain Awareness, Gen. [John “Jay”] Raymond coined the term a couple years before we stood up the Space Force, and he was trying to get after, how do we create a domain focused on operational outcomes? That’s all we could say at the time. We couldn’t say war-fighting domain at the time because of the way of our policy, but our policy shifted to being able to talk about space as a place where, not that we want to wage war, but that we can achieve objectives, and do that with military objectives in mind.

We used to talk about detect, characterize, attribute, predict. And then Gen. [Chance] Saltzman added target onto the construct for Space Domain Awareness, so that we’re very much in the conversation of what it means to do a space-enabled attack and being able to achieve objectives in, from, and to space, and using Space Domain Awareness as a vehicle to do those things. So, with Mission Delta 2, what he did is he took the sustainment part of acquisition, software development, cyber defense, intelligence related to Space Domain Awareness, and then all the things that we were doing in Space Domain Awareness already, put all that together under one command … and called us Mission Delta 2. So, the 18th Space Defense Squadron … that used to kind of be the center of the world for Space Domain Awareness, maybe the only unit that you could say was really doing SDA, where everyone else was kind of doing SSA. When I came into command a couple years ago, and we face now a real threat to having space superiority in the space domain, I disaggregated what we were doing just in the 18th and spread out through a couple of other units … So, that way everyone’s got kind of majors and minors, but we can quickly move a mission in case we get tested in terms of cyber defense or other kinds of vulnerabilities.

This multi-exposure image depicts a satellite-filled sky over Alberta. Credit: Alan Dyer/VWPics/Universal Images Group via Getty Images

We can’t see the space domain, so it’s not like the air domain and sea domain and land domain, where you can kind of see where everything is, and you might have radars, but ultimately it’s a human that’s verifying whether or not a target or a threat is where it is. For the space domain, we’re doing all that through radars, telescopes, and computers, so the reality we create for everyone is essentially their reality. So, if there’s a gap, if there’s a delay, if there are some signs that we can’t see, that reality is what is created by us, and that is effectively the reality for everyone else, even if there is some other version of reality in space. So, we’re getting better and better at fielding capability to see the complexity, the number of objects, and then translating that into what’s useful for us—because we don’t need to see everything all the time—but what’s useful for us for military operations to achieve military objectives, and so we’ve shifted our focus just to that.

We’re trying to get to where commercial spaceflight safety is managed by the Office of Space Commerce, so they’re training side by side with us to kind of offload that mission and take that on. We’re doing up to a million notifications a day for conjunction assessments, sometimes as low as 600,000. But last year, we did 263 million conjunction notifications. So, we want to get to where the authorities are rightly lined, where civil or commercial notifications are done by an organization that’s not focused on joint war-fighting, and we focus on the things that we want to focus on.

Ars: Thank you for that overview. It helps me see the canvas for everything else we’re going to talk about. So, today, you’re not only tracking new satellites coming over the horizon from a recent launch or watching out for possible collisions, you’re now trying to see where things are going in space and maybe even try to determine intent, right?

Agrawal: Yeah, so the integrated mission delta has helped us have intel analysts and professionals as part of our formation. Their mission is SDA as much as ours is, but they’re using an intel lens. They’re looking at predictive intelligence, right? I don’t want to give away tradecraft, but what they’re focused on is not necessarily where a thing is. It used to be that all we cared about was position and vector, right? As long as you knew an object’s position and the direction they were going, you knew their orbit. You had predictive understanding of what their element set would be, and you only had to do sampling to get a sense of … Is it kind of where we thought it was going to be? … If it was far enough off of its element set, then we would put more energy, more sampling of that particular object, and then effectively re-catalog it.

Now, it’s a different model. We’re looking at state vectors, and we’re looking at anticipatory modeling, where we have some 2,000 or 2,200 objects that I call the “red order of battle”—that are high-interest objects that we anticipate will do things that are not predicted, that are not element set in nature, but that will follow some type of national interest. So, our intel apparatus gets after what things could potentially be a risk, and what things to continue to understand better, and what things we have to be ready to hold at risk. All of that’s happening through all the organizations, certainly within this delta, but in partnership and in support of other capabilities and deltas that are getting after their parts of space superiority.

Hostile or friendly?

Ars: Can you give some examples of these red order of battle objects?

Agrawal: I think you know about Shijian-20 (a “tech demo” satellite that has evaded inspection by US satellites) and Shijian-24C (which the Space Force says demonstrated “dogfighting” in space), things that are advertised as scientific in nature, but clearly demonstrate capability that is not friendly, and certainly are behaving in ways that are unprofessional. In any other domain, we would consider them hostile, but in space, we try to be a lot more nuanced in terms of how we characterize behavior, but still, when something’s behaving in a way that isn’t pre-planned, isn’t pre-coordinated, and potentially causes hazard, harm, or contest with friendly forces, we now get in a situation where we have to talk about is that behavior hostile or not? Is that escalatory or not? Space Command is charged with those authorities, so they work through the legal apparatus in terms of what the definition of a hostile act is and when something behaves in a way that we consider to be of national security interest.

We present all the capability to be able to do all that, and we have to be as cognizant on the service side as the combatant commanders are, so that our intel analysts are informing the forces and the training resources to be able to anticipate the behavior. We’re not simply recognizing it when it happens, but studying nations in the way they behave in all the other domains, in the way that they set policy, in the way that they challenge norms in other international arenas like the UN and various treaties, and so on. The biggest predictor, for us, of hazardous behaviors is when nations don’t coordinate with the international community on activities that are going to occur—launches, maneuvers, and fielding of large constellations, megaconstellations.

A stack of Starlink satellites in space right before deployment

Starlink satellites. Credit: Starlink

There are nearly 8,000 Starlink satellites in orbit today. SpaceX adds dozens of satellites to the constellation each week. Credit: SpaceX

As you know, we work very closely with Starlink, and they’re very, very responsible. They coordinate and flight plan. They use the kind of things that other constellations are starting to use … changes in those elsets (element sets), for lack of a better term, state vectors, we’re on top of that. We’re pre-coordinating that. We’re doing that weeks or months in advance. We’re doing that in real-time in cooperation with these organizations to make sure that space remains safe, secure, accessible, profitable even, for industry. When you have nations, where they’re launching over their population, where they’re creating uncertainty for the rest of the world, there’s nothing else we can do with it other than treat that as potentially hostile behavior. So, it does take a lot more of our resources, a lot more of our interest, and it puts [us] in a situation where we’re posturing the whole joint force to have to deal with that kind of uncertainty, as opposed to cooperative launches with international partners, with allies, with commercial, civil, and academia, where we’re doing that as friends, and we’re doing that in cooperation. If something goes wrong, we’re handling that as friends, and we’re not having to involve the rest of the security apparatus to get after that problem.

Ars: You mentioned that SpaceX shares Starlink orbit information with your team. Is it the same story with Amazon for the Kuiper constellation?

Agrawal: Yeah, it is. The good thing is that all the US and allied commercial entities, so far, have been super cooperative with Mission Delta 2 in particular, to be able to plan out, to talk about challenges, to even change the way they do business, learning more about what we are asking of them in order to be safe. The Office of Space Commerce, obviously, is now in that conversation as well. They’re learning that trade and ideally taking on more of that responsibility. Certainly, the evolution of technology has helped quite a bit, where you have launches that are self-monitored, that are able to maintain their own safety, as opposed to requiring an entire apparatus of what was the US Air Force often having to expend a tremendous amount of resources to provide for the safety of any launch. Now, technology has gotten to a point where a lot of that is self-monitored, self-reported, and you’ll see commercial entities blow up their own rockets no matter what’s onboard if they see that it’s going to cause harm to a population, and so on. So, yeah, we’re getting a lot of cooperation from other nations, allies, partners, close friends that are also sharing and cooperating in the interest of making sure that space remains sustainable and secure.

“We’ve made ourselves responsible”

Ars: One of the great ironies is that after you figure out the positions and tracks of Chinese or Russian satellites or constellations, you’re giving that data right back to them in the form of conjunction and collision notices, right?

Agrawal: We’ve made ourselves responsible. I don’t know that there’s any organization holding us accountable to that. We believe it’s in our interests, in the US’s interests, to provide for a safe, accessible, secure space domain. So, whatever we can do to help other nations also be safe, we’re doing it certainly for their sake, but we’re doing it as much for our sake, too. We want the space domain to be safe and predictable. We do have an apparatus set up in partnership with the State Department, and with a tremendous amount of oversight from the State Department, and through US Space Command to provide for spaceflight safety notifications to China and Russia. We send notes directly to offices within those nations. Most of the time they don’t respond. Russia, I don’t recall, hasn’t responded at all in the past couple of years. China has responded a couple of times to those notifications. And we hope that, through small measures like that, we can demonstrate our commitment to getting to a predictable and safe space environment.

A model of a Chinese satellite refueling spacecraft on display during the 13th China International Aviation and Aerospace Exhibition on October 1, 2021, in Zhuhai, Guangdong Province of China. Credit: Photo by VCG/VCG via Getty Images

Ars:  What does China say in response to these notices?

Agrawal: Most of the time it’s copy or acknowledged. I can only recall two instances where they’ve responded. But we did see some hope earlier this year and last year, where they wanted to open up technical exchanges with us and some of their [experts] to talk about spaceflight safety, and what measures they could take to open up those kinds of conversations, and what they could do to get a more secure, safer pace of operations. That, at some point, got delayed because of the holiday that they were going through, and then those conversations just halted, or at least progress on getting those conversations going halted. But we hope that there’ll be an opportunity again in the future where they will open up those doors again and have those kinds of conversations because, again, transparency will get us to a place where we can be predictable, and we can all benefit from orbital regimes, as opposed to using them exploitively. LEO is just one of those places where you’re not going to hide activity there, so you just are creating risk, uncertainty, and potential escalation by launching into LEO and not communicating throughout that whole process.

Ars:  Do you have any numbers on how many of these conjunction notices go to China and Russia? I’m just trying to get an idea of what proportion go to potential adversaries.

Agrawal: A lot. I don’t know the degree of how many thousands go to them, but on a regular basis, I’m dealing with debris notifications from Russian and Chinese ASAT (anti-satellite) testing. That has put the ISS at risk a number of times. We’ve had maneuvers occur in recent history as a result of Chinese rocket body debris. Debris can’t maneuver, and unfortunately, we’ve gotten into situations with particularly those two nations that talk about wanting to have safer operations, but continue to conduct debris-causing tests. We’re going to be dealing with that for generations, and we are going to have to design capability to maneuver around those debris clouds as just a function of operating in space. So, we’ve got to get to a point where we’re not doing that kind of testing in orbit.

Ars: Would it be accurate to say you send these notices to China and Russia daily?

Agrawal: Yeah, absolutely. That’s accurate. These debris clouds are in LEO, so as you can imagine, as those debris clouds go around the Earth every 90 minutes, we’re dealing with conjunctions. There are some parts of orbits that are just unusable as a result of that unsafe ASAT test.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Ars spoke with the military’s chief orbital traffic cop—here’s what we learned Read More »