launch

prepping-for-starship,-spacex-is-about-to-demolish-one-of-ula’s-launch-pads

Prepping for Starship, SpaceX is about to demolish one of ULA’s launch pads


SpaceX may soon have up to nine active launch pads. Most competitors have one or two.

A Delta IV Heavy rocket stands inside the mobile service tower at Space Launch Complex-37 in this photo from 2014. SpaceX is set to demolish all of the structures seen here. Credit: United Launch Alliance

The US Air Force is moving closer to authorizing SpaceX to move into one of the largest launch pads at Cape Canaveral Space Force Station in Florida, with plans to use the facility for up to 76 launches of the company’s Starship rocket each year.

A draft Environmental Impact Statement (EIS) released this week by the Department of the Air Force, which includes the Space Force, found SpaceX’s planned use of Space Launch Complex 37 (SLC-37) at Cape Canaveral would have no significant negative impacts on local environmental, historical, social, and cultural interests. The Air Force also found SpaceX’s plans at SLC-37 will have no significant impact on the company’s competitors in the launch industry.

The Defense Department is leading the environmental review and approval process for SpaceX to take over the launch site, which the Space Force previously leased to United Launch Alliance, one of SpaceX’s chief rivals in the US launch industry. ULA launched its final Delta IV Heavy rocket from SLC-37 in April 2024, a couple of months after the military announced SpaceX was interested in using the launch pad.

Ground crews are expected to begin removing Delta IV-era structures at the launch pad this week. Multiple sources told Ars demolition could begin as soon as Thursday.

Emre Kelly, a Space Force spokesperson, deferred questions on the schedule for the demolition to SpaceX, which is overseeing the work. But he said the Delta IV’s mobile gantry, fixed umbilical tower, and both lightning towers will come down. Unlike other large-scale demolitions at Cape Canaveral, SpaceX and the Space Force don’t plan to publicize the event ahead of time.

“Demolition of these items will be conducted in accordance with federal and state laws that govern explosive demolition operations,” Kelly said.

In their place, SpaceX plans to build two 600-foot-tall (180-meter) Starship launch integration towers within the 230-acre confines of SLC-37.

Tied at the hip

The Space Force’s willingness to turn over a piece of prime real estate at Cape Canaveral to SpaceX helps illustrate the government’s close relationship with—indeed, reliance on—Elon Musk’s space company. The breakdown of Musk’s relationship with President Donald Trump has, so far, only spawned a war of words between the two billionaires.

But Trump has threatened to terminate Musk’s contracts with the federal government and warned of “serious consequences” for Musk if he donates money to Democratic political candidates. Musk said he would begin decommissioning SpaceX’s Dragon spacecraft, the sole US vehicle ferrying astronauts to and from orbit, before backing off the threat last week.

NASA and the Space Force need SpaceX’s Dragon spacecraft and its Falcon 9 and Falcon Heavy rockets to maintain the International Space Station and launch the nation’s most critical military satellites. The super heavy-lift capabilities Starship will bring to the government could enable a range of new missions, such as global cargo delivery for the military and missions to the Moon and Mars in partnership with NASA.

Fully stacked, the Starship rocket stands more than 400 feet tall. Credit: SpaceX

SpaceX already has a “right of limited entry” to begin preparations to convert SLC-37 into a Starship launch pad. A full lease agreement between the Space Force and SpaceX is expected after the release of the final Environmental Impact Statement.

The environmental approval process began more than a year ago with a notice of intent, followed by studies, evaluations, and scope meetings that fed into the creation of the draft EIS. Now, government officials will host more public meetings and solicit public comments on SpaceX’s plans through late July. Then, sometime this fall, the Department of the Air Force will issue a final EIS and a “record of decision,” according to the project’s official timeline.

A growing footprint

This timeline could allow SpaceX to begin launching Starships from SLC-37 as soon as next year, although the site still requires the demolition of existing structures and construction of new towers, propellant farms, a methane liquefaction plant, water tanks, deluge systems, and other ground support equipment. The construction will likely take more than a year, so perhaps 2027 is a more realistic target.

The company is also studying an option to construct two separate towers for use exclusively as “catch towers” for recovery of Super Heavy boosters and Starship upper stages “if space allows” at SLC-37, according to the draft EIS. According to the Air Force, the initial review process eliminated an option for SpaceX to construct a standalone Starship launch pad on undeveloped property at Cape Canaveral because the site would have a “high potential” for impacting endangered species and is “less ideal” than developing an existing launch pad.

SpaceX’s plan for recovering its reusable Super Heavy and Starship vehicles involves catching them with articulating arms on a towereither a launch integration structure or a catch-only tower. SpaceX has already demonstrated catching the Super Heavy booster on three test flights at the company’s Starbase launch site in South Texas. An attempt to catch a Starship vehicle returning from low-Earth orbit might happen later this year, assuming SpaceX can correct the technical problems that have stalled the rocket’s advancement in recent months.

Construction crews are outfitting a second Starship launch tower at Starbase, called Pad B, that may also come online before the end of this year. A few miles north of SLC-37, SpaceX has built another Starship tower at Launch Complex 39A, a historic site on NASA property at Kennedy Space Center. Significant work remains ahead at LC-39A to install a new launch mount, finish digging a flame trench, and install all the tanks and plumbing necessary to store and load super-cold propellants into the rocket. The most recent official schedule from SpaceX suggests a first Starship launch from LC-39A could happen before the end of the year, but it’s probably a year or more away.

The Air Force’s draft Environmental Impact Statement includes this map showing SpaceX’s site plan for SLC-37. Credit: Department of the Air Force

Similar to the approach SpaceX is taking at SLC-37, a document released last year indicates the Starship team plans to construct a separate catch tower near the Starship launch tower at LC-39A. If built, these catch towers could simplify Starship operations as the flight rate ramps up, allowing SpaceX to catch a returning rocket at one location while stacking Starships for launch with the chopstick arms on nearby integration towers.

With SpaceX’s growing footprint in Texas and Florida, the company has built, is building, or revealed plans to build at least five Starship launch towers. This number is likely to grow in the coming years as Musk aims to eventually launch and land multiple Starships per day. This will be a gradual ramp-up as SpaceX works through Starship design issues, grows factory capacity, and brings new launch pads online.

Last month, the Federal Aviation Administration—which oversees environmental reviews for launch sites that aren’t on military propertyapproved SpaceX’s request to launch Starships as many as 25 times per year from Starbase, Texas. The previous limit was five, but the number will likely go up from here. Coming into 2025, SpaceX sought to launch as many as 25 Starships this year, but failures on three of the rockets’ most recent test flights have slowed development, and this goal is no longer achievable.

That’s a lot of launches

Meanwhile, in Florida, the FAA’s environmental review for LC-39A is assessing the impact of launching Starships up to 44 times per year from Kennedy Space Center. At nearby Cape Canaveral Space Force Station, the Air Force is evaluating SpaceX’s proposal for up to 76 Starship flights per year from SLC-37. The scope of each review also includes environmental assessments for Super Heavy and Starship landings within the perimeters of each launch complex.

While the draft EIS for SLC-37 is now public, the FAA hasn’t yet released a similar document for SpaceX’s planned expansion and Starship launch operations at LC-39A, also home to a launch pad used for Falcon 9 and Falcon Heavy flights.

SpaceX will continue launching its workhorse Falcon 9 and Falcon Heavy rockets as Starship launch pads heat up with more test flights. Within a few years, SpaceX could have as many as nine active launch pads spread across three states. The company’s most optimistic vision for Starship would require many more, potentially including offshore launch and landing sites.

At Vandenberg Space Force Base in California, SpaceX has leased the former West Coast launch pad for United Launch Alliance’s Delta IV rocket. SpaceX will prepare this launch pad, known as SLC-6, for Falcon 9 and Falcon Heavy launches starting as soon as next year, augmenting the capacity of the company’s existing Vandenberg launch pad, which is only configured for Falcon 9s. Like the demolition at SLC-37 in Florida, the work to prepare SLC-6 will include the razing of unnecessary towers and structures left over from the Delta IV (and the Space Shuttle) program.

SpaceX has not yet announced any plans to launch Starships from the California spaceport.

SpaceX launches Falcon 9 rockets from Pad 39A at NASA’s Kennedy Space Center and from Pad 40 at Cape Canaveral Space Force Station. The company plans to develop Starship launch infrastructure at Pad 39A and Pad 37. United Launch Alliance flies Vulcan and Atlas V rockets from Pad 41, and Blue Origin has based its New Glenn rocket at Pad 36. Credit: NASA (labels by Ars Technica)

The expansion of SpaceX’s launch facilities comes as most of its closest competitors limit themselves to just one or two launch pads. ULA has reduced its footprint from seven launch pads to two as a cost-cutting measure. Blue Origin, Jeff Bezos’ space company, operates a single launch pad at Cape Canaveral, although it has unannounced plans to open a launch facility at Vandenberg. Rocket Lab has three operational launch pads in New Zealand and Virginia for the light-class Electron rocket and will soon have a fourth in for the medium-lift Neutron launcher.

These were the top four companies in Ars’ most recent annual power ranking of US launch providers.

Two of these competitors, ULA and Blue Origin, complained last year that SpaceX’s target of launching as many as 120 Starships per year from Florida’s Space Coast could force them to clear their launch pads for safety reasons. The Space Force is responsible for ensuring all personnel remain outside of danger areas during testing and launch operations.

It could become quite busy at Cape Canaveral. Military officials forecast that launch providers not named SpaceX could fly more than 110 launches per year. The Air Force acknowledged in the draft EIS that SpaceX’s plans for up to 76 launches and 152 landings (76 Starships and 76 Super Heavy boosters) per year at SLC-37 “could result in planning constraints for other range user operations.” This doesn’t take into account the FAA’s pending approval for up to 44 Starship flights per year from LC-39A.

But the report suggests SpaceX’s plans to launch from SLC-37 won’t require the evacuation of ULA and Blue Origin’s launch pads. While the report doesn’t mention the specific impact of Starship launches on ULA and Blue Origin, the Air Force wrote that work could continue on SpaceX’s own Falcon 9 launch pad at SLC-40 during a Starship launch at SLC-37. Because SLC-40 is closer to SLC-37 than ULA and Blue Origin’s pads, this finding seems to imply workers could remain at those launch sites.

The Air Force’s environmental report also doesn’t mention possible impacts of Starship launches from NASA property on nearby workers. It also doesn’t include any discussion of how Starship launches from SLC-37 might affect workers’ access to other facilities, such as offices and hangars, closer to the launch pad.

The bottom line of this section of the Air Force’s environmental report concluded that Starship flights from SLC-37 “should have no significant impact” on “ongoing and future activities” at the spaceport.

Shipping Starships

While SpaceX builds out its Starship launch pads on the Florida coast, the company is also constructing a Starship integration building a few miles away at Kennedy Space Center. This structure, called Gigabay, will be located next to an existing SpaceX building used for Falcon 9 processing and launch control.

The sprawling Gigabay will stand 380 feet tall and provide approximately 46.5 million cubic feet of interior processing space with 815,000 square feet of workspace, according to SpaceX. The company says this building should be operational by the end of 2026. SpaceX is also planning a co-located Starship manufacturing facility, similar to the Starfactory building recently completed at Starbase, Texas.

Until this factory is up and running, SpaceX plans to transport Starships and Super Heavy boosters horizontally via barges from South Texas to Cape Canaveral.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Prepping for Starship, SpaceX is about to demolish one of ULA’s launch pads Read More »

blue-origin-boss:-government-should-forget-launch-and-focus-on-“exotic”-missions

Blue Origin boss: Government should forget launch and focus on “exotic” missions


“There’s not yet a commercial reason only to go to the Moon with humans.”

In this long exposure photograph, Blue Origin’s New Glenn rocket pierces a cloud deck over Florida’s Space Coast on its inaugural flight January 16. Credit: Blue Origin

Eighteen months after leaving his job as a vice president at Amazon to take over as Blue Origin’s chief executive, Dave Limp has some thoughts on how commercial companies and government agencies like NASA should explore the Solar System together.

Limp had no background in the space industry before taking the helm of Jeff Bezos’ space company in December 2023. He started his career as a computer scientist at Apple, took a stint at a venture capital firm, and joined Amazon in 2010, where he managed development of consumer devices like Alexa, Kindle, and the Fire TV.

“I had no thoughts of ever running a space company,” Limp said Thursday at a space conference in Washington, DC. “I’ve done consumer electronics my whole life. Started at Apple and did a bunch of other things, and so when I decided to retire from Amazon, I was looking for something that I could give back a little bit, be a little bit more philanthropic in the sort of second half of my career. I didn’t want to stop working, just wanted to do something different. And about that same time, Jeff was looking for a CEO.”

While he’s still a relative newcomer to the space business, Limp’s views align with those of many policy wonks and industry leaders who have the ears of senior officials in the Trump administration, including Jared Isaacman, President Trump’s nominee to become the next NASA administrator. Limp’s long tenure at Amazon and his selection as Blue Origin’s new CEO demonstrate that he also has the trust of Bezos, who was dissatisfied with his company’s slow progress in spaceflight.

“I think Jeff convinced me, and he’s very persuasive, that Blue didn’t need another rocket scientist,” Limp said. “We have thousands of the world’s best rocket scientists. What we needed was a little bit more decisiveness, a little bit more ability to think about: How do we manufacture at scale? And those are things I’ve done in the past, and so I’ve never looked back.”

David Limp, CEO of Blue Origin, speaks during the 2025 Humans to the Moon and Mars Summit at George Washington University in Washington, DC, on May 29, 2025. Credit: Alex Wroblewski / AFP via Getty Images

Leave it to us

In remarks Thursday at the Humans to the Moon & Mars Summit, Limp advocated for commercial companies, like his own, taking a larger role in developing the transportation and infrastructure to meet lofty national objectives established by government leaders.

In some ways, NASA has long been moving in this direction, beginning with initiatives ceding most launch services to private industry in the 1990s. More recently, NASA has turned to commercial companies for crew and cargo deliveries to the International Space Station and cargo and human-rated Moon landers.

However, NASA, with the backing of key congressional leaders, has held an iron grip on having its own heavy-lift launcher and crew capsule to ferry astronauts between Earth and destinations beyond low-Earth orbit. Now, these vehicles—the Space Launch System and Orion spacecraft—may be canceled if Congress agrees with Trump’s proposed NASA budget.

Commercial rockets close to matching or exceeding the Space Launch System’s lift capability are available for purchase or likely will be soon. These include SpaceX’s Starship mega-rocket and Blue Origin’s New Glenn launcher. Both are already key elements of NASA’s Artemis program, which aims to land US astronauts on the Moon as a stepping stone toward human expeditions to Mars.

But NASA still plans to use its government-owned Space Launch System rocket and Orion spacecraft to transport astronauts out to the Moon, where they will rendezvous with a Starship or Blue Origin’s Blue Moon lander to fly to and from the lunar surface.

SLS and Orion are expensive vehicles, costing more than $4 billion per launch for the initial set of four Artemis missions, according to a report by NASA’s inspector general. While commercial companies like Boeing, Lockheed Martin, and Northrop Grumman build elements of SLS and Orion, NASA acts as the prime integrator. The agency signed cost-plus contracts with the companies building SLS and Orion, meaning the government is on the hook for cost overruns. And there have been many.

Artist’s concept of Blue Ring, a propulsive spacecraft platform Blue Origin says it is developing to carry payloads to different orbits, and possibly all the way to Mars, at lower costs than feasible today. Credit: Blue Origin

NASA’s robotic science probes are also getting more expensive, even when accounting for inflation. Given the way NASA procures science probes, it would cost NASA more today to send an orbiter to Mars than it did for a similarly sized spacecraft a quarter-century ago.

This has to change in order for NASA and private companies like Blue Origin and SpaceX to make their ambitions a reality, Limp said Thursday.

“I think commercial folks can worry about the infrastructure,” he said. “We can do the launch. We can build the satellite buses that can get you to Mars much more frequently, that don’t cost billions of dollars. We can take a zero, and over time, maybe two zeros off of that. And if the governments around the world leave that to the commercial side, then there are a lot more resources that are freed up for the science side, for the national prestige side, and those types of things.”

The bottom line

Limp followed these comments with a dose of realism you don’t often hear from space industry executives. While there’s a growing list of commercially viable markets in space (things like Starlink and satellite servicing wouldn’t have been money-makers 20 years ago), the market for human spaceflight still requires some level of government commitment.

“I think the thing about bringing commercial aspects to exploration, to science, to the Moon, to Mars, is that we have to see a business prospect for it,” Limp said. “We have to turn it into a business, and that benefits American taxpayers because we will use that capital as efficiently as we can to get to the Moon, to get to Mars in a safe way, but in a way that’s the most efficient.

“We’re committed to that, no matter what the architecture looks like, but it does take the US government and international governments to have the motivation to do it,” he continued. “There’s not yet a commercial reason only to go to the Moon with humans. There are lots of commercial reasons to put robotics on the Moon and other types of things. So, we do need to have conviction that the Moon is important and Mars is important as well.”

Trump and Musk, an ally and advisor to the president, rekindled the question of Moon or Mars in a series of remarks during the early weeks of the new Trump administration. The Artemis Moon program began during the first Trump administration, with the goal of returning astronauts to the Moon for the first time since 1972. NASA would establish a sustained presence at the Moon, using our nearest planetary body as a proving ground for the next destination for humans in Solar System exploration: Mars.

Space industry rivals Jeff Bezos, second from left, and Elon Musk, second from right, inside the US Capitol for President Donald Trump’s inauguration on January 20, 2025. Credit: Chip Somodevilla/Getty Images

SpaceX’s Starship, while capable of one day landing on the Moon, was designed for long-duration cruises to Mars. Blue Origin’s Blue Moon is tailored for lunar landings.

“As an American, I don’t want another Sputnik moment,” Limp said. “From my standpoint, getting boots on the Moon and setting the groundwork for permanence on the Moon is of national importance and urgency. Rest assured, Blue will do everything in its power to try to make that happen, but in a cost-effective way.”

NASA, please don’t leave us

Since retaking office in January, Trump has mentioned human missions to Mars multiple times, but not the Moon. Isaacman, who may be confirmed as NASA administrator by the Senate as soon as next week, told lawmakers in April that the agency should pursue human missions to the Moon and Mars simultaneously. The details of how that might work haven’t been released but could come out in the White House’s detailed budget proposal for fiscal-year 2026.

A blueprint of Trump’s spending proposal released May 2 includes a 25 percent cut to NASA’s overall budget, but the plan would provide additional money for human space exploration at the Moon and Mars. “The budget funds a program to replace SLS and Orion flights to the Moon with more cost-effective commercial systems that would support more ambitious subsequent lunar missions,” the White House budget office wrote.

This part of the budget request is not controversial for industry leaders like Limp. On the other hand, the budget blueprint proposes slashing NASA’s space science budget by nearly $2.3 billion, Earth science by almost $1.2 billion, and space technology by $531 million.

While Limp didn’t directly address these budget proposals, these parts of NASA are largely focused on research projects that lack a commercial business case. Who else but a government space agency, or perhaps an especially generous type of philanthropic multi-billionaire, would pay to send a probe to study Jupiter’s icy moon Europa? Or a robot to zip by Pluto? Or how about a mission like Landsat, which documents everything from water resources to farms and urban sprawl and makes its data freely available to anyone with an Internet connection?

Most experts agree there are better ways to do these things. Reusable rockets, mass-produced satellite platforms, and improved contracting practices can bring down the costs of these missions. Bezos’ long-term goal for Blue Origin, which is to move all polluting factories off the Earth and into space, will be easier to achieve with government support, not just funding, Limp said.

“Getting up there, building factories on the Moon is a great step, and the government can really help with research dollars around that,” he said. “But it still does need the labs. The science missions need the JPLs [Jet Propulsion Laboratory] of the world. To make the human experience right, we need the Johnson Space Centers of the world to be able to kind of use that gold mine of institutional knowledge.

“I would say, and it might be a little provocative, let’s have those smart brains look on the forward-thinking types of things, the really edge of science, planning the really exotic missions, figuring out how to get to planetary bodies we haven’t gotten to before, and staying there,” Limp said.

Mark it down

For the first decade after Bezos founded Blue Origin in 2000, the company operated under the radar and seemed to move at a glacial pace. It launched its first small rocket in 2006 to an altitude of less than 300 feet and reached space with the suborbital New Shepard booster in 2015. Blue Origin finally reached orbit in January of this year on the debut test flight of its heavy-lift New Glenn rocket. Meanwhile, Blue Origin inked a deal with United Launch Alliance to supply a version of its New Glenn main engine to power that company’s Vulcan rocket.

Blue Origin’s Blue Moon MK1 lander, seen in the center, is taller than NASA’s Apollo lunar lander, currently the largest spacecraft to have landed on the Moon. Blue Moon MK2 is even larger, but all three landers are dwarfed in size by SpaceX’s Starship, NASA’s other Artemis lunar lander. Credit: Blue Origin

The next big mission for Blue Origin will be the first flight of its Blue Moon lander. The first version of Blue Moon, called MK1, will launch on a New Glenn rocket later this year and attempt to become the largest spacecraft to ever land on the Moon. This demonstration, without anyone onboard, is fully funded by Blue Origin, Limp said.

A future human-rated version, called MK2, is under development with the assistance of NASA. It will be larger and will require refueling to reach the lunar surface. Blue Moon MK1 can make a landing on one tank.

These are tangible achievements that would be the envy of any space industry startup not named SpaceX. But Musk’s rocket company left Blue Origin in the dust as it broke launch industry records repeatedly and began delivering NASA astronauts to the International Space Station in 2020. My colleague, Eric Berger, wrote a story in January describing Blue Origin’s culture. For much of its existence, one former employee said, Blue Origin had “zero incentive” to operate like SpaceX.

To ensure he would be in lock-step with his boss, Limp felt he had to ask a question that was on the minds of many industry insiders. He got the answer he wanted.

“The only question I really asked Jeff when I was talking about taking this job was, ‘What do you want Blue to be? Is it a hobby, or is it a business?'” Limp said. “And he had the right answer, which is, it’s a business, because I don’t know how to run a hobby, and I don’t think it’s sustainable.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Blue Origin boss: Government should forget launch and focus on “exotic” missions Read More »

china-extends-its-reach-into-the-solar-system-with-launch-of-asteroid-mission

China extends its reach into the Solar System with launch of asteroid mission

Comet 311P/PanSTARRS was observed by the Hubble Space Telescope in 2013 with a set of six comet-like tails radiating from its main body. This object, also called P/2013 P5, is known as an active asteroid. Credit: NASA, ESA, and D. Jewitt (UCLA)

Tianwen-2’s mothership, with 11 scientific instruments, will commence the second phase of its mission after dropping off the asteroid specimens at Earth. The probe’s next journey will bring it near an enigma in the asteroid belt, named 311P/PanSTARRS, in the mid-2030s. This object is one in a rare class of objects known as active asteroids or main-belt comets, small worlds that have tails and comas like comets but loiter in orbits most commonly associated with asteroids. Tianwen-2 will be the first mission to see such an object up close.

Stepping into the Solar System

Until the last few years, China’s space program has primarily centered on the Moon as a destination for scientific exploration. The Moon remains the main target for China’s ambitions in space, with the goal of accomplishing a human lunar landing by 2030. But the country is looking farther afield, too.

With the Tianwen-1 mission in 2021, China became the second country to achieve a soft landing on Mars. After Tianwen-2, China will again go to Mars with the Tianwen-3 sample return mission, slated for launch in 2028.

Tianwen, which means “questions to heaven,” is the name given to China’s program of robotic Solar System exploration. Tianwen-3 has a chance to become the first mission to return pristine samples from Mars to Earth. At the same time, NASA’s plans for a Mars Sample Return mission are faltering.

China is looking at launching Tianwen-4 around 2029 to travel to Jupiter and enter orbit around Callisto, one of its four largest moons. In the 2030s, China’s roadmap includes a mission to return atmospheric samples from Venus to Earth, a Mars research station, and a probe to Neptune.

Meanwhile, NASA has sent spacecraft to study every planet in the Solar System and currently has spacecraft at or on the way to the Moon, Mars, Jupiter, a metal asteroid, and to interstellar space. Another US science mission, Dragonfly, is scheduled for launch in 2028 on a daring expedition to Saturn’s moon Titan.

But NASA’s science division is bracing for severe budget cuts proposed by President Donald Trump. In planetary science, the White House’s budget blueprint calls for canceling a joint US-European Mars Sample Return mission and several other projects, including the DAVINCI mission to Venus.

China extends its reach into the Solar System with launch of asteroid mission Read More »

spacex-may-have-solved-one-problem-only-to-find-more-on-latest-starship-flight

SpaceX may have solved one problem only to find more on latest Starship flight


SpaceX’s ninth Starship survived launch, but engineers now have more problems to overcome.

An onboard camera shows the six Raptor engines on SpaceX’s Starship upper stage, roughly three minutes after launching from South Texas on Tuesday. Credit: SpaceX

SpaceX made some progress on another test flight of the world’s most powerful rocket Tuesday, finally overcoming technical problems that plagued the program’s two previous launches.

But minutes into the mission, SpaceX’s Starship lost control as it cruised through space, then tumbled back into the atmosphere somewhere over the Indian Ocean nearly an hour after taking off from Starbase, Texas, the company’s privately owned spaceport near the US-Mexico border.

SpaceX’s next-generation rocket is designed to eventually ferry cargo and private and government crews between the Earth, the Moon, and Mars. The rocket is complex and gargantuan, wider and longer than a Boeing 747 jumbo jet, and after nearly two years of steady progress since its first test flight in 2023, this has been a year of setbacks for Starship.

During the rocket’s two previous test flights—each using an upgraded “Block 2” Starship design—problems in the ship’s propulsion system led to leaks during launch, eventually triggering an early shutdown of the rocket’s main engines. On both flights, the vehicle spun out of control and broke apart, spreading debris over an area near the Bahamas and the Turks and Caicos Islands.

The good news is that that didn’t happen Tuesday. The ship’s main engines fired for their full duration, putting the vehicle on its expected trajectory toward a splashdown in the Indian Ocean. For a short time, it appeared the ship was on track for a successful flight.

“Starship made it to the scheduled ship engine cutoff, so big improvement over last flight! Also, no significant loss of heat shield tiles during ascent,” wrote Elon Musk, SpaceX’s founder and CEO, on X.

The bad news is that Tuesday’s test flight revealed more problems, preventing SpaceX from achieving the most important goals Musk outlined going into the launch.

“Leaks caused loss of main tank pressure during the coast and reentry phase,” Musk posted on X. “Lot of good data to review.”

With the loss of tank pressure, the rocket started slowly spinning as it coasted through the blackness of space more than 100 miles above the Earth. This loss of control spelled another premature end to a Starship test flight. Most notable among the flight’s unmet objectives was SpaceX’s desire to study the performance of the ship’s heat shield, which includes improved heat-absorbing tiles to better withstand the scorching temperatures of reentry back into the atmosphere.

“The most important thing is data on how to improve the tile design, so it’s basically data during the high heating, reentry phase in order to improve the tiles for the next iteration,” Musk told Ars Technica before Tuesday’s flight. “So we’ve got like a dozen or more tile experiments. We’re trying different coatings on tiles. We’re trying different fabrication techniques, different attachment techniques. We’re varying the gap filler for the tiles.”

Engineers are hungry for data on the changes to the heat shield, which can’t be fully tested on the ground. SpaceX officials hope the new tiles will be more robust than the ones flown on the first-generation, or Block 1, version of Starship, allowing future ships to land and quickly launch again, without the need for time-consuming inspections, refurbishment, and in some cases, tile replacements. This is a core tenet of SpaceX’s plans for Starship, which include delivering astronauts to the surface of the Moon, proliferating low-Earth orbit with refueling tankers, and eventually helping establish a settlement on Mars, all of which are predicated on rapid reusability of Starship and its Super Heavy booster.

Last year, SpaceX successfully landed three Starships in the Indian Ocean after they survived hellish reentries, but they came down with damaged heat shields. After an early end to Tuesday’s test flight, SpaceX’s heat shield engineers will have to wait a while longer to satiate their appetites. And the longer they have to wait, the longer the wait for other important Starship developmental tests, such as a full orbital flight, in-space refueling, and recovery and reuse of the ship itself, replicating what SpaceX has now accomplished with the Super Heavy booster.

Failing forward or falling short?

The ninth flight of Starship began with a booming departure from SpaceX’s Starbase launch site at 6: 35 pm CDT (7: 35 pm EDT; 23: 35 UTC) Tuesday.

After a brief hold to resolve last-minute technical glitches, SpaceX resumed the countdown clock to tick away the final seconds before liftoff. A gush of water poured over the deck of the launch pad just before 33 methane-fueled Raptor engines ignited on the rocket’s massive Super Heavy first stage booster. Once all 33 engines lit, the enormous stainless steel rocket—towering more than 400 feet (123 meters)—began to climb away from Starbase.

SpaceX’s Starship rocket, flying with a reused first-stage booster for the first time, climbs away from Starbase, Texas. Credit: SpaceX

Heading east, the Super Heavy booster produced more than twice the power of NASA’s Saturn V rocket, an icon of the Apollo Moon program, as it soared over the Gulf of Mexico. After two-and-a-half minutes, the Raptor engines switched off and the Super Heavy booster separated from Starship’s upper stage.

Six Raptor engines fired on the ship to continue pushing it into space. As the booster started maneuvering for an attempt to target an intact splashdown in the sea, the ship burned its engines more than six minutes, reaching a top speed of 16,462 mph (26,493 kilometers per hour), right in line with preflight predictions.

A member of SpaceX’s launch team declared “nominal orbit insertion” a little more than nine minutes into the flight, indicating the rocket reached its planned trajectory, just shy of the velocity required to enter a stable orbit around the Earth.

The flight profile was supposed to take Starship halfway around the world, with the mission culminating in a controlled splashdown in the Indian Ocean northwest of Australia. But a few minutes after engine shutdown, the ship started to diverge from SpaceX’s flight plan.

First, SpaceX aborted an attempt to release eight simulated Starlink Internet satellites in the first test of the Starship’s payload deployer. The cargo bay door would not fully open, and engineers called off the demonstration, according to Dan Huot, a member of SpaceX’s communications team who hosted the company’s live launch broadcast Tuesday.

That, alone, would not have been a big deal. However, a few minutes later, Huot made a more troubling announcement.

“We are in a little bit of a spin,” he said. “We did spring a leak in some of the fuel tank systems inside of Starship, which a lot of those are used for attitude control. So, at this point, we’ve essentially lost our attitude control with Starship.”

This eliminated any chance for a controlled reentry and an opportunity to thoroughly scrutinize the performance of Starship’s heat shield. The spin also prevented a brief restart of one of the ship’s Raptor engines in space.

“Not looking great for a lot of our on-orbit objectives for today,” Huot said.

SpaceX continued streaming live video from Starship as it soared over the Atlantic Ocean and Africa. Then, a blanket of super-heated plasma enveloped the vehicle as it plunged into the atmosphere. Still in a slow tumble, the ship started shedding scorched chunks of its skin before the screen went black. SpaceX lost contact with the vehicle around 46 minutes into the flight. The ship likely broke apart over the Indian Ocean, dropping debris into a remote swath of sea within its expected flight corridor.

Victories where you find them

Although the flight did not end as well as SpaceX officials hoped, the company made some tangible progress Tuesday. Most importantly, it broke the streak of back-to-back launch failures on Starship’s two most recent test flights in January and March.

SpaceX’s investigation earlier this year into a January 16 launch failure concluded vibrations likely triggered fuel leaks and fires in the ship’s engine compartment, causing an early shutdown of the rocket’s engines. Engineers said the vibrations were likely in resonance with the vehicle’s natural frequency, intensifying the shaking beyond the levels SpaceX predicted.

Engineers made fixes and launched the next Starship test flight March 6, but it again encountered trouble midway through the ship’s main engine burn. SpaceX said earlier this month that the inquiry into the March 6 failure found its most probable root cause was a hardware failure in one of the upper stage’s center engines, resulting in “inadvertent propellant mixing and ignition.”

In its official statement, the company was silent on the nature of the hardware failure but said engines for future test flights will receive additional preload on key joints, a new nitrogen purge system, and improvements to the propellant drain system. A new generation of Raptor engines, known as Raptor 3, should begin flying around the end of this year with additional improvements to address the failure mechanism, SpaceX said.

Another bright spot in Tuesday’s test flight was that it marked the first time SpaceX reused a Super Heavy booster from a prior launch. The booster used Tuesday previously launched on Starship’s seventh test flight in January before it was caught back at the launch pad and refurbished for another space shot.

Booster 14 comes in for the catch after flying to the edge of space on January 16. SpaceX flew this booster again Tuesday but did not attempt a catch. Credit: SpaceX

After releasing the Starship upper stage to continue its journey into space, the Super Heavy booster flipped around to fly tail-first and reignited 13 of its engines to begin boosting itself back toward the South Texas coast. On this test flight, SpaceX aimed the booster for a hard splashdown in the ocean just offshore from Starbase, rather than a mid-air catch back at the launch pad, which SpaceX accomplished on three of its four most recent test flights.

SpaceX made the change for a few reasons. First, engineers programmed the booster to fly at a higher angle of attack during its descent, increasing the amount of atmospheric drag on the vehicle compared to past flights. This change should reduce propellant usage on the booster’s landing burn, which occurs just before the rocket is caught by the launch pad’s mechanical arms, or “chopsticks,” on a recovery flight.

During the landing burn itself, engineers wanted to demonstrate the booster’s ability to respond to an engine failure on descent by using just two of the rocket’s 33 engines for the end of the burn, rather than the usual three. Instead, the rocket appeared to explode around the beginning of the landing burn before it could complete the final landing maneuver.

Before the explosion at the end of its flight, the booster appeared to fly as designed. Data displayed on SpaceX’s live broadcast of the launch showed all 33 of the rocket’s engines fired normally during its initial ascent from Texas, a reassuring sign for the reliability of the Super Heavy booster.

SpaceX kicked off the year with the ambition to launch as many as 25 Starship test flights in 2025, a goal that now seems to be unattainable. However, an X post by Musk on Tuesday night suggested a faster cadence of launches in the coming months. He said the next three Starships could launch at intervals of about once every three to four weeks. After that, SpaceX is expected to transition to a third-generation, or Block 3, Starship design with more changes.

It wasn’t immediately clear how long it might take SpaceX to correct whatever problems caused Tuesday’s test flight woes. The Starship vehicle for the next flight is already built and completed cryogenic prooftesting April 27. For the last few ships, SpaceX has completed this cryogenic testing milestone around one-and-a-half to three months prior to launch.

A spokesperson for the Federal Aviation Administration said the agency is “actively working” with SpaceX in the aftermath of Tuesday’s test flight but did not say if the FAA will require SpaceX to conduct a formal mishap investigation.

Shana Diez, director of Starship engineering at SpaceX, chimed in with her own post on X. Based on preliminary data from Tuesday’s flight, she is optimistic the next test flight will fly soon. She said engineers still need to examine data to confirm none of the problems from Starship’s previous flight recurred on this launch but added that “all evidence points to a new failure mode” on Tuesday’s test flight.

SpaceX will also study what caused the Super Heavy booster to explode on descent before moving forward with another booster catch attempt at Starbase, she said.

“Feeling both relieved and a bit disappointed,” Diez wrote. “Could have gone better today but also could have gone much worse.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX may have solved one problem only to find more on latest Starship flight Read More »

faa:-airplanes-should-stay-far-away-from-spacex’s-next-starship-launch

FAA: Airplanes should stay far away from SpaceX’s next Starship launch


“The FAA is expanding the size of hazard areas both in the US and other countries.”

The Starship for SpaceX’s next test flight, known as Ship 35, on the move between the production site at Starbase (in background) and the Massey’s test facility for a static fire test. Credit: SpaceX

The Federal Aviation Administration gave the green light Thursday for SpaceX to launch the next test flight of its Starship mega-rocket as soon as next week, following two consecutive failures earlier this year.

The failures set back SpaceX’s Starship program by several months. The company aims to get the rocket’s development back on track with the upcoming launch, Starship’s ninth full-scale test flight since its debut in April 2023. Starship is central to SpaceX’s long-held ambition to send humans to Mars and is the vehicle NASA has selected to land astronauts on the Moon under the umbrella of the government’s Artemis program.

In a statement Thursday, the FAA said SpaceX is authorized to launch the next Starship test flight, known as Flight 9, after finding the company “meets all of the rigorous safety, environmental and other licensing requirements.”

SpaceX has not confirmed a target launch date for the next launch of Starship, but warning notices for pilots and mariners to steer clear of hazard areas in the Gulf of Mexico suggest the flight might happen as soon as the evening of Tuesday, May 27. The rocket will lift off from Starbase, Texas, SpaceX’s privately owned spaceport near the US-Mexico border.

This will be the third flight of SpaceX’s upgraded Block 2, or Version 2, Starship rocket. The first two flights of Starship Block 2—in January and Marchdid not go well. On both occasions, the rocket’s upper stage shut down its engines prematurely and the vehicle lost control, breaking apart in the upper atmosphere and spreading debris near the Bahamas and the Turks and Caicos Islands.

Debris from Starship falls back into the atmosphere after Starship Flight 8 in this view over Hog Cay, Bahamas. Credit: GeneDoctorB via X

Investigators determined the cause of the January failure was a series of fuel leaks and fires in the ship’s aft compartment. The leaks were most likely triggered by vibrations that were more intense than anticipated, SpaceX said before Starship’s most recent flight in March. SpaceX has not announced the cause of the March failure, although the circumstances were similar to the mishap in January.

“The FAA conducted a comprehensive safety review of the SpaceX Starship Flight 8 mishap and determined that the company has satisfactorily addressed the causes of the mishap, and therefore, the Starship vehicle can return to flight,” the agency said. “The FAA will verify SpaceX implements all corrective actions.”

Flight safety

The flight profile for the next Starship launch will largely be a repeat of what SpaceX hoped to accomplish on the ill-fated tests earlier this year. If all goes according to plan, the rocket’s upper stage, or ship, will travel halfway around the world from Starbase, reaching an altitude of more than 100 miles before reentering the atmosphere over the Indian Ocean. A little more than an hour after liftoff, the ship will aim for a controlled splashdown in the ocean northwest of Australia.

Apart from overcoming the problems that afflicted the last two launches, one of the most important objectives for this flight is to test the performance of Starship’s heat shield. Starship Block 2 includes improved heat shield materials that could do better at protecting the ship from the superheated temperatures of reentry and, ultimately, make it easier to reuse the vehicle. The problems on the last two Starship test flights prevented the rocket from reaching the point where its heat shield could be tested.

Starship Block 2 also features redesigned flaps to better control the vehicle during its descent through the atmosphere. This version of Starship also has larger propellant tanks and reconfigured fuel feed lines for the ship’s six Raptor engines.

The FAA’s approval for Starship Flight 9 comes with some stipulations. The agency is expanding the size of hazard areas in the United States and in other countries based on an updated “flight safety analysis” from SpaceX and because SpaceX will reuse a previously flown first-stage booster—called Super Heavy—for the first time.

The aircraft hazard area for Starship Flight 9 extends approximately 1,600 nautical miles to the east from Starbase, Texas. Credit: Federal Aviation Administration

This flight-safety analysis takes into account the outcomes of previous flights, including accidents, population exposure risk, the probability of vehicle failure, and debris propagation and behavior, among other considerations. “The FAA uses this and other data to determine and implement measures to mitigate public risk,” the agency said.

All of this culminated in the FAA’s “return to flight determination,” which the agency says is based on public safety. The FAA’s primary concern with commercial space activity is ensuring rocket launches don’t endanger third parties. The agency also requires that SpaceX maintain at least $500 million in liability insurance to cover claims resulting from the launch and flight of Starship Flight 9, the same requirement the FAA levied for previous Starship test flights.

For the next launch, the FAA will establish an aircraft hazard area covering approximately 1,600 nautical miles extending eastward from Starbase, Texas, and through the Straits of Florida, including the Bahamas and the Turks and Caicos Islands. This is an extension of the 885-nautical-mile hazard area the FAA established for the test flight in March. In order to minimize disruption to commercial and private air traffic, the FAA is requiring the launch window for Starship Flight 9 to be scheduled during “non-peak transit periods.”

The size of FAA-mandated airspace closures can expand or shrink based on the reliability of the launch vehicle. The failures of Starship earlier this year raised the probability of vehicle failure in the flight-safety analysis for Starship Flight 9, according to the FAA.

The expanded hazard area will force the closure of more than 70 established air routes across the Gulf of Mexico and now includes the Bahamas and the Turks and Caicos Islands. The FAA anticipates this will affect more than 175 flights, almost all of them on international connecting routes. For airline passengers traveling through this region, this will mean an average flight delay of approximately 40 minutes, and potentially up to two hours, the FAA said.

If SpaceX can reel off a series of successful Starship flights, the hazard areas will likely shrink in size. This will be important as SpaceX ramps up the Starship launch cadence. The FAA recently approved SpaceX to increase its Starship flight rate from five per year to 25 per year.

The agency said it is in “close contact and collaboration” with other nations with territory along or near Starship’s flight path, including the United Kingdom, Turks and Caicos, the Bahamas, Mexico, and Cuba.

Status report

Meanwhile, SpaceX’s hardware for Starship Flight 9 appears to be moving closer to launch. Engineers test-fired the Super Heavy booster, which SpaceX previously launched and recovered in January, last month on the launch pad in South Texas. On May 12, SpaceX fired the ship’s six Raptor engines for 60 seconds on a test stand near Starbase.

After the test-firing, ground crews rolled the ship back to the Starship production site a few miles away, only to return the vehicle to the test stand Wednesday for unspecified testing. SpaceX is expected to roll the ship back to the production site again before the end of the week.

The final steps before launch will involve separately transporting the Super Heavy booster and Starship upper stage from the production site to the launch pad. There, SpaceX will stack the ship on top of the booster. Once the two pieces are stacked together, the rocket will stand 404 feet (123.1 meters) tall.

If SpaceX moves forward with a launch attempt next Tuesday evening, the long-range outlook from the National Weather Service calls for a 30 percent chance of showers and thunderstorms.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

FAA: Airplanes should stay far away from SpaceX’s next Starship launch Read More »

do-these-buddhist-gods-hint-at-the-purpose-of-china’s-super-secret-satellites?

Do these Buddhist gods hint at the purpose of China’s super-secret satellites?

Mission patches are a decades-old tradition in spaceflight. They can range from the figurative to the abstract, prompting valuable insights or feeding confusion. Some are just plain weird.

Ars published a story a few months ago on spaceflight patches from NASA, SpaceX, Russia, and the NRO, the US government’s spy satellite agency, which is responsible for some of the most head-scratching mission logos.

Until recently, China’s entries in the realm of spaceflight patches often lacked the originality found in patches from the West. For example, a series of patches for China’s human spaceflight missions used a formulaic design with a circular shape and a mix of red and blue. The patch for China’s most recent Shenzhou crew to the country’s Tiangong space station last month finally broke the mold with a triangular shape after China’s human spaceflight agency put the patch up for a public vote.

But there’s a fascinating set of new patches Chinese officials released for a series of launches with top secret satellites over the last two months. These four patches depict Buddhist gods with a sense of artistry and sharp colors that stand apart from China’s previous spaceflight emblems, and perhaps—or perhaps not—they can tell us something about the nature of the missions they represent.

Guardians of the Dharma

The four patches show the Four Heavenly Kings, protector deities in Buddhism who guard against evil forces in the four cardinal directions, according to the Kyoto National Museum. The gods also shield the Dharma, the teachings of the Buddha, from external threats.

These gods have different names, but in China, they are known as Duōwén, Zēngzhǎng, Chíguó, and Guăngmù. Duōwén is the commander and the guardian of the north, the “one who listens to many teachings,” who is often depicted with an umbrella. Zēngzhǎng, guardian of the south, is a god of growth shown carrying a sword. The protector of the east is Chíguó, defender of the nation, who holds a stringed musical instrument. And guarding the west is Guăngmù, an all-seeing god usually depicted with a serpent.

Do these Buddhist gods hint at the purpose of China’s super-secret satellites? Read More »

the-top-fell-off-australia’s-first-orbital-class-rocket,-delaying-its-launch

The top fell off Australia’s first orbital-class rocket, delaying its launch

This was unusual

Payload fairing problems have caused a number of rocket failures, usually because they don’t jettison during launch, or only partially deploy, leaving too much extra weight on the launch vehicle for it to reach orbit.

Gilmour said it is postponing the Eris launch campaign “to fully understand what happened and make any necessary updates.” The company was founded by two brothers—Adam and James Gilmourin 2012, and has raised approximately $90 million from venture capital firms and government funds to get the first Eris rocket to the launch pad.

The astronauts on NASA’s Gemini 9A mission snapped this photo of a target vehicle they were supposed to dock with in orbit. But the rocket’s nose shroud only partially opened, inadvertently illustrating the method in which payload fairings are designed to jettison from their rockets in flight. Credit: NASA

The Eris rocket was aiming to become the first all-Australian launcher to reach orbit. Australia hosted a handful of satellite launches by US and British rockets more than 50 years ago.

Gilmour is headquartered in Gold Coast, Australia, about 600 miles south of the Eris launch pad near the coastal town of Bowen. In a statement, Gilmour said it has a replacement payload fairing in its factory in Gold Coast. The company will send it to the launch site and install it on the Eris rocket after a “full investigation” into the cause of the premature fairing deployment.

“While we’re disappointed by the delay, our team is already working on a solution and we expect to be back at the pad soon,” Gilmour said.

Officials did not say how long it might take to investigate the problem, correct it, and fit a new nose cone on the Eris rocket.

This setback follows more than a year of delays Gilmour blamed primarily on holdups in receiving regulatory approval for the launch from the Australian government.

Like many rocket companies have done before, Gilmour set modest expectations for the first test flight of Eris. While the rocket has everything needed to fly to low-Earth orbit, officials said they were looking for just 10 to 20 seconds of stable flight on the first launch, enough to gather data about the performance of the rocket and its unconventional hybrid propulsion system.

The top fell off Australia’s first orbital-class rocket, delaying its launch Read More »

after-back-to-back-failures,-spacex-tests-its-fixes-on-the-next-starship

After back-to-back failures, SpaceX tests its fixes on the next Starship

But that didn’t solve the problem. Once again, Starship’s engines cut off too early, and the rocket broke apart before falling to Earth. SpaceX said “an energetic event” in the aft portion of Starship resulted in the loss of several Raptor engines, followed by a loss of attitude control and a loss of communications with the ship.

The similarities between the two failures suggest a likely design issue with the upgraded “Block 2” version of Starship, which debuted in January and flew again in March. Starship Block 2 is slightly taller than the ship SpaceX used on the rocket’s first six flights, with redesigned flaps, improved batteries and avionics, and notably, a new fuel feed line system for the ship’s Raptor vacuum engines.

SpaceX has not released the results of the investigation into the Flight 8 failure, and the FAA hasn’t yet issued a launch license for Flight 9. Likewise, SpaceX hasn’t released any information on the changes it made to Starship for next week’s flight.

What we do know about the Starship vehicle for Flight 9—designated Ship 35—is that it took a few tries to complete a full-duration test-firing. SpaceX completed a single-engine static fire on April 30, simulating the restart of a Raptor engine in space. Then, on May 1, SpaceX aborted a six-engine test-firing before reaching its planned 60-second duration. Videos captured by media observing the test showed a flash in the engine plume, and at least one piece of debris was seen careening out of the flame trench below the ship.

SpaceX ground crews returned Ship 35 to the production site a couple of miles away, perhaps to replace a damaged engine, before rolling Starship back to the test stand over the weekend for Monday’s successful engine firing.

Now, the ship will head back to the Starbase build site, where technicians will make final preparations for Flight 9. These final tasks may include loading mock-up Starlink broadband satellites into the ship’s payload bay and touchups to the rocket’s heat shield.

These are two elements of Starship that SpaceX engineers are eager to demonstrate on Flight 9, beyond just fixing the problems from the last two missions. Those failures prevented Starship from testing its satellite deployer and an upgraded heat shield designed to better withstand scorching temperatures up to 2,600° Fahrenheit (1,430° Celsius) during reentry.

After back-to-back failures, SpaceX tests its fixes on the next Starship Read More »

we-finally-know-a-little-more-about-amazon’s-super-secret-satellites

We finally know a little more about Amazon’s super-secret satellites

“Elon thinks we can do the job with cheaper and simpler satellites, sooner,” a source told Reuters at the time of Badyal’s dismissal. Earlier in 2018, SpaceX launched a pair of prototype cube-shaped Internet satellites for demonstrations in orbit. Then, less than a year after firing Badyal, Musk’s company launched the first full stack of Starlink satellites, debuting the now-standard flat-panel design.

In a post Friday on LinkedIn, Badyal wrote the Kuiper satellites have had “an entirely nominal start” to their mission. “We’re just over 72 hours into our first full-scale Kuiper mission, and the adrenaline is still high.”

The Starlink and Kuiper constellations use laser inter-satellite links to relay Internet signals from node-to-node across their networks. Starlink broadcasts consumer broadband in Ku-band frequencies, while Kuiper will use Ka-band.

Ultimately, SpaceX’s simplified Starlink deployment architecture has fewer parts and eliminates the need for a carrier structure. This allows SpaceX to devote a higher share of the rocket’s mass and volume capacity to the Starlink satellites themselves, replacing dead weight with revenue-earning capability. The dispenser architecture used by Amazon is a more conventional design, and gives satellite engineers more flexibility in designing their spacecraft. It also allows satellites to spread out faster in orbit.

Others involved in the broadband megaconstellation rush have copied SpaceX’s architecture.

China’s Qianfan, or Thousand Sails, satellites have a “standardized and modular” flat-panel design that “meets the needs of stacking multiple satellites with one rocket,” according to the company managing the constellation. While Chinese officials haven’t released any photos of the satellites, which could eventually number more than 14,000, this sounds a lot like the design of SpaceX’s Starlink satellites.

Another piece of information released by United Launch Alliance helps us arrive at an estimate of the mass of each Kuiper satellite. The collection of 27 satellites that launched earlier this week added up to be the heaviest payload ever flown on ULA’s Atlas V rocket. ULA said the total payload the Atlas V delivered to orbit was about 34,000 pounds, equivalent to roughly 15.4 metric tons.

It wasn’t clear whether this number accounted for the satellite dispenser, which likely weighed somewhere in the range of 1,000 to 2,000 pounds at launch. This would put the mass of each Kuiper satellite somewhere between 1,185 and 1,259 pounds (537 and 571 kilograms).

This is not far off the estimated mass of SpaceX’s most recent iteration of Starlink satellites, a version known as V2 Mini Optimized. SpaceX’s Falcon 9 rocket has launched up to 28 of these flat-packed satellites on a single launch.

We finally know a little more about Amazon’s super-secret satellites Read More »

firefly’s-rocket-suffers-one-of-the-strangest-launch-failures-we’ve-ever-seen

Firefly’s rocket suffers one of the strangest launch failures we’ve ever seen


The rocket’s first stage may have exploded moments after it separated from the upper stage.

Firefly Aerospace’s Alpha rocket on its launch pad at Vandenberg Space Force Base, California. Credit: Jack Beyer/Firefly Aerospace

Firefly Aerospace launched its two-stage Alpha rocket from California early Tuesday, but something went wrong about two-and-a-half minutes into the flight, rendering the rocket unable to deploy an experimental satellite into orbit for Lockheed Martin.

The Alpha rocket took off from Vandenberg Space Force Base about 140 miles northwest of Los Angeles at 6: 37 am PDT (9: 37 am EDT; 13: 37 UTC), one day after Firefly called off a launch attempt due to a technical problem with ground support equipment.

Everything appeared to go well with the rocket’s first-stage booster, powered by four kerosene-fueled Reaver engines, as the launcher ascended through fog and arced on a southerly trajectory over the Pacific Ocean. The booster stage jettisoned from Alpha’s upper stage two-and-a-half minutes after liftoff, and that’s when things went awry.

A blast from below

A bright cloud of white vapor appeared high in the sky, indicating an explosion, or something close to it. A moment later, the upper stage’s single Lightning engine ignited for a six-minute burn to accelerate into orbit.

A ground-based infrared camera caught a glimpse of debris in the wake of the upper stage, and then Firefly’s live video stream switched to a camera onboard the rocket. The rear-facing view showed the Lightning engine stripped of its exhaust nozzle but still firing. Shards of debris were visible behind the rocket, but the video did not show any sign of the discarded first stage booster, which was expected to fall into the Pacific south of Vandenberg.

The upper stage engine kept firing for more than six minutes, when it shut down and Firefly announced that the rocket reached orbit. The rocket was programmed to release its single payload, a nearly 2-ton technology demonstration satellite built by Lockheed Martin, approximately 13 minutes into the mission. Firefly ended its live webcast of the launch before confirming separation of the satellite.

A short time later, Firefly released a statement acknowledging a “mishap during first stage separation… that impacted the Stage 2 Lightning engine nozzle.” As a result, the rocket achieved an orbit lower than its target altitude, Firefly said. The privately held Texas-based launch company amended its statement later Tuesday morning to remove the clause about the lower-than-planned orbit.

Another update from Firefly early Tuesday afternoon confirmed the launch failed. The company said the rocket “experienced a mishap between stage separation and second stage ignition that led to the loss of the Lightning engine nozzle extension, substantially reducing the engine’s thrust.”

The launcher reached an altitude of nearly 200 miles (320 kilometers) but did not reach orbital velocity, according to Firefly.

“The stage and payload have now safely impacted the Pacific Ocean in a cleared zone north of Antarctica,” Firefly said. “Firefly recognizes the hard work that went into payload development and would like to thank our mission partners at Lockheed Martin for their continued support. The team is working closely with our customers and the FAA to conduct an investigation and determine root cause of the anomaly.”

While Firefly’s live video of the launch lacked a clear, stable view of first-stage separation, the appearance of white vapor is a sign that the rocket was likely emitting propellant. It wasn’t immediately obvious whether the first stage recontacted the upper stage after separation or if the booster exploded and harmed the upper stage engine.

You can watch a replay of Firefly’s stage separation below.

Whatever the case, it’s an interesting mode of failure. Maybe it’s not as bizarre as Astra’s sideways launch in 2021, something every rocket geek should know about. Also, there’s the time Astra’s upper stage launched itself through a half-open payload fairing in 2022. United Launch Alliance’s Vulcan rocket lost a nozzle from one of its solid rocket boosters on a test flight last year, but the launch vehicle persevered and continued its climb into orbit.

The third flight of SpaceX’s Falcon 1 rocket failed in 2008 when its first stage collided with its upper stage moments after separation. An investigation determined residual thrust after shutdown of the first-stage engine pushed the booster into the bottom of Falcon 1’s upper stage, so SpaceX lengthened the time between main engine cutoff and staging. SpaceX’s next flight was successful, making Falcon 1 the first privately developed liquid-fueled rocket to reach orbit.

The only time a rocket’s first stage has exploded after separation, at least in recent memory, was in 2023, when a North Korean booster blew up before it fell into the sea. The explosion did not damage the rocket’s upper stage, which continued into orbit on North Korea’s only successful satellite launch in nearly a decade. The incident fueled speculation that North Korea intentionally destroyed the booster to prevent South Korea or the United States from recovering it for inspections.

Great expectations

Firefly is one of just a handful of active US launch companies with rockets that have reached low-Earth orbit, but its Alpha rocket hasn’t established a reliable track record. In six flights, Alpha has amassed just two unqualified successes. Two prior Alpha launches deployed their payloads in lower-than-planned orbits, and the rocket’s debut test flight in 2021 failed soon after liftoff.

Now, Alpha has again missed its aim and didn’t reach orbit at all.

The Alpha rocket is capable of hauling a payload of up to 2,270 pounds (1,030 kilograms) to low-Earth orbit, putting Firefly’s launcher in a performance class above Rocket Lab’s Electron booster and below larger rockets like SpaceX’s Falcon 9. There’s no reliable commercial launch vehicle in the United States in this middle-of-the-road performance range. One potential competitor—ABL Space Systems—abandoned the satellite launch business last year to focus on missile defense and hypersonic testing.

There are several European launchers in operation or development—Arianespace’s Vega, Isar Aerospace’s Spectrum, and Rocket Factory Augsburg’s RFA One—with lift capacities comparable or slightly higher than Firefly’s Alpha.

File photo of a Firefly Alpha rocket lifting off in 2023. The launch on Tuesday occurred in foggy conditions.

Firefly argues that its Alpha rocket services a niche in the market for satellites too large to fly with Rocket Lab or too small to merit a dedicated flight with SpaceX. Firefly has some contract wins to bear this out. The launch on Tuesday was the first of up to 25 Alpha flights booked by Lockheed Martin to launch a series of tech demo satellites. The first of these was Lockheed Martin’s 3,836-pound (1,740-kilogram) LM-400 satellite, which was lost on Tuesday’s mission.

NASA, the National Oceanic and Atmospheric Administration, the National Reconnaissance Office, the US Space Force, and several more commercial customers have also reserved slots on Firefly’s launch schedule. With these contracts, Firefly has the fourth-largest launch confirmed backlog of any US launch company, following SpaceX, United Launch Alliance, and Rocket Lab.

While Firefly continues flying the Alpha rocket, its engineers are developing a larger Medium Launch Vehicle in partnership with Northrop Grumman. Last month, Firefly celebrated the most significant accomplishment in its 11-year history—the first fully successful landing on the Moon by a commercial entity.

But while Firefly’s first missions at its founding were to build rocket engines and launch small satellites, other markets may ultimately prove more lucrative.

Peter Beck, Rocket Lab’s founder and CEO, argues rockets like Firefly’s Alpha are in a “no man’s land” in the launch market. “It’s too small to be a useful rideshare mission, and it’s too big to be a useful dedicated rocket” for smallsats, Beck told Space News.

Firefly might have a good strategy to prove Beck wrong. But first, it needs a more reliable rocket.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Firefly’s rocket suffers one of the strangest launch failures we’ve ever seen Read More »

rocket-report:-the-pitfalls-of-rideshare;-china-launches-next-tiangong-crew

Rocket Report: The pitfalls of rideshare; China launches next Tiangong crew


This week, engineers ground-tested upgrades for Blue Origin’s New Glenn and Europe’s Ariane 6.

A Long March 2F carrier rocket, carrying the Shenzhou 20 spacecraft and a crew of three astronauts, lifts off from the Jiuquan Satellite Launch Center in northwest China on April 24, 2025. Credit: Photo by Pedro Pardo/AFP via Getty Images

Welcome to Edition 7.41 of the Rocket Report! NASA and its contractors at Kennedy Space Center in Florida continue building a new mobile launch tower for the Space Launch System Block 1B rocket, a taller, upgraded version of the SLS rocket being used for the agency’s initial Artemis lunar missions. Workers stacked another segment of the tower a couple of weeks ago, and the structure is inching closer to its full height of 355 feet (108 meters). But this is just the start. Once the tower is fully assembled, it must be outfitted with miles of cabling, tubing, and piping, then tested before it can support an SLS launch campaign. Last year, NASA’s inspector general projected the tower won’t be ready for a launch until the spring of 2029 and its costs could reach $2.7 billion. The good news, if you can call it that, is there probably won’t be an SLS Block 1B rocket that needs to use it in 2029, whether it’s due to delays or cancellation.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Fresh details on Astra’s strategic pivot. Astra, the once high-flying rocket startup that crashed back to Earth with investors before going private last year, has unveiled new details about its $44 million contract with the Department of Defense, Space News reports. The DOD contract announced last year supports the development of Rocket 4, a two-stage, mobile launch vehicle with ambitions to deliver cargo across the globe in under an hour. While Astra’s ill-fated Rocket 3 focused on launching small satellites to low-Earth orbit, Astra wants to make Rocket 4 a military utility vehicle. Rocket 4 will still be able to loft conventional satellites, but Astra’s most lucrative contract for the new launch vehicle involves using the rocket for precise point-to-point delivery of up to 1,300 pounds (590 kilograms) of supplies from orbit via specialized reentry vehicles. The military has shown interest in developing a rocket-based rapid global cargo delivery system for several years, and has a contract with SpaceX to study how the much larger Starship rocket could do a similar job.

Back from the brink … The Alameda, California-based company, which was delisted from Nasdaq in June 2024 after its shares collapsed, is now targeting the first test flight of Rocket 4 in 2026. Astra’s arrangement with the Defense Innovation Unit includes two milestones: one suborbital (point-to-point), and the other orbital with the option to launch from a location outside the United States, as Astra is developing a mobile launcher. Chris Kemp, Astra’s co-founder and CEO, told Space News the orbital launch will likely originate from Australia. Astra’s first launches with the new-retired Rocket 3 vehicle were based from Alaska and Florida.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

The Army has a catchy name for its newest weapon. The Long Range Hypersonic Weapon has a new name: Dark Eagle. The US Army announced the popular name for the service’s quick strike missile this week. “Part of the name pays tribute to the eagle—a master hunter known for its speed, stealth and agility—due to the LRHW’s combination of velocity, accuracy, maneuverability, survivability and versatility,” the Army said in a press release. “In addition, the bald eagle—our national bird—represents independence, strength and freedom.” The Dark Eagle is designed to strike targets little or no warning with a hypersonic glide vehicle capable of maneuvering in the upper atmosphere after an initial launch with a conventional missile. The hypersonic weapon’s ability to overcome an adversary’s air and missile defenses is embodied in the word “dark” in Dark Eagle, the Army said.

Flying again soon … The Army tested the hypersonic weapon’s “all-up round” during a missile launch from Cape Canaveral, Florida, in December. The test was delayed more than a year due to unspecified issues. The Army appears to be preparing for another Dark Eagle test from Florida’s Space Coast as soon as Friday, according to airspace and maritime warning notices in the Atlantic Ocean. (submitted by EllPeaTea)

Northrop’s niche with Minotaur. Ars mentioned in last week’s Rocket Report that Northrop Grumman’s Minotaur IV rocket launched April 16 with a classified payload for the National Reconnaissance Office. This was the first Minotaur IV launch in nearly five years, and the first orbital Minotaur launch from Vandenberg Space Force Base, California, in 14 years. The low-volume Minotaur IV uses solid rocket motors from the Air Force’s stockpile of retired Peacekeeper ballistic missiles, turning part of a weapon of mass destruction into, this case, a tool to support the US government’s spy satellite agency. The Minotaur IV’s lift capability fits neatly between the capacity of smaller commercial rockets, like Firefly’s Alpha or Rocket Lab’s Electron, and larger rockets like SpaceX’s Falcon 9. The most recent Minotaur IV launch contract cost the Space Force roughly $30 million, more than a mission with Firefly but less than a dedicated ride on a Falcon 9.

Minotaur IV will keep flying … The Space Force has at least two more missions reserved to launch on the expendable Minotaur IV rocket. One of the missions will launch multiple small satellites for the US military’s Space Test Program, and the other will place a military weather satellite into orbit. Both missions will launch from California, with planning launch dates in 2026, a Space Systems Command spokesperson told Ars. “We do have multiple launches planned using Minotaur family launch vehicles between our OSP-4 (Orbital/Suborbital Program) and SRP-4 (Sounding Rocket Program) contracts,” the spokesperson said. “We will release more information on those missions as we get closer to launch.” The Commercial Space Act of 1998 prohibits the use of surplus ICBM motors for commercial launches and limits their use to only specific kinds of military launches. The restrictions were intended to encourage NASA and commercial satellite operators to use privately-developed launch vehicles.

NASA’s launch prices have somehow gone up. In an era of reusable rockets and near-daily access to space, NASA is still paying more than it did 30 years ago to launch missions into orbit, according to a study soon to be published in the scientific journal Acta Astronautica. Adjusted for inflation, the prices NASA pays for launch services rose at an annual average rate of 2.82 percent from 1996 to 2024, the report says. “Furthermore, there is no evidence of shift in the launch service costs trend after the introduction of a new launch service provider [SpaceX] in 2016.” Ars analyzed NASA’s launch prices in a story published Thursday.

Why is this? … One might think SpaceX’s reuse of Falcon 9 rocket components would drive down launch prices, but no. Rocket reuse and economies of scale have significantly reduced SpaceX’s launch costs, but the company is charging NASA roughly the same it did before booster reuse became commonplace. There are a few reasons this is happening. One is that SpaceX hasn’t faced any meaningful competition for NASA launch contracts in the last six years. That should change soon with the recent debuts of United Launch Alliance’s Vulcan rocket and Blue Origin’s New Glenn launcher. NASA levies additional requirements on its commercial launch providers, and the agency must pay for them. These include schedule priority, engineering oversight, and sometimes special payload cleanliness requirements and the choice of a particular Falcon 9 booster from SpaceX’s inventory.

What’s holding up ULA’s next launch? After poor weather forced ULA to scrub a launch attempt April 9, the company will have to wait nearly three weeks for another try to launch an Atlas V rocket with Amazon’s first full-up load of 27 Kuiper broadband satellites, Ars reports. The rocket and satellites are healthy, according to ULA. But the military-run Eastern Range at Cape Canaveral Space Force Station, Florida, is unable to accommodate ULA until Monday, April 28. The Space Force is being unusually cagey about the reasons for the lengthy delay, which isn’t affecting SpaceX launches to the same degree.

Finally, a theory … The publishing of airspace and maritime warning notices for an apparent test launch of the Army’s Long Range Hypersonic Weapon, or Dark Eagle, might explain the range’s unavailability. The test launch could happen as soon as Friday, and offshore keep-out zones cover wide swaths of the Atlantic Ocean. If this is the reason for the long Atlas V launch delay, we still have questions. If this launch is scheduled for Friday, why has it kept ULA from launching the last few weeks? Why was SpaceX permitted to launch multiple times in the same time period? And why didn’t the first test flight of the Dark Eagle missile in December result in similar lengthy launch delays on the Eastern Range?

Shenzhou 20 bound for Tiangong. A spaceship carrying three astronauts docked Thursday with China’s space station in the latest crew rotation, approximately six hours after their launch on a Long March 2F rocket from the Gobi Desert, the Associated Press reports. The Shenzhou 20 mission is commanded by Chen Dong, who is making his third flight. He is accompanied by fighter pilot Chen Zhongrui and engineer Wang Jie, both making their maiden voyages. They will replace three astronauts currently on the Chinese Tiangong space station. Like those before them, they will stay on board for roughly six months.

Finding a rhythm … China’s human spaceflight missions have launched like clockwork since the country’s first domestic astronaut launch in 2003. Now, with the Tiangong space station fully operational, China is launching fresh crews at six-month intervals. While in space, the astronauts will conduct experiments in medical science and new technologies and perform spacewalks to carry out maintenance and install new equipment. Their tasks will include adding space debris shielding to the exterior of the Tiangong station. (submitted by EllPeaTea)

SpaceX resupplies the ISS. SpaceX launched an uncrewed Cargo Dragon spacecraft to the International Space Station early Monday on a resupply mission with increased importance after a transportation mishap derailed a flight by another US cargo ship, Spaceflight Now reports. The Dragon cargo vessel docked at the space station early Tuesday with 4,780 pounds (2,168 kilograms) of pressurized cargo and 1,653 pounds (750 kilograms) of unpressurized payloads in the vehicle’s trunk. NASA adjusted the Dragon spacecraft’s payload because an upcoming flight by Northrop Grumman’s Cygnus supply freighter was canceled after the Cygnus cargo module was damaged during transport to the launch site.

Something strange … The payloads aboard this Dragon cargo mission—the 32nd by SpaceX—include normal things like fresh food (exactly 1,262 tortillas), biomedical and pharmaceutical experiments, and the technical demonstration of a new atomic clock. However, there’s something onboard nobody at NASA or SpaceX wants to talk about. A payload package named STP-H10 inside Dragon’s trunk section will be installed to a mounting post outside of the space station to perform a mission for the US military’s Space Test Program. STP-H10 wasn’t mentioned in NASA’s press kit for this mission, and SpaceX didn’t show the usual views of Dragon’s trunk when the spacecraft deployed from its Falcon 9 rocket shortly after launch. These kinds of Space Test Program experiment platforms have launched to the ISS before without any secrecy. Stranger still is the fact that the STP-H10 experiments are unclassified. You can see the list here. (submitted by EllPeaTea)

There are some drawbacks to rideshare. SpaceX launched its third “Bandwagon” rideshare mission into a mid-inclination orbit Monday evening from Cape Canaveral Space Force Station, Space News reports. The payloads included a South Korean military radar spy satellite, a small commercial weather satellite, and the most interesting payload: an experimental reentry vehicle from a German startup named Atmos Space Cargo. The startup’s Phoenix vehicle, fitted with an inflatable heat shield, separated from the Falcon 9’s upper stage about 90 minutes after liftoff and, roughly a half-hour later, began reentry for a splashdown in the South Atlantic Ocean about 1,200 miles (2,000 kilometers) off the coast of Brazil. Until last month, the Phoenix vehicle was supposed to reenter over the Indian Ocean east of Madagascar, near the island of Réunion. The late change to the mission’s trajectory meant Atmos could not recover the spacecraft after splashdown.

Changes in longitude … Five weeks before the launch, SpaceX informed Atmos of a change in trajectory because of “operational constraints” of the primary payload, a South Korean reconnaissance satellite. Smaller payloads on rideshare launches benefit from lower launch prices, but their owners have no control over the schedule or trajectory of the launch. The change for this mission resulted in a splashdown well off the coast of Brazil, ruling out any attempt to recover Phoenix after splashdown. It also meant a steeper reentry than previously planned, creating higher loads on the spacecraft. The company lined up new ground stations in South America to communicate with the spacecraft during key phases of flight leading up to reentry. In addition, it chartered a plane to attempt to collect data during reentry, but the splashdown location was beyond the range of the aircraft. Some data suggests that the heat shield inflated as planned, but Atmos’s CEO said the company needed more time to analyze the data it had, adding that it was “very difficult” to get data from Phoenix in the final phases of its flight given its distance from ground stations.

Ariane 6 is gonna need a bigger booster. A qualification motor for an upgraded solid rocket booster for Europe’s Ariane 6 rocket successfully fired up for the first time on a test stand Thursday in Kourou, French Guiana, according to the European Space Agency. The new P160C solid rocket motor burned for more than two minutes, and ESA declared the test-firing a success. ESA’s member states approved development of the P160C motor in 2022. The upgraded motor is about 3 feet (1 meter) longer than the P120C motor currently flying on the Ariane 6 rocket, and carries about 31,000 pounds (14 metric tons) more solid propellant. The Ariane 6 rocket can fly with two or four of these strap-on boosters. Officials plan to introduce the P160C on Ariane 6 flights next year, giving the rocket’s heaviest version the ability to haul up to 4,400 pounds (2 metric tons) of additional cargo mass to orbit.

A necessary change … The heavier P160C solid rocket motor is required for Arianespace to fulfill its multi-mission launch contract with Amazon’s Project Kuiper satellite broadband network. Alongside similar contracts with ULA and Blue Origin, Amazon reserved 18 Kuiper launches on Ariane 6 rockets, and 16 of them must use the upgraded P160C booster to deliver additional Kuiper satellites to orbit. The P160C is a joint project between ArianeGroup and Avio, which will use the same motor design on Europe’s smaller Vega C rocket to improve its performance. (submitted by EllPeaTea)

Progress toward the second flight of New Glenn. Blue Origin’s CEO, Dave Limp, said his team completed a full duration 15-second hot-fire test Thursday of the upper stage for the company’s second New Glenn rocket. In a post on X, Limp wrote that the upper stage for the next New Glenn flight will have “enhanced performance.” The maximum power of its hydrogen-fueled BE-3U engine will increase from 173,000 pounds to 175,000 pounds of thrust. Two BE-3U engines fly on New Glenn’s second stage.

A good engine … The BE-3U engine is a derivative of the BE-3 engine flying on Blue Origin’s suborbital New Shepard rocket. Limp wrote that the upper stage on the first New Glenn launch in January “performed remarkably” and achieved an orbital injection with less than 1 percent deviation from its target. So, when will New Glenn launch again? We’ve heard late spring, June, or October, depending on the source. I’ll note that Blue Origin test-fired the New Glenn upper stage for the rocket’s first flight about four months before it launched.

Next three launches

April 27: Alpha | “Message in a Booster” | Vandenberg Space Force Base, California | 13: 37 UTC

April 27: Long March 3B/E | Unknown Payload | Xichang Satellite Launch Center, China | 15: 55 UTC

April 27: Falcon 9 | Starlink 11-9 | Vandenberg Space Force Base, California | 20: 55 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: The pitfalls of rideshare; China launches next Tiangong crew Read More »

reusable-rockets-are-here,-so-why-is-nasa-paying-more-to-launch-stuff-to-space?

Reusable rockets are here, so why is NASA paying more to launch stuff to space?

• 1998: Deep Space 1 Delta II rocket — $86 million

• 1999: Mars Polar Lander Delta II rocket — $88 million

• 2001: Mars Odyssey Delta II rocket — $96 million

• 2003: Spirit and Opportunity Mars rovers — two Delta II rockets — $87 million per launch

• 2004: Swift Delta II rocket — $90 million

• 2005: Mars Reconnaissance Orbiter Atlas V rocket — $147 million

• 2007: Phoenix Mars lander — Delta II rocket — $132 million

Launch prices for NASA missions soared after the late 2000s, following the creation of United Launch Alliance through a merger of the Atlas and Delta rocket programs developed by Lockheed Martin and Boeing. The merger eliminated competition for most of NASA’s launch contracts until SpaceX’s Falcon 9 became available for NASA science missions in the mid-2010s. Here’s a sample of missions as examples of the rising costs, with contract values adjusted for inflation from the time of their award to reflect 2025 dollars:

• 2009: Lunar Reconnaissance Orbiter — Atlas V rocket — $220 million

• 2012: Radiation Belt Storm Probes — Atlas V rocket — $226 million (averaged from a bulk buy)

• 2014: Orbiting Carbon Observatory-2 — Delta II rocket — $191 million (averaged from a bulk buy)

• 2016: OSIRIS-REx asteroid mission — Atlas V rocket — $252 million

• 2017: TDRS-M data relay satellite — Atlas V rocket — $179 million

• 2017: JPSS-2 weather satellite — Atlas V rocket — $224 million

• 2018: InSight Mars lander — Atlas V rocket — $220 million

• 2018: ICESAT-2 — Delta II rocket — $134 million

Again, the missions listed above would likely launch on SpaceX’s Falcon 9 rockets if NASA awarded these contracts today. So, how do SpaceX’s more recent Falcon 9 prices compare? Let’s take a look. These contract values are adjusted for inflation from the time of their award to reflect 2025 dollars:

• 2016: Jason 3 oceanography satellite — Falcon 9 rocket — $114 million

• 2018: Transiting Exoplanets Survey Satellite — Falcon 9 rocket — $118 million

• 2020: Sentinel-6A — Falcon 9 rocket — $126 million

• 2021: Double Asteroid Redirection Test — Falcon 9 rocket — $86 million

• 2021: Imaging X-ray Polarimetry Explorer — Falcon 9 rocket — $62 million

• 2022: Surface Water and Ocean Topography — Falcon 9 rocket — $148 million

• 2024: PACE Earth sciences mission — Falcon 9 rocket — $99 million

• 2025: SPHEREx astronomy mission — Falcon 9 rocket — $99 million

And here are a few future launches NASA has booked to fly on SpaceX’s Falcon 9 rocket. Some of these contracts were awarded in the last 12 months, and those have not been adjusted for inflation. The others reflect 2025 dollars:

• 2025: Interstellar Mapping and Acceleration Probe — Falcon 9 rocket — $134 million

• 2025: Sentinel-6B — Falcon 9 rocket — $101 million

• 2027: NEO Surveyor — Falcon 9 rocket — $100 million

• 2027: JPSS-4 weather satellite — Falcon 9 rocket — $113 million

• 2027: Compton Spectrometer and Imager — Falcon 9 rocket — $69 million

There are a few other things worth noting when we chart NASA’s launch prices. One is that SpaceX’s Falcon Heavy, used for NASA’s heaviest missions, costs more than a Falcon 9 rocket. For example, two identical weather satellites launched in 2022 and 2024 on ULA’s Atlas V and SpaceX’s Falcon Heavy rocket for $207 million and $178 million, respectively, again adjusted for inflation.

Reusable rockets are here, so why is NASA paying more to launch stuff to space? Read More »