launch

after-a-fiery-finale,-the-delta-rocket-family-now-belongs-to-history

After a fiery finale, the Delta rocket family now belongs to history

Delta 389 —

“It is bittersweet to see the last one, but there are great things ahead.”

In this video frame from ULA's live broadcast, three RS-68A engines power the Delta IV Heavy rocket into the sky over Cape Canaveral, Florida.

Enlarge / In this video frame from ULA’s live broadcast, three RS-68A engines power the Delta IV Heavy rocket into the sky over Cape Canaveral, Florida.

United Launch Alliance

The final flight of United Launch Alliance’s Delta IV Heavy rocket took off Tuesday from Cape Canaveral, Florida, with a classified spy satellite for the National Reconnaissance Office.

The Delta IV Heavy, one of the world’s most powerful rockets, launched for the 16th and final time Tuesday. It was the 45th and last flight of a Delta IV launcher and the final rocket named Delta to ever launch, ending a string of 389 missions dating back to 1960.

United Launch Alliance (ULA) tried to launch this rocket on March 28 but aborted the countdown about four minutes prior to liftoff due to trouble with nitrogen pumps at an off-site facility at Cape Canaveral. The nitrogen is necessary for purging parts inside the Delta IV rocket before launch, reducing the risk of a fire or explosion during the countdown.

The pumps, operated by Air Liquide, are part of a network that distributes nitrogen to different launch pads at the Florida spaceport. The nitrogen network has caused problems before, most notably during the first launch campaign for NASA’s Space Launch System rocket in 2022. Air Liquide did not respond to questions from Ars.

A flawless liftoff

With a solution in place, ULA gave the go-ahead for another launch attempt Tuesday. After a smooth countdown, the final Delta IV Heavy lifted off from Cape Canaveral Space Force Station at 12: 53 pm EDT (16: 53 UTC).

Three hydrogen-fueled RS-68A engines made by Aerojet Rocketdyne flashed to life in the final seconds before launch and throttled up to produce more than 2 million pounds of thrust. The ignition sequence was accompanied by a dramatic hydrogen fireball, a hallmark of Delta IV Heavy launches, that singed the bottom of the 235-foot-tall (71.6-meter) rocket, turning a patch of its orange insulation black. Then, 12 hold-down bolts fired and freed the Delta IV Heavy for its climb into space with a top-secret payload for the US government’s spy satellite agency.

Heading east from Florida’s Space Coast, the Delta IV Heavy appeared to perform well in the early phases of its mission. After fading from view from ground-based cameras, the rocket’s two liquid-fueled side boosters jettisoned around four minutes into the flight, a moment captured by onboard video cameras. The core stage engine increased power to fire for a couple more minutes. Nearly six minutes after liftoff, the core stage was released, and the Delta IV upper stage took over for a series of burns with its RL10 engine.

At that point, ULA cut the public video and audio feeds from the launch control center, and the mission flew into a news blackout. The final portions of rocket launches carrying National Reconnaissance Office (NRO) satellites are usually performed in secret.

In all likelihood, the Delta IV Heavy’s upper stage was expected to fire its engine at least three times to place the classified NRO satellite into a circular geostationary orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator. In this orbit, the spacecraft will move in lock-step with the planet’s rotation, giving the NRO’s newest spy satellite constant coverage over a portion of the Earth.

It will take about six hours for the rocket’s upper stage to deploy its payload into this high-altitude orbit and only then will ULA and the NRO declare the launch a success.

Eavesdropping from space

While the payload is classified, experts can glean a few insights from the circumstances of its launch. Only the largest NRO spy satellites require a launch on a Delta IV Heavy, and the payload on this mission is “almost certainly” a type of satellite known publicly as an “Advanced Orion” or “Mentor” spacecraft, according to Marco Langbroek, an expert Dutch satellite tracker.

The Advanced Orion satellites require the combination of the Delta IV Heavy rocket’s lift capability, long-duration upper stage, and huge, 65-foot-long (19.8-meter) trisector payload fairing, the largest payload enclosure of any operational rocket. In 2010, Bruce Carlson, then-director of the NRO, referred to the Advanced Orion platform as the “largest satellite in the world.”

When viewed from Earth, these satellites shine with the brightness of an eighth-magnitude star, making them easily visible with small binoculars despite their distant orbits, according to Ted Molczan, a skywatcher who tracks satellite activity.

“The satellites feature a very large parabolic unfoldable mesh antenna, with estimates of the size of this antenna ranging from 20 to 100 (!) meters,” Langbroek writes on his website, citing information leaked by Edward Snowden.

The purpose of these Advanced Orion satellites, each with mesh antennas that unfurl to a diameter of up to 330 feet (100 meters), is to listen in on communications and radio transmissions from US adversaries, and perhaps allies. Six previous Delta IV Heavy missions also likely launched Advanced Orion or Mentor satellites, giving the NRO a global web of listening posts parked high above the planet.

With the last Delta IV Heavy off the launch pad, ULA has achieved a goal of its corporate strategy sent into motion a decade ago, when the company decided to retire the Delta IV and Atlas V rockets in favor of a new-generation rocket named Vulcan. The first Vulcan rocket successfully launched in January, so the last few months have been a time of transition for ULA, a 50-50 joint venture owned by Boeing and Lockheed Martin.

“This is such an amazing piece of technology: 23 stories tall, half a million gallons of propellant, two and a quarter million pounds of thrust, and the most metal of all rockets, setting itself on fire before it goes to space,” Bruno said of the Delta IV Heavy before its final launch. “Retiring it is (key to) the future, moving to Vulcan, a less expensive, higher-performance rocket. But it’s still sad.”

“Everything that Delta has done … is being done better on Vulcan, so this is a great evolutionary step,” said Bill Cullen, ULA’s launch systems director. “It is bittersweet to see the last one, but there are great things ahead.”

After a fiery finale, the Delta rocket family now belongs to history Read More »

rocket-report:-blue-origin-to-resume-human-flights;-progress-for-polaris-dawn

Rocket Report: Blue Origin to resume human flights; progress for Polaris Dawn

The wait is over —

“The pacing item in our supply chain is the BE-4.”

Ed Dwight stands in front of an F-104 jet fighter in 1963.

Enlarge / Ed Dwight stands in front of an F-104 jet fighter in 1963.

Welcome to Edition 6.38 of the Rocket Report! Ed Dwight was close to joining NASA’s astronaut corps more than 60 years ago. With an aeronautical engineering degree and experience as an Air Force test pilot, Dwight met the qualifications to become an astronaut. He was one of 26 test pilots the Air Force recommended to NASA for the third class of astronauts in 1963, but he wasn’t selected. Now, the man who would have become the first Black astronaut will finally get a chance to fly to space.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Ed Dwight named to Blue Origin’s next human flight. Blue Origin, Jeff Bezos’ space company, announced Thursday that 90-year-old Ed Dwight, who almost became the first Black astronaut in 1963, will be one of six people to fly to suborbital space on the company’s next New Shepard flight. Dwight, a retired Air Force captain, piloted military fighter jets and graduated test pilot school, following a familiar career track as many of the early astronauts. He was on a short list of astronaut candidates the Air Force provided NASA, but the space agency didn’t include him. It took 20 more years for the first Black American to fly to space. Dwight’s ticket with Blue Origin is sponsored by Space for Humanity, a nonprofit that seeks to expand access to space for all people. Five paying passengers will join Dwight for the roughly 10-minute up-and-down flight to the edge of space over West Texas. Kudos to Space for Humanity and Blue Origin for making this happen.

Return to flight … This mission, named NS-25, will be the first time Blue Origin flies with human passengers since August 2022. Blue Origin hasn’t announced a launch date yet for NS-25. On an uncrewed launch the following month, an engine failure destroyed a New Shepard booster and grounded Blue Origin’s suborbital rocket program for more than 15 months. New Shepard returned to flight December 19 on another research flight, again without anyone onboard. As the mission name suggests, this will be the 25th flight of a New Shepard rocket and the seventh flight with people. Blue Origin has a history of flying aviation pioneers and celebrities. On the first human flight with New Shepard in 2021, the passengers included company founder Jeff Bezos and famed female aviator Wally Funk. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Revisit Astra’s 2020 rocket explosion. In March 2020, as the world was under the grip of COVID, Astra blew up a rocket in remote Alaska and didn’t want anyone to see it. New video published by TechCrunch shows Astra’s Rocket 3 vehicle exploding on its launch pad. This was one of several setbacks that have brought the startup to its knees. The explosion, which occurred at Alaska’s Pacific Spaceport Complex, was simply reported as an “anomaly” at the time, an industry term for pretty much any issue that deviates from the expected outcome, TechCrunch reports. Satellite imagery of the launch site showed burn scars, suggesting an explosion, but the footage published this week confirms the reality of the event. This was Astra’s first orbital-class rocket, and it blew up during a fueling rehearsal.

A sign of things to come … Astra eventually flew its Rocket 3 small satellite launcher seven times, but only two of the flights actually reached orbit. This prompted Astra to abandon its Rocket 3 program and focus on developing a larger rocket, Rocket 4. But the future of this new rocket is in doubt. Astra’s co-founders are taking the company private after its market value and stock price tanked, and it’s not clear where the company will go from here. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Russia’s plan to “restore” its launch industry. Yuri Borisov, chief of the Russian space agency Roscosmos, has outlined a strategy for Russia to regain a dominant position in the global launch market, Ars reports. This will include the development of a partially reusable replacement for the Soyuz rocket called Amur-CNG. The country’s spaceflight enterprise is also working on “ultralight” boosters that will incorporate an element of reusability. In an interview posted on the Roscosmos website, Borisov said he hopes Russia will have a “completely new fleet of space vehicles” by the 2028-2029 timeframe. Russia has previously discussed plans to develop the Amur rocket (the CNG refers to the propellant, liquified methane). The multi-engine vehicle looks somewhat similar to SpaceX’s Falcon 9 rocket in that preliminary designs incorporated landing legs and grid fins to enable a powered first-stage landing.

Reason to doubt … Russia’s launch industry was a global leader a couple of decades ago when prices were cheap relative to Western rockets. But the heavy-lift Proton rocket is nearing retirement after concerns about its reliability, and the still-reliable Soyuz is now excluded from the global market after Russia’s invasion of Ukraine. In the 2000s and 2010s, Russia’s position in the market was supplanted by the European Ariane 5 rocket and then SpaceX’s Falcon 9. Roscosmos originally announced the medium-lift Amur rocket program in 2020 for a maiden flight in 2026. Since then, the rocket has encountered a nearly year-for-year delay in its first test launch. I’ll believe it when I see it. The only new, large rocket Russia has developed in nearly 40 years, the expendable Angara A5, is still launching dummy payloads on test flights a decade after its debut.

Rocket Report: Blue Origin to resume human flights; progress for Polaris Dawn Read More »

the-delta-iv-heavy,-a-rocket-whose-time-has-come-and-gone,-will-fly-once-more

The Delta IV Heavy, a rocket whose time has come and gone, will fly once more

United Launch Alliance's final Delta IV Heavy rocket, seen here in December when ground crews rolled it to the launch pad at Cape Canaveral Space Force Station, Florida.

Enlarge / United Launch Alliance’s final Delta IV Heavy rocket, seen here in December when ground crews rolled it to the launch pad at Cape Canaveral Space Force Station, Florida.

This is the rocket that literally lights itself on fire before it heads to space. It’s the world’s largest rocket entirely fueled by liquid hydrogen, a propellant that is vexing to handle but rewarding in its efficiency.

The Delta IV Heavy was America’s most powerful launch vehicle for nearly a decade and has been a cornerstone for the US military’s space program for more than 20 years. It is also the world’s most expensive commercially produced rocket, a fact driven not just by its outsized capability but also its complexity.

Now, United Launch Alliance’s last Delta IV Heavy rocket is set to lift off Thursday from Cape Canaveral Space Force Station, Florida, with a classified payload for the National Reconnaissance Office, the US government’s spy satellite agency.

“This is such an amazing piece of technology, 23 stories tall, a half-million gallons of propellant and a quarter-million pounds of thrust, and the most metal of all rockets, setting itself on fire before it goes to space,” said Tory Bruno, ULA’s president and CEO. “Retiring it is (key to) the future, moving to Vulcan, a less expensive higher-performance rocket. But it’s still sad.”

45th and final Delta IV

Weather permitting, the Delta IV Heavy will light up its three hydrogen-fueled RS-68A engines at 1: 40 pm EDT (17: 40 UTC) Thursday, the opening of a four-hour launch window. The three RS-68s will fire up in a staggered sequence, a permutation designed to minimize the hydrogen fireball that ignites around the base of the rocket during engine startup.

The Delta IV Heavy will certainly have a legacy of launching national security missions, along with NASA’s Orion spacecraft on an orbital test flight in 2014 and NASA’s Parker Solar Probe in 2018 on a mission to fly through the Sun’s outer atmosphere.

But the fireball will leave an indelible mark in the memories of anyone who saw a Delta IV Heavy launch. It all comes down to the choice of super-cold liquid hydrogen as the fuel. The three RS-68 engines burn hydrogen along with liquid oxygen as the oxidizer.

“We like those propellants because they’re very, very high performance,” Bruno said. “In order to prepare the RS-68 engines to get that very cold cryogenic propellant flowing through them, before they’re ignited, we start flowing that propellant.

“Hydrogen is lighter than air, so after it flows through the engine and into the flame trench, it then rises. When the engines are finally full and ready to go and we start spinning up the pumps, then we actually drop the main load (of propellant), we ignite it, and that flame carries on up that … plume of hydrogen, which is clinging to the side of the booster and rising up.”

The Delta IV rocket cores are covered in orange foam insulation. One of the reasons for this is to protect the rocket from the fireball, leading to a “very dramatic effect of a self-immolating booster” that has the appearance of a “toasted marshmallow” as it heads to space.

A few seconds after the engines start, 12 hold-down bolts will blow to release the triple-core rocket from its restraints. More than 2 million pounds of thrust will power the Delta IV Heavy off the launch pad toward the east from Cape Canaveral. The RS-68 on the center core will throttle down to conserve liquid hydrogen and liquid hydrogen propellant, while the rocket’s two side boosters will burn through their propellants in less than four minutes.

Once the Delta IV lets go of its side boosters and falls into the Atlantic Ocean, the center core throttles up and burns for another minute and a half. A few moments later, the first stage booster jettisons, and the upper stage’s RL10 engine ignites for the first of three burns needed to propel the rocket’s classified cargo into an orbit thousands of miles above Earth.

There’s just a 30 percent chance of favorable weather for liftoff Thursday. High winds and cumulus clouds are the primary concerns. The weather forecast improves for a backup launch opportunity Friday afternoon.

The Delta IV Heavy, a rocket whose time has come and gone, will fly once more Read More »

rocket-report:-starship-could-fly-again-in-may;-ariane-6-coming-together

Rocket Report: Starship could fly again in May; Ariane 6 coming together

Eating their lunch —

“I think we’re really going to focus on getting reentry right.”

Nine kerosene-fueled Rutherford engines power Rocket Lab's Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Enlarge / Nine kerosene-fueled Rutherford engines power Rocket Lab’s Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Welcome to Edition 6.36 of the Rocket Report! SpaceX wants to launch the next Starship test flight as soon as early May, the company’s president and chief operating officer said this week. The third Starship test flight last week went well enough that the Federal Aviation Administration—yes, the FAA, the target of many SpaceX fans’ frustrations—anticipates a simpler investigation and launch licensing process than SpaceX went through before its previous Starship flights. However, it looks like we’ll have to wait a little longer for Starship to start launching real satellites.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Starship could threaten small launch providers. Officials from several companies operating or developing small satellite launch vehicles are worried that SpaceX’s giant Starship rocket could have a big impact on their marketability, Space News reports. Starship’s ability to haul more than 100 metric tons of payload mass into low-Earth orbit will be attractive not just for customers with heavy satellites but also for those with smaller spacecraft. Aggregating numerous smallsats on Starship will mean lower prices than dedicated small satellite launch companies can offer and could encourage customers to build larger satellites with cheaper parts, further eroding business opportunities for small launch providers.

Well, yeah … SpaceX’s dedicated rideshare missions are already reshaping the small satellite launch market. The price per kilogram of payload on a Falcon 9 rocket launching a Transporter mission is less than the price per unit on a smaller rocket, like Rocket Lab’s Electron, Firefly’s Alpha, or Europe’s Vega. Companies operating only in the smallsat launch market tout the benefits of their services, often pointing to their ability to deliver payloads into bespoke orbits, rather than dropping off bunches of satellites into more standardized orbits. But the introduction of Orbital Transfer Vehicles for last-mile delivery services has made SpaceX’s Transporter missions, and potentially Starship rideshares, more attractive. “With Starship, OTVs can become the best option for smallsats,” said Marino Fragnito, senior vice president and head of the Vega business unit at Arianespace. If Starship is able to achieve the very low per-kilogram launch prices proposed for it, “then it will be difficult for small launch vehicles,” Fragnito said.

Rocket Lab launches again from Virginia. Rocket Lab’s fourth launch from Wallops Island, Virginia, and the company’s first there in nine months, took off early Thursday with a classified payload for the National Reconnaissance Office, the US government’s spy satellite agency, Space News reports. A two-stage Electron rocket placed the NRO’s payload into low-Earth orbit, and officials declared it a successful mission. The NRO did not disclose any details about the payload, but in a post-launch statement, the agency suggested the mission was conducting technology demonstrations of some kind. “The knowledge gained from this research will advance innovation and enable the development of critical new technology,” said Chris Scolose, director of the NRO.

A steady customer for Rocket Lab … The National Reconnaissance Office has become a regular customer of Rocket Lab. The NRO has historically launched larger spacecraft, such as massive bus-sized spy satellites, but like the Space Force, is beginning to launch larger numbers of small satellites. This mission, designated NROL-123 by the NRO, was the fifth and last mission under a Rapid Acquisition of a Small Rocket (RASR) contract between NRO and Rocket Lab, dating back to 2020. It was also Rocket Lab’s second launch in nine days, following an Electron flight last week from its primary base in New Zealand. Overall, it was the 46th launch of a light-class Electron rocket since it debuted in 2017. Rocket Lab is building a launch pad for its next-generation Neutron rocket at Wallops. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Night flight for Astrobotic’s Xodiac. The Xodiac rocket, a small terrestrial vertical takeoff and vertical landing technology testbed, made its first night flight, Astrobotic says in a statement. The liquid-fueled Xodiac is designed for vertical hops and can host prototype sensors and other payloads, particularly instruments in development to assist in precision landings on other worlds. This first tethered night flight of Xodiac in Mojave, California, was in preparation for upcoming flight testing with the NASA TechLeap Prize’s Nighttime Precision Landing Challenge. These flights will begin in April, allowing NASA to test the ability of sensors to map a landing field designed to simulate the Moon’s surface in near-total darkness.

Building on the legacy of Masten … Xodiac has completed more than 160 successful flights, dating back to the vehicle’s original owner, Masten Space Systems. Masten filed for bankruptcy in 2022, and the company was acquired by Astrobotic a couple of months later. Astrobotic’s primary business area is in developing and flying robotic Moon landers, so it has a keen interest in mastering automated landing and navigation technologies like those it is testing with NASA on Xodiac. David Masten, founder of Masten Space Systems, is now chief engineer for Astrobotic’s propulsion and test department. “The teams will demonstrate their systems over the LSPG (Lunar Surface Proving Ground) at night to simulate landing on the Moon during the lunar night or in shadowed craters.” (submitted by Ken the Bin)

Rocket Report: Starship could fly again in May; Ariane 6 coming together Read More »

russia’s-next-generation-rocket-is-a-decade-old-and-still-flying-dummy-payloads

Russia’s next-generation rocket is a decade old and still flying dummy payloads

A winding road —

Russia’s heavy-lift Angara A5 rocket is about to launch on its fourth test flight.

Technicians assemble an Angara A5 rocket at the Vostochny Cosmodrome in Russia's Far East.

Enlarge / Technicians assemble an Angara A5 rocket at the Vostochny Cosmodrome in Russia’s Far East.

Roscosmos

By some measures, Russia’s next-generation flagship rocket program—the Angara—is now three decades old. The Russian government approved the development of the Angara rocket in 1992, soon after the fall of the Soviet Union ushered in a prolonged economic recession.

It has been nearly 10 years since Russia launched the first Angara test flights. The heaviest version of the Angara rocket family—the Angara A5—is about to make its fourth flight, and like the three launches before, this mission won’t carry a real satellite.

This next launch will be a milestone for the beleaguered Angara rocket program because it will be the first Angara flight from the Vostochny Cosmodrome, Russia’s newest launch site in the country’s far east. The previous Angara launches were based out of the military-run Plesetsk Cosmodrome in northern Russia.

All dressed up and nowhere to go

On Wednesday, Russia’s space agency, Roscosmos, said technicians at Vostochny have fueled the Angara A5’s Orion upper stage and will soon install it on the rest of the rocket. The Angara A5 will roll to its launch pad a few days before liftoff, currently scheduled for next month.

The Angara A5 rocket is supposed to replace Russia’s Proton launch vehicle, which uses toxic propellant and only launches from the Baikonur Cosmodrome in Kazakhstan. Angara’s launch pads are on Russian territory. Until a few years ago, the Proton was a competitor in the global commercial launch market, but the rocket lost its position due to reliability problems, competitive pressure from SpaceX, and the fallout of Russia’s invasion of Ukraine.

Russian officials once touted Angara as a successor to Proton on the commercial market. Now, Angara will solely serve the Russian government, but it’s doubtful the government has enough demand to fill the Angara A5’s heavy launch capacity on a regular basis. According to RussianSpaceWeb.com, a website run by veteran Russian space reporter Anatoly Zak, the Russian government didn’t have any functional satellites ready to fly on the upcoming Angara A5 launch from Vostochny.

Eventually, the Angara A5 could take over the launch responsibility of the handful of large satellites that require the capacity of the Proton rocket. But this is a small number of flights. The Proton has launched three times in the last two years, and there are roughly a dozen Proton launch vehicles remaining in Russia’s inventory.

Russia plans a next-generation crew spacecraft, Orel, that officials claim will begin launching on the Angara A5 rocket in 2028. There’s no evidence Orel could be ready for test flights within four years. So, while the Angara rocket is finally flying, albeit at an anemic rate, there aren’t many payloads for Russia to put on it.

North Korean leader Kim Jong Un and Russian President Vladimir Putin visited the Angara rocket's launch pad at the Vostochny Cosmodrome last year.

Enlarge / North Korean leader Kim Jong Un and Russian President Vladimir Putin visited the Angara rocket’s launch pad at the Vostochny Cosmodrome last year.

Russia’s economic woes might explain some of the delays that have befallen the Angara program since 1992, but Russia’s space program has long suffered from chronic underfunding, mismanagement, and corruption. Angara is the only rocket Russia has developed from scratch since the 1980s, and the Russian government selected Khrunichev, one of the country’s oldest space companies, to oversee the Angara program.

Finally, in 2014, Russia launched the first two Angara test flights, one with a single-booster lightweight version of the rocket, called the Angara 1.2, and another with the heavy-lift Angara A5, made up of five Angara rocket cores combined into one rocket.

The Angara A5 can place up to 24.5 metric tons (about 54,000 pounds) into low-Earth orbit, according to Khrunichev. The expendable rocket has enough power to launch modules for a space station or deploy the Russian military’s largest spy satellites, but in 2020, each Angara A5 reportedly cost more than $100 million, significantly more than the Proton.

The smaller Angara 1.2 has flown twice since 2014, but both missions delivered functional satellites into orbit for the Russian military. The much larger Angara A5 has launched three times, all with dummy payloads. The most recent Angara A5 launch in 2021 failed due to a problem with the rocket’s Persei upper stage. The Orion upper stage set to fly on the next Angara A5 mission is a modified version of the Persei, which is itself modeled on the Block-DM upper stage, a design with its roots in the 1960s.

Essentially, the Angara A5 flight will allow engineers to test out changes to the upper stage and allow Russia to activate a second launch pad at Vostochny, which itself has been mired in corruption and delays. Medium-lift Soyuz rockets have been flying from Vostochny since 2016.

Russia’s next-generation rocket is a decade old and still flying dummy payloads Read More »

the-world’s-most-traveled-crew-transport-spacecraft-flies-again

The world’s most-traveled crew transport spacecraft flies again

A SpaceX Falcon 9 rocket lifts off with the Crew-8 mission, sending three NASA astronauts and one Russian cosmonaut on a six-month expedition on the International Space Station.

Enlarge / A SpaceX Falcon 9 rocket lifts off with the Crew-8 mission, sending three NASA astronauts and one Russian cosmonaut on a six-month expedition on the International Space Station.

SpaceX’s oldest Crew Dragon spacecraft launched Sunday night on its fifth mission to the International Space Station, and engineers are crunching data to see if the fleet of Dragons can safely fly as many as 15 times.

It has been five years since SpaceX launched the first Crew Dragon spacecraft on an unpiloted test flight to the space station and nearly four years since SpaceX’s first astronaut mission took off in May 2020. Since then, SpaceX has put its clan of Dragons to use ferrying astronauts and cargo to and from low-Earth orbit.

Now, it’s already time to talk about extending the life of the Dragon spaceships. SpaceX and NASA, which shared the cost of developing the Crew Dragon, initially certified each capsule for five flights. Crew Dragon Endeavour, the first in the Dragon fleet to carry astronauts, is now flying for the fifth time.

This ship has spent 466 days in orbit, longer than any spacecraft designed to transport people to and from Earth. It will add roughly 180 days to its flight log with this mission.

Crew Dragon Endeavour lifted off from Florida aboard a Falcon 9 rocket at 10: 53 pm EST Sunday (03: 53 UTC Monday), following a three-day delay due to poor weather conditions across the Atlantic Ocean, where the capsule would ditch into the sea in the event of a rocket failure during the climb into orbit.

Commander Matthew Dominick, pilot Michael Barratt, mission specialist Jeanette Epps, and Russian cosmonaut Alexander Grebenkin put on their SpaceX pressure suits and strapped into their seats inside Crew Dragon Endeavour Sunday evening at NASA’s Kennedy Space Center. SpaceX loaded liquid propellants into the rocket, while ground teams spent the final hour of the countdown evaluating a small crack discovered on Dragon’s side hatch seal. Managers ultimately cleared the spacecraft for launch after considering whether the crack could pose a safety threat during reentry at the end of the mission.

“We are confident that we understand the issue and can still fly the whole mission safely,” a member of SpaceX’s mission control team told the crew inside Dragon.

This mission, known as Crew-8, launched on a brand-new Falcon 9 booster, which returned to landing a few minutes after liftoff at Cape Canaveral Space Force Station. The Falcon 9’s upper stage released the Dragon spacecraft into orbit about 12 minutes after liftoff. The four-person crew will dock at the space station around 3 am EST (0800 UTC) Tuesday.

Crew-8 will replace the four-person Crew-7 team that has been at the space station since last August. Crew-7 will return to Earth in about one week on SpaceX’s Crew Dragon Endurance spacecraft, which is flying in space for the third time.

The Crew-8 mission came home for a reentry and splashdown off the coast of Florida in late August of this year, wrapping up Crew Dragon Endeavour’s fifth trip to space. This is the current life limit for a Crew Dragon spacecraft, but don’t count out Endeavour just yet.

Fleet management

“Right now, we’re certified for five flights on Dragon, and we’re looking at extending that life out,” said Steve Stich, NASA’s commercial crew program manager. “I think the goal would be for SpaceX to say 15 flights of Dragon. We may not get there in every single system.”

One by one, engineers at SpaceX and NASA are looking at Dragon’s structural skeleton, composite shells, rocket engines, valves, and other components to see how much life is left in them. Some parts of the spacecraft slowly fatigue from the stresses of each launch, reentry, and splashdown, along with the extreme temperature swings the capsule sees thousands of times in orbit. Each Draco thruster on the spacecraft is certified for a certain number of firings.

Some components are already approved for 15 flights, Stich said in a recent press conference. “Some, we’re still in the middle of working on,” he said. “Some of those components have to go through some re-qualification to make sure that they can make it out to 15 flights.”

Re-qualifying a component on a spacecraft typically involves putting hardware through extensive testing on the ground. Because SpaceX reuses hardware, engineers can remove a part from a flown Dragon spacecraft and put it through qualification testing. NASA will get the final say in certifying the Dragon spacecraft for additional flights because the agency is SpaceX’s primary customer for crew missions.

The Dragon fleet is flying more often than SpaceX or NASA originally anticipated. The main reason for this is that Boeing, NASA’s other commercial crew contractor, is running about four years behind SpaceX in getting to its first astronaut launch on the Starliner spacecraft.

When NASA selected SpaceX and Boeing for multibillion-dollar commercial crew contracts in 2014, the agency envisioned alternating between Crew Dragon and Starliner flights every six months to rotate four-person crews at the International Space Station. With Boeing’s delays, SpaceX has picked up the slack.

The world’s most-traveled crew transport spacecraft flies again Read More »

jeff-bezos’-new-glenn-rocket-finally-makes-an-appearance-on-the-launch-pad

Jeff Bezos’ New Glenn rocket finally makes an appearance on the launch pad

Integrated —

Blue Origin plans a tanking test at Cape Canaveral, then a hotfire on the launch pad.

Dave Limp, Blue Origin's new CEO, and founder Jeff Bezos observe the New Glenn rocket on its launch pad Wednesday at Cape Canaveral Space Force Station, Florida.

Enlarge / Dave Limp, Blue Origin’s new CEO, and founder Jeff Bezos observe the New Glenn rocket on its launch pad Wednesday at Cape Canaveral Space Force Station, Florida.

Anyone who has tracked the development of Blue Origin’s New Glenn rocket has been waiting for signs of progress from the usually secretive space company. On Wednesday, engineers rolled a full-scale New Glenn rocket, partially made up of flight hardware, to a launch pad in Florida for ground testing.

The first New Glenn launch is almost certainly at least six months away, and it may not even happen this year. In the last few years, observers inside and outside the space industry have become accustomed to the nearly annual ritual of another New Glenn launch delay. New Glenn’s inaugural flight has been delayed from 2020 until 2021, then 2022, and for now, is slated for later this year.

But it feels different now. Blue Origin is obviously moving closer to finally launching a rocket into orbit.

Scaling up

Jeff Bezos, Blue Origin’s founder, was at Cape Canaveral to see his giant new rocket on the launch pad for the first time. “Just incredible to see New Glenn on the pad at LC-36,” Bezos wrote on Instagram. “Big year ahead. Let’s go!”

Starting late last year, Blue Origin officials doubled down on the company’s plans to launch the first New Glenn test flight by the end of 2024. This messaging coincided with the arrival of Dave Limp as Blue Origin’s chief executive, replacing Bob Smith, whose seven-year tenure included the first human suborbital flights on the company’s New Shepard rocket. Smith’s time as CEO was also marked by repeated delays on the New Glenn rocket.

Limp is pushing Blue Origin to move faster, and it seems the company’s employees got the memo. In December, the company rolled elements of the New Glenn rocket from its factory just outside the gates of NASA’s Kennedy Space Center to a final assembly hangar located about nine miles away at Cape Canaveral Space Force Station.

Inside that building, technicians connected the first stage booster, which is flight hardware, with an upper stage Blue Origin has set aside for ground testing. The final piece of the rocket to be added was a 23-foot-diameter (7-meter) payload fairing, the uppermost section of New Glenn designed to protect spacecraft during the initial phase of launch.

Last week, Blue Origin lifted a structure simulating the rocket’s empty mass vertical using the transporter-erector arm at Launch Complex 36 (LC-36), a former Atlas launch pad Blue Origin took over in 2015. This was a final validation of the lifting arm at LC-36 before Blue Origin put a real, or mostly real, rocket on the pad.

The first full-scale New Glenn rocket rolls out at Launch Complex 36.

Enlarge / The first full-scale New Glenn rocket rolls out at Launch Complex 36.

On Wednesday, ground crews rolled a fully assembled New Glenn rocket out of the hangar at LC-36 and up the ramp to the launch mount. Then, the hydraulic lifting arm raised the two-stage launcher vertically. At more than 320 feet (98 meters) tall, New Glenn is one of the largest rockets ever seen on Florida’s Space Coast, roughly the same height as NASA’s Space Launch System rocket and nearly as tall as the Saturn V used in the Apollo program.

“The upending is one in a series of major manufacturing and integrated test milestones in preparation for New Glenn’s first launch later this year,” Blue Origin officials wrote in an update on Wednesday. “The test campaign enables our teams to practice, validate, and increase proficiency in vehicle integration, transport, ground support, and launch operations.”

New Glenn can haul nearly 100,000 pounds (45 metric tons) of payload into low-Earth orbit. For low-altitude orbits, this is a weight class above the uppermost capability of United Launch Alliance’s Vulcan rocket or SpaceX’s Falcon 9 rocket but below SpaceX’s Falcon Heavy. Blue Origin also plans to use the New Glenn rocket to launch lunar landers to the Moon for NASA’s Artemis program.

New Glenn’s first stage booster is reusable, and is designed to land on an offshore barge in the Atlantic Ocean, which will bring it back to the coast, similar to the way SpaceX recovers its Falcon 9 booster.

“The fairing is large enough to hold three school buses,” Blue Origin said. “Its reusable first stage aims for a minimum of 25 missions and will land on a sea-based platform located roughly 620 miles (1,000 kilometers) downrange.”

Blue Origin is now 24 years old and employs around 11,000 people at locations around the country, with major locations in Washington, Texas, Florida, and Alabama. While the company has not yet launched anything into orbit, Blue Origin is working on a wide range of projects aside from rockets, including cargo and human-rated lunar landers for NASA and a space tug that could move payloads into different orbits for the US military. New Glenn is crucial for all of these plans.

Blue Origin’s latest progress with New Glenn comes as Bezos’s space company appears to be on the verge of buying United Launch Alliance from Boeing and Lockheed Martin.

Jeff Bezos’ New Glenn rocket finally makes an appearance on the launch pad Read More »

spacex-wants-to-take-over-a-florida-launch-pad-from-rival-ula

SpaceX wants to take over a Florida launch pad from rival ULA

First step —

SpaceX now plans at least four Starship launch pads, two in Texas and two in Florida.

SpaceX's fully-stacked Starship rocket and Super Heavy booster on a launch pad in South Texas.

Enlarge / SpaceX’s fully-stacked Starship rocket and Super Heavy booster on a launch pad in South Texas.

One of the largest launch pads at Cape Canaveral Space Force Station will become vacant later this year after the final flight of United Launch Alliance’s Delta IV Heavy rocket. SpaceX is looking to make the sprawling facility a new home for the Starship launch vehicle.

The environmental review for SpaceX’s proposal to take over Space Launch Complex 37 (SLC-37) at Cape Canaveral is getting underway now, with three in-person public meetings and one virtual meeting scheduled for March to collect comments from local residents, according to a new website describing the plan.

Then federal agencies, led by the Department of the Air Force, will develop an environmental impact statement to evaluate how Starship launch and landing operations will affect the land, air, and water around SLC-37, which sits on Space Force property on the Atlantic coastline.

Environmental studies for rocket launch facilities typically take more than a year, so it will be a while before any major construction begins to convert SLC-37 for Starship launches. In this case, federal officials anticipate publishing a draft environmental impact statement by December, then a final report by October 2025.

More immediately, ULA still has one more Delta IV Heavy rocket to launch from SLC-37 in March with a classified spy satellite for the National Reconnaissance Office. Once that launch is complete, ULA will wind down operations at SLC-37, and eventually turn over the facility back to the Space Force, which will look for a new tenant. For several months, industry sources have pointed to SpaceX as the leading contender to take over SLC-37 after ULA is finished with the launch pad.

But that’s not quite a done deal yet. Last year, a senior official at ULA told Ars on background that the company was also interested in maintaining a presence at SLC-37.

ULA’s new Vulcan rocket, which debuted last month and will replace the Delta IV and Atlas V launch vehicles, uses a different launch pad a few miles up the coast from SLC-37. ULA is upgrading and expanding its ground facilities at Cape Canaveral to ramp up the Vulcan launch cadence, and the ULA official told Ars the company may want to continue using a rocket processing hangar just south of the Delta IV launch pad for storage and horizontal processing of Vulcan rockets.

Details are scarce about everything SpaceX wants to do with SLC-37, but officials wrote on the environmental review website that SpaceX would “modify, reuse, or demolish the existing SLC-37 infrastructure to support Starship-Super Heavy launch and landing operations.”

This aerial view shows a United Launch Alliance Delta IV Heavy rocket awaiting liftoff from Space Launch Complex 37 at Cape Canaveral Space Force Station, Florida.

Enlarge / This aerial view shows a United Launch Alliance Delta IV Heavy rocket awaiting liftoff from Space Launch Complex 37 at Cape Canaveral Space Force Station, Florida.

The history of SLC-37 dates back to the 1960s, when NASA used the site for eight flights of the Saturn I and Saturn IB rockets to prepare for the Apollo program. The facility sat dormant for 30 years until Boeing moved in to ready SLC-37 for the Delta IV rocket, which has now flown 34 times from SLC-37. The launch pad currently includes a 330-foot-tall (100-meter) mobile gantry, a fixed erector, a fixed umbilical tower, and a flame trench for Delta IV missions.

Starship, the world’s largest rocket, would not need any of that that infrastructure, so if SpaceX takes over the pad, the facility will likely undergo extensive demolition and construction.

If SpaceX isn’t cleared to use SLC-37, the company could build a brand new launch pad designated Space Launch Complex 50. If this is the path SpaceX takes, SLC-50 would be built on undeveloped land north of SLC-37 and south of SpaceX’s primary launch pad for the Falcon 9 rocket at Space Launch Complex 40.

Goodbye to LC-49, hello to SLC-37

SpaceX’s interest in setting up shop at SLC-37 shows the company is getting serious about developing a second base for Starship on Florida’s Space Coast. In 2022, SpaceX constructed a launch tower and launch mount for Starship at Launch Complex 39A (LC-39A), located at NASA’s Kennedy Space Center. But the company made little progress there last year as teams focused on Starship test flights from South Texas.

Elon Musk, SpaceX’s founder and CEO, says Starship is the rocket that will make possible his dream of building a settlement on Mars. He has also touted Starship as a vehicle for point-to-point travel on Earth. Both stages of Starship are designed to be fully and rapidly reusable, with the Super Heavy booster and Starship upper stage returning to Earth for propulsive landings. Starship launch pads will double as landing pads.

Before any of those dreams are realized, Starship needs to get into orbit. The first two full-scale Starship test flights last year didn’t make it that far, but SpaceX got close on the second launch in November. SpaceX hopes to achieve a near-orbital mission with the third Starship test launch, perhaps as soon as early March.

Eventually, Musk envisions Starship launching multiple times per day on a variety of missions, carrying people, satellites, cargo, or refueling tankers into orbit. In order to do this, SpaceX will need a lot of launch and landing pads. SpaceX has toyed with the idea of floating offshore launch and landing platforms, but those plans are on hold.

In the near-term, SpaceX plans to build a second Starship launch tower at the company’s Starbase test site in Cameron County, Texas. There’s also the partially-built launch tower at LC-39A, and now SpaceX has set its sights on SLC-37.

SpaceX was previously looking at building another Starship launch pad from scratch on NASA property at the Kennedy Space Center. NASA environmental studies for this location, known as Launch Complex 49, kicked off in 2021. Patti Bielling, a NASA spokesperson, told Ars on Friday the agency is no longer working on Launch Complex 49.

“At this time, there are no activities involving LC-49 on Kennedy,” Bielling said. “Any previous activities regarding LC-49 were suspended, and no actions were taken.”

One of the first operational applications for Starship will be to serve as a human-rated lunar lander for NASA’s Artemis program. SpaceX is developing a version of Starship to ferry astronauts to and from the Moon’s surface, but in order for Starship to reach the Moon, it has to be refueled in low-Earth orbit. This will require perhaps 10 or more refueling flights using a version of Starship called a tanker, all launching in a matter of weeks. Those tanker flights will launch on Super Heavy boosters from pads in Texas and Florida.

In parallel with continued Starship test flights and demonstrating in-space refueling technology, SpaceX needs to build more launch pads to make all this possible. Although SpaceX has backpedaled on several of its Starship launch pad ideas, the company’s interest in SLC-37 suggests it still has big plans for Starship in Florida.

SpaceX wants to take over a Florida launch pad from rival ULA Read More »

rocket-report:-falcon-9-flies-for-300th-time;-an-intriguing-launch-from-russia

Rocket Report: Falcon 9 flies for 300th time; an intriguing launch from Russia

Co-planar —

Starship is fully stacked in South Texas for the rocket’s third test flight.

The upper stage for the first Ariane 6 flight vehicle is seen inside its factory in Bremen, Germany. The upper stage's hydrogen-fueled Vinci engine is visible in this image.

Enlarge / The upper stage for the first Ariane 6 flight vehicle is seen inside its factory in Bremen, Germany. The upper stage’s hydrogen-fueled Vinci engine is visible in this image.

Welcome to Edition 6.31 of the Rocket Report! Photographers at Cape Canaveral, Florida, noticed a change to the spaceport’s skyline this week. Blue Origin has erected a full-size simulator of its New Glenn rocket vertically on its launch pad for a series of fit checks and tests. Late last year, we reported Blue Origin was serious about getting the oft-delayed New Glenn rocket off the ground by the end of 2024. This is a good sign of progress toward that goal, but there’s a long, long way to go. It was fun to watch preparations for the inaugural flights of a few other heavy-lift rockets in the last couple of years (Starship, SLS, and Vulcan). This year, it’s New Glenn.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Russia launches a classified satellite. On February 9, Russia launched its first orbital mission of the year with the liftoff of a Soyuz-2-1v rocket from the Plesetsk Cosmodrome in the far north of the country. The two-stage rocket delivered a classified satellite into orbit for the Russian military, Anatoly Zak of RussianSpaceWeb.com reports. In keeping with the Russian military’s naming convention, the satellite is known simply as Kosmos 2575, and there’s little indication about what it will do in space, except for one key fact.

But wait, there’s more … It turns out the launch of Kosmos 2575 occurred at exactly the same time of day as another Soyuz-2-1v rocket launched on December 27 with a Russian military satellite named Kosmos 2574. The newer spacecraft launched into the same orbital plane as Kosmos 2574, a strong indication that the two satellites have a shared mission. In recent years, Russia has tested rendezvous, proximity operations, and, at least in one instance, a projectile that would have applications for an anti-satellite weapon. You can be sure the US military and a global community of hobbyist satellite trackers will watch closely to see if these two satellites approach one another. If they do, they could continue technology demonstrations for an anti-satellite system. It’s unclear if the recent revelations regarding US officials’ concerns about Russian anti-satellite capabilities are related to these recent launches.

European startup testing methane-fueled rocket engine. Space transportation startup The Exploration Company has continued testing its methane-fueled Huracán engine, which will power an in-space and lunar transportation vehicle under development, European Spaceflight reports. Most recently, the Huracán engine completed another round of thrust chamber testing using liquid methane fuel as a coolant and tested a new thermal barrier coating. The methane/liquid oxygen engine is undergoing testing at a facility in Lampoldshausen, Germany, ahead of use on The Exploration Company’s Nyx Moon spacecraft, a transfer vehicle designed for transportation to and from cislunar space and also capable of Moon landings. The Nyx Moon is an evolution of a transfer vehicle the European startup is developing to ferry satellites between different orbits around Earth.

Other uses for Huracán… The Exploration Company appears to be positioning itself not only as a builder and operator of orbital and lunar transfer vehicles but also as a propulsion supplier to other space companies. In 2022, The Exploration Company received funding for the Huracán engine from the French government. At the time, the company described the engine as serving the needs of “the upper stages of small launchers and those of orbital vehicles.” (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Rocket Report: Falcon 9 flies for 300th time; an intriguing launch from Russia Read More »

spacex-launches-military-satellites-tuned-to-track-hypersonic-missiles

SpaceX launches military satellites tuned to track hypersonic missiles

Trackers —

These satellites will participate in joint missile tracking exercises later this year.

SpaceX launched a Falcon 9 rocket Wednesday with six missile-tracking satellites for the US military.

Enlarge / SpaceX launched a Falcon 9 rocket Wednesday with six missile-tracking satellites for the US military.

Two prototype satellites for the Missile Defense Agency and four missile tracking satellites for the US Space Force rode a SpaceX Falcon 9 rocket into orbit Wednesday from Florida’s Space Coast.

These satellites are part of a new generation of spacecraft designed to track hypersonic missiles launched by China or Russia and perhaps emerging missile threats from Iran or North Korea, which are developing their own hypersonic weapons.

Hypersonic missiles are smaller and more maneuverable than conventional ballistic missiles, which the US military’s legacy missile defense satellites can detect when they launch. Infrared sensors on the military’s older-generation missile tracking satellites are tuned to pick out bright thermal signatures from missile exhaust.

The new threat paradigm

Hypersonic missiles represent a new challenge for the Space Force and the Missile Defense Agency (MDA). For one thing, ballistic missiles follow a predictable parabolic trajectory that takes them into space. Hypersonic missiles are smaller and comparatively dim, and they spend more time flying in Earth’s atmosphere. Their maneuverability makes them difficult to track.

A nearly 5-year-old military organization called the Space Development Agency (SDA) has launched 27 prototype satellites over the last year to prove the Pentagon’s concept for a constellation of hundreds of small, relatively low-cost spacecraft in low-Earth orbit. This new fleet of satellites, which the SDA calls the Proliferated Warfighter Space Architecture (PWSA), will eventually number hundreds of spacecraft to track missiles and relay data about their flight paths down to the ground. The tracking data will provide an early warning to those targeted by hypersonic missiles and help generate a firing solution for interceptors to shoot them down.

The SDA constellation combines conventional tactical radio links, laser inter-satellite communications, and wide-view infrared sensors. The agency, now part of the Space Force, plans to launch successive generations, or tranches, of small satellites, each introducing new technology. The SDA’s approach relies on commercially available spacecraft and sensor technology and will be more resilient to attack from an adversary than the military’s conventional space assets. Those legacy military satellites often cost hundreds of millions or billions of dollars apiece, with architectures that rely on small numbers of large satellites that might appear like a sitting duck to an adversary determined to inflict damage.

Four of the small SDA satellites and two larger spacecraft for the Missile Defense Agency were aboard a SpaceX Falcon 9 rocket when it lifted off from Cape Canaveral Space Force Station at 5: 30 pm EST (2230 UTC) Wednesday.

The rocket headed northeast from Cape Canaveral to place the six payloads into low-Earth orbit. Officials from the Space Force declared the launch a success later Wednesday evening.

The SDA’s four tracking satellites, built by L3Harris, are the last spacecraft the agency will launch in its prototype constellation, called Tranche 0. Beginning later this year, the SDA plans to kick off a rapid-fire launch campaign with SpaceX and United Launch Alliance to quickly build out its operational Tranche 1 constellation, with launches set to occur at one-month intervals to deploy approximately 150 satellites. Then, there will be a Tranche 2 constellation with more advanced sensor technologies.

The primary payloads aboard Wednesday’s launch were for the MDA. These two Hypersonic and Ballistic Tracking Space Sensor (HBTSS) satellites, one supplied by L3Harris and the other by Northrop Grumman, will demonstrate medium field-of-view sensors. Those sensors can’t cover as much territory as the SDA satellites but will provide more sensitive and detailed missile tracking data.

This illustration shows how the HBTSS satellites can track hypersonic missiles as they glide and maneuver through the atmosphere, evading detection by conventional missile tracking spacecraft, such as the Space Force's DSP and SBIRS satellites.

This illustration shows how the HBTSS satellites can track hypersonic missiles as they glide and maneuver through the atmosphere, evading detection by conventional missile tracking spacecraft, such as the Space Force’s DSP and SBIRS satellites.

“Our advanced satellites on orbit will bring the integrated and resilient missile warning and defense capabilities the US requires against adversaries developing more advanced maneuverable missiles,” said Christopher Kubasik, chairman and CEO of L3Harris. “L3Harris delivered this advanced missile tracking capability on behalf of MDA and SDA on orbit in just over three years after work was authorized to proceed. We are proud to be a critical part of the new space sensing architecture.”

The HBTSS satellites, valued at more than $300 million, and the SDA’s tracking prototypes will participate in joint military exercises in the coming months, where the wide-view SDA satellites will provide “cueing data” to the MDA’s HBTSS spacecraft. The narrower field of view of the HBTSS satellites can provide more specific, target-quality data to a ground-based interceptor, according to a report last year published by the Congressional Research Service. Future tranches, or generations, of SDA satellites will incorporate the medium field-of-view sensing capability flying on the MDA’s HBTSS satellites.

With SDA taking over the responsibility for making this technology operational, that will leave the MDA, which has historically flown its own missile tracking satellites, focused on next-generation sensor development, an MDA spokesperson told Ars.

Military officials decided only last year to place the four SDA satellites on the same launch as the MDA’s HBTSS mission. With all six satellites flying in the same orbital plane, there will be opportunities to see the same targets with both types of spacecraft and sensors. These targets may include scheduled US military missile tests or foreign launches.

“The intent to be able to work with cooperative and noncooperative targets to be able to do our demonstrations,” a senior SDA official said during a background briefing.

SpaceX launches military satellites tuned to track hypersonic missiles Read More »

rocket-report:-a-new-estimate-of-starship-costs;-japan-launches-spy-satellite

Rocket Report: A new estimate of Starship costs; Japan launches spy satellite

A bigger tug —

One space tug company runs into financial problems; another says go big or go home.

An H-IIA rocket lifts off with the IGS Optical-8 spy satellite.

Enlarge / An H-IIA rocket lifts off with the IGS Optical-8 spy satellite.

Mitsubishi Heavy Industries

Welcome to Edition 6.27 of the Rocket Report! This week, we discuss an intriguing new report looking at Starship. Most fascinating, the report covers SpaceX’s costs to build a Starship and how these costs will come down as the company ramps up its build and launch cadence. At the other end of the spectrum, former NASA Administrator Mike Griffin has a plan to get astronauts back to the Moon that would wholly ignore the opportunities afforded by Starship.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

The problem at America’s military spaceports. The Biden administration is requesting $1.3 billion over the next five years to revamp infrastructure at the Space Force’s ranges in Florida and California, Ars reports. This will help address things like roads, bridges, utilities, and airfields that, in many cases, haven’t seen an update in decades. But it’s not enough, according to the Space Force. Last year, Cape Canaveral was the departure point for 72 orbital rocket launches, and officials anticipate more than 100 this year. The infrastructure and workforce at the Florida spaceport could support about 150 launches in a year without any major changes, but launch activity is likely to exceed that number within a few years.

Higher fees incoming … Commercial launch companies operating from Cape Canaveral Space Force Station, Florida, or Vandenberg Space Force Base, California, pay fees to the Space Force to reimburse for direct costs related to rocket launches. These cover expenses like weather forecast services, surveillance to ensure airplanes and boats stay out of restricted areas, and range safety support. “What that typically meant was anything we did that was specifically dedicated to that launch,” said Col. James Horne, deputy commander of the Space Force’s assured access to space directorate. This is about to change after legislation passed by Congress in December allows the Space Force to charge indirect fees to commercial providers. This money will go into a fund to pay for maintenance and upgrades to infrastructure used by all launch companies at the spaceports.

Momentus is running out of money. Momentus, a company that specializes in “last mile” satellite delivery services, announced on January 12 that it is running out of money and does not have a financial lifeline, CNBC reports. The company was once valued at more than $1 billion before going public via a Special Purpose Acquisition Company (SPAC) in 2021 but now has a market capitalization of less than $10 million. Momentus has developed a space tug called Vigoride, designed to place small satellites into bespoke orbits after deploying from a larger rocket on a rideshare mission, such as a SpaceX Falcon 9. Now, Momentus is abandoning plans for its next mission that was due for launch in March. In December, the company laid off about 20 percent of its workforce to reduce costs.

Fatal blow? … Momentus may have received a potentially fatal blow after losing the US Space Development Agency’s recent competition for 18 so-called Tranche 2 satellites, Aviation Week reports. Instead, the SDA made recent satellite manufacturing contract awards to Rocket Lab, L3Harris, Lockheed Martin, and Sierra Space. On Wednesday, Momentus announced it closed a $4 million stock sale. This should keep Momentus afloat for a while longer but won’t provide the level of capital needed to undertake any significant manufacturing or technical development work. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Orbex may go bigger. UK-based launch startup Orbex hasn’t yet flown its small satellite launcher, called Prime, but is already looking at what’s next, according to reports by European Spaceflight and the Financial Times. New Orbex CEO Phil Chambers, who was officially appointed earlier this month, told the Financial Times that the company was already discussing the possibility of developing a larger vehicle. Speaking to European Spaceflight, Chambers described the business model to deliver orbital launch services with Prime as “robust.” Despite this, he admitted that the small launch industry was only a small sliver of the overall launch market.

Learning to walk before running … While future growth is on Orbex’s radar, its near-term focus is completing construction of a spaceport in Scotland, launching a maiden flight of Prime, and delivering on the six flights the company has already sold. The two-stage Prime rocket, fueled by “bio-propane,” will be capable of hauling a payload of approximately 180 kilograms (nearly 400 pounds) into low-Earth orbit. But Orbex has been shy about releasing updates on the progress of the Prime rocket’s development since unveiling a full-scale mock-up of the launch vehicle in 2022. Last year, the CEO who led Orbex since its founding resigned. Its most recent significant funding round was valued at 40.4 million pounds in late 2022. (submitted by Ken the Bin)

Rocket Report: A new estimate of Starship costs; Japan launches spy satellite Read More »

the-space-force-is-changing-the-way-it-thinks-about-spaceports

The Space Force is changing the way it thinks about spaceports

Demanding —

There’s not much available real estate to grow Cape Canaveral’s launch capacity.

The Morrell Operations Center at Cape Canaveral Space Force Station, Florida.

Enlarge / The Morrell Operations Center at Cape Canaveral Space Force Station, Florida.

A lot goes into a successful rocket launch. It’s not just reliable engines, computers, and sophisticated guidance algorithms. There’s also the launch pad, and perhaps even more of an afterthought to casual observers, the roads, bridges, pipelines, and electrical infrastructure required to keep a spaceport humming.

Brig. Gen. Kristin Panzenhagen, commander of the Space Force’s Eastern Range at Cape Canaveral Space Force Station in Florida, calls this the “non-sexy stuff that we can’t launch without.” Much of the ground infrastructure at Cape Canaveral and Vandenberg Space Force Base in California, the military’s other launch range, is antiquated and needs upgrades or expansion.

“Things like roads, bridges, even just the entry into the base, the gate, communications infrastructure, power, we’re looking at overhauling and modernizing all of that because we really haven’t done a tech refresh on all of that in a very long time, at least 20 years, if not more,” said Col. James Horne, deputy director for the Space Force’s assured access to space directorate.

Getting a congressional appropriation for new rocket or spacecraft development, research into advanced technology, or military pay raises has generally been easier than securing funds for military construction projects.

“Trying to do all those upgrades on just our annual budget is not possible,” Panzenhagen said earlier his week in a presentation to the National Space Club Florida Committee.

Charging ahead

The Biden administration is requesting $1.3 billion over the next five years to revamp infrastructure at the Space Force’s ranges in Florida and California. According to Panzenhagen, one of the first projects will be an upgrade to the airfield at Cape Canaveral, where the military regularly delivers satellites and other equipment to the launch site.

But this funding won’t be enough for Cape Canaveral and Vandenberg to meet the Space Force’s projected launch demand fully. Last year, there were 72 orbital launch attempts from Florida and 30 launches from California.

“I would anticipate we’re going to do over 100 launches from the Cape this year,” Panzenhagen said. “And that puts a strain on a lot of our workforce, so we are doing process things to try to operate more smartly.”

SpaceX will launch most of these missions, with Falcon 9 launch demand driven by expanding the company’s Starlink broadband network. United Launch Alliance plans as many as 16 rocket launches this year, all from Cape Canaveral, and Blue Origin could launch its first heavy-lift New Glenn rocket from Florida by the end of 2024. SpaceX plans to launch around 50 missions from California next year; Firefly Aerospace could launch a handful of flights there, too.

This long exposure photo shows a SpaceX Falcon Heavy rocket streaking into space from NASA's Kennedy Space Center in Florida. A few minutes later, the rocket's side boosters returned to land at Cape Canaveral Space Force Station a few miles away.

Enlarge / This long exposure photo shows a SpaceX Falcon Heavy rocket streaking into space from NASA’s Kennedy Space Center in Florida. A few minutes later, the rocket’s side boosters returned to land at Cape Canaveral Space Force Station a few miles away.

There has been a significant uptick in launch cadence at Cape Canaveral. In 2008, there were only seven launches from the Florida spaceport. Since SpaceX started launching its Falcon 9 rocket in 2010, the launch cadence in Florida has been on a steady rise.

“This is not a hard limit, but I think at the Cape, we could probably push through somewhere on the order of 150 launches per year if we did nothing,” Horne told Ars in a recent interview. “And then probably 75 or so per year from Vandenberg. Everything we’re doing is continuing to improve that ability so that we’re not in the way. So whenever they say they need to go, we say yes.”

The Space Force provides security, weather forecasting, telemetry, and safety oversight services for all launches from Cape Canaveral and Vandenberg. The launch ranges in Florida and California are primarily responsible for ensuring the US military has an always-on capability to launch critical national security satellites. But the majority of launches from the military ranges are commercial missions.

The Space Force is changing the way it thinks about spaceports Read More »