international space station

after-months-of-mulling,-nasa-will-decide-on-starliner-return-this-weekend

After months of mulling, NASA will decide on Starliner return this weekend

Standby for news —

“The agency flight readiness review is where any formal dissents are presented and reconciled.”

A high-resolution commercial Earth-imaging satellite owned by Maxar captured this view of the International Space Station on June 7 with Boeing's Starliner capsule docked at the lab's forward port (lower right).

Enlarge / A high-resolution commercial Earth-imaging satellite owned by Maxar captured this view of the International Space Station on June 7 with Boeing’s Starliner capsule docked at the lab’s forward port (lower right).

Senior NASA leaders, including the agency’s administrator, Bill Nelson, will meet Saturday in Houston to decide whether Boeing’s Starliner spacecraft is safe enough to ferry astronauts Butch Wilmore and Suni Williams back to Earth from the International Space Station.

The Flight Readiness Review (FRR) is expected to conclude with NASA’s most consequential safety decision in nearly a generation. One option is to clear the Starliner spacecraft to undock from the space station in early September with Wilmore and Williams onboard, as their flight plan initially laid out, or to bring the capsule home without its crew.

As of Thursday, the two veteran astronauts have been on the space station for 77 days, nearly 10 times longer than their planned stay of eight days. Wilmore and Williams were the first people to launch and dock at the space station aboard a Starliner spacecraft, but multiple thrusters failed and the capsule leaked helium from its propulsion system as it approached the orbiting complex on June 6.

That led to months of testing—in space and on the ground—data reviews, and modeling for engineers to try to understand the root cause of the thruster problems. Engineers believe the thrusters overheated, causing Teflon seals to bulge and block the flow of propellant to the small control jets, resulting in losing thrust. The condition of the thrusters improved once Starliner docked at the station when they weren’t repeatedly firing, as they need to do when the spacecraft is flying alone.

However, engineers and managers have not yet reached a consensus about whether the same problem could recur, or get worse, during the capsule’s journey back to Earth. In a worst-case scenario, if too many thrusters fail, the spacecraft would be unable to point in the proper direction for a critical braking burn to guide the capsule back into the atmosphere toward landing.

The suspect thrusters are located on Starliner’s service module, which will perform the deorbit burn and then separate from the astronaut-carrying crew module before reentry. A separate set of small engines will fine-tune Starliner’s trajectory during descent.

If NASA managers decide it’s not worth the risk, Wilmore and Williams would extend their stay on the space station until at least February of next year, when they would return to Earth inside a Dragon spacecraft provided by SpaceX, Boeing’s rival in NASA’s commercial crew program. This would eliminate the threat that thruster problems on the Starliner spacecraft might pose to the crew’s safety during the trip to Earth, but it comes with myriad side effects.

These effects include disrupting crew activities on the space station by bumping two astronauts off the next SpaceX flight, exposing Wilmore and Williams to additional radiation during their time in space, and dealing a debilitating blow to Boeing’s Starliner program.

If Boeing’s capsule cannot return to Earth with its two astronauts, NASA may not certify Starliner for operational crew missions without an additional test flight. In that case, Boeing probably wouldn’t be able to complete all six of its planned operational crew missions under a $4.2 billion NASA contract before the International Space Station is due for retirement in 2030.

FRR-eedom to speak

The Flight Readiness Review at NASA’s Johnson Space Center in Houston will begin Saturday morning. Ken Bowersox, a former astronaut and head of NASA’s Space Operations Mission Directorate, will chair the meeting. NASA Administrator Bill Nelson will participate, too. If there’s no unanimous agreement around the table at the FRR, a final decision on what to do could be elevated above Bowersox to NASA’s associate administrator, Jim Free or to Nelson.

“The agency flight readiness review is where any formal dissents are presented and reconciled,” NASA said in a statement Thursday. “Other agency leaders who routinely participate in launch and return readiness reviews for crewed missions include NASA’s administrator, deputy administrator, associate administrator, various agency center directors, the Flight Operations Directorate, and agency technical authorities.”

NASA has scheduled a press conference for no earlier than 1 pm ET (17: 00 UTC) Saturday to announce the agency’s decision and next steps, the agency said.

Lower-level managers will meet Friday in a so-called Program Control Board to discuss their findings and views before the FRR. At a previous Program Control Board meeting, managers disagreed on whether the agency was ready to sign off that the Starliner spacecraft was safe enough to return its astronauts to Earth.

There’s one new piece of information that engineers will brief to the Program Control Board on Friday:

“Engineering teams have been working to evaluate a new model that represents the thruster mechanics and is designed to more accurately predict performance during the return phase of flight,” NASA said. “This data could help teams better understand system redundancy from undock to service module separation. Ongoing efforts to complete the new modeling, characterize spacecraft performance data, refine integrated risk assessments, and determine community recommendations will fold into the agency-level review.”

After months of mulling, NASA will decide on Starliner return this weekend Read More »

boeing’s-starliner-has-cost-at-least-twice-as-much-as-spacex’s-crew-dragon

Boeing’s Starliner has cost at least twice as much as SpaceX’s Crew Dragon

$$$ —

“Risk remains that we may record additional losses in future periods.”

A Starliner spacecraft departs Boeing's spacecraft processing facility before the program's first orbital test flight in 2019.

Enlarge / A Starliner spacecraft departs Boeing’s spacecraft processing facility before the program’s first orbital test flight in 2019.

Boeing announced another financial charge Wednesday for its troubled Starliner commercial crew program, bringing the company’s total losses on Starliner to $1.6 billion.

In its quarterly earnings report, Boeing registered a $125 million loss on the Starliner program, blaming delays on the spacecraft’s still-ongoing Crew Flight Test, the program’s first mission to carry astronauts into orbit. This is not the first time Boeing has reported a financial loss on Starliner. Including the new charge announced Wednesday, Boeing has now suffered an overall loss on the program of nearly $1.6 billion since 2016.

These losses have generally been caused by schedule delays and additional work to solve problems on Starliner. When NASA awarded Boeing a $4.2 billion contract to complete development of the Starliner spacecraft a decade ago, the aerospace contractor projected the capsule would be ready to fly astronauts by the end of 2017.

It turns out the Crew Flight Test didn’t launch until June 5, 2024.

In a separate announcement Wednesday, Boeing named Kelly Ortberg as the company’s CEO, effective August 8. He will replace Dave Calhoun, whose tenure as Boeing’s chief executive was marred by scandals with the 737 MAX passenger airplane. Ortberg was previously CEO of Rockwell Collins, now known as Collins Aerospace, a major supplier of avionics and other parts for the aerospace industry.

Boeing is on the hook

When NASA selected Boeing and SpaceX to develop the Starliner and Crew Dragon spacecraft for astronaut missions, the agency signed fixed-price agreements with each contractor. These fixed-price contracts mean the contractors, not the government, are responsible for paying for cost overruns.

So, with each Starliner delay since 2016, Boeing’s financial statements registered new losses. It will be Boeing’s burden to pay for solutions to problems discovered on Starliner’s ongoing crew test flight. That’s why Boeing warned investors Wednesday that it could lose more money on the Starliner program in the coming months and years.

“Risk remains that we may record additional losses in future periods,” Boeing wrote in an SEC filing.

Taking into account the financial loss revealed Wednesday, NASA and Boeing have committed at least $6.7 billion to the Starliner program since 2010, including expenses for spacecraft development, testing, and the government’s payment for six operational crew flights with Starliner.

It’s instructive to compare these costs with those of SpaceX’s Crew Dragon program, which started flying astronauts in 2020. All of NASA’s contracts with SpaceX for a similar scope of work on the Crew Dragon program totaled more than $3.1 billion, but any expenses paid by SpaceX are unknown because it is a privately held company.

SpaceX has completed all six of its original crew flights for NASA, while Boeing is at least a year away from starting operational service with Starliner. In light of Boeing’s delays, NASA extended SpaceX’s commercial crew contract to cover eight additional round-trip flights to the space station through the end of the 2020s.

Boeing’s leaders blame the structure of fixed-price contracts for the losses on the Starliner program. The aerospace giant has similar fixed-price contracts with the Pentagon to develop new two new Air Force One presidential transport aircraft, Air Force refueling tankers, refueling drones, and trainer airplanes. Boeing has reported losses on those programs, too.

SpaceX, meanwhile, has excelled with fixed-price contracts, which NASA uses on several elements of the Artemis program aiming to land astronauts on the Moon. For example, NASA selected SpaceX and Blue Origin, Jeff Bezos’s space company, for fixed-price contracts to develop human-rated lunar landers. SpaceX also won a fixed-price contract to provide NASA with a vehicle to deorbit the International Space Station at the end of its life.

Decision time

The first crew mission aboard Boeing’s Starliner spacecraft is expected to end sometime in August with the return of NASA astronauts Butch Wilmore and Suni Williams from the International Space Station. A successful conclusion of the test flight would pave the way for Boeing to start launching its backlog of six operational crew missions to the space station.

But it hasn’t been that simple. The Starliner test flight was initially expected to stay at the space station for at least eight days. Before the launch in June, NASA and Boeing officials left open the possibility for a mission extension, but managers didn’t anticipate Starliner to still be docked at the space station more than 50 days later.

Mission managers ordered Starliner to stay at the station through the rest of June and July while engineers investigated problems in the spacecraft’s propulsion system. There are helium leaks in Starliner’s service module, and the craft’s small maneuvering thrusters overheated during the final approach for docking at the space station.

NASA, which oversees Boeing’s commercial crew contract, is getting close to clearing Starliner for return to Earth, perhaps as soon as next week. On Saturday, ground controllers commanded Starliner to test-fire its maneuvering thrusters, and 27 of the 28 jets appeared to function normally despite overheating earlier in the mission. Despite the leaks, the spacecraft also has ample helium to pressurize its propulsion system, NASA officials said.

Before giving final approval for Starliner to undock from the space station and return to Earth, senior NASA leaders will convene a readiness review to go over the results of the investigation into the propulsion issues.

Boeing has some work to do to find a long-term fix for the helium leaks and overheating thrusters on future Starliner missions. NASA officials hoped a flawless Starliner test flight would allow the agency to formally certify the capsule for regular six-month expeditions to the space station by the end of the year, allowing Boeing to launch the first operational Starliner flight, known as Starliner-1, in February 2025.

Last week, NASA announced a six-month delay for the Starliner-1 mission to allow more time to solve the problems the spacecraft experienced on the crew test flight.

Boeing’s Starliner has cost at least twice as much as SpaceX’s Crew Dragon Read More »

spacex-moving-dragon-splashdowns-to-pacific-to-solve-falling-debris-problem

SpaceX moving Dragon splashdowns to Pacific to solve falling debris problem

A Crew Dragon spacecraft is seen docked at the International Space Station in 2022. The section of the spacecraft on the left is the pressurized capsule, while the rear section, at right, is the trunk.

Enlarge / A Crew Dragon spacecraft is seen docked at the International Space Station in 2022. The section of the spacecraft on the left is the pressurized capsule, while the rear section, at right, is the trunk.

NASA

Sometime next year, SpaceX will begin returning its Dragon crew and cargo capsules to splashdowns in the Pacific Ocean and end recoveries of the spacecraft off the coast of Florida.

This will allow SpaceX to make changes to the way it brings Dragons back to Earth and eliminate the risk, however tiny, that a piece of debris from the ship’s trunk section might fall on someone and cause damage, injury, or death.

“After five years of splashing down off the coast of Florida, we’ve decided to shift Dragon recovery operations back to the West Coast,” said Sarah Walker, SpaceX’s director of Dragon mission management.

Public safety

In the past couple of years, landowners have discovered debris from several Dragon missions on their property, and the fragments all came from the spacecraft’s trunk, an unpressurized section mounted behind the capsule as it carries astronauts or cargo on flights to and from the International Space Station.

SpaceX returned its first 21 Dragon cargo missions to splashdowns in the Pacific Ocean southwest of Los Angeles. When an upgraded human-rated version of Dragon started flying in 2019, SpaceX moved splashdowns to the Atlantic Ocean and the Gulf of Mexico to be closer to the company’s refurbishment and launch facilities at Cape Canaveral, Florida. The benefits of landing near Florida included a faster handover of astronauts and time-sensitive cargo back to NASA and shorter turnaround times between missions.

The old version of Dragon, known as Dragon 1, separated its trunk after the deorbit burn, allowing the trunk to fall into the Pacific. With the new version of Dragon, called Dragon 2, SpaceX changed the reentry profile to jettison the trunk before the deorbit burn. This meant that the trunk remained in orbit after each Dragon mission, while the capsule reentered the atmosphere on a guided trajectory. The trunk, which is made of composite materials and lacks a propulsion system, usually takes a few weeks or a few months to fall back into the atmosphere and doesn’t have control of where or when it reenters.

Air resistance from the rarefied upper atmosphere gradually slows the trunk’s velocity enough to drop it out of orbit, and the amount of aerodynamic drag the trunk sees is largely determined by fluctuations in solar activity.

SpaceX and NASA, which funded a large portion of the Dragon spacecraft’s development, initially determined the trunk would entirely burn up when it reentered the atmosphere and would pose no threat of surviving reentry and causing injuries or damaging property. However, that turned out to not be the case.

In May, a 90-pound chunk of a SpaceX Dragon spacecraft that departed the International Space Station fell on the property of a “glamping” resort in North Carolina. At the same time, a homeowner in a nearby town found a smaller piece of material that also appeared to be from the same Dragon mission.

These events followed the discovery in April of another nearly 90-pound piece of debris from a Dragon capsule on a farm in the Canadian province of Saskatchewan. SpaceX and NASA later determined the debris fell from orbit in February, and earlier this month, SpaceX employees came to the farm to retrieve the wreckage, according to CBC.

Pieces of a Dragon spacecraft also fell over Colorado last year, and a farmer in Australia found debris from a Dragon capsule on his land in 2022.

SpaceX moving Dragon splashdowns to Pacific to solve falling debris problem Read More »

nasa-nears-decision-on-what-to-do-with-boeing’s-troubled-starliner-spacecraft

NASA nears decision on what to do with Boeing’s troubled Starliner spacecraft

Boeing's Strainer spacecraft is seen docked at the International Space Station in this picture taken July 3.

Enlarge / Boeing’s Strainer spacecraft is seen docked at the International Space Station in this picture taken July 3.

The astronauts who rode Boeing’s Starliner spacecraft to the International Space Station last month still don’t know when they will return to Earth.

Astronauts Butch Wilmore and Suni Williams have been in space for 51 days, six weeks longer than originally planned, as engineers on the groundwork through problems with Starliner’s propulsion system.

The problems are twofold. The spacecraft’s reaction control thrusters overheated, and some of them shut off as Starliner approached the space station June 6. A separate, although perhaps related, problem involves helium leaks in the craft’s propulsion system.

On Thursday, NASA and Boeing managers said they still plan to bring Wilmore and Williams home on the Starliner spacecraft. In the last few weeks, ground teams completed testing of a thruster on a test stand at White Sands, New Mexico. This weekend, Boeing and NASA plan to fire the spacecraft’s thrusters in orbit to check their performance while docked at the space station.

“I think we’re starting to close in on those final pieces of flight rationale to make sure that we can come home safely, and that’s our primary focus right now,” Stich said.

The problems have led to speculation that NASA might decide to return Wilmore and Williams to Earth in a SpaceX Crew Dragon spacecraft. There’s one Crew Dragon currently docked at the station, and another one is slated to launch with a fresh crew next month. Steve Stich, manager of NASA’s commercial crew program, said the agency has looked at backup plans to bring the Starliner crew home on a SpaceX capsule, but the main focus is still to have the astronauts fly home aboard Starliner.

“Our prime option is to complete the mission,” Stich said. “There are a lot of good reasons to complete this mission and bring Butch and Suni home on Starliner. Starliner was designed, as a spacecraft, to have the crew in the cockpit.”

Starliner launched from Cape Canaveral Space Force Station in Florida on June 5. Wilmore and Williams are the first astronauts to fly into space on Boeing’s commercial crew capsule, and this test flight is intended to pave the way for future operational flights to rotate crews of four to and from the International Space Station.

Once NASA fully certifies Starliner for operational missions, the agency will have two human-rated spaceships for flights to the station. SpaceX’s Crew Dragon has been flying astronauts since 2020.

Tests, tests, and more tests

NASA has extended the duration of the Starliner test flight to conduct tests and analyze data in an effort to gain confidence in the spacecraft’s ability to safely bring its crew home and to better understand the root causes of the overheating thrusters and helium leaks. These problems are inside Starliner’s service module, which is jettisoned to burn up in the atmosphere during reentry, while the reusable crew module, with the astronauts inside, parachutes to an airbag-cushioned landing.

The most important of these tests was a series of test-firings of a Starliner thruster on the ground. This thruster was taken from a set of hardware slated to fly on a future Starlink mission, and engineers put it through a stress test, firing it numerous times to replicate the sequence of pulses it would see in flight. The testing simulated two sequences of flying up to the space station, and five sequences the thruster would execute during undocking and a deorbit burn for return to Earth.

“This thruster has seen quite a bit of pulses, maybe even more than what we would anticipate we would see during a flight, and more aggressive in terms of two uphills and five downhills,” Stich said. “What we did see in the thruster is the same kind of thrust degradation that we’re seeing on orbit. In a number of the thrusters (on Starliner), we’re seeing reduced thrust, which is important.”

Starliner’s flight computer shut off five of the spacecraft’s 28 reaction control system thrusters, produced by Aerojet Rocketdyne, during the rendezvous with the space station last month. Four of the five thrusters were recovered after overheating and losing thrust, but officials have declared one of the thrusters unusable.

The thruster tested on the ground showed similar behavior. Inspections of the thruster at White Sands showed bulging in a Teflon seal in an oxidizer valve, which could restrict the flow of nitrogen tetroxide propellant. The thrusters, each generating about 85 pounds of thrust, consume the nitrogen tetroxide, or NTO, oxidizer and mix it with hydrazine fuel for combustion.

A poppet valve, similar to an inflation valve on a tire, is designed to open and close to allow nitrogen tetroxide to flow into the thruster.

“That poppet has a Teflon seal at the end of it,” Nappi said. “Through the heating and natural vacuum that occurs with the thruster firing, that poppet seal was deformed and actually bulged out a little bit.”

Stich said engineers are evaluating the integrity of the Teflon seal to determine if it could remain intact through the undocking and deorbit burn of the Starliner spacecraft. The thrusters aren’t needed while Starliner is attached to the space station.

“Could that particular seal survive the rest of the flight? That’s the important part,” Stich said.

NASA nears decision on what to do with Boeing’s troubled Starliner spacecraft Read More »

astronauts-find-their-tastes-dulled,-and-a-vr-iss-hints-at-why

Astronauts find their tastes dulled, and a VR ISS hints at why

Pass the sriracha —

The visual environment of the ISS seems to influence people’s experience of food.

Image of astronauts aboard the ISS showing off pizzas they've made.

Enlarge / The environment you’re eating in can influence what you taste, and space is no exception.

Astronauts on the ISS tend to favor spicy foods and top other foods with things like tabasco or shrimp cocktail sauce with horseradish. “Based on anecdotal reports, they have expressed that food in space tastes less flavorful. This is the way to compensate for this,” said Grace Loke, a food scientist at the RMIT University in Melbourne, Australia.

Loke’s team did a study to take a closer look at those anecdotal reports and test if our perception of flavor really changes in an ISS-like environment. It likely does, but only some flavors are affected.

Tasting with all senses

“There are many environmental factors that could contribute to how we perceive taste, from the size of the area to the color and intensity of the lighting, the volume and type of sounds present, the way our surroundings smell, down to even the size and shape of our cutlery. Many other studies covered each of these factors in some way or another,” said Loke.

That’s why her team started to unravel the bland ISS food mystery by recreating the ISS environment in VR. “Certain environments are difficult to be duplicated, such as the ISS, which led us to look at digital solutions to mimic how it felt [to be] living and working in these areas,” said Julia Low, a nutrition and food technologist at the RMIT University and co-author of the study.

Once the VR version of the ISS was ready, the team had 54 participants smell flavors of vanilla, almonds, and lemon. The first round of tests was done in a pretty normal room, and the second with the VR goggles on, running the simulated ISS environment complete with sterile, cluttered spaces, sounds present at the real ISS, and objects floating around in microgravity.

The participants said the lemon flavor seemed the same in both rounds. Almonds and vanilla, on the other hand, seemed more intense when participants were in the VR environment. While that’s the opposite of what might be expected from astronauts’ dining habits, it is informative. “The bottom line is we may smell aromas differently in a space-like environment, but it is selective as to what kind of aromas. We’re not entirely sure why this happens, but knowing that a difference exists is the first step to find out more,” Loke said.

Loke and her colleagues then pulled out a mass spectrometer and took a closer look at the composition of the flavors they used in the tests.

Space-ready ingredients

The lemon flavor in Loke’s team tests was lemon essential oil applied to a cotton ball, which was then placed in a closed container that was kept sealed until it was given to the participants to smell. The vapors released from the container contained several volatile chemicals such as limonene, camphene, 3-carene, and monoterpene alcohols like linalool, carveol, and others.

Almond flavors contained similar chemicals, but there was one notable difference: the almond and vanilla flavors contained benzaldehyde, while the lemon did not. “Benzaldehyde naturally gives off a sweet aroma, while the lemon aroma, which did not have it, has a more fruity and citrusy aroma profile. We believe that it may be the sweet characteristics of aromas that leads to a more intense perception in [simulated] space,” said Loke.

Astronauts find their tastes dulled, and a VR ISS hints at why Read More »

nasa-update-on-starliner-thruster-issues:-this-is-fine

NASA update on Starliner thruster issues: This is fine

Boeing's Starliner spacecraft on final approach to the International Space Station last month.

Enlarge / Boeing’s Starliner spacecraft on final approach to the International Space Station last month.

Before clearing Boeing’s Starliner crew capsule to depart the International Space Station and head for Earth, NASA managers want to ensure the spacecraft’s problematic control thrusters can help guide the ship’s two-person crew home.

The two astronauts who launched June 5 on the Starliner spacecraft’s first crew test flight agree with the managers, although they said Wednesday that they’re comfortable with flying the capsule back to Earth if there’s any emergency that might require evacuation of the space station.

NASA astronauts Butch Wilmore and Suni Williams were supposed to return to Earth weeks ago, but managers are keeping them at the station as engineers continue probing thruster problems and helium leaks that have plagued the mission since its launch.

“This is a tough business that we’re in,” Wilmore, Starliner’s commander, told reporters Wednesday in a news conference from the space station. “Human spaceflight is not easy in any regime, and there have been multiple issues with any spacecraft that’s ever been designed, and that’s the nature of what we do.”

Five of the 28 reaction control system thrusters on Starliner’s service module dropped offline as the spacecraft approached the space station last month. Starliner’s flight software disabled the five control jets when they started overheating and losing thrust. Four of the thrusters were later recovered, although some couldn’t reach their full power levels as Starliner came in for docking.

Wilmore, who took over manual control for part of Starliner’s approach to the space station, said he could sense the spacecraft’s handling qualities diminish as thrusters temporarily failed. “You could tell it was degraded, but still, it was impressive,” he said. Starliner ultimately docked to the station in autopilot mode.

In mid-June, the Starliner astronauts hot-fired the thrusters again, and their thrust levels were closer to normal.

“What we want to know is that the thrusters can perform; if whatever their percentage of thrust is, we can put it into a package that will get us a deorbit burn,” said Williams, a NASA astronaut serving as Starliner’s pilot. “That’s the main purpose that we need [for] the service module: to get us a good deorbit burn so that we can come back.”

These small thrusters aren’t necessary for the deorbit burn itself, which will use a different set of engines to slow Starliner’s velocity enough for it to drop out of orbit and head for landing. But Starliner needs enough of the control jets working to maneuver into the proper orientation for the deorbit firing.

This test flight is the first time astronauts have flown in space on Boeing’s Starliner spacecraft, following years of delays and setbacks. Starliner is NASA’s second human-rated commercial crew capsule, and it’s poised to join SpaceX’s Crew Dragon in a rotation of missions ferrying astronauts to and from the space station through the rest of the decade.

But first, Boeing and NASA need to safely complete the Starliner test flight and resolve the thruster problems and helium leaks plaguing the spacecraft before moving forward with operational crew rotation missions. There’s a Crew Dragon spacecraft currently docked to the station, but Steve Stich, NASA’s commercial crew program manager, told reporters Wednesday that, right now, Wilmore and Williams still plan to come home on Starliner.

“The beautiful thing about the commercial crew program is that we have two vehicles, two different systems, that we could use to return crew,” Stich said. “So we have a little bit more time to go through the data and then make a decision as to whether we need to do anything different. But the prime option today is to return Butch and Suni on Starliner. Right now, we don’t see any reason that wouldn’t be the case.”

Mark Nappi, Boeing’s Starliner program manager, said officials identified more than 30 actions to investigate five “small” helium leaks and the thruster problems on Starliner’s service module. “All these items are scheduled to be completed by the end of next week,” Nappi said.

“It’s a test flight, and the first with crew, and we’re just taking a little extra time to make sure that we understand everything before we commit to deorbit,” Stich said.

NASA update on Starliner thruster issues: This is fine Read More »

to-guard-against-cyberattacks-in-space,-researchers-ask-“what if?”

To guard against cyberattacks in space, researchers ask “what if?”

Complex space systems like the International Space Station could be vulnerable to hackers.

Enlarge / Complex space systems like the International Space Station could be vulnerable to hackers.

If space systems such as GPS were hacked and knocked offline, much of the world would instantly be returned to the communications and navigation technologies of the 1950s. Yet space cybersecurity is largely invisible to the public at a time of heightened geopolitical tensions.

Cyberattacks on satellites have occurred since the 1980s, but the global wake-up alarm went off only a couple of years ago. An hour before Russia’s invasion of Ukraine on February 24, 2022, its government operatives hacked Viasat’s satellite-Internet services to cut off communications and create confusion in Ukraine.

I study ethics and emerging technologies and serve as an adviser to the US National Space Council. My colleagues and I at California Polytechnic State University’s Ethics + Emerging Sciences Group released a US National Science Foundation-funded report on June 17, 2024, to explain the problem of cyberattacks in space and help anticipate novel and surprising scenarios.

Space and you

Most people are unaware of the crucial role that space systems play in their daily lives, never mind military conflicts. For instance, GPS uses signals from satellites. GPS-enabled precision timing is essential in financial services where every detail—such as time of payment or withdrawal—needs to be faithfully captured and coordinated. Even making a mobile phone call relies on precise coordination of time in the network.

Besides navigation for airplanes, boats, cars, and people, GPS is also important for coordinating fleets of trucks that transport goods to stock local stores every day.

Earth-observation satellites are “eyes in the skies” with a unique vantage point to help forecast the weather, monitor environmental changes, track and respond to natural disasters, boost agricultural crop yields, manage land and water use, monitor troop movements, and much more. The loss of these and other space services could be fatal to people vulnerable to natural disasters and crop failure. They could also put global economics and security at serious risk.

Many satellites are crucial for tracking natural and human activity on Earth.

Enlarge / Many satellites are crucial for tracking natural and human activity on Earth.

Factors in play

In our report, we identified several factors that contribute to the increasing threat of space cyberattacks. For instance, it’s important to recognize that the world is at the start of a new space race.

By all accounts, space is becoming more congested and more contested. Both nation-states and private companies, which are underregulated and now own most of the satellites in orbit, are gearing up to compete for resources and research sites.

Because space is so remote and hard to access, if someone wanted to attack a space system, they would likely need to do it through a cyberattack. Space systems are particularly attractive targets because their hardware cannot be easily upgraded once launched, and this insecurity worsens over time. As complex systems, they can have long supply chains, and more links in the chain increase the chance of vulnerabilities. Major space projects are also challenged to keep up with best practices over the decade or more needed to build them.

And the stakes are unusually high in space. Orbital trash zips around at speeds of 6 to 9 miles per second and can easily destroy a spacecraft on impact. It can also end space programs worldwide given the hypothesized Kessler syndrome in which the Earth is eventually imprisoned in a cocoon of debris. These consequences weigh in favor of space cyberattacks over physical attacks because the debris problem is also likely to affect the attacker.

Moreover, given critical space infrastructure and services, such as GPS, conflicts in space can spark or add more fuel to a conflict on Earth, even those in cyberspace. For instance, Russia warned in 2022 that hacking one of its satellites would be taken as a declaration of war, which was a dramatic escalation from previous norms around warfare.

To guard against cyberattacks in space, researchers ask “what if?” Read More »

nasa-orders-more-tests-on-starliner,-but-says-crew-isn’t-stranded-in-space

NASA orders more tests on Starliner, but says crew isn’t stranded in space

Boeing's Starliner spacecraft is seen docked at the International Space Station on June 13.

Enlarge / Boeing’s Starliner spacecraft is seen docked at the International Space Station on June 13.

NASA and Boeing officials pushed back Friday on headlines that the commercial Starliner crew capsule is stranded at the International Space Station but said they need more time to analyze data before formally clearing the spacecraft for undocking and reentry.

Two NASA astronauts, commander Butch Wilmore and pilot Suni Williams, will spend at least a few more weeks on the space station as engineers on the ground conduct thruster tests to better understand issues with the Starliner propulsion system in orbit. Wilmore and Williams launched June 5 aboard an Atlas V rocket and docked at the station the next day, completing the first segment of Starliner’s first test flight with astronauts.

NASA managers originally planned for the Starliner spacecraft to remain docked at the space station for at least eight days, although they left open the possibility of a mission extension. The test flight is now likely to last at least a month and a half, and perhaps longer, as engineers wrestle with helium leaks and thruster glitches on Starliner’s service module.

Batteries on this Starliner spacecraft were initially only certified for a 45-day mission duration, but NASA officials said they are looking at extending the limit after confirming the batteries are functioning well.

“We have the luxury of time,” said Ken Bowersox, associate administrator for NASA’s space operations mission directorate. “We’re still in the middle of a test mission. We’re still pressing forward.”

Previously, NASA and Boeing officials delayed Starliner’s reentry and landing from mid-June, then from June 26, and now they have bypassed a potential landing opportunity in early July. Last week, NASA said in a statement that the agency’s top leadership will meet to formally review the readiness of Starliner for reentry, something that wasn’t part of the original plan.

“We’re not stuck on ISS”

Steve Stich, manager of NASA’s commercial crew program, said Friday that he wanted to clear up “misunderstandings” that led to headlines claiming the Starliner spacecraft was stuck or stranded at the space station.

“I want to make it very clear that Butch and Suni are not stranded in space,” Stich said. “Our plan is to continue to return them on Starliner and return them home at the right time. We have a little bit more work to do to get there for the final return, but they’re safe on (the) space station.”

With Starliner docked, the space station currently hosts three different crew spacecraft, including SpaceX’s Crew Dragon and Russia’s Soyuz. There are no serious plans under consideration to bring Wilmore and Williams home on a different spacecraft.

“Obviously, we have the luxury of having multiple vehicles, and we work contingency plans for lots of different cases, but right now, we’re really focused on returning Butch and Suni on Starliner,” Stich said.

“We’re not stuck on the ISS,” said Mark Nappi, Boeing’s vice president in charge of the Starliner program. “It’s pretty painful to read the things that are out there. We’ve gotten a really good test flight that’s been accomplished so far, and it’s being viewed rather negatively.”

Stich said NASA officials should have “more frequent interaction” with reporters to fill in gaps of information on the Starliner test flight. NASA’s written updates are not always timely, and often lack details and context.

NASA officials have cleared the Starliner spacecraft for an emergency return to Earth if astronauts need to evacuate the space station for safety or medical reasons. But NASA hasn’t yet approved Starliner for reentry and landing under “nominal” conditions.

“When it is a contingency situation, we’re ready to put the crew on the spacecraft and bring them home as a lifeboat,” Bowersox said. “For the nominal entry, we want to look at the data more before we make the final call to put the crew aboard the vehicle, and it’s a serious enough call that we’ll bring the senior management team together (for approval).”

NASA orders more tests on Starliner, but says crew isn’t stranded in space Read More »

countdown-begins-for-third-try-launching-boeing’s-starliner-crew-capsule

Countdown begins for third try launching Boeing’s Starliner crew capsule

Going today? —

Astronauts Butch Wilmore and Suni Williams have been in prelaunch quarantine for six weeks.

Astronauts Suni Williams and Butch Wilmore, wearing their Boeing spacesuits, leave NASA's crew quarters during a launch attempt May 6.

Enlarge / Astronauts Suni Williams and Butch Wilmore, wearing their Boeing spacesuits, leave NASA’s crew quarters during a launch attempt May 6.

Fresh off repairs at the launch pad in Florida, United Launch Alliance engineers restarted the countdown overnight for the third attempt to send an Atlas V rocket and Boeing’s Starliner spacecraft on a test flight to the International Space Station.

NASA astronauts Butch Wilmore and Suni Williams were expected to awake early Wednesday, put on their blue pressure suits, and head to the launch pad at Cape Canaveral Space Force Station to board the Starliner capsule on top of the 172-foot-tall Atlas V rocket.

Once more through the door

Wilmore and Williams have done this twice before in hopes of launching into space on the first crew flight of Boeing’s Starliner spacecraft. A faulty valve on the Atlas V rocket prevented liftoff May 6, then engineers discovered a helium leak on the Starliner capsule itself. After several weeks of troubleshooting, NASA and Boeing officials decided to proceed with another launch attempt Saturday.

Everything seemed to be coming together for Boeing’s long-delayed crew test flight until a computer problem triggered an automatic hold in the countdown less than four minutes before liftoff. Technicians from United Launch Alliance (ULA), the Atlas V rocket’s builder and operator, traced the problem to a failed power distribution source connected to a ground computer responsible for controlling the final phase of the countdown.

The instantaneous launch opportunity Wednesday is set for 10: 52 am EDT (14: 52 UTC), when the launch site at Cape Canaveral passes underneath the space station’s orbital plane. Forecasters predict a 90 percent chance of good weather for launch. You can watch NASA’s live coverage in the video embedded below.

The countdown began late Tuesday night with the power-up of the Atlas V rocket, which was set to be filled with cryogenic liquid hydrogen and liquid oxygen propellants around 5 am EDT (09: 00 UTC). Kerosene fuel was loaded into the Atlas V’s first-stage booster prior to the mission’s first launch attempt in early May.

The two Starliner astronauts departed crew quarters at NASA’s Kennedy Space Center for the 20-minute drive to the launch pad, where they arrived shortly before 8 am EDT (12: 00 UTC) to climb into their seats inside the Starliner capsule. After pressure checks of the astronauts’ suits and Starliner’s crew cabin, ground teams will evacuate the pad about an hour before launch.

Assuming all systems are “go” for launch, the Atlas V will ignite its Russian-made RD-180 main engine and two solid-fueled boosters to vault away from Cape Canaveral and head northeast over the Atlantic Ocean. Wilmore and Williams will be not only the first people to fly in space on Boeing’s Starliner, but also the first astronauts to ride on an Atlas V rocket, which has flown 99 times before with satellites for the US military, NASA, and commercial customers.

The rocket’s Centaur upper stage will deploy Starliner into space around 15 minutes after liftoff. A critical burn by Starliner’s engines will happen around 31 minutes into the flight to finish the task of placing it into low-Earth orbit, setting it up for an automated docking at the International Space Station at 12: 15 pm EDT (16: 15 UTC) Thursday.

The two-person crew will stay on the station for at least a week, although a mission extension is likely if the mission is going well. Officials may decide to extend the mission to complete more tests or to wait for optimal weather conditions at Starliner’s primary and backup landing sites in New Mexico and Arizona. When weather conditions look favorable, Starliner will undock from the space station and head for landing under parachutes.

The crew test flight is a prerequisite to Boeing’s crew capsule becoming operational for NASA, which awarded multibillion-dollar commercial crew contracts to Boeing and SpaceX in 2014. SpaceX’s Crew Dragon started flying astronauts in 2020, while Boeing’s project has been stricken by years of delays.

Wilmore and Williams, both former US Navy test pilots, will take over manual control of Starliner at several points during the test flight. They will evaluate the spacecraft’s flying characteristics and accommodations for future flights, which will carry four astronauts at a time rather than two.

“The expectation from the media should not be perfection,” Wilmore told Ars earlier this year. “This is a test flight. Flying and operating in space is hard. It’s really hard, and we’re going to find some stuff. That’s expected. It’s the first flight where we are integrating the full capabilities of this spacecraft.”

Countdown begins for third try launching Boeing’s Starliner crew capsule Read More »

boeing’s-starliner-capsule-poised-for-second-try-at-first-astronaut-flight

Boeing’s Starliner capsule poised for second try at first astronaut flight

Boeing's Starliner spacecraft sits on top of a United Launch Alliance Atlas V rocket at Cape Canaveral Space Force Station, Florida.

Enlarge / Boeing’s Starliner spacecraft sits on top of a United Launch Alliance Atlas V rocket at Cape Canaveral Space Force Station, Florida.

NASA and Boeing officials are ready for a second attempt to launch the first crew test flight on the Starliner spacecraft Saturday from Cape Canaveral Space Force Station, Florida.

Liftoff of Boeing’s Starliner capsuled atop a United Launch Alliance Atlas V rocket is set for 12: 25 pm EDT (16: 25 UTC). NASA commander Butch Wilmore and pilot Suni Williams, both veteran astronauts, will take the Starliner spacecraft on its first trip into low-Earth orbit with a crew on board.

You can watch NASA TV’s live coverage of the countdown and launch below.

The first crew flight on a new spacecraft is not an everyday event. Starliner is the sixth orbital-class crew spacecraft in the history of the US space program, following Mercury, Gemini, Apollo, the space shuttle, and SpaceX’s Crew Dragon. NASA signed a $4.2 billion contract with Boeing in 2014 to develop Starliner, but the project is running years behind schedule and has cost Boeing nearly $1.5 billion in cost overruns. SpaceX, meanwhile, won a contract at the same time as Boeing and started launching astronauts on the Crew Dragon four years ago this week.

Now, it is finally Starliner’s turn. A successful crew test flight would set the stage for six operational Starliner flights to ferry astronauts to and from the International Space Station (ISS).

Assuming the test flight gets off the ground Saturday, the spacecraft is due for docking at the ISS at 1: 50 pm EDT (17: 50 UTC) Sunday to begin a stay of at least eight days. Once managers are satisfied the mission has achieved all its planned test objectives, and pending good weather conditions in Starliner’s landing zone in the western United States, the spacecraft will depart the station and return to Earth for a parachute-assisted touchdown. If the mission takes off on Saturday, the earliest nominal landing date would be Monday, June 10.

Wilmore and Williams have been here before. On May 6, the astronauts were strapped into their seats inside Starliner’s cockpit awaiting takeoff on a flight to the International Space Station. A valve malfunction on the Atlas V rocket prevented launch that day, and officials subsequently discovered a helium leak on Starliner’s service module that delayed the mission until this weekend.

Flying as-is

After weeks of reviews and analysis, managers determined Starliner is safe to fly as-is with the leak. The spacecraft uses helium gas to pressurize its propulsion system and push hydrazine and nitrogen tetroxide propellants from internal tanks to the capsule’s maneuvering thrusters.

“When we looked at this problem, it didn’t come down to trades,” said Mark Nappi, Boeing’s vice president and program manager for Starliner. “It came down to: Is it safe or not? And it is safe, and that is why we determined that we can fly with what we have.”

Ground teams traced the leak to a flange on one of four doghouse-shaped propulsion pods around the perimeter of the Starliner spacecraft’s service module. In a worst-case scenario, if the condition grew worse during the flight, ground controllers could isolate it by closing the manifold feeding the leak. If the leak doesn’t worsen, engineers are confident they can manage it with no major impacts to the mission.

“We looked really hard at what our options were with this particular flange,” said Steve Stich, manager of NASA’s commercial crew program, which oversees the agency’s contract with Boeing. The flange has a helium conduit and lines for the spacecraft’s toxic fuel and oxidizer, which makes a repair “problematic,” Stich said.

Starliner commander Butch Wilmore and pilot Suni Williams arrived back at NASA's Kennedy Space Center earlier this week to prepare for launch.

Enlarge / Starliner commander Butch Wilmore and pilot Suni Williams arrived back at NASA’s Kennedy Space Center earlier this week to prepare for launch.

In order to safely fix the leak, which officials believe is likely caused by a defective seal, ground teams would have to disconnect the capsule from the Atlas V rocket, take it back to a hangar, drain its propellant tanks. This would probably push back the long-delayed Starliner test flight until late this year.

But the leak is relatively small and stable. “It’s about a half-pound per day out of 50 pounds of total capability in the tank,” Stich said.

“In our case, we have margin in the helium tank, and we’ve looked really hard to understand that margin and to understand the worst cases, and we took the time to go through that data,” Stich said. “We really think we can manage this leak, both by looking at it before the launch, and then if it got bigger in flight, we could manage it.”

Boeing’s Starliner capsule poised for second try at first astronaut flight Read More »

faulty-valve-scuttles-starliner’s-first-crew-launch

Faulty valve scuttles Starliner’s first crew launch

The Atlas V rocket and Starliner spacecraft on their launch pad Monday.

Enlarge / The Atlas V rocket and Starliner spacecraft on their launch pad Monday.

Astronauts Butch Wilmore and Suni Williams climbed into their seats inside Boeing’s Starliner spacecraft Monday night in Florida, but trouble with the capsule’s Atlas V rocket kept the commercial ship’s long-delayed crew test flight on the ground.

Around two hours before launch time, shortly after 8: 30 pm EDT (00: 30 UTC), United Launch Alliance’s launch team stopped the countdown. “The engineering team has evaluated, the vehicle is not in a configuration where we can proceed with flight today,” said Doug Lebo, ULA’s launch conductor.

The culprit was a misbehaving valve on the rocket’s Centaur upper stage, which has two RL10 engines fed by super-cold liquid hydrogen and liquid oxygen propellants.

“We saw a self-regulating valve on the LOX (liquid oxygen) side had a bit of a buzz; it was moving in a strange behavior,” said Steve Stich, NASA’s commercial crew program manager. “The flight rules had been laid out for this flight ahead of time. With the crew at the launch pad, the proper action was to scrub.”

The next opportunity to launch Starliner on its first crew test flight will be Friday night at 9 pm EDT (01: 00 UTC Saturday). NASA announced overnight that officials decided to skip a launch opportunity Tuesday night to allow engineers more time to study the valve problem and decide whether they need to replace it.

Work ahead

Everything else was going smoothly in the countdown Monday night. This mission will also be the first time astronauts have flown on ULA’s Atlas V rocket, which has logged 99 successful flights since 2002. It is the culmination of nearly a decade-and-a-half of development by Boeing, which has a $4.2 billion contract with NASA to ready Starliner for crew missions, then carry out six long-duration crew ferry flights to and from the International Space Station.

This crew test flight will last at least eight days, taking Wilmore and Williams to the space station to verify Starliner’s readiness for operational missions. Once Starliner flies, NASA will have two human-rated spacecraft on contract. SpaceX’s Crew Dragon has been in service since 2020.

When officials scrubbed Monday night’s launch attempt, Wilmore and Williams were already aboard the Starliner spacecraft on top of the Atlas V rocket at Cape Canaveral Space Force Station, Florida. The Boeing and ULA support team helped them out of the capsule and drove them back to crew quarters at the nearby Kennedy Space Center to wait for the next launch attempt.

“I promised Butch and Suni a boring evening,” said Tory Bruno, ULA’s CEO. “I didn’t mean for it to be quite this boring, but we’re going to follow our rules, and we’re going to make sure that the crew is safe.”

When the next launch attempt actually occurs depends on whether ULA engineers determine they can resolve the problem without rolling the Atlas V rocket back to its hangar for repairs.

The valve in question vents gas from the liquid oxygen tank on the Centaur upper stage to maintain the tank at proper pressures. This is important for two reasons. The tank needs to be at the correct pressure for the RL10 engines to receive propellant during the flight, and the Centaur upper stage itself has ultra-thin walls to reduce weight, and requires pressure to maintain structural integrity.

Faulty valve scuttles Starliner’s first crew launch Read More »

trash-from-the-international-space-station-may-have-hit-a-house-in-florida

Trash from the International Space Station may have hit a house in Florida

This cylindrical object, a few inches in size, fell through the roof of Alejandro Otero's home in Florida last month.

Enlarge / This cylindrical object, a few inches in size, fell through the roof of Alejandro Otero’s home in Florida last month.

A few weeks ago, something from the heavens came crashing through the roof of Alejandro Otero’s home, and NASA is on the case.

In all likelihood, this nearly two-pound object came from the International Space Station. Otero said it tore through the roof and both floors of his two-story house in Naples, Florida.

Otero wasn’t home at the time, but his son was there. A Nest home security camera captured the sound of the crash at 2: 34 pm local time (19: 34 UTC) on March 8. That’s an important piece of information because it is a close match for the time—2: 29 pm EST (19: 29 UTC)—that US Space Command recorded the reentry of a piece of space debris from the space station. At that time, the object was on a path over the Gulf of Mexico, heading toward southwest Florida.

This space junk consisted of depleted batteries from the ISS, attached to a cargo pallet that was originally supposed to come back to Earth in a controlled manner. But a series of delays meant this cargo pallet missed its ride back to Earth, so NASA jettisoned the batteries from the space station in 2021 to head for an unguided reentry.

Otero’s likely encounter with space debris was first reported by WINK News, the CBS affiliate for southwest Florida. Since then, NASA has recovered the debris from the homeowner, according to Josh Finch, an agency spokesperson.

Engineers at NASA’s Kennedy Space Center will analyze the object “as soon as possible to determine its origin,” Finch told Ars. “More information will be available once the analysis is complete.”

Ars reported on this reentry when it happened on March 8, noting that most of the material from the batteries and the cargo carrier would have likely burned up as they plunged through the atmosphere. Temperatures would have reached several thousand degrees, vaporizing most of the material before it could reach the ground.

The entire pallet, including the nine disused batteries from the space station’s power system, had a mass of more than 2.6 metric tons (5,800 pounds), according to NASA. Size-wise, it was about twice as tall as a standard kitchen refrigerator. It’s important to note that objects of this mass, or larger, regularly fall to Earth on guided trajectories, but they’re usually failed satellites or spent rocket stages left in orbit after completing their missions.

In a post on X, Otero said he is waiting for communication from “the responsible agencies” to resolve the cost of damages to his home.

Hello. Looks like one of those pieces missed Ft Myers and landed in my house in Naples.

Tore through the roof and went thru 2 floors. Almost his my son.

Can you please assist with getting NASA to connect with me? I’ve left messages and emails without a response. pic.twitter.com/Yi29f3EwyV

— Alejandro Otero (@Alejandro0tero) March 15, 2024

If the object is owned by NASA, Otero or his insurance company could make a claim against the federal government under the Federal Tort Claims Act, according to Michelle Hanlon, executive director of the Center for Air and Space Law at the University of Mississippi.

“It gets more interesting if this material is discovered to be not originally from the United States,” she told Ars. “If it is a human-made space object which was launched into space by another country, which caused damage on Earth, that country would be absolutely liable to the homeowner for the damage caused.”

This could be an issue in this case. The batteries were owned by NASA, but they were attached to a pallet structure launched by Japan’s space agency.

Trash from the International Space Station may have hit a house in Florida Read More »