Federal Aviation Administration

spacex’s-next-starship-launch—and-first-catch—could-happen-this-weekend

SpaceX’s next Starship launch—and first catch—could happen this weekend


The FAA is still reviewing plans for the fifth Starship test flight, but could approve it soon.

SpaceX’s fully-stacked Super Heavy booster and Starship upper stage at the company’s launch site in South Texas. Credit: SpaceX

We may not have to wait as long as we thought for the next test flight of SpaceX’s Starship rocket.

The world’s most powerful launcher could fly again as soon as Sunday, SpaceX says, assuming the Federal Aviation Administration grants approval. The last public statement released from the FAA suggested the agency didn’t expect to determine whether to approve a commercial launch license for SpaceX’s next Starship test flight before late November.

There’s some optimism at SpaceX that the FAA might issue a launch license much sooner, perhaps in time for Starship to fly this weekend. The launch window Sunday opens at 7 am CDT (8 am EDT; 12: 00 UTC), about a half-hour before sunrise at SpaceX’s Starbase launch site in South Texas.

“The fifth flight test of Starship will aim to take another step towards full and rapid reusability,” SpaceX wrote in an update posted on its website. “The primary objectives will be attempting the first ever return to launch site and catch of the Super Heavy booster and another Starship reentry and landing burn, aiming for an on-target splashdown of Starship in the Indian Ocean.”

Stacked together, the Super Heavy booster, or first stage, and the Starship upper stage stand nearly 400 feet (121 meters) tall. The Super Heavy booster—itself bigger than the fuselage of a 747 jumbo jet—will vertically return to the Starbase launch pad guided by cold gas thrusters, aerodynamic grid fins, and propulsive maneuvers with its methane-fueled Raptor engines.

Once the booster’s Raptor engines slow it to a hover, mechanical arms on the launch pad tower will close in around the rocket and capture it in midair. If you’re into rockets, or just want to spice up your morning, you don’t want to miss this. We’ll have a more detailed story before the launch previewing the timeline of events.

Safety measures

The FAA has been reviewing SpaceX’s plans to bring the Super Heavy booster back to the Starbase launch pad for months.

Most recently, the agency’s review of SpaceX’s proposed flight plan has focused on the effects of the rocket’s sonic boom as it comes back to Earth. The FAA and other agencies are also studying how a disposable section of the booster, called a hot-staging ring, might impact the environment when it falls into the sea just offshore from Starbase, located on the Gulf Coast east of Brownsville.

During SpaceX’s most recent Starship test flight in June, the Super Heavy booster completed a control descent to a predetermined location in the Gulf of Mexico, giving engineers enough confidence to try a return to the launch site on the next mission.

SpaceX protested the length of time the FAA said it needed to review the flight plan, after the federal regulator previously told SpaceX it expected to make a license determination in September.

“Unfortunately, instead of focusing resources on critical safety analysis and collaborating on rational safeguards to protect both the public and the environment, the licensing process has been repeatedly derailed by issues ranging from the frivolous to the patently absurd,” SpaceX wrote in a statement last month.

“I think the two-month delay is necessary to comply with the launch requirements, and I think that’s an important part of safety culture,” said Michael Whitaker, the FAA administrator, in a congressional hearing September 24.

The FAA is responsible for ensuring commercial space launches do not endanger the public and comport with the US government’s national security and foreign policy interests. Earlier this year, SpaceX was also fined by the Texas Commission on Environmental Quality and the Environmental Protection Agency for alleged violations of environmental regulations related to the launch pad’s water system, which cools a steel flame deflector under the 33 main engines of Starship’s Super Heavy booster.

Ars contacted an FAA spokesperson Tuesday about the status of the agency’s review of the Starship launch license request, but did not receive a response.

Artist’s illustration of SpaceX’s Super Heavy booster coming in for a catch by the launch pad’s mechanical arms.

Credit: SpaceX

Artist’s illustration of SpaceX’s Super Heavy booster coming in for a catch by the launch pad’s mechanical arms. Credit: SpaceX

Teams at Starbase completed two partial propellant loading tests on the fully stacked Starship rocket in recent days. Early Tuesday, SpaceX tested the water deluge system at the launch pad two times, presumably to check the system’s ability to activate minutes apart to protect the pad during launch and recovery of the Super Heavy booster.

Later Tuesday, SpaceX removed the Starship upper stage from the Super Heavy booster. This is required for technicians to perform one of the final tasks to prepare for launch—installing the rocket’s flight termination system, which would destroy the rocket if it veers off course.

“We accept no compromises when it comes to ensuring the safety of the public and our team, and the return will only be attempted if conditions are right,” SpaceX said.

SpaceX outlined additional human-in-the-loop safety criteria for the upcoming Starship flight. SpaceX launches are typically fully automated from liftoff through the end of the mission.

“Thousands of distinct vehicle and pad criteria must be met prior to a return and catch attempt of the Super Heavy booster, which will require healthy systems on the booster and tower and a manual command from the mission’s flight director,” SpaceX wrote. “If this command is not sent prior to the completion of the boostback burn, or if automated health checks show unacceptable conditions with Super Heavy or the tower, the booster will default to a trajectory that takes it to a landing burn and soft splashdown in the Gulf of Mexico.”

Recovering the Super Heavy booster back at the launch pad is critical for SpaceX’s ambition to rapidly reuse the rocket. Eventually, SpaceX will also recover and reuse the Starship portion of the rocket, but for now, the company is sticking to water landings for the ship.

Extensive upgrades

SpaceX teams in Texas have beefed up the launch tower and catch arms in the last few months, working around the clock to add structural stiffeners and test the arms’ load-carrying capability.

“Extensive upgrades ahead of this flight test have been made to hardware and software across Super Heavy, Starship, and the launch and catch tower infrastructure at Starbase,” SpaceX said. “SpaceX engineers have spent years preparing and months testing for the booster catch attempt, with technicians pouring tens of thousands of hours into building the infrastructure to maximize our chances for success.”

It will take about seven minutes for the Super Heavy booster to climb to the edge of space, separate from the Starship upper stage, and return to Starbase for recovery. While the booster comes back to the ground, Starship will fire its six engines to accelerate to near orbital velocity, fast enough to complete a half-lap around Earth before gravity pulls it toward an atmospheric reentry over the Indian Ocean.

This is a similar trajectory to the one Starship flew in June, when it survived a fiery reentry for a controlled splashdown. It was the first time SpaceX completed an end-to-end Starship test flight.

After analyzing the results from the June mission, SpaceX engineers decided to rework the heat shield for the next Starship vehicle. The company said its technicians spent more than 12,000 hours replacing the entire thermal protection system with new-generation tiles, a backup ablative layer, and additional protections between the ship’s flap structures.

Onboard cameras showed fragments of the heat shield falling off Starship when it reentered the atmosphere in June.

“This massive effort, along with updates to the ship’s operations and software for reentry and landing burn, will look to improve upon the previous flight and bring Starship to a soft splashdown at the target area in the Indian Ocean,” SpaceX said.

Starship won’t attempt to reignite its Raptor engines in space on the upcoming test flight. This is one of the next things SpaceX needs to demonstrate for Starship to soar into a stable orbit around Earth and guide itself to a controlled reentry to ensure it doesn’t become stranded in space or fall over a populated area. SpaceX wanted to relight a Raptor engine in space on Starship’s third test flight in March, but aborted the maneuver.

The business end of Starship’s Super Heavy booster during a launch in March.

Credit: SpaceX

The business end of Starship’s Super Heavy booster during a launch in March. Credit: SpaceX

Once Starship is able to sustain a flight in low-Earth orbit, SpaceX can begin experiments with in-space refueling, which is required to support future Starship flights to the Moon, Mars, and other deep space destinations. Starship is a foundational element of SpaceX’s vision to create a settlement on the red planet.

NASA has a contract with SpaceX to develop a human-rated Starship to land astronauts on the Moon as part of the agency’s Artemis program. NASA’s official schedule calls for the first Artemis crew landing in September 2026. Realistically, the landing will probably happen later in the decade because the Starship lander and new lunar spacesuits likely won’t be ready in two years.

Starships will likely fly many dozens of times, if not more, before NASA approves it to land astronauts on the Moon. These flights will test the rocket’s ability to repeatedly and reliably fly to space and back, transfer cryogenic propellants in orbit, and safely land on the lunar surface without a crew.

As we’ve seen with SpaceX’s workhorse Falcon 9 rocket, rapidly reusing elements of a launch vehicle can enable rapid-fire launch cadences. Validating the architecture for recovering the Super Heavy booster directly on the launch pad, as SpaceX intends to do quite soon, is a key step on this path.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX’s next Starship launch—and first catch—could happen this weekend Read More »

spacex-launches-europe’s-hera-asteroid-mission-ahead-of-hurricane-milton

SpaceX launches Europe’s Hera asteroid mission ahead of Hurricane Milton


The launch of another important mission, NASA’s Europa Clipper, is on hold due to Hurricane Milton.

The European Space Agency’s Hera spacecraft flies away from the Falcon 9 rocket’s upper stage a little more than an hour after liftoff Monday. Credit: SpaceX

Two years ago, a NASA spacecraft smashed into a small asteroid millions of miles from Earth to test a technique that could one day prove useful to deflect an object off a collision course with Earth. The European Space Agency launched a follow-up mission Monday to go back to the crash site and see the damage done.

The nearly $400 million (363 million euro) Hera mission, named for the Greek goddess of marriage, will investigate the aftermath of a cosmic collision between NASA’s DART spacecraft and the skyscraper-size asteroid Dimorphos on September 26, 2022. NASA’s Double Asteroid Redirection Test mission was the first planetary defense experiment, and it worked, successfully nudging Dimorphos off its regular orbit around a larger companion asteroid named Didymos.

But NASA had to sacrifice the DART spacecraft in the deflection experiment. Its destruction meant there were no detailed images of the condition of the target asteroid after the impact. A small Italian CubeSat deployed by DART as it approached Dimorphos captured fuzzy long-range views of the collision, but Hera will perform a comprehensive survey when it arrives in late 2026.

“We are going to have a surprise to see what Dimorphos looks like, which is, first, scientifically exciting, but also important because if we want to validate the technique and validate the model that can reproduce the impact, we need to know the final outcome,” said Patrick Michel, principal investigator on the Hera mission from Côte d’Azur Observatory in Nice, France. “And we don’t have it. With Hera, it’s like a detective going back to the crime scene and telling us what really happened.”

Last ride before the storm

The Hera spacecraft, weighing in at 2,442 pounds (1,108 kilograms), lifted off on top of a SpaceX Falcon 9 rocket at 10: 52 am EDT (14: 52 UTC) Monday from Cape Canaveral Space Force Station, Florida.

Officials weren’t sure the weather conditions at Cape Canaveral would permit a launch Monday, with widespread rain showers and a blanket of cloud cover hanging over Florida’s Space Coast. But the conditions were just good enough to be acceptable for a rocket launch, and the Falcon 9 lit its nine kerosene-fueled engines to climb away from pad 40 after a smooth countdown.

SpaceX’s Falcon 9 rocket lifts off from Cape Canaveral Space Force Station, Florida, with ESA’s Hera mission.

Credit: SpaceX

SpaceX’s Falcon 9 rocket lifts off from Cape Canaveral Space Force Station, Florida, with ESA’s Hera mission. Credit: SpaceX

This was probably the final opportunity to launch Hera before the spaceport shutters in advance of Hurricane Milton, a dangerous Category 5 storm taking aim at the west coast of Florida. If the mission didn’t launch Monday, SpaceX was prepared to move the Falcon 9 rocket and the Hera spacecraft back inside a hangar for safekeeping until the storm passes.

Meanwhile, at NASA’s Kennedy Space Center a few miles away, SpaceX is securing a Falcon Heavy rocket with the Europa Clipper spacecraft to ride out Hurricane Milton inside a hangar at Launch Complex 39A. Europa Clipper is a $5.2 billion flagship mission to explore Jupiter’s most enigmatic icy moon, and it was supposed to launch Thursday, the same day Hurricane Milton will potentially move over Central Florida.

NASA announced Sunday that it is postponing Europa Clipper’s launch until after the storm.

“The safety of launch team personnel is our highest priority, and all precautions will be taken to protect the Europa Clipper spacecraft,” said Tim Dunn, senior launch director at NASA’s Launch Services Program. “Once we have the ‘all-clear’ followed by facility assessment and any recovery actions, we will determine the next launch opportunity for this NASA flagship mission.”

Europa Clipper must launch by November 6 in order to reach Jupiter and its moon Europa in 2030. ESA’s Hera mission had a similarly tight window to get off the ground in October and arrive at asteroids Didymos and Dimorphos in December 2026.

Returning to flight

The Falcon 9 did its job Monday, accelerating the Hera spacecraft to a blistering speed of 26,745 mph (43,042 km/hr) with successive burns by its first stage booster and upper stage engine. This was the highest-speed payload injection ever achieved by SpaceX.

SpaceX did not attempt to recover the Falcon 9’s reusable booster on Monday’s flight because Hera needed all of the rocket’s oomph to gain enough speed to escape the pull of Earth’s gravity.

“Good launch, good orbit, and good payload deploy,” wrote Kiko Dontchev, SpaceX’s vice president of launch, on X.

This was the first Falcon 9 launch in nine days—an unusually long gap between SpaceX missions—after the rocket’s upper stage misfired during a maneuver to steer itself out of orbit following an otherwise successful launch September 28 with a two-man crew heading for the International Space Station.

The upper stage engine apparently “over-burned,” and the rocket debris fell into the atmosphere short of its expected reentry corridor in the Pacific Ocean, sources said. The Federal Aviation Administration grounded the Falcon 9 rocket while SpaceX investigates the malfunction, but the FAA granted approval for SpaceX to launch the Hera mission because its trajectory would carry the rocket away from Earth, rather than back into the atmosphere for reentry.

“The FAA has determined that the absence of a second stage reentry for this mission adequately mitigates the primary risk to the public in the event of a reoccurrence of the mishap experienced with the Crew-9 mission,” the FAA said in a statement.

Members of the Hera team from ESA and its German prime contractor, OHB, pose with the spacecraft inside SpaceX’s payload processing facility in Florida.

Credit: SpaceX

Members of the Hera team from ESA and its German prime contractor, OHB, pose with the spacecraft inside SpaceX’s payload processing facility in Florida. Credit: SpaceX

This was the third time the FAA has grounded SpaceX’s Falcon 9 rocket fleet in less than three months, following another upper stage failure in July that caused the destruction of 20 Starlink Internet satellites and the crash-landing of a Falcon 9 booster on an offshore drone ship in August. Federal regulators are responsible for ensuring commercial rocket launches don’t endanger the public.

These were the first major anomalies on any Falcon 9 launch since 2021.

It’s not clear when the FAA will clear SpaceX to resume launching other Falcon 9 missions. However, the launch of the Europa Clipper mission on a Falcon Heavy rocket, which uses essentially the same upper stage as a Falcon 9, is not licensed by the FAA because it is managed by NASA, another government agency. NASA will have final authority on whether to give the green light for the launch of Europa Clipper.

Surveying the damage

ESA’s Hera spacecraft is on course for a flyby of Mars next March to take advantage of the red planet’s gravity to slingshot itself on a trajectory to intercept its twin target asteroids. Near Mars, Hera will zoom relatively close to the planet’s asteroid-like moon, Deimos, to obtain rare closeups.

Then, Hera will approach Didymos and Dimorphos a little more than two years from now, maneuvering around the binary asteroid system at a range of distances, eventually moving as close as about a half-mile (1 kilometer) away.

Italy’s LICIACube spacecraft snapped this image of asteroids Didymos (lower left) and Dimorphos (upper right) a few minutes after the impact of DART on September 26, 2022.

Credit: ASI/NASA

Italy’s LICIACube spacecraft snapped this image of asteroids Didymos (lower left) and Dimorphos (upper right) a few minutes after the impact of DART on September 26, 2022. Credit: ASI/NASA

Dimorphos orbits Didymos once every 11 hours and 23 minutes, roughly 32 minutes shorter than the orbital period before DART’s impact in 2022. This change in orbit proved the effectiveness of a kinetic impactor in deflecting an asteroid that threatens Earth.

Dimorphos, the smaller of the two asteroids, has a diameter of around 500 feet (150 meters), while Didymos measures approximately a half-mile (780 meters) wide. Neither asteroid poses a risk to Earth, so NASA chose them as the objective for DART.

The Hubble Space Telescope spotted a debris field trailing the binary asteroid system after DART’s impact. Astronomers identified at least 37 boulders drifting away from the asteroids, material ejected when the DART spacecraft slammed into Dimorphos at a velocity of 14,000 mph (22,500 kmh).

Scientists will use Hera, with its suite of cameras and instruments, to study how the strike by DART changed the asteroid Dimorphos. Did the impact leave a crater, or did it reshape the entire asteroid? There are “tentative hints” that the asteroid’s shape changed after the collision, according to Michael Kueppers, Hera’s project scientist at ESA.

“If this is the case, it would also mean that the cohesion of Dimorphos is extremely low; that indeed, even an object the size of Dimorphos would be held together by its weight, by its gravity, and not by cohesion,” Kueppers said. “So it really would be a rubble pile.”

Hera will also measure the mass of Dimorphos, something DART was unable to do. “That is important to measure the efficiency of the impact… which was the momentum that was transferred from the impacting satellite to the asteroid,” Kueppers said.

This NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos was taken on December 19, 2022, nearly three months after the asteroid was impacted by NASA’s DART mission. Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision.

Credit: NASA, ESA, D. Jewitt (UCLA)

This NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos was taken on December 19, 2022, nearly three months after the asteroid was impacted by NASA’s DART mission. Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision. Credit: NASA, ESA, D. Jewitt (UCLA)

The central goal of Hera is to fill the gaps in knowledge about Didymos and Dimorphos. Precise measurements of DART’s momentum, coupled with a better understanding of the interior structure of the asteroids, will allow future mission planners to know how best to deflect a hazardous object threatening Earth.

“The third part is to generally investigate the two asteroids to know their physical properties, their interior properties, their strength, essentially to be able to extrapolate or to scale the outcome of DART to another impact should we really need it one day,” Kueppers said.

Hera will release two briefcase-size CubeSats, named Juventas and Milani, to work in concert with ESA’s mothership. Juventas carries a compact radar to probe the internal structure of the smaller asteroid and will eventually attempt a landing on Dimorphos. Milani will study the mineral composition of individual boulders around DART’s impact site.

“This is the first time that we send a spacecraft to a small body, which is actually a multi-satellite system, with one main spacecraft and two CubeSats doing closer proximity operations,” Michel said. “This has never been done.”

Artist’s illustration of the Hera spacecraft with its two deployable CubeSats, Juventas and Milani, in the vicinity of the Didymos binary asteroid system. The CubeSats will communicate with ground teams via radio links with the Hera mothership.

Credit: ESA-Science Office

Artist’s illustration of the Hera spacecraft with its two deployable CubeSats, Juventas and Milani, in the vicinity of the Didymos binary asteroid system. The CubeSats will communicate with ground teams via radio links with the Hera mothership. Credit: ESA-Science Office

One source of uncertainty, and perhaps worry, about the environment around Didymos and Dimorphos is the status of the debris field observed by Hubble a few months after DART’s impact. But this is not likely to be a problem, according to Kueppers.

“I’m not really worried about potential boulders at Didymos,” he said, recalling the relative ease with which ESA’s Rosetta spacecraft navigated around an active comet from 2014 through 2016.

Ignacio Tanco, ESA’s flight director for Hera, doesn’t share Kuepper’s optimism.

“We didn’t hit the comet with a hammer,” said Tanco, who is responsible for keeping the Hera spacecraft safe. “The debris question for me is actually a source of… I wouldn’t say concern, but certainly precaution. It’s something that we’ll need to approach carefully once we get there.”

“That’s the difference between an engineer and a scientist,” Kuepper joked.

Scientists originally wanted Hera to be in the vicinity of the Didymos binary asteroid system before DART’s arrival, allowing it to directly observe the impact and its fallout. But ESA’s member states did not approve funding for the Hera mission in time, and the space agency only signed the contract to build the Hera spacecraft in 2020.

ESA first studied a mission like DART and Hera more than 20 years ago, when scientists proposed a mission called Don Quijote to get an asteroid deflection. But other missions took priority in Europe’s space program. Now, Hera is on course to write the final chapter of the story of humanity’s first planetary defense test.

“This is our contribution of ESA to humanity to help us in the future protect our planet,” said Josef Aschbacher, ESA’s director general.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX launches Europe’s Hera asteroid mission ahead of Hurricane Milton Read More »

the-war-of-words-between-spacex-and-the-faa-keeps-escalating

The war of words between SpaceX and the FAA keeps escalating

Elon Musk, SpaceX's founder and CEO, has called for the resignation of the FAA administrator.

Enlarge / Elon Musk, SpaceX’s founder and CEO, has called for the resignation of the FAA administrator.

The clash between SpaceX and the Federal Aviation Administration escalated this week, with Elon Musk calling for the head of the federal regulator to resign after he defended the FAA’s oversight and fines levied against the commercial launch company.

The FAA has said it doesn’t expect to determine whether to approve a launch license for SpaceX’s next Starship test flight until late November, two months later than the agency previously communicated to Musk’s launch company. Federal regulators are reviewing changes to the rocket’s trajectory necessary for SpaceX to bring Starship’s giant reusable Super Heavy booster back to the launch pad in South Texas. This will be the fifth full-scale test flight of Starship but the first time SpaceX attempts such a maneuver on the program.

This week, SpaceX assembled the full Starship rocket on its launch pad at the company’s Starbase facility near Brownsville, Texas. “Starship stacked for Flight 5 and ready for launch, pending regulatory approval,” SpaceX posted on X.

Apart from the Starship regulatory reviews, the FAA last week announced it is proposing more than $633,000 in fines on SpaceX due to alleged violations of the company’s launch license associated with two flights of the company’s Falcon 9 rocket from Florida. It is rare for the FAA’s commercial spaceflight division to fine launch companies.

Michael Whitaker, the FAA’s administrator, discussed the agency’s ongoing environmental and safety reviews of SpaceX’s Starship rocket in a hearing before a congressional subcommittee in Washington Tuesday. During the hearing, which primarily focused on the FAA’s oversight of Boeing’s commercial airplane business, one lawmaker asked Whitaker the FAA’s relationship with SpaceX.

Public interest

“I think safety is in the public interest and that’s our primary focus,” said Michael Whitaker, the FAA administrator, in response to questions from Rep. Kevin Kiley, a California Republican. “It’s the only tool we have to get compliance on safety matters,” he said, referring to the FAA’s fines.

The stainless-steel Super Heavy booster is larger than a Boeing 747 jumbo jet. SpaceX says the flight path to return the first stage of the rocket to land will mean a “slightly larger area could experience a sonic boom,” and a stainless-steel ring that jettisons from the top of the booster, called the hot-staging ring, will fall in a different location in the Gulf of Mexico just offshore from the rocket’s launch and landing site.

The FAA, which is primarily charged with ensuring rocket launches don’t endanger the public, is consulting with other agencies on these matters, along with issues involving SpaceX’s discharge of water into the environment around the Starship launch pad in Texas. The pad uses water to cool a steel flame deflector that sits under the 33 main engines of Starship’s Super Heavy booster.

SpaceX says fines levied against it this year by the Texas Commission on Environmental Quality (TCEQ) and the Environmental Protection Agency (EPA) related to the launch pad’s water system were “entirely tied to disagreements over paperwork” and not any dumping of pollutants into the environment around the Starship launch site.

SpaceX installed the water-cooled flame deflector under the Starship launch mount after the engine exhaust rocket’s first test flight excavated a large hole in the ground. Gwynne Shotwell, SpaceX’s president and chief operating officer, summed up her view of the issue in a hearing with Texas legislators in Austin on Tuesday.

“To protect that from happening again, we built this kind of upside-down shower head to basically cool the flame as the rocket was lifting off,” she said. “That was licensed and permitted by TCEQ. The EPA came in afterwards and didn’t like the license or the permit that we had for that, and wanted to turn it into a federal permit, which we are working on now.”

“We work very closely with organizations such as TCEQ,” Shotwell said. “You may have read a little bit of nonsense in the papers recently about that, but we’re working quite well with them.”

The war of words between SpaceX and the FAA keeps escalating Read More »

rocket-report:-ula-is-losing-engineers;-spacex-is-launching-every-two-days

Rocket Report: ULA is losing engineers; SpaceX is launching every two days

Every other day —

The first missions of Stoke Space’s reusable Nova rocket will fly in expendable mode.

A Falcon 9 booster returns to landing at Cape Canaveral Space Force Station following a launch Thursday with two WorldView Earth observation satellites for Maxar.

Enlarge / A Falcon 9 booster returns to landing at Cape Canaveral Space Force Station following a launch Thursday with two WorldView Earth observation satellites for Maxar.

Welcome to Edition 7.07 of the Rocket Report! SpaceX has not missed a beat since the Federal Aviation Administration gave the company a green light to resume Falcon 9 launches after a failure last month. In 19 days, SpaceX has launched 10 flights of the Falcon 9 rocket, taking advantage of all three of its Falcon 9 launch pads. This is a remarkable cadence in its own right, but even though it’s a small sample size, it is especially impressive right out of the gate after the rocket’s grounding.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

A quick turnaround for Rocket Lab. Rocket Lab launched its 52nd Electron rocket on August 11 from its private spaceport on Mahia Peninsula in New Zealand, Space News reports. The company’s light-class Electron rocket deployed a small radar imaging satellite into a mid-inclination orbit for Capella Space. This was the shortest turnaround between two Rocket Lab missions from its primary launch base in New Zealand, coming less than nine days after an Electron rocket took off from the same pad with a radar imaging satellite for the Japanese company Synspective. Capella’s Acadia 3 satellite was originally supposed to launch in July, but Capella requested a delay to perform more testing of its spacecraft. Rocket Lab swapped its place in the Electron launch sequence and launched the Synspective mission first.

Now, silence at the launch pad … Rocket Lab hailed the swap as an example of the flexibility provided by Electron, as well as the ability to deliver payloads to specific orbits that are not feasible with rideshare missions, according to Space News. For this tailored launch service, Rocket Lab charges a premium launch price over the price of launching a small payload on a SpaceX rideshare mission. However, SpaceX’s rideshare launches gobble up the lion’s share of small satellites within Rocket Lab’s addressable market. On Friday, a Falcon 9 rocket is slated to launch 116 small payloads into polar orbit. Rocket Lab, meanwhile, projects just one more launch before the end of September and expects to perform 15 to 18 Electron launches this year, a record for the company but well short of the 22 it forecasted earlier in the year. Rocket Lab says customer readiness is the reason it will be far short of projections.

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Defense contractors teaming up on solid rockets. Lockheed Martin and General Dynamics are joining forces to kickstart solid rocket motor production, announcing a strategic teaming agreement today that could see new motors roll off the line as early as 2025, Breaking Defense reports. The new agreement could position a third vendor to enter into the ailing solid rocket motor industrial base, which currently only includes L3Harris subsidiary Aerojet Rocketdyne and Northrop Grumman in the United States. Both companies have struggled to meet demands from weapons makers like Lockheed and RTX, which are in desperate need of solid rocket motors for products such as Javelin or the PAC-3 missiles used by the Patriot missile defense system.

Pressure from startups … Demand for solid rocket motors has skyrocketed since Russia’s invasion of Ukraine as the United States and its partners sought to backfill stocks of weapons like Javelin and Stinger, as well as provide motors to meet growing needs in the space domain. Although General Dynamics has kept its interest in the solid rocket motor market quiet until now, several defense tech startups, such as Ursa Major Technologies, Anduril, and X-Bow Systems, have announced plans to enter the market. (submitted by Ken the Bin)

Going polar with crew. SpaceX will fly the first human spaceflight over the Earth’s poles, possibly before the end of this year, Ars reports. The private Crew Dragon mission will be led by a Chinese-born cryptocurrency entrepreneur named Chun Wang, and he will be joined by a polar explorer, a roboticist, and a filmmaker whom he has befriended in recent years. The “Fram2” mission, named after the Norwegian research ship Fram, will launch into a polar corridor from SpaceX’s launch facilities in Florida and fly directly over the north and south poles. The three- to five-day mission is being timed to fly over Antarctica near the summer solstice in the Southern Hemisphere, to afford maximum lighting.

Wang’s inclination is Wang’s prerogative … Wang told Ars he wanted to try something new, and flying a polar mission aligned with his interests in cold places on Earth. He’s paying the way on a commercial basis, and SpaceX in recent years has demonstrated it can launch satellites into polar orbit from Cape Canaveral, Florida, something no one had done in more than 50 years. The highest-inclination flight ever by a human spacecraft was the Soviet Vostok 6 mission in 1963 when Valentina Tereshkova’s spacecraft reached 65.1 degrees. Now, Fram2 will fly repeatedly and directly over the poles.

Rocket Report: ULA is losing engineers; SpaceX is launching every two days Read More »

spacex-is-about-to-launch-starship-again—the-faa-will-be-more-forgiving-this-time

SpaceX is about to launch Starship again—the FAA will be more forgiving this time

The rocket for SpaceX's fourth full-scale Starship test flight awaits liftoff from Starbase, the company's private launch base in South Texas.

Enlarge / The rocket for SpaceX’s fourth full-scale Starship test flight awaits liftoff from Starbase, the company’s private launch base in South Texas.

SpaceX

The Federal Aviation Administration approved the commercial launch license for the fourth test flight of SpaceX’s Starship rocket Tuesday, with liftoff from South Texas targeted for just after sunrise Thursday.

“The FAA has approved a license authorization for SpaceX Starship Flight 4,” the agency said in a statement. “SpaceX met all safety and other licensing requirements for this test flight.”

Shortly after the FAA announced the launch license, SpaceX confirmed plans to launch the fourth test flight of the world’s largest rocket at 7: 00 am CDT (12: 00 UTC) Thursday. The launch window runs for two hours.

This flight follows three prior demonstration missions, each progressively more successful, of SpaceX’s privately developed mega-rocket. The last time Starship flew—on March 14—it completed an eight-and-a-half minute climb into space, but the ship was unable to maneuver itself as it coasted nearly 150 miles (250 km) above Earth. This controllability problem caused the rocket to break apart during reentry.

On Thursday’s flight, SpaceX officials will expect the ascent portion of the test flight to be similarly successful to the launch in March. The objectives this time will be to demonstrate Starship’s ability to survive the most extreme heating of reentry, when temperatures peak at 2,600° Fahrenheit (1,430° Celsius) as the vehicle plunges into the atmosphere at more than 20 times the speed of sound.

SpaceX officials also hope to see the Super Heavy booster guide itself toward a soft splashdown in the Gulf of Mexico just offshore from the company’s launch site, known as Starbase, in Cameron County, Texas.

“The fourth flight test turns our focus from achieving orbit to demonstrating the ability to return and reuse Starship and Super Heavy,” SpaceX wrote in an overview of the mission.

Last month, SpaceX completed a “wet dress rehearsal” at Starbase, where the launch team fully loaded the rocket with cryogenic methane and liquid oxygen propellants. Before the practice countdown, SpaceX test-fired the booster and ship at the launch site. More recently, technicians installed components of the rocket’s self-destruct system, which would activate to blow up the rocket if it flies off course.

Then, on Tuesday, SpaceX lowered the Starship upper stage from the top of the Super Heavy booster, presumably to perform final touch-ups to the ship’s heat shield, composed of 18,000 hexagonal ceramic tiles to protect its stainless-steel structure during reentry. Ground teams were expected to raise the ship, or upper stage, back on top of the booster sometime Wednesday, returning the rocket to its full height of 397 feet (121 meters) ahead of Thursday morning’s launch window.

The tick-tock of Starship’s fourth flight

If all goes according to plan, SpaceX’s launch team will start loading 10 million pounds of super-cold propellants into the rocket around 49 minutes before liftoff Thursday. The methane and liquid oxygen will first flow into the smaller tanks on the ship, then into the larger tanks on the booster.

The rocket should be fully loaded about three minutes prior to launch, and, following a sequence of automated checks, the computer controlling the countdown will give the command to light the booster’s 33 Raptor engines. Three seconds later, the rocket will begin its vertical climb off the launch mount, with its engines capable of producing more than 16 million pounds of thrust at full power.

Heading east from the Texas Gulf Coast, the rocket will exceed the speed of sound in about a minute, then begin shutting down its 33 main engines around 2 minutes and 41 seconds after liftoff. Then, just as the Super Heavy booster jettisons to begin a descent back to Earth, Starship’s six Raptor engines will ignite to continue pushing the upper portion of the rocket into space. Starship’s engines are expected to burn until T+ 8 minutes, 23 seconds, accelerating the rocket to near-orbital velocity with enough energy to fly an arcing trajectory halfway around the world to the Indian Ocean.

All of this will be similar to the events of the last Starship launch in March. What differs in the flight plan this time involves the attempts to steer the booster and ship back to Earth. This is important to lay the groundwork for future flights, when SpaceX wants to bring the Super Heavy booster—the size of the fuselage of a Boeing 747 jumbo jet—to a landing back at its launch pad. Eventually, SpaceX also intends to recover reusable Starships back at Starbase or other spaceports.

This infographic released by SpaceX shows the flight profile for SpaceX's fourth Starship launch.

Enlarge / This infographic released by SpaceX shows the flight profile for SpaceX’s fourth Starship launch.

SpaceX

Based on the results of the March test flight, SpaceX still has a lot to prove in these areas. On that flight, the engines on the Super Heavy booster could not complete all the burns required to guide the rocket toward the splashdown zone in the Gulf of Mexico. The booster lost control as it plummeted toward the ocean.

Engineers traced the failure to blockage in a filter where liquid oxygen flows into the Raptor engines. Notably, a similar problem occurred on the second Starship test flight last November. The Super Heavy booster awaiting launch Thursday has additional hardware to improve propellant filtration capabilities, according to SpaceX. The company also implemented “operational changes” on the booster for the upcoming test flight, including to jettison the Super Heavy’s staging ring, which sits between the booster and ship during launch, to reduce the rocket’s mass during descent.

SpaceX has a lot of experience bringing back its fleet of Falcon 9 boosters. The company now boasts a streak of more than 240 successful rocket landings in a row, so it’s reasonable to expect SpaceX will overcome the challenge of recovering the larger Super Heavy booster.

SpaceX is about to launch Starship again—the FAA will be more forgiving this time Read More »

we-take-a-stab-at-decoding-spacex’s-ever-changing-plans-for-starship-in-florida

We take a stab at decoding SpaceX’s ever-changing plans for Starship in Florida

SpaceX's Starship tower (left) at Launch Complex 39A dwarfs the launch pad for the Falcon 9 rocket (right).

Enlarge / SpaceX’s Starship tower (left) at Launch Complex 39A dwarfs the launch pad for the Falcon 9 rocket (right).

There are a couple of ways to read the announcement from the Federal Aviation Administration that it’s kicking off a new environmental review of SpaceX’s plan to launch the most powerful rocket in the world from Florida.

The FAA said on May 10 that it plans to develop an Environmental Impact Statement (EIS) for SpaceX’s proposal to launch Starships from NASA’s Kennedy Space Center in Florida. The FAA ordered this review after SpaceX updated the regulatory agency on the projected Starship launch rate and the design of the ground infrastructure needed at Launch Complex 39A (LC-39A), the historic launch pad once used for Apollo and Space Shuttle missions.

Dual environmental reviews

At the same time, the US Space Force is overseeing a similar EIS for SpaceX’s proposal to take over a launch pad at Cape Canaveral Space Force Station, a few miles south of LC-39A. This launch pad, designated Space Launch Complex 37 (SLC-37), is available for use after United Launch Alliance’s last Delta rocket lifted off there in April.

On the one hand, these environmental reviews often take a while and could cloud Elon Musk’s goal of having Starship launch sites in Florida ready for service by the end of 2025. “A couple of years would not be a surprise,” said George Nield, an aerospace industry consultant and former head of the FAA’s Office of Commercial Space Transportation.

Another way to look at the recent FAA and Space Force announcements of pending environmental reviews is that SpaceX finally appears to be cementing its plans to launch Starship from Florida. These plans have changed quite a bit in the last five years.

The environmental reviews will culminate in a decision on whether to approve SpaceX’s proposals for Starship launches at LC-39A and SLC-37. The FAA will then go through a separate licensing process, similar to the framework used to license the first three Starship test launches from South Texas.

NASA has contracts with SpaceX worth more than $4 billion to develop a human-rated version of Starship to land astronauts on the Moon on the first two Artemis lunar landing flights later this decade. To do that, SpaceX must stage a fuel depot in low-Earth orbit to refuel the Starship lunar lander before it heads for the Moon. It will take a series of Starship tanker flights—perhaps 10 to 15—to fill the depot with cryogenic propellants.

Launching that many Starships over the course of a month or two will require SpaceX to alternate between at least two launch pads. NASA and SpaceX officials say the best way to do this is by launching Starships from one pad in Texas and another in Florida.

Earlier this week, Ars spoke with Lisa Watson-Morgan, who manages NASA’s human-rated lunar lander program. She was at Kennedy Space Center this week for briefings on the Starship lander and a competing lander from Blue Origin. One of the topics, she said, was the FAA’s new environmental review before Starship can launch from LC-39A.

“I would say we’re doing all we can to pull the schedule to where it needs to be, and we are working with SpaceX to make sure that their timeline, the EIS timeline, and NASA’s all work in parallel as much as we can to achieve our objectives,” she said. “When you’re writing it down on paper just as it is, it looks like there could be some tight areas, but I would say we’re collectively working through it.”

Officially, SpaceX plans to perform a dress rehearsal for the Starship lunar landing in late 2025. This will be a full demonstration, with refueling missions, an uncrewed landing of Starship on the lunar surface, then a takeoff from the Moon, before NASA commits to putting people on Starship on the Artemis III mission, currently slated for September 2026.

So you can see that schedules are already tight for the Starship lunar landing demonstration if SpaceX activates launch pads in Florida late next year.

We take a stab at decoding SpaceX’s ever-changing plans for Starship in Florida Read More »

report:-boeing-may-reacquire-spirit-at-higher-price-despite-hating-optics

Report: Boeing may reacquire Spirit at higher price despite hating optics

Still up in the air —

Spirit was initially spun out from Boeing Commercial Airplanes in 2005.

Report: Boeing may reacquire Spirit at higher price despite hating optics

Amid safety scandals involving “many loose bolts” and widespread problems with Boeing’s 737 Max 9s, Boeing is apparently considering buying back Spirit AeroSystems, the key supplier behind some of Boeing’s current manufacturing problems, sources told The Wall Street Journal.

Spirit was initially spun out from Boeing Commercial Airplanes in 2005, and Boeing had planned to keep it that way. Last year, Boeing CEO Dave Calhoun sought to dispel rumors that Boeing might reacquire Spirit as federal regulators launched investigations into both companies. But now Calhoun appears to be “softening that stance,” the WSJ reported.

According to the WSJ’s sources, no deal has formed yet, but Spirit has initiated talks with Boeing and “hired bankers to explore strategic options.” Sources also confirmed that Spirit is weighing whether to sell its operations in Ireland, which manufactures parts for Boeing rival Airbus.

Perhaps paving the way for these talks, Spirit replaced its CEO last fall with a former Boeing executive, Patrick Shanahan. In a press release noting that Spirit relies “on Boeing for a significant portion of our revenues,” Spirit touted Shanahan as a “seasoned executive” with 31 years at Boeing, and Shanahan promised to “stabilize” Spirit’s operations.

If Boeing reacquired Spirit, it might help reduce backlash over Boeing outsourcing manufacturing of its planes, but it likely wouldn’t help Boeing escape the ongoing scrutiny. While the WSJ reported that “Spirit parts frequently arrive” at the Boeing factory “with defects,” it was “a snafu at Boeing’s factory” that led Alaska Airlines to ground 65 Boeing aircraft over safety concerns after a mid-aircraft door detached mid-flight, endangering passengers and crew.

Sources later revealed that it was Boeing employees who failed to put bolts back in when they reinstalled a door plug, reportedly causing the malfunction that forced Alaska Airlines to make an emergency landing. As a result, Boeing withdrew from a safety exemption that it had requested “to prematurely allow the 737 Max 7 to enter commercial service.” At that time, US Sen. Tammy Duckworth (D-Ill.) accused Boeing of a “bold-face attempt to put profits over the safety of the flying public.”

Purchasing Spirit would appear to be a last resort for Boeing, the WSJ reported, noting that so far, “Boeing has done everything short of acquiring Spirit in an effort to gain control over the supplier.”

But Reuters confirmed the WSJ’s report with an industry source, so it seems like perhaps Boeing increasingly feels it has no other options left despite working closely with Shanahan for the past few months to keep Spirit’s troubles from impacting Boeing’s bottom line. One industry source told Reuters that in the time since Boeing spun off Spirit, “the optics of buying at a higher price were among the factors that discouraged such a move.”

For Spirit, which attributes nearly two-thirds of its revenues to Boeing, the WSJ reported, being brought back into the Boeing fold could be the only way to survive these turbulent times. Currently valued at about $3.3 billion, Spirit has struggled for months to shore up a commercial agreement with Airbus and notably failed to stabilize after receiving a “$100 million cash infusion from Boeing” last year, the WSJ reported.

But for Boeing, the obvious downside of the purchase would be taking on Spirit’s mess at the same time Boeing is trying to clean up its own image.

Report: Boeing may reacquire Spirit at higher price despite hating optics Read More »