european space agency

two-european-satellites-launch-on-mission-to-blot-out-the-sun—for-science

Two European satellites launch on mission to blot out the Sun—for science


This will all happen nearly 40,000 miles above the Earth, so you won’t need your eclipse glasses.

An infrared view of a test of the Proba-3 mission’s laser ranging system, which will allow two spacecraft to fly in formation with millimeter-scale precision. Credit: ESA – M. Pédoussaut / J. Versluys

Two spacecraft developed by the European Space Agency launched on top of an Indian rocket Thursday, kicking off a mission to test novel formation flying technologies and observe a rarely seen slice of the Sun’s ethereal corona.

ESA’s Proba-3 mission is purely experimental. The satellites are loaded with sophisticated sensors and ranging instruments to allow the two spacecraft to orbit the Earth in lockstep with one another. Proba-3 will attempt to achieve millimeter-scale precision, several orders of magnitude better than the requirements for a spacecraft closing in for docking at the International Space Station.

“In a nutshell, it’s an experiment in space to demonstrate a new concept, a new technology that is technically challenging,” said Damien Galano, Proba-3’s project manager.

The two Proba-3 satellites launched from India at 5: 34 am EST (10: 34 UTC) Thursday, riding a Polar Satellite Launch Vehicle (PSLV). The PSLV released Proba-3 into a stretched-out orbit with a low point of approximately 356 miles (573 kilometers), a high point of 37,632 miles (60,563 kilometers), and an inclination of 59 degrees to the equator.

India’s PSLV accelerates through the speed of sound shortly after liftoff with the Proba-3 mission Thursday. Credit: ISRO

After initial checkouts, the two Proba-3 satellites, each smaller than a compact car, will separate from one another to begin their tech demo experiments early next year. The larger of the two satellites, known as the Coronagraph spacecraft, carries a suite of science instruments to image the Sun’s corona, or outer atmosphere. The smaller spacecraft, named Occulter, hosts navigation sensors and low-impulse thrusters to help it maneuver into position less than 500 feet (150 meters) from its Coronagraph companion.

From the point of view of the Coronagraph spacecraft, this is just the right distance for a 4.6-foot (1.4-meter) disk mounted to Proba-3’s Occulter spacecraft to obscure the surface of the Sun. The occultation will block the Sun’s blinding glare and cast a shadow just 3 inches (8 centimeters) onto the Coronagraph satellite, revealing the wispy, super-heated gases that make up the solar corona.

Why do this?

The corona is normally hidden by the brightness of the Sun and is best observed from Earth during total solar eclipses, but these events only last a few minutes. Scientists devised a way to create artificial eclipses using devices known as coronagraphs, which have flown in space on several previous solar research missions. However, these coronagraphs were placed inside a single instrument on a single spacecraft, limiting their effectiveness due to complications from diffraction or vignetting, where sunlight encroaches around the edge of the occulting disk or misses the imaging detector entirely.

Ideally, scientists would like to place the occulting disk much farther from the camera taking images of the Sun. This would more closely mimic what the human eye sees during a solar eclipse. With Proba-3, ESA will attempt to do just that.

“There was simply no other way of reaching the optical performance Proba-3 requires than by having its occulting disk fly on a separate, carefully controlled spacecraft,” said Joe Zender, ESA’s Proba-3 mission scientist. “Any closer and unwanted stray light would spill over the edges of the disk, limiting our close-up views of the Sun’s surrounding corona.”

But deploying one enormous 150-meter-long spacecraft would be cost-prohibitive. With contributions from 14 member states and Canada, ESA developed the dual-spacecraft Proba-3 mission on a budget of approximately 200 million euros ($210 million) over 10 years. Spain and Belgium, which are not among ESA’s highest-spending member states, funded nearly three-quarters of Proba-3’s cost.

The Proba-3 satellites will use several sensors to keep station roughly 150 meters away from one another, including inter-satellite radio links, satellite navigation receivers, and cameras on the Occulter spacecraft to help determine its relative position by monitoring LEDs on the Coronagraph satellite.

For the most precise navigation, the Occulter satellite will shine a laser toward a reflector on the Coronagraph spacecraft. The laser light bounced back to the Occulter spacecraft will allow it to autonomously and continuously track the range to its companion and send signals to fire cold gas thrusters and make fine adjustments.

The laser will give Proba-3 the ability to control the distance between the two satellites with an error of less than a millimeter—around the thickness of an average fingernailand hold position for up to six hours, 50 times longer than the maximum duration of a total solar eclipse. Proba-3 will create the eclipses while it is flying farthest from Earth in its nearly 20-hour orbit.

Scientists hope to achieve at least 1,000 hours of artificial totality during Proba-3’s two-year prime mission.

Proba-3’s Occulter spacecraft (top) and Coronagraph spacecraft (bottom) will hold position 150 meters away from one another. Credit: ESA-P. Carril

The corona extends millions of miles from the Sun’s convective surface, with temperatures as hot as 3.5 million degrees Fahrenheit. Still, the corona is easily outshined by the glare from the Sun itself. Scientists say it’s important to study this region to understand how the Sun generates the solar wind and drives geomagnetic storms that can affect the Earth.

NASA’s Parker Solar Probe, well-insulated from the scorching heat, became the first spacecraft to fly through the corona in 2021. It is collecting data on the actual conditions within the Sun’s atmosphere, while a network of other spacecraft monitor solar activity from afar to get the big picture.

Proba-3 is tasked with imaging a normally invisible part of the corona as close as 43,500 miles (70,000 kilometers) above the Sun’s surface. Extreme ultraviolet instruments are capable of observing the part of the corona closest to the Sun, while existing coronagraphs on other satellites are good at seeing the outermost portion of the corona.

“That leaves a significant observing gap, from about 3 solar radii down to 1.1 solar radii, that Proba-3 will be able to fill,” said Andrei Zhukov of the Royal Observatory of Belgium, principal investigator for Proba-3’s coronagraph instrument. “This will make it possible, for example, to follow the evolution of the colossal solar explosions called Coronal Mass Ejections as they rise from the solar surface and the outward acceleration of the solar wind.”

Proba-3’s coronagraph instrument will take images as often as once every two seconds, helping scientists search for small-scale fast-moving plasma waves that might be responsible for driving up the corona’s hellish temperatures. The mission will also hunt for the glow of plasma jets scientists believe have a role in accelerating the solar wind, a cloud of particles streaming away from the Sun at speeds of up to 1.2 million mph (2 million km/hr).

These are two of the core science objectives for the Proba-3 mission. But the project has a deeper purpose of proving two satellites can continually fly in tight formation. This level of precision could meet the exacting demands of future space missions, such as Mars Sample Return and the clearing of space junk from low-Earth orbit, according to ESA.

“Proba-3’s coronal observations will take place as part of a larger in-orbit demonstration of precise formation flying,” said Josef Aschbacher, ESA’s director general. “The best way to prove this new European technology works as intended is to produce novel science data that nobody has ever seen before.

“It is not practical today to fly a single 150-meter-long spacecraft in orbit, but if Proba-3 can indeed achieve an equivalent performance using two small spacecraft, the mission will open up new ways of working in space for the future,” Aschbacher said in a statement. “Imagine multiple small platforms working together as one to form far-seeing virtual telescopes or arrays.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Two European satellites launch on mission to blot out the Sun—for science Read More »

rocket-report:-australia-says-yes-to-the-launch;-russia-delivers-for-iran

Rocket Report: Australia says yes to the launch; Russia delivers for Iran


The world’s first wooden satellite arrived at the International Space Station this week.

A Falcon 9 booster fires its engines on SpaceX’s “tripod” test stand in McGregor, Texas. Credit: SpaceX

Welcome to Edition 7.19 of the Rocket Report! Okay, we get it. We received more submissions from our readers on Australia’s approval of a launch permit for Gilmour Space than we’ve received on any other news story in recent memory. Thank you for your submissions as global rocket activity continues apace. We’ll cover Gilmour in more detail as they get closer to launch. There will be no Rocket Report next week as Eric and I join the rest of the Ars team for our 2024 Technicon in New York.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Gilmour Space has a permit to fly. Gilmour Space Technologies has been granted a permit to launch its 82-foot-tall (25-meter) orbital rocket from a spaceport in Queensland, Australia. The space company, founded in 2012, had initially planned to lift off in March but was unable to do so without approval from the Australian Space Agency, the Australian Broadcasting Corporation reports. The government approved Gilmour’s launch permit Monday, although the company is still weeks away from flying its three-stage Eris rocket.

A first for Australia … Australia hosted a handful of satellite launches with US and British rockets from 1967 through 1971, but Gilmour’s Eris rocket would become the first all-Australian launch vehicle to reach orbit. The Eris rocket is capable of delivering about 670 pounds (305 kilograms) of payload mass into a Sun-synchronous orbit. Eris will be powered by hybrid rocket engines burning a solid fuel mixed with a liquid oxidizer, making it unique among orbital-class rockets. Gilmour completed a wet dress rehearsal, or practice countdown, with the Eris rocket on the launch pad in Queensland in September. The launch permit becomes active after 30 days, or the first week of December. “We do think we’ve got a good chance of launching at the end of the 30-day period, and we’re going to give it a red hot go,” said Adam Gilmour, the company’s co-founder and CEO. (submitted by Marzipan, mryall, ZygP, Ken the Bin, Spencer Willis, MarkW98, and EllPeaTea)

North Korea tests new missile. North Korea apparently completed a successful test of its most powerful intercontinental ballistic missile on October 31, lofting it nearly 4,800 miles (7,700 kilometers) into space before the projectile fell back to Earth, Ars reports. This solid-fueled, multi-stage missile, named the Hwasong-19, is a new tool in North Korea’s increasingly sophisticated arsenal of weapons. It has enough range—perhaps as much as 9,320 miles (15,000 kilometers), according to Japan’s government—to strike targets anywhere in the United States. It also happens to be one of the largest ICBMs in the world, rivaling the missiles fielded by the world’s more established nuclear powers.

Quid pro quo? … The Hwasong-19 missile test comes as North Korea deploys some 10,000 troops inside Russia to support the country’s war against Ukraine. The budding partnership between Russia and North Korea has evolved for several years. Russian President Vladimir Putin has met with North Korean leader Kim Jong Un on multiple occasions, most recently in Pyongyang in June. This has fueled speculation about what Russia is offering North Korea in exchange for the troops deployed on Russian soil. US and South Korean officials have some thoughts. They said North Korea is likely to ask for technology transfers in diverse areas related to tactical nuclear weapons, ICBMs, and reconnaissance satellites.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Virgin Galactic is on the hunt for cash. Virgin Galactic is proposing to raise $300 million in additional capital to accelerate production of suborbital spaceplanes and a mothership aircraft the company says can fuel its long-term growth, Space News reports. The company, founded by billionaire Richard Branson, suspended operations of its VSS Unity suborbital spaceplane earlier this year. VSS Unity hit a monthly flight cadence carrying small groups of space tourists and researchers to the edge of space, but it just wasn’t profitable. Now, Virgin Galactic is developing larger Delta-class spaceplanes it says will be easier and cheaper to turn around between flights.

All-in with Delta … Michael Colglazier, Virgin Galactic’s CEO, announced the company’s appetite for fundraising in a quarterly earnings call with investment analysts Wednesday. He said manufacturing of components for Virgin Galactic’s first two Delta-class ships, which the company says it can fund with existing cash, is proceeding on schedule at a factory in Arizona. Virgin Galactic previously said it would use revenue from paying passengers on its first two Delta-class ships to pay for development of future vehicles. Instead, Virgin Galactic now says it wants to raise money to speed up work on the third and fourth Delta-class vehicles, along with a second airplane mothership to carry the spaceplanes aloft before they release and fire into space. (submitted by Ken the Bin and EllPeaTea)

ESA breaks its silence on Themis. The European Space Agency has provided a rare update on the progress of its Themis reusable booster demonstrator project, European Spaceflight reports. ESA is developing the Themis test vehicle for atmospheric flights to fine-tune technologies for a future European reusable rocket capable of vertical takeoffs and vertical landings. Themis started out as a project led by CNES, the French space agency, in 2018. ESA member states signed up to help fund the project in 2019, and the agency awarded ArianeGroup a contract to move forward with Themis in 2020. At the time, the first low-altitude hop test was expected to take place in 2022.

Some slow progress … Now, the first low-altitude hop is scheduled for 2025 from Esrange Space Centre in Sweden, a three-year delay. This week, ESA said engineers have completed testing of the Themis vehicle’s main systems, and assembly of the demonstrator is underway in France. A single methane-fueled Prometheus engine, also developed by ArianeGroup, has been installed on the rocket. Teams are currently adding avionics, computers, electrical systems, and cable harnesses. Themis’ stainless steel propellant tanks have been manufactured, tested, and cleaned and are now ready to be installed on the Themis demonstrator. Then, the rocket will travel by road from France to the test site in Sweden for its initial low-altitude hops. After those flights are complete, officials plan to add two more Prometheus engines to the rocket and ship it to French Guiana for high-altitude test flights. (submitted by Ken the Bin and EllPeaTea)

SpaceX will give the ISS a boost. A Cargo Dragon spacecraft docked to the International Space Station on Tuesday morning, less than a day after lifting off from Florida. As space missions go, this one is fairly routine, ferrying about 6,000 pounds (2,700 kilograms) of cargo and science experiments to the space station. One thing that’s different about this mission is that it delivered to the station a tiny 2 lb (900 g) satellite named LignoSat, the first spacecraft made of wood, for later release outside the research complex. There is one more characteristic of this flight that may prove significant for NASA and the future of the space station, Ars reports. As early as Friday, NASA and SpaceX have scheduled a “reboost and attitude control demonstration,” during which the Dragon spacecraft will use some of the thrusters at the base of the capsule. This is the first time the Dragon spacecraft will be used to move the space station.

Dragon’s breath … Dragon will fire a subset of its 16 Draco thrusters, each with about 90 pounds of thrust, for approximately 12.5 minutes to make a slight adjustment to the orbital trajectory of the roughly 450-ton space station. SpaceX and NASA engineers will analyze the results from the demonstration to determine if Dragon could be used for future space station reboost opportunities. The data will also inform the design of the US Deorbit Vehicle, which SpaceX is developing to perform the maneuvers required to bring the space station back to Earth for a controlled, destructive reentry in the early 2030s. For NASA, demonstrating Dragon’s ability to move the space station will be another step toward breaking free of reliance on Russia, which is currently responsible for providing propulsion to maneuver the orbiting outpost. Northrop Grumman’s Cygnus supply ship also previously demonstrated a reboost capability. (submitted by Ken the Bin and N35t0r)

Russia launches Soyuz in service of Iran. Russia launched a Soyuz rocket Monday carrying two satellites designed to monitor the space weather around Earth and 53 small satellites, including two Iranian ones, Reuters reports. The primary payloads aboard the Soyuz-2.1b rocket were two Ionosfera-M satellites to probe the ionosphere, an outer layer of the atmosphere near the edge of space. Solar activity can alter conditions in the ionosphere, impacting communications and navigation. The two Iranian satellites on this mission were named Kowsar and Hodhod. They will collect high-resolution reconnaissance imagery and support communications for Iran.

A distant third … This was only the 13th orbital launch by Russia this year, trailing far behind the United States and China. We know of two more Soyuz flights planned for later this month, but no more, barring a surprise military launch (which is possible). The projected launch rate puts Russia on pace for its quietest year of launch activity since 1961, the year Yuri Gagarin became the first person to fly in space. A major reason for this decline in launches is the decisions of Western governments and companies to move their payloads off of Russian rockets after the invasion of Ukraine. For example, OneWeb stopped launching on Soyuz in 2022, and the European Space Agency suspended its partnership with Russia to launch Soyuz rockets from French Guiana. (submitted by Ken the Bin)

H3 deploys Japanese national security satellite. Japan launched a defense satellite Monday aimed at speedier military operations and communication on an H3 rocket and successfully placed it into orbit, the Associated Press reports. The Kirameki 3 satellite will use high-speed X-band communication to support Japan’s defense ministry with information and data sharing, and command and control services. The satellite will serve Japanese land, air, and naval forces from its perch in geostationary orbit alongside two other Kirameki communications satellites.

Gaining trust … The H3 is Japan’s new flagship rocket, developed by Mitsubishi Heavy Industries (MHI) and funded by the Japan Aerospace Exploration Agency (JAXA). The launch of Kirameki 3 marked the third consecutive successful launch of the H3 rocket, following a debut flight in March 2023 that failed to reach orbit. This was the first time Japan’s defense ministry put one of its satellites on the H3 rocket. The first two Kirameki satellites launched on a European Ariane 5 and a Japanese H-IIA rocket, which the H3 will replace. (submitted by Ken the Bin, tsunam, and EllPeaTea)

Rocket Lab enters the race for military contracts. Rocket Lab is aiming to chip away at SpaceX’s dominance in military space launch, confirming its bid to compete for Pentagon contracts with its new medium-lift rocket, Neutron, Space News reports. Last month, the Space Force released a request for proposals from launch companies seeking to join the military’s roster of launch providers in the National Security Space Launch (NSSL) program. The Space Force will accept bids for launch providers to “on-ramp” to the NSSL Phase 3 Lane 1 contract, which doles out task orders to launch companies for individual missions. In order to win a task order, a launch provider must be on the Phase 3 Lane 1 contract. Currently, SpaceX, United Launch Alliance, and Blue Origin are the only rocket companies eligible. SpaceX won all of the first round of Lane 1 task orders last month.

Joining the club … The Space Force is accepting additional risk for Lane 1 missions, which largely comprise repeat launches deploying a constellation of missile-tracking and data-relay satellites for the Space Development Agency. A separate class of heavy-lift missions, known as Lane 2, will require rockets to undergo a thorough certification by the Space Force to ensure their reliability. In order for a launch company to join the Lane 1 roster, the Space Force requires bidders to be ready for a first launch by December 2025. Peter Beck, Rocket Lab’s founder and CEO, said he thinks the Neutron rocket will be ready for its first launch by then. Other new medium-lift rockets, such as Firefly Aerospace’s MLV and Relativity’s Terran-R, almost certainly won’t be ready to launch by the end of next year, leaving Rocket Lab as the only company that will potentially join incumbents SpaceX, ULA, and Blue Origin. (submitted by Ken the Bin)

Next Starship flight is just around the corner. Less than a month has passed since the historic fifth flight of SpaceX’s Starship, during which the company caught the booster with mechanical arms back at the launch pad in Texas. Now, another test flight could come as soon as November 18, Ars reports. The improbable but successful recovery of the Starship first stage with “chopsticks” last month, and the on-target splashdown of the Starship upper stage halfway around the world, allowed SpaceX to avoid an anomaly investigation by the Federal Aviation Administration. Thus, the company was able to press ahead on a sixth test flight if it flew a similar profile. And that’s what SpaceX plans to do, albeit with some notable additions to the flight plan.

Around the edges … Perhaps the most significant change to the profile for Flight 6 will be an attempt to reignite a Raptor engine on Starship while it is in space. SpaceX tried to do this on a test flight in March but aborted the burn because the ship’s rolling motion exceeded limits. A successful demonstration of a Raptor engine relight could pave the way for SpaceX to launch Starship into a higher stable orbit around Earth on future test flights. This is required for SpaceX to begin using Starship to launch Starlink Internet satellites and perform in-orbit refueling experiments with two ships docked together. (submitted by EllPeaTea)

China’s version of Starship. China has updated the design of its next-generation heavy-lift rocket, the Long March 9, and it looks almost exactly like a clone of SpaceX’s Starship rocket, Ars reports. The Long March 9 started out as a conventional-looking expendable rocket, then morphed into a launcher with a reusable first stage. Now, the rocket will have a reusable booster and upper stage. The booster will have 30 methane-fueled engines, similar to the number of engines on SpaceX’s Super Heavy booster. The upper stage looks remarkably like Starship, with flaps in similar locations. China intends to fly this vehicle for the first time in 2033, nearly a decade from now.

A vehicle for the Moon … The reusable Long March 9 is intended to unlock robust lunar operations for China, similar to the way Starship, and to some extent Blue Origin’s Blue Moon lander, promises to support sustained astronaut stays on the Moon’s surface. China says it plans to land its astronauts on the Moon by 2030, initially using a more conventional architecture with an expendable rocket named the Long March 10, and a lander reminiscent of NASA’s Apollo lunar lander. These will allow Chinese astronauts to remain on the Moon for a matter of days. With Long March 9, China could deliver massive loads of cargo and life support resources to sustain astronauts for much longer stays.

Ta-ta to the tripod. The large three-legged vertical test stand at SpaceX’s engine test site in McGregor, Texas, is being decommissioned, NASA Spaceflight reports. Cranes have started removing propellant tanks from the test stand, nicknamed the tripod, towering above the Central Texas prairie. McGregor is home to SpaceX’s propulsion test team and has 16 test cells to support firings of Merlin, Raptor, and Draco engines multiple times per day for the Falcon 9 rocket, Starship, and Dragon spacecraft.

Some history … The tripod might have been one of SpaceX’s most important assets in the company’s early years. It was built by Beal Aerospace for liquid-fueled rocket engine tests in the late 1990s. Beal Aerospace folded, and SpaceX took over the site in 2003. After some modifications, SpaceX installed the first qualification version of its Falcon 9 rocket on the tripod for a series of nine-engine test-firings leading up to the rocket’s inaugural flight in 2010. SpaceX test-fired numerous new Falcon 9 boosters on the tripod before shipping them to launch sites in Florida or California. Most recently, the tripod was used for testing of Raptor engines destined to fly on Starship and the Super Heavy booster.

Next three launches

Nov. 9:  Long March 2C | Unknown Payload | Jiuquan Satellite Launch Center, China | 03: 40 UTC

Nov. 9: Falcon 9 | Starlink 9-10 | Vandenberg Space Force Base, California | 06: 14 UTC

Nov. 10:  Falcon 9 | Starlink 6-69 | Cape Canaveral Space Force Station, Florida | 21: 28 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Australia says yes to the launch; Russia delivers for Iran Read More »

spacex-launches-europe’s-hera-asteroid-mission-ahead-of-hurricane-milton

SpaceX launches Europe’s Hera asteroid mission ahead of Hurricane Milton


The launch of another important mission, NASA’s Europa Clipper, is on hold due to Hurricane Milton.

The European Space Agency’s Hera spacecraft flies away from the Falcon 9 rocket’s upper stage a little more than an hour after liftoff Monday. Credit: SpaceX

Two years ago, a NASA spacecraft smashed into a small asteroid millions of miles from Earth to test a technique that could one day prove useful to deflect an object off a collision course with Earth. The European Space Agency launched a follow-up mission Monday to go back to the crash site and see the damage done.

The nearly $400 million (363 million euro) Hera mission, named for the Greek goddess of marriage, will investigate the aftermath of a cosmic collision between NASA’s DART spacecraft and the skyscraper-size asteroid Dimorphos on September 26, 2022. NASA’s Double Asteroid Redirection Test mission was the first planetary defense experiment, and it worked, successfully nudging Dimorphos off its regular orbit around a larger companion asteroid named Didymos.

But NASA had to sacrifice the DART spacecraft in the deflection experiment. Its destruction meant there were no detailed images of the condition of the target asteroid after the impact. A small Italian CubeSat deployed by DART as it approached Dimorphos captured fuzzy long-range views of the collision, but Hera will perform a comprehensive survey when it arrives in late 2026.

“We are going to have a surprise to see what Dimorphos looks like, which is, first, scientifically exciting, but also important because if we want to validate the technique and validate the model that can reproduce the impact, we need to know the final outcome,” said Patrick Michel, principal investigator on the Hera mission from Côte d’Azur Observatory in Nice, France. “And we don’t have it. With Hera, it’s like a detective going back to the crime scene and telling us what really happened.”

Last ride before the storm

The Hera spacecraft, weighing in at 2,442 pounds (1,108 kilograms), lifted off on top of a SpaceX Falcon 9 rocket at 10: 52 am EDT (14: 52 UTC) Monday from Cape Canaveral Space Force Station, Florida.

Officials weren’t sure the weather conditions at Cape Canaveral would permit a launch Monday, with widespread rain showers and a blanket of cloud cover hanging over Florida’s Space Coast. But the conditions were just good enough to be acceptable for a rocket launch, and the Falcon 9 lit its nine kerosene-fueled engines to climb away from pad 40 after a smooth countdown.

SpaceX’s Falcon 9 rocket lifts off from Cape Canaveral Space Force Station, Florida, with ESA’s Hera mission.

Credit: SpaceX

SpaceX’s Falcon 9 rocket lifts off from Cape Canaveral Space Force Station, Florida, with ESA’s Hera mission. Credit: SpaceX

This was probably the final opportunity to launch Hera before the spaceport shutters in advance of Hurricane Milton, a dangerous Category 5 storm taking aim at the west coast of Florida. If the mission didn’t launch Monday, SpaceX was prepared to move the Falcon 9 rocket and the Hera spacecraft back inside a hangar for safekeeping until the storm passes.

Meanwhile, at NASA’s Kennedy Space Center a few miles away, SpaceX is securing a Falcon Heavy rocket with the Europa Clipper spacecraft to ride out Hurricane Milton inside a hangar at Launch Complex 39A. Europa Clipper is a $5.2 billion flagship mission to explore Jupiter’s most enigmatic icy moon, and it was supposed to launch Thursday, the same day Hurricane Milton will potentially move over Central Florida.

NASA announced Sunday that it is postponing Europa Clipper’s launch until after the storm.

“The safety of launch team personnel is our highest priority, and all precautions will be taken to protect the Europa Clipper spacecraft,” said Tim Dunn, senior launch director at NASA’s Launch Services Program. “Once we have the ‘all-clear’ followed by facility assessment and any recovery actions, we will determine the next launch opportunity for this NASA flagship mission.”

Europa Clipper must launch by November 6 in order to reach Jupiter and its moon Europa in 2030. ESA’s Hera mission had a similarly tight window to get off the ground in October and arrive at asteroids Didymos and Dimorphos in December 2026.

Returning to flight

The Falcon 9 did its job Monday, accelerating the Hera spacecraft to a blistering speed of 26,745 mph (43,042 km/hr) with successive burns by its first stage booster and upper stage engine. This was the highest-speed payload injection ever achieved by SpaceX.

SpaceX did not attempt to recover the Falcon 9’s reusable booster on Monday’s flight because Hera needed all of the rocket’s oomph to gain enough speed to escape the pull of Earth’s gravity.

“Good launch, good orbit, and good payload deploy,” wrote Kiko Dontchev, SpaceX’s vice president of launch, on X.

This was the first Falcon 9 launch in nine days—an unusually long gap between SpaceX missions—after the rocket’s upper stage misfired during a maneuver to steer itself out of orbit following an otherwise successful launch September 28 with a two-man crew heading for the International Space Station.

The upper stage engine apparently “over-burned,” and the rocket debris fell into the atmosphere short of its expected reentry corridor in the Pacific Ocean, sources said. The Federal Aviation Administration grounded the Falcon 9 rocket while SpaceX investigates the malfunction, but the FAA granted approval for SpaceX to launch the Hera mission because its trajectory would carry the rocket away from Earth, rather than back into the atmosphere for reentry.

“The FAA has determined that the absence of a second stage reentry for this mission adequately mitigates the primary risk to the public in the event of a reoccurrence of the mishap experienced with the Crew-9 mission,” the FAA said in a statement.

Members of the Hera team from ESA and its German prime contractor, OHB, pose with the spacecraft inside SpaceX’s payload processing facility in Florida.

Credit: SpaceX

Members of the Hera team from ESA and its German prime contractor, OHB, pose with the spacecraft inside SpaceX’s payload processing facility in Florida. Credit: SpaceX

This was the third time the FAA has grounded SpaceX’s Falcon 9 rocket fleet in less than three months, following another upper stage failure in July that caused the destruction of 20 Starlink Internet satellites and the crash-landing of a Falcon 9 booster on an offshore drone ship in August. Federal regulators are responsible for ensuring commercial rocket launches don’t endanger the public.

These were the first major anomalies on any Falcon 9 launch since 2021.

It’s not clear when the FAA will clear SpaceX to resume launching other Falcon 9 missions. However, the launch of the Europa Clipper mission on a Falcon Heavy rocket, which uses essentially the same upper stage as a Falcon 9, is not licensed by the FAA because it is managed by NASA, another government agency. NASA will have final authority on whether to give the green light for the launch of Europa Clipper.

Surveying the damage

ESA’s Hera spacecraft is on course for a flyby of Mars next March to take advantage of the red planet’s gravity to slingshot itself on a trajectory to intercept its twin target asteroids. Near Mars, Hera will zoom relatively close to the planet’s asteroid-like moon, Deimos, to obtain rare closeups.

Then, Hera will approach Didymos and Dimorphos a little more than two years from now, maneuvering around the binary asteroid system at a range of distances, eventually moving as close as about a half-mile (1 kilometer) away.

Italy’s LICIACube spacecraft snapped this image of asteroids Didymos (lower left) and Dimorphos (upper right) a few minutes after the impact of DART on September 26, 2022.

Credit: ASI/NASA

Italy’s LICIACube spacecraft snapped this image of asteroids Didymos (lower left) and Dimorphos (upper right) a few minutes after the impact of DART on September 26, 2022. Credit: ASI/NASA

Dimorphos orbits Didymos once every 11 hours and 23 minutes, roughly 32 minutes shorter than the orbital period before DART’s impact in 2022. This change in orbit proved the effectiveness of a kinetic impactor in deflecting an asteroid that threatens Earth.

Dimorphos, the smaller of the two asteroids, has a diameter of around 500 feet (150 meters), while Didymos measures approximately a half-mile (780 meters) wide. Neither asteroid poses a risk to Earth, so NASA chose them as the objective for DART.

The Hubble Space Telescope spotted a debris field trailing the binary asteroid system after DART’s impact. Astronomers identified at least 37 boulders drifting away from the asteroids, material ejected when the DART spacecraft slammed into Dimorphos at a velocity of 14,000 mph (22,500 kmh).

Scientists will use Hera, with its suite of cameras and instruments, to study how the strike by DART changed the asteroid Dimorphos. Did the impact leave a crater, or did it reshape the entire asteroid? There are “tentative hints” that the asteroid’s shape changed after the collision, according to Michael Kueppers, Hera’s project scientist at ESA.

“If this is the case, it would also mean that the cohesion of Dimorphos is extremely low; that indeed, even an object the size of Dimorphos would be held together by its weight, by its gravity, and not by cohesion,” Kueppers said. “So it really would be a rubble pile.”

Hera will also measure the mass of Dimorphos, something DART was unable to do. “That is important to measure the efficiency of the impact… which was the momentum that was transferred from the impacting satellite to the asteroid,” Kueppers said.

This NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos was taken on December 19, 2022, nearly three months after the asteroid was impacted by NASA’s DART mission. Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision.

Credit: NASA, ESA, D. Jewitt (UCLA)

This NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos was taken on December 19, 2022, nearly three months after the asteroid was impacted by NASA’s DART mission. Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision. Credit: NASA, ESA, D. Jewitt (UCLA)

The central goal of Hera is to fill the gaps in knowledge about Didymos and Dimorphos. Precise measurements of DART’s momentum, coupled with a better understanding of the interior structure of the asteroids, will allow future mission planners to know how best to deflect a hazardous object threatening Earth.

“The third part is to generally investigate the two asteroids to know their physical properties, their interior properties, their strength, essentially to be able to extrapolate or to scale the outcome of DART to another impact should we really need it one day,” Kueppers said.

Hera will release two briefcase-size CubeSats, named Juventas and Milani, to work in concert with ESA’s mothership. Juventas carries a compact radar to probe the internal structure of the smaller asteroid and will eventually attempt a landing on Dimorphos. Milani will study the mineral composition of individual boulders around DART’s impact site.

“This is the first time that we send a spacecraft to a small body, which is actually a multi-satellite system, with one main spacecraft and two CubeSats doing closer proximity operations,” Michel said. “This has never been done.”

Artist’s illustration of the Hera spacecraft with its two deployable CubeSats, Juventas and Milani, in the vicinity of the Didymos binary asteroid system. The CubeSats will communicate with ground teams via radio links with the Hera mothership.

Credit: ESA-Science Office

Artist’s illustration of the Hera spacecraft with its two deployable CubeSats, Juventas and Milani, in the vicinity of the Didymos binary asteroid system. The CubeSats will communicate with ground teams via radio links with the Hera mothership. Credit: ESA-Science Office

One source of uncertainty, and perhaps worry, about the environment around Didymos and Dimorphos is the status of the debris field observed by Hubble a few months after DART’s impact. But this is not likely to be a problem, according to Kueppers.

“I’m not really worried about potential boulders at Didymos,” he said, recalling the relative ease with which ESA’s Rosetta spacecraft navigated around an active comet from 2014 through 2016.

Ignacio Tanco, ESA’s flight director for Hera, doesn’t share Kuepper’s optimism.

“We didn’t hit the comet with a hammer,” said Tanco, who is responsible for keeping the Hera spacecraft safe. “The debris question for me is actually a source of… I wouldn’t say concern, but certainly precaution. It’s something that we’ll need to approach carefully once we get there.”

“That’s the difference between an engineer and a scientist,” Kuepper joked.

Scientists originally wanted Hera to be in the vicinity of the Didymos binary asteroid system before DART’s arrival, allowing it to directly observe the impact and its fallout. But ESA’s member states did not approve funding for the Hera mission in time, and the space agency only signed the contract to build the Hera spacecraft in 2020.

ESA first studied a mission like DART and Hera more than 20 years ago, when scientists proposed a mission called Don Quijote to get an asteroid deflection. But other missions took priority in Europe’s space program. Now, Hera is on course to write the final chapter of the story of humanity’s first planetary defense test.

“This is our contribution of ESA to humanity to help us in the future protect our planet,” said Josef Aschbacher, ESA’s director general.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX launches Europe’s Hera asteroid mission ahead of Hurricane Milton Read More »

rocket-report:-falcon-9-is-back;-starship-could-be-recovered-off-australia

Rocket Report: Falcon 9 is back; Starship could be recovered off Australia

Starship down under —

Elon Musk doesn’t expect the next Starship test flight to occur before late August.

Welcome to Edition 7.05 of the Rocket Report! The Federal Aviation Administration grounded SpaceX’s Falcon 9 rocket for 15 days after a rare failure of its upper stage earlier this month. The FAA gave the green light for Falcon 9 to return to flight July 25, and within a couple of days, SpaceX successfully launched three missions from three launch pads. There’s a lot on Falcon 9’s to-do list, so we expect SpaceX to quickly return to form with several flights per week.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Big delay for a reusable rocket testbed. The French space agency, CNES, has revealed that the inaugural test flight of its Callisto reusable rocket demonstrator will not take place until late 2025 or early 2026, European Spaceflight reports. CNES unveiled an updated website for the Callisto rocket program earlier this month, showing the test rocket has been delayed from a debut launch later this year to until late 2025 or early 2026. The Callisto rocket is designed to test techniques and technologies required for reusable rockets, such as vertical takeoff and vertical landing, with suborbital flights from the Guiana Space Center in South America.

Cooperative action … Callisto, which stands for Cooperative Action Leading to Launcher Innovation in Stage Toss-back Operations, is a joint project between CNES, German space agency DLR, and JAXA, the Japanese space agency. It will stand 14 meters (46 feet) tall and weigh about 4 metric tons (8,800 pounds), with an engine supplied by Japan. Callisto is one of several test projects in Europe aiming to pave the way for a future reusable rocket. (submitted by EllPeaTea and Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Small step for Themis. Another European project established to demonstrate reusable rocket tech is making slow progress toward a first flight. The Themis project, funded by the European Space Agency, is similar in purpose to the Callisto testbed discussed above. This week, the German aerospace manufacturing company MT Aerospace announced it has begun testing a demonstrator of the landing legs that will be used aboard the Themis reusable booster, European Spaceflight reports. The landing legs for Themis are made of carbon fiber-reinforced plastic composites, and the initial test demonstrated good deployment and showed it would withstand the impact energy of landing.

Also delayed … Like Callisto, Themis is facing delays in getting to the launch pad. ArianeGroup, the ESA-selected Themis prime contractor, had been expected to conduct an initial hop test of the demonstrator before the end of 2024. However, officials have announced the initial hop tests won’t happen until sometime next year. The Themis booster is intended to eventually become the first stage booster for an orbital-class partially reusable rocket being developed by MaiaSpace, a subsidiary of ArianeGroup. (submitted by Ken the Bin)

Falcon 9 is flying again. A SpaceX Falcon 9 rocket returned to flight on July 27, barely two weeks after an upper stage failure ended a streak of more than 300 consecutive successful launches, Ars reports. By some measures this was an extremely routine mission—it was, after all, SpaceX’s 73rd launch of this calendar year. And like many other Falcon 9 launches this year, the “Starlink 10-9” mission carried 23 of the broadband Internet satellites into orbit. However, after a rare failure earlier this month, this particular Falcon 9 rocket was making a return-to-flight for the company and attempting to get the world’s most active booster back into service.

Best part is no part … The Falcon 9 successfully deployed its payload of Starlink satellites about an hour after lifting off from NASA’s Kennedy Space Center in Florida. Later in the weekend, SpaceX launched two more Starlink missions on Falcon 9 rockets from Florida and California, notching three flights in less than 28 hours. The launch failure on the previous Falcon 9 launch was caused by a liquid oxygen leak on the upper stage, which led to a “hard start” on the upper stage engine when it attempted to reignite in flight. Engineers and technicians were quickly able to pinpoint the cause of the leak, a crack in a “sense line” for a pressure sensor attached to the vehicle’s liquid oxygen system.

Atlas V’s NSSL era is over. United Launch Alliance delivered a classified US military payload to orbit Tuesday for the last time with an Atlas V rocket, ending the Pentagon’s use of Russian rocket engines as national security missions transition to all-American launchers, Ars reports. This was the 101st launch of an Atlas V rocket since its debut in 2002, and the 58th and final Atlas V mission with a US national security payload since 2007. The Atlas V is powered by an RD-180 main engine made in Russia, and with a little prodding from SpaceX (via a lawsuit) and Congress, the Pentagon started making moves to end its reliance on the RD-180 a decade ago.

Other options available … The RD-180 never failed on a National Security Space Launch (NSSL) mission using the Atlas V rocket, but its use became politically untenable after Russia’s annexation of Crimea in 2014, which predated Russia’s full-scale invasion of Ukraine eight years later. SpaceX began launching US military missions in 2018, and ULA debuted its new Vulcan rocket in January. Assuming a successful second test flight of Vulcan in September, ULA’s next-generation rocket has a good shot at launching its first national security mission by the end of the year. The Space Force’s policy is to maintain at least two independent launch vehicles capable of flying military payloads into orbit. Vulcan and SpaceX’s Falcon rocket family fulfill that requirement, so the military no longer needs the Atlas V. However, 15 more Atlas V rockets remain in ULA’s inventory for future commercial flights.

Crackdown at the Cape. While this week’s landmark launch of the Atlas V rocket is worthy of celebration, there’s a new ULA policy that deserves ridicule, Ars reports. Many of the spectacular photos of rocket launches shared on social media come from independent photographers, who often make little to no money working for an established media organization. Instead, they rely on sales of prints to recoup at least some of their expenses for gas, food, and camera equipment needed to capture these images, which often serve as free publicity for launch providers like ULA. Last month, ULA announced it will no longer permit these photographers to set up remote cameras at their launch pads if they sell their images independently. This new policy was in place for the Atlas V launch from Cape Canaveral, Florida, on Tuesday morning.

But why? … “ULA will periodically confirm editorial publication for media participating in remote camera placement,” ULA stated in an email distributed to photographers last month. “If publication does not occur, or photos are sold outside of editorial purposes, privileges to place remote cameras may be revoked.” To the photographers who spend many hours preparing their equipment, waiting to set up and remove cameras, and persevering through scrubs and more, it seemed like a harsh judgment. And nobody knows why it happened. ULA has offered no public comment about the new policy, and the company did not respond to questions from Ars about the agreement.

Astroscale achieves a first in orbit. There are more than 2,000 mostly intact dead rockets circling the Earth, but until this year, no one ever launched a satellite to go see what one looked like after many years of tumbling around the planet, Ars reports. A Japanese company named Astroscale launched a small satellite in February to chase down the derelict upper stage from a Japanese H-IIA rocket. Astroscale’s ADRAS-J spacecraft arrived near the H-IIA upper stage in April, and the company announced this week that its satellite has now completed two 360-degree fly-arounds of the rocket. This is the first time a satellite has maneuvered around an actual piece of space junk, and it offers an unprecedented snapshot of how an abandoned rocket holds up to 15 years in the harsh environment of space.

Prepping for the future … Astroscale’s ADRAS-J mission is partially funded by the Japan Aerospace Exploration Agency (JAXA). Astroscale and JAXA also have a contract for a follow-up mission named ADRAS-J2, which will attempt to link up with the same H-IIA rocket and steer it on a trajectory to burn up in Earth’s atmosphere. This would be the first demonstration of active debris removal, a concept pursued by Astroscale and other companies to help clear space junk out of low-Earth orbit.

An update on Ariane 6. The European Space Agency has released its first update on the results from the first flight of the Ariane 6 rocket since its launch July 9. Europe’s new flagship rocket had a mostly successful inaugural test flight. Its first stage, solid rocket boosters, and upper stage performed as expected for the first phase of the flight, delivering eight small satellites into an on-target orbit. The launch pad at the Guiana Space Center in South America also held up to the violent environment of launch, ESA said.

Still investigating … However, the final phase of the mission didn’t go according to plan. The upper stage’s Vinci engine was supposed to reignite for a third time on the test flight to deorbit the rocket, which would have released two small reentry capsules on technology demonstration missions to test heat shield technologies. This didn’t happen. An Auxiliary Propulsion Unit, which is a small engine to provide additional bursts of thrust and pressurize the upper stage’s propellant tanks, shut down shortly after startup ahead of the third burn of the primary Vinci engine. “This meant the Vinci engine’s third boost could not take place,” ESA said. “Analysis of the APU’s behavior is ongoing and further information will be made available as soon as possible, while the next task force update is expected in September.” (submitted by Ken the Bin)

Room to grow at Starbase. SpaceX has since launched Starship four times from its launch site in South Texas, known as Starbase, and is planning a fifth launch within the next two months, Ars reports. However, as it continues to test Starship and make plans for regular flights, SpaceX will need a higher flight rate. This is especially true as the company is unlikely to activate additional launch pads for Starship in Florida until at least 2026. To that end, SpaceX has asked the FAA for permission for up to 25 flights a year from South Texas, as well as the capability to land both the Starship upper stage and Super Heavy booster stage back at the launch site.

The answer is probably yes … On Monday, the FAA signaled that it is inclined to grant this request. The agency released a draft assessment indicating that its extensive 2022 analysis of Starship launch activities on the environment, wildlife, local communities, and more was sufficient to account for SpaceX’s proposal for more launches. There is more to do for this conclusion to become official, including public meetings and a public comment period this month.

SpaceX eyes Australia. SpaceX is in talks with US and Australian officials to land and recover one of its Starship rockets off Australia’s coast, a possible first step toward a bigger presence for Elon Musk’s company in the region as the two countries bolster security ties, Reuters reports. At the end of SpaceX’s fourth Starship test flight in June, the rocket made a controlled splashdown in the Indian Ocean hundreds of miles off the northwest coast of Australia. The discussions now underway are focused on the possibility of towing a future Starship vehicle from its splashdown point in the ocean to a port in Australia, where SpaceX engineers could inspect it and learn more about how it performed.

Eventually, it’ll come back to land … On the next Starship flight, currently planned for no earlier than late August, SpaceX plans to attempt to recover Starship’s giant Super Heavy booster using catch arms on the launch pad tower in Texas. On Sunday, Elon Musk told SpaceX and Tesla enthusiasts at an event called the “X Takeover” that it will take a few more flights for engineers to get comfortable returning the Starship itself to a landing onshore. “We want to be really confident that the ship heat shield is super robust and lands at the exact right location,” he said. “So before we try to bring the ship back to the launch site, we probably want to have at least three successful landings of the ship [at sea].” (submitted by Ken the Bin)

Next three launches

August 2: Electron | “Owl for One, One for Owl” | Mahia Peninsula, New Zealand | 16: 39 UTC

August 3: Falcon 9 | NG-21 | Cape Canaveral Space Force Station, Florida | 15: 28 UTC

August 4: Falcon 9 | Starlink 11-1 | Vandenberg Space Force Base, California | 07: 00 UTC

Listing image by SpaceX

Rocket Report: Falcon 9 is back; Starship could be recovered off Australia Read More »

armada-to-apophis—scientists-recycle-old-ideas-for-rare-asteroid-encounter

Armada to Apophis—scientists recycle old ideas for rare asteroid encounter

Tick-tock —

“It will miss the Earth. It will miss the Earth. It will miss the Earth.”

This artist's concept shows the possible appearance of ESA's RAMSES spacecraft, which will release two small CubeSats for additional observations at Apophis.

Enlarge / This artist’s concept shows the possible appearance of ESA’s RAMSES spacecraft, which will release two small CubeSats for additional observations at Apophis.

For nearly 20 years, scientists have known an asteroid named Apophis will pass unusually close to Earth on Friday, April 13, 2029. But most officials at the world’s space agencies stopped paying much attention when updated measurements ruled out the chance Apophis will impact Earth anytime soon.

Now, Apophis is again on the agenda, but this time as a science opportunity, not as a threat. The problem is there’s not much time to design, build and launch a spacecraft to get into position near Apophis in less than five years. The good news is there are designs, and in some cases, existing spacecraft, that governments can repurpose for missions to Apophis, a rocky asteroid about the size of three football fields.

Scientists discovered Apophis in 2004, and the first measurements of its orbit indicated there was a small chance it could strike Earth in 2029 or in 2036. Using more detailed radar observations of Apophis, scientists in 2021 ruled out any danger to Earth for at least the next 100 years.

“The three most important things about Apophis are: It will miss the Earth. It will miss the Earth. It will miss the Earth,” said Richard Binzel, a professor of planetary science at MIT. Binzel has co-chaired several conferences since 2020 aimed at drumming up support for space missions to take advantage of the Apophis opportunity in 2029.

“An asteroid this large comes this close only once per 1,000 years, or less frequently,” Binzel told Ars. “This is an experiment that nature is doing for us, bringing a large asteroid this close, such that Earth’s gravitational forces and tidal forces are going to tug and possibly shake this asteroid. The asteroid’s response is insightful to its interior.”

It’s important, Binzel argues, to get a glimpse of Apophis before and after its closest approach in 2029, when it will pass less than 20,000 miles (32,000 kilometers) from Earth’s surface, closer than the orbits of geostationary satellites.

“This is a natural experiment that will reveal how hazardous asteroids are put together, and there is no other way to get this information without vastly complicated spacecraft experiments,” Binzel said. “So this is a once-per-many-thousands-of-years experiment that nature is doing for us. We have to figure out how to watch.”

This week, the European Space Agency announced preliminary approval for a mission named RAMSES, which would launch in April 2028, a year ahead of the Apophis flyby, to rendezvous with the asteroid in early 2029. If ESA member states grant full approval for development next year, the RAMSES spacecraft will accompany Apophis throughout its flyby with Earth, collecting imagery and other scientific measurements before, during, and after closest approach.

The challenge of building and launching RAMSES in less than four years will serve as good practice for a potential future real-world scenario. If astronomers find an asteroid that’s really on a collision course with Earth, it might be necessary to respond quickly. Given enough time, space agencies could mount a reconnaissance mission, and if necessary, a mission to deflect or redirect the asteroid, likely using a technique similar to the one demonstrated by NASA’s DART mission in 2022.

“RAMSES will demonstrate that humankind can deploy a reconnaissance mission to rendezvous with an incoming asteroid in just a few years,” said Richard Moissl, head of ESA’s planetary defense office. “This type of mission is a cornerstone of humankind’s response to a hazardous asteroid. A reconnaissance mission would be launched first to analyze the incoming asteroid’s orbit and structure. The results would be used to determine how best to redirect the asteroid or to rule out non-impacts before an expensive deflector mission is developed.”

Shaking off the cobwebs

In order to make a 2028 launch feasible for RAMSES, ESA will reuse the design of a roughly half-ton spacecraft named Hera, which is scheduled for launch in October on a mission to survey the binary asteroid system targeted by the DART impact experiment in 2022. Copying the design of Hera will reduce the time needed to get RAMSES to the launch pad, ESA officials said.

“Hera demonstrated how ESA and European industry can meet strict deadlines and RAMSES will follow its example,” said Paolo Martino, who leads ESA’s development of Ramses, which stands for the Rapid Apophis Mission for Space Safety.

ESA’s space safety board recently authorized preparatory work on the RAMSES mission using funds already in the agency’s budget. OHB, the German spacecraft manufacturer that is building Hera, will also lead the industrial team working on RAMSES. The cost of RAMSES will be “significantly lower” than the 300-million-euro ($380 million) cost of the Hera mission, Martino wrote in an email to Ars.

“There is still so much we have yet to learn about asteroids but, until now, we have had to travel deep into the Solar System to study them and perform experiments ourselves to interact with their surface,” said Patrick Michel, a planetary scientist at the French National Center for Scientific Research, and principal investigator on the Hera mission.

“For the first time ever, nature is bringing one to us and conducting the experiment itself,” Michel said in a press release. “All we need to do is watch as Apophis is stretched and squeezed by strong tidal forces that may trigger landslides and other disturbances and reveal new material from beneath the surface.”

Assuming it gets the final go-ahead next year, RAMSES will join NASA’s OSIRIS-APEX mission in exploring Apophis. NASA is steering the spacecraft, already in space after its use on the OSIRIS-REx asteroid sample return mission, toward a rendezvous with Apophis in 2029, but it won’t arrive at its new target until a few weeks after its close flyby of Earth. The intricacies of orbital mechanics prevent a rendezvous with Apophis any earlier.

Observations from OSIRIS-APEX, a larger spacecraft than RAMSES with a sophisticated suite of instruments, “will deliver a detailed look of what Apophis is like after the Earth encounter,” Binzel said. “But until we establish the state of Apophis before the Earth encounter, we have only one side of the picture.”

At its closest approach, asteroid Apophis will closer to Earth than the ring of geostationary satellites over the equator.

Enlarge / At its closest approach, asteroid Apophis will closer to Earth than the ring of geostationary satellites over the equator.

Scientists are also urging NASA to consider launching a pair of mothballed science probes on a trajectory to fly by Apophis some time before its April 2029 encounter with Earth. These two spacecraft were built for NASA’s Janus mission, which the agency canceled last year after the mission fell victim to launch delays with NASA’s larger Psyche asteroid explorer. The Janus probes were supposed to launch on the same rocket as Psyche, but problems with the Psyche mission forced a delay in the launch of more than one year.

Despite the delay, Psyche could still reach its destination in the asteroid belt, but the new launch trajectory meant Janus would be unable to visit the two binary asteroids scientists originally wanted to explore with the probes. After spending nearly $50 million on the mission, NASA put the twin Janus spacecraft, each about the size of a suitcase, into long-term storage.

At the most recent workshop on Apophis missions in April, scientists heard presentations on more than 20 concepts for spacecraft and instrument measurements at Apophis.

They included an idea from Blue Origin, Jeff Bezos’s space company, to use its Blue Ring space tug as a host platform for multiple instruments and landers that could descend to the surface of Apophis, assuming research institutions have enough time and money to develop their payloads. A startup named Exploration Laboratories has proposed partnering with NASA’s Jet Propulsion Laboratory on a small spacecraft mission to Apophis.

“At the conclusion of the workshop, it was my job to try to bring forward some consensus, because if we don’t have some consensus on our top priority, we may end up with nothing,” Binzel said. “The consensus recommendation for ESA was to more forward with RAMSES.”

Workshop participants also gently nudged NASA to use the Janus probes for a mission to Apophis. “Apophis is a mission in search of a spacecraft, and Janus is a spacecraft in search of a mission,” Binzel said. “As a matter of efficiency and basic logic, Janus to Apophis is the highest priority.”

A matter of money

But NASA’s science budget, and especially funding for its planetary science vision, is under stress. Earlier this week, NASA canceled an already-built lunar rover named VIPER after spending $450 million on the mission. The mission had exceeded its original development cost by greater than 30 percent, prompting an automatic cancellation review.

The funding level for NASA’s science mission directorate this year is nearly $500 million less than last year’s budget, and $900 million below the White House’s budget request for fiscal year 2024. Because of the tight budget, NASA officials have said, for now, they are not starting development of any new planetary science missions as they focus on finishing projects already in the pipeline, like the Europa Clipper mission, the Dragonfly quadcopter to visit Saturn’s moon Titan, and the Near-Earth Object (NEO) Surveyor telescope to search for potentially hazardous asteroids.

These grainy radar views of asteroid Apophis were captured using radars at NASA's Goldstone Deep Space Communications Complex in California and Green Bank Telescope in West Virginia.

Enlarge / These grainy radar views of asteroid Apophis were captured using radars at NASA’s Goldstone Deep Space Communications Complex in California and Green Bank Telescope in West Virginia.

NASA has asked the Janus team to look at the feasibility of launching on the same rocket as NEO Surveyor in 2027, according to Dan Scheeres, the Janus principal investigator at the University of Colorado. With such a launch in 2027, Janus could capture the first up-close images of Apophis before RAMSES and OSIRIS-APEX get there.

“This is something that we’re currently presenting in some discussions with NASA, just to make sure that they understand what the possibilities are there,” Scheeres said in a meeting last week of the Small Bodies Advisory Group, which represents the asteroid science community.

“These spacecraft are capable of performing future scientific flyby missions to near-Earth asteroids,” Scheeres said. “Each spacecraft has a high-quality Malin visible imager and a thermal infrared imager. Each spacecraft has the ability to track and image an asteroid system through a close, fast flyby.”

“The scientific return from an Apophis flyby by Janus could be one of the best opportunities out there,” said Daniella DellaGiustina, lead scientist on the OSIRIS-APEX mission from the University of Arizona.

Binzel, who has led the charge for Apophis missions, said there is also some symbolic value to having a spacecraft escort the asteroid by Earth. Apophis will be visible in the skies over Europe and Africa when it is closest to our planet.

“When 2 billion people are watching this, they are going to ask, ‘What are our space agencies doing?’ And if the answer is, ‘Oh, we’ll be there. We’re getting there,’ which is OSIRIS-APEX, I don’t think that’s a very satisfying answer,” Binzel said.

“As the international space community, we want to demonstrate on April 13, 2029, that we are there and we are watching, and we are watching because we want to gain the most knowledge and the most understanding about these objects that is possible, because someday it could matter,” Binzel said. “Someday, our detailed knowledge of hazardous asteroids would be among the most important knowledge bases for the future of humanity.”

Armada to Apophis—scientists recycle old ideas for rare asteroid encounter Read More »

rocket-report:-china-flies-reusable-rocket-hopper;-falcon-heavy-dazzles

Rocket Report: China flies reusable rocket hopper; Falcon Heavy dazzles

SpaceX's 10th Falcon Heavy rocket climbs into orbit with a new US government weather satellite.

Enlarge / SpaceX’s 10th Falcon Heavy rocket climbs into orbit with a new US government weather satellite.

Welcome to Edition 6.50 of the Rocket Report! SpaceX launched its 10th Falcon Heavy rocket this week with the GOES-U weather satellite for NOAA, and this one was a beauty. The late afternoon timing of the launch and atmospheric conditions made for great photography. Falcon Heavy has become a trusted rocket for the US government, and its next flight in October will deploy NASA’s Europa Clipper spacecraft on the way to explore one of Jupiter’s enigmatic icy moons.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Sir Peter Beck dishes on launch business. Ars spoke with the recently knighted Peter Beck, founder and CEO of Rocket Lab, on where his scrappy company fits in a global launch marketplace dominated by SpaceX. Rocket Lab racked up the third-most number of orbital launches by any US launch company (it’s headquartered in California but primarily assembles and launches rockets in New Zealand). SpaceX’s rideshare launch business with the Falcon 9 rocket is putting immense pressure on small launch companies like Rocket Lab. However, Beck argues his Electron rocket is a bespoke solution for customers desiring to put their satellite in a specific place at a specific time, a luxury they can’t count on with a SpaceX rideshare.

Ruthlessly efficient … A word that Beck returned to throughout his interview with Ars was “ruthless.” He said Rocket Lab’s success is a result of the company being “ruthlessly efficient and not making mistakes.” At one time, Rocket Lab was up against Virgin Orbit in the small launch business, and Virgin Orbit had access to capital through billionaire Richard Branson. Now, SpaceX is the 800-pound gorilla in the market. “We have a saying here at Rocket Lab that we have no money, so we have to think. We’ve never been in a position to outspend our competitors. We just have to out-think them. We have to be lean and mean.”

Firefly reveals plans for new launch sites. Firefly Aerospace plans to use the state of Virginia-owned launch pad at NASA’s Wallops Flight Facility for East Coast launches of its Alpha small-satellite rocket, Aviation Week reports. The company plans to use Pad 0A for US military and other missions, particularly those requiring tight turnaround between procurement and launch. This is the same launch pad previously used by Northrop Grumman’s Antares rocket, and it’s the soon-to-be home of the Medium Launch Vehicle (MLV) jointly developed by Northrop and Firefly. The launch pad will be configured for Alpha launches beginning in 2025, according to Firefly, which previously planned to develop an Alpha launch pad at Cape Canaveral Space Force Station in Florida. Now, Alpha and MLV rockets will fly from the same site on the East Coast, while Alpha will continue launching from the West Coast at Vandenberg Space Force Base, California.

Hello, Sweden… A few days after the announcement for launches from Virginia, Firefly unveiled a collaborative agreement with Swedish Space Corporation to launch Alpha rockets from the Esrange Space Center in Sweden as soon as 2026. Esrange has been the departure point for numerous suborbital and sounding rocket for nearly 50 years, but the spaceport is being upgraded for orbital satellite launches. A South Korean startup named Perigee Aerospace announced in May it signed an agreement to be the first user of Esrange’s orbital launch capability. Firefly is the second company to make plans to launch satellites from the remote site in northern Sweden. (submitted by Ken the Bin and brianrhurley)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

China hops closer to reusable rockets. The Shanghai Academy of Spaceflight Technology (SAST), part of China’s apparatus of state-owned aerospace companies, has conducted the country’s highest altitude launch and landing test so far as several teams chase reusable rocket capabilities, Space News reports. A 3.8-meter-diameter (9.2-foot) test article powered by three methane liquid-oxygen engines lifted off from the Gobi Desert on June 23 and soared to an altitude of about 12 kilometers (7.5 miles) before setting down successfully for a vertical propulsive touchdown on landing legs at a nearby landing area. SAST will follow up with a 70-kilometer (43.5-mile) suborbital test using grid fins for better control. A first orbital flight of the new reusable rocket is planned for 2025.

Lots of players … If you don’t exclusively follow China’s launch sector, you should be forgiven for being unable to list all the companies working on new reusable rockets. Late last year, a Chinese startup named iSpace flew a hopper rocket testbed to an altitude of several hundred meters as part of a development program for the company’s upcoming partially reusable Hyperbola 2 rocket. A company named Space Pioneer plans to launch its medium-class Tianlong 3 rocket for the first time later this year. Tianlong 3 looks remarkably like SpaceX’s Falcon 9, and its first stage will eventually be made reusable. China recently test-fired engines for the government’s new Long March 10, a partially reusable rocket planned to become China’s next-generation crew launch vehicle. These are just a few of the reusable rocket programs in China. (submitted by Ken the Bin)

Spanish launch startup invests in Kourou. PLD Space says it is ready to start construction at a disused launch complex at the Guiana Space Center in Kourou, French Guiana. The Spanish launch startup announced this week a 10 million euro ($10.7 million) investment in the launch complex for its Miura 5 rocket, with preparations of the site set to begin “after the summer.” The launch pad was previously used by the French Diamant rocket in the 1970s and is located several miles away from the launch pads used by the European Ariane 6 and Vega rockets. PLD Space is on track to become the first fully commercial company to launch from the spaceport in South America.

Free access to space … Also this week, PLD Space announced a new program to offer space aboard the first two flights of its Miura 5 rocket for free, European Spaceflight reports. The two-stage Miura 5 rocket will be capable of delivering about a half-ton of payload mass into a Sun-synchronous orbit. PLD Space will offer free launch services aboard the first two Miura 5 flights, which are expected to take place in late 2025 and early 2026. The application process will close on July 30, and winning proposals will be announced on November 30. (submitted by Ken the Bin and EllPeaTea)

Rocket Report: China flies reusable rocket hopper; Falcon Heavy dazzles Read More »

rocket-report:-north-korean-rocket-explosion;-launch-over-chinese-skyline

Rocket Report: North Korean rocket explosion; launch over Chinese skyline

A sea-borne variant of the commercial Ceres 1 rocket lifts off near the coast of Rizhao, a city of 3 million in China's Shandong province.

Enlarge / A sea-borne variant of the commercial Ceres 1 rocket lifts off near the coast of Rizhao, a city of 3 million in China’s Shandong province.

Welcome to Edition 6.46 of the Rocket Report! It looks like we will be covering the crew test flight of Boeing’s Starliner spacecraft and the fourth test flight of SpaceX’s giant Starship rocket over the next week. All of this is happening as SpaceX keeps up its cadence of flying multiple Starlink missions per week. The real stars are the Ars copy editors helping make sure our stories don’t use the wrong names.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Another North Korean launch failure. North Korea’s latest attempt to launch a rocket with a military reconnaissance satellite ended in failure due to the midair explosion of the rocket during the first-stage flight this week, South Korea’s Yonhap News Agency reports. Video captured by the Japanese news organization NHK appears to show the North Korean rocket disappearing in a fireball shortly after liftoff Monday night from a launch pad on the country’s northwest coast. North Korean officials acknowledged the launch failure and said the rocket was carrying a small reconnaissance satellite named Malligyong-1-1.

Russia’s role? … Experts initially thought the pending North Korean launch, which was known ahead of time from international airspace warning notices, would use the same Chŏllima 1 rocket used on three flights last year. But North Korean statements following the launch Monday indicated the rocket used a new propulsion system burning a petroleum-based fuel, presumably kerosene, with liquid oxygen as the oxidizer. The Chŏllima 1 rocket design used a toxic mixture of hypergolic hydrazine and nitrogen tetroxide as propellants. If North Korea’s statement is true, this would be a notable leap in the country’s rocket technology and begs the question of whether Russia played a significant role in the launch. Last year, Russian President Vladimir Putin pledged more Russian support for North Korea’s rocket program in a meeting with North Korean leader Kim Jong Un. (submitted by Ken the Bin and Jay500001)

Rocket Lab deploys small NASA climate satellite. Rocket Lab is in the midst of back-to-back launches for NASA, carrying identical climate research satellites into different orbits to study heat loss to space in Earth’s polar regions. The Polar Radiant Energy in the Far-InfraRed Experiment (PREFIRE) satellites are each about the size of a shoebox, and NASA says data from PREFIRE will improve computer models that researchers use to predict how Earth’s ice, seas, and weather will change in a warming world. “The difference between the amount of heat Earth absorbs at the tropics and that radiated out from the Arctic and Antarctic is a key influence on the planet’s temperature, helping to drive dynamic systems of climate and weather,” NASA said in a statement.

Twice in a week… NASA selected Rocket Lab’s Electron launch vehicle to deliver the two PREFIRE satellites into orbit on two dedicated rides rather than launching at a lower cost on a rideshare mission. This is because scientists want the satellites flying at the proper alignment to ensure they fly over the poles several hours apart, providing the data needed to measure how the rate at which heat radiates from the polar regions changes over time. The first PREFIRE launch occurred on May 25, and the next one is slated for May 31. Both launches will take off from Rocket Lab’s base in New Zealand. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

A rocket launch comes to Rizhao. China has diversified its launch sector over the last decade to include new families of small satellite launchers and new spaceports. One of these relatively new small rockets, the solid-fueled Ceres 1, took off Wednesday from a floating launch pad positioned about 2 miles (3 km) off the coast of Rizhao, a city of roughly 3 million people in China’s Shandong province. The Ceres 1 rocket, developed by a quasi-commercial company called Galactic Energy, has previously flown from land-based launch pads and a sea-borne platform, but this mission originated from a location remarkably close to shore, with the skyline of a major metropolitan area as a backdrop.

Range safety … There’s no obvious orbital mechanics reason to position the rocket’s floating launch platform so near a major Chinese city, other than perhaps to gain a logistical advantage by launching close to port. The Ceres 1 rocket has a fairly good reliability record—11 successes in 12 flights—but for safety reasons, there’s no Western spaceport that would allow members of the public (not to mention a few million) to get so close to a rocket launch. For decades, Chinese rockets have routinely dropped rocket boosters containing toxic propellant on farms and villages downrange from the country’s inland spaceports.

Rocket Report: North Korean rocket explosion; launch over Chinese skyline Read More »

rocket-report:-starship-could-fly-again-in-may;-ariane-6-coming-together

Rocket Report: Starship could fly again in May; Ariane 6 coming together

Eating their lunch —

“I think we’re really going to focus on getting reentry right.”

Nine kerosene-fueled Rutherford engines power Rocket Lab's Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Enlarge / Nine kerosene-fueled Rutherford engines power Rocket Lab’s Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Welcome to Edition 6.36 of the Rocket Report! SpaceX wants to launch the next Starship test flight as soon as early May, the company’s president and chief operating officer said this week. The third Starship test flight last week went well enough that the Federal Aviation Administration—yes, the FAA, the target of many SpaceX fans’ frustrations—anticipates a simpler investigation and launch licensing process than SpaceX went through before its previous Starship flights. However, it looks like we’ll have to wait a little longer for Starship to start launching real satellites.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Starship could threaten small launch providers. Officials from several companies operating or developing small satellite launch vehicles are worried that SpaceX’s giant Starship rocket could have a big impact on their marketability, Space News reports. Starship’s ability to haul more than 100 metric tons of payload mass into low-Earth orbit will be attractive not just for customers with heavy satellites but also for those with smaller spacecraft. Aggregating numerous smallsats on Starship will mean lower prices than dedicated small satellite launch companies can offer and could encourage customers to build larger satellites with cheaper parts, further eroding business opportunities for small launch providers.

Well, yeah … SpaceX’s dedicated rideshare missions are already reshaping the small satellite launch market. The price per kilogram of payload on a Falcon 9 rocket launching a Transporter mission is less than the price per unit on a smaller rocket, like Rocket Lab’s Electron, Firefly’s Alpha, or Europe’s Vega. Companies operating only in the smallsat launch market tout the benefits of their services, often pointing to their ability to deliver payloads into bespoke orbits, rather than dropping off bunches of satellites into more standardized orbits. But the introduction of Orbital Transfer Vehicles for last-mile delivery services has made SpaceX’s Transporter missions, and potentially Starship rideshares, more attractive. “With Starship, OTVs can become the best option for smallsats,” said Marino Fragnito, senior vice president and head of the Vega business unit at Arianespace. If Starship is able to achieve the very low per-kilogram launch prices proposed for it, “then it will be difficult for small launch vehicles,” Fragnito said.

Rocket Lab launches again from Virginia. Rocket Lab’s fourth launch from Wallops Island, Virginia, and the company’s first there in nine months, took off early Thursday with a classified payload for the National Reconnaissance Office, the US government’s spy satellite agency, Space News reports. A two-stage Electron rocket placed the NRO’s payload into low-Earth orbit, and officials declared it a successful mission. The NRO did not disclose any details about the payload, but in a post-launch statement, the agency suggested the mission was conducting technology demonstrations of some kind. “The knowledge gained from this research will advance innovation and enable the development of critical new technology,” said Chris Scolose, director of the NRO.

A steady customer for Rocket Lab … The National Reconnaissance Office has become a regular customer of Rocket Lab. The NRO has historically launched larger spacecraft, such as massive bus-sized spy satellites, but like the Space Force, is beginning to launch larger numbers of small satellites. This mission, designated NROL-123 by the NRO, was the fifth and last mission under a Rapid Acquisition of a Small Rocket (RASR) contract between NRO and Rocket Lab, dating back to 2020. It was also Rocket Lab’s second launch in nine days, following an Electron flight last week from its primary base in New Zealand. Overall, it was the 46th launch of a light-class Electron rocket since it debuted in 2017. Rocket Lab is building a launch pad for its next-generation Neutron rocket at Wallops. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Night flight for Astrobotic’s Xodiac. The Xodiac rocket, a small terrestrial vertical takeoff and vertical landing technology testbed, made its first night flight, Astrobotic says in a statement. The liquid-fueled Xodiac is designed for vertical hops and can host prototype sensors and other payloads, particularly instruments in development to assist in precision landings on other worlds. This first tethered night flight of Xodiac in Mojave, California, was in preparation for upcoming flight testing with the NASA TechLeap Prize’s Nighttime Precision Landing Challenge. These flights will begin in April, allowing NASA to test the ability of sensors to map a landing field designed to simulate the Moon’s surface in near-total darkness.

Building on the legacy of Masten … Xodiac has completed more than 160 successful flights, dating back to the vehicle’s original owner, Masten Space Systems. Masten filed for bankruptcy in 2022, and the company was acquired by Astrobotic a couple of months later. Astrobotic’s primary business area is in developing and flying robotic Moon landers, so it has a keen interest in mastering automated landing and navigation technologies like those it is testing with NASA on Xodiac. David Masten, founder of Masten Space Systems, is now chief engineer for Astrobotic’s propulsion and test department. “The teams will demonstrate their systems over the LSPG (Lunar Surface Proving Ground) at night to simulate landing on the Moon during the lunar night or in shadowed craters.” (submitted by Ken the Bin)

Rocket Report: Starship could fly again in May; Ariane 6 coming together Read More »

“we-are-worried,”-says-european-rocket-chief-at-prospect-of-launch-competition

“We are worried,” says European rocket chief at prospect of launch competition

Emulating NASA —

On the continent, Ariane 6 may be the last launcher with a monopoly.

Artist's view of the configuration of Ariane 6 using four boosters on the ELA-4 launch pad together with its mobile gantry.

Enlarge / Artist’s view of the configuration of Ariane 6 using four boosters on the ELA-4 launch pad together with its mobile gantry.

ESA-D. Ducros

There is “no guarantee” France’s ArianeGroup will continue to be Europe’s rocket launch company of choice, according to the head of the European Space Agency, after ESA member states agreed to introduce more competition to the market.

Josef Aschbacher, the agency’s director-general, told the Financial Times that the decision at its space summit in Seville last November to open the European launcher market to competition was a “game-changer.”

The next generation of launch would be done “in a very different way,” he said, acknowledging that this would put pressure on ArianeGroup’s owners, Airbus and Safran. “If they have a very competitive launcher, then they are in the race. But there is no guarantee.”

Martin Sion, chief executive of ArianeGroup, which since 2017 has lost its dominance of the commercial launch market to Elon Musk’s SpaceX, said the company was ready for the challenge. “The rules are changing, we will adapt,” he said. “We are used to competition.”

However, Aschbacher’s comments, made in an interview late last year, are a clear warning to ArianeGroup, which has suffered serial delays on its latest launcher, Ariane 6, now expected to be four years late.

As a result of the delays, and problems with the smaller Vega-C, which is manufactured by Italy’s Avio, Europe has had to use SpaceX to send some of its most important satellites into orbit.

In November, France, Germany, and Italy agreed to inject new funds into the Ariane 6 program, but the rocket is not reusable and will still be more expensive than SpaceX’s workhorse Falcon 9 when it finally launches around the middle of the year.

Guillaume Faury, Airbus chief executive, said in a separate interview that competition posed a serious challenge to ArianeGroup. “As one of the two shareholders, we are worried, as Ariane is today the incumbent,” he said. “The way to take our share is to make sure Ariane 6 will be a success.”

He acknowledged that Europe needed to find a more “market-driven” way to compete with lower-cost providers such as SpaceX but suggested it should not give up on Ariane in favor of a range of competing programs. Fragmentation would be “a disaster,” he said.

If the “result [of competition] is a different way being united around a small number of programs, where states put their efforts together to compete against the real competitors, which are . . . mainly SpaceX and the Chinese to come, that is OK,” he told the FT. “But the jury is out. For the moment what we observe is further fragmentation.”

Yet the ESA is determined to shake up the European commercial space sector by emulating the approach of NASA. Over the past two decades, the US space agency has shifted from buying rockets from incumbents such as Boeing and Lockheed’s United Launch Alliance to booking flight services.

By giving contracts to disruptive newcomers such as SpaceX, NASA has ensured the success of Elon Musk’s rocket company, and the cost of launching into space has fallen significantly.

“Competition is certainly the solution. It is a way of reducing cost and this is what we are planning to do in the next generation,” Aschbacher said. ESA has also challenged the private sector to develop a cargo vehicle that might eventually carry crew to the International Space Station by 2028, reducing its reliance on US providers.

Germany in particular is keen on more competition in the launcher market, as the home of some of Europe’s most advanced rocket start-ups such as Isar Aerospace and Rocket Factory Augsburg.

Although ArianeGroup was currently Europe’s only producer of heavy lift rockets, it was possible that new rivals could upset its monopoly for the generation after Ariane 6, said Caleb Henry, director of research at consultancy Quilty Space.

SpaceX “had a smaller rocket and reached space. That was enough to get . . . a significant chunk of the Department of Defense market,” he said. “So it is not at all a stretch to say someone developing a smaller rocket today could be making an Ariane-sized rocket tomorrow.”

© 2024 The Financial Times Ltd. All rights reserved. Not to be redistributed, copied, or modified in any way.

“We are worried,” says European rocket chief at prospect of launch competition Read More »