Commercial space

spacex-launches-europe’s-hera-asteroid-mission-ahead-of-hurricane-milton

SpaceX launches Europe’s Hera asteroid mission ahead of Hurricane Milton


The launch of another important mission, NASA’s Europa Clipper, is on hold due to Hurricane Milton.

The European Space Agency’s Hera spacecraft flies away from the Falcon 9 rocket’s upper stage a little more than an hour after liftoff Monday. Credit: SpaceX

Two years ago, a NASA spacecraft smashed into a small asteroid millions of miles from Earth to test a technique that could one day prove useful to deflect an object off a collision course with Earth. The European Space Agency launched a follow-up mission Monday to go back to the crash site and see the damage done.

The nearly $400 million (363 million euro) Hera mission, named for the Greek goddess of marriage, will investigate the aftermath of a cosmic collision between NASA’s DART spacecraft and the skyscraper-size asteroid Dimorphos on September 26, 2022. NASA’s Double Asteroid Redirection Test mission was the first planetary defense experiment, and it worked, successfully nudging Dimorphos off its regular orbit around a larger companion asteroid named Didymos.

But NASA had to sacrifice the DART spacecraft in the deflection experiment. Its destruction meant there were no detailed images of the condition of the target asteroid after the impact. A small Italian CubeSat deployed by DART as it approached Dimorphos captured fuzzy long-range views of the collision, but Hera will perform a comprehensive survey when it arrives in late 2026.

“We are going to have a surprise to see what Dimorphos looks like, which is, first, scientifically exciting, but also important because if we want to validate the technique and validate the model that can reproduce the impact, we need to know the final outcome,” said Patrick Michel, principal investigator on the Hera mission from Côte d’Azur Observatory in Nice, France. “And we don’t have it. With Hera, it’s like a detective going back to the crime scene and telling us what really happened.”

Last ride before the storm

The Hera spacecraft, weighing in at 2,442 pounds (1,108 kilograms), lifted off on top of a SpaceX Falcon 9 rocket at 10: 52 am EDT (14: 52 UTC) Monday from Cape Canaveral Space Force Station, Florida.

Officials weren’t sure the weather conditions at Cape Canaveral would permit a launch Monday, with widespread rain showers and a blanket of cloud cover hanging over Florida’s Space Coast. But the conditions were just good enough to be acceptable for a rocket launch, and the Falcon 9 lit its nine kerosene-fueled engines to climb away from pad 40 after a smooth countdown.

SpaceX’s Falcon 9 rocket lifts off from Cape Canaveral Space Force Station, Florida, with ESA’s Hera mission.

Credit: SpaceX

SpaceX’s Falcon 9 rocket lifts off from Cape Canaveral Space Force Station, Florida, with ESA’s Hera mission. Credit: SpaceX

This was probably the final opportunity to launch Hera before the spaceport shutters in advance of Hurricane Milton, a dangerous Category 5 storm taking aim at the west coast of Florida. If the mission didn’t launch Monday, SpaceX was prepared to move the Falcon 9 rocket and the Hera spacecraft back inside a hangar for safekeeping until the storm passes.

Meanwhile, at NASA’s Kennedy Space Center a few miles away, SpaceX is securing a Falcon Heavy rocket with the Europa Clipper spacecraft to ride out Hurricane Milton inside a hangar at Launch Complex 39A. Europa Clipper is a $5.2 billion flagship mission to explore Jupiter’s most enigmatic icy moon, and it was supposed to launch Thursday, the same day Hurricane Milton will potentially move over Central Florida.

NASA announced Sunday that it is postponing Europa Clipper’s launch until after the storm.

“The safety of launch team personnel is our highest priority, and all precautions will be taken to protect the Europa Clipper spacecraft,” said Tim Dunn, senior launch director at NASA’s Launch Services Program. “Once we have the ‘all-clear’ followed by facility assessment and any recovery actions, we will determine the next launch opportunity for this NASA flagship mission.”

Europa Clipper must launch by November 6 in order to reach Jupiter and its moon Europa in 2030. ESA’s Hera mission had a similarly tight window to get off the ground in October and arrive at asteroids Didymos and Dimorphos in December 2026.

Returning to flight

The Falcon 9 did its job Monday, accelerating the Hera spacecraft to a blistering speed of 26,745 mph (43,042 km/hr) with successive burns by its first stage booster and upper stage engine. This was the highest-speed payload injection ever achieved by SpaceX.

SpaceX did not attempt to recover the Falcon 9’s reusable booster on Monday’s flight because Hera needed all of the rocket’s oomph to gain enough speed to escape the pull of Earth’s gravity.

“Good launch, good orbit, and good payload deploy,” wrote Kiko Dontchev, SpaceX’s vice president of launch, on X.

This was the first Falcon 9 launch in nine days—an unusually long gap between SpaceX missions—after the rocket’s upper stage misfired during a maneuver to steer itself out of orbit following an otherwise successful launch September 28 with a two-man crew heading for the International Space Station.

The upper stage engine apparently “over-burned,” and the rocket debris fell into the atmosphere short of its expected reentry corridor in the Pacific Ocean, sources said. The Federal Aviation Administration grounded the Falcon 9 rocket while SpaceX investigates the malfunction, but the FAA granted approval for SpaceX to launch the Hera mission because its trajectory would carry the rocket away from Earth, rather than back into the atmosphere for reentry.

“The FAA has determined that the absence of a second stage reentry for this mission adequately mitigates the primary risk to the public in the event of a reoccurrence of the mishap experienced with the Crew-9 mission,” the FAA said in a statement.

Members of the Hera team from ESA and its German prime contractor, OHB, pose with the spacecraft inside SpaceX’s payload processing facility in Florida.

Credit: SpaceX

Members of the Hera team from ESA and its German prime contractor, OHB, pose with the spacecraft inside SpaceX’s payload processing facility in Florida. Credit: SpaceX

This was the third time the FAA has grounded SpaceX’s Falcon 9 rocket fleet in less than three months, following another upper stage failure in July that caused the destruction of 20 Starlink Internet satellites and the crash-landing of a Falcon 9 booster on an offshore drone ship in August. Federal regulators are responsible for ensuring commercial rocket launches don’t endanger the public.

These were the first major anomalies on any Falcon 9 launch since 2021.

It’s not clear when the FAA will clear SpaceX to resume launching other Falcon 9 missions. However, the launch of the Europa Clipper mission on a Falcon Heavy rocket, which uses essentially the same upper stage as a Falcon 9, is not licensed by the FAA because it is managed by NASA, another government agency. NASA will have final authority on whether to give the green light for the launch of Europa Clipper.

Surveying the damage

ESA’s Hera spacecraft is on course for a flyby of Mars next March to take advantage of the red planet’s gravity to slingshot itself on a trajectory to intercept its twin target asteroids. Near Mars, Hera will zoom relatively close to the planet’s asteroid-like moon, Deimos, to obtain rare closeups.

Then, Hera will approach Didymos and Dimorphos a little more than two years from now, maneuvering around the binary asteroid system at a range of distances, eventually moving as close as about a half-mile (1 kilometer) away.

Italy’s LICIACube spacecraft snapped this image of asteroids Didymos (lower left) and Dimorphos (upper right) a few minutes after the impact of DART on September 26, 2022.

Credit: ASI/NASA

Italy’s LICIACube spacecraft snapped this image of asteroids Didymos (lower left) and Dimorphos (upper right) a few minutes after the impact of DART on September 26, 2022. Credit: ASI/NASA

Dimorphos orbits Didymos once every 11 hours and 23 minutes, roughly 32 minutes shorter than the orbital period before DART’s impact in 2022. This change in orbit proved the effectiveness of a kinetic impactor in deflecting an asteroid that threatens Earth.

Dimorphos, the smaller of the two asteroids, has a diameter of around 500 feet (150 meters), while Didymos measures approximately a half-mile (780 meters) wide. Neither asteroid poses a risk to Earth, so NASA chose them as the objective for DART.

The Hubble Space Telescope spotted a debris field trailing the binary asteroid system after DART’s impact. Astronomers identified at least 37 boulders drifting away from the asteroids, material ejected when the DART spacecraft slammed into Dimorphos at a velocity of 14,000 mph (22,500 kmh).

Scientists will use Hera, with its suite of cameras and instruments, to study how the strike by DART changed the asteroid Dimorphos. Did the impact leave a crater, or did it reshape the entire asteroid? There are “tentative hints” that the asteroid’s shape changed after the collision, according to Michael Kueppers, Hera’s project scientist at ESA.

“If this is the case, it would also mean that the cohesion of Dimorphos is extremely low; that indeed, even an object the size of Dimorphos would be held together by its weight, by its gravity, and not by cohesion,” Kueppers said. “So it really would be a rubble pile.”

Hera will also measure the mass of Dimorphos, something DART was unable to do. “That is important to measure the efficiency of the impact… which was the momentum that was transferred from the impacting satellite to the asteroid,” Kueppers said.

This NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos was taken on December 19, 2022, nearly three months after the asteroid was impacted by NASA’s DART mission. Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision.

Credit: NASA, ESA, D. Jewitt (UCLA)

This NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos was taken on December 19, 2022, nearly three months after the asteroid was impacted by NASA’s DART mission. Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision. Credit: NASA, ESA, D. Jewitt (UCLA)

The central goal of Hera is to fill the gaps in knowledge about Didymos and Dimorphos. Precise measurements of DART’s momentum, coupled with a better understanding of the interior structure of the asteroids, will allow future mission planners to know how best to deflect a hazardous object threatening Earth.

“The third part is to generally investigate the two asteroids to know their physical properties, their interior properties, their strength, essentially to be able to extrapolate or to scale the outcome of DART to another impact should we really need it one day,” Kueppers said.

Hera will release two briefcase-size CubeSats, named Juventas and Milani, to work in concert with ESA’s mothership. Juventas carries a compact radar to probe the internal structure of the smaller asteroid and will eventually attempt a landing on Dimorphos. Milani will study the mineral composition of individual boulders around DART’s impact site.

“This is the first time that we send a spacecraft to a small body, which is actually a multi-satellite system, with one main spacecraft and two CubeSats doing closer proximity operations,” Michel said. “This has never been done.”

Artist’s illustration of the Hera spacecraft with its two deployable CubeSats, Juventas and Milani, in the vicinity of the Didymos binary asteroid system. The CubeSats will communicate with ground teams via radio links with the Hera mothership.

Credit: ESA-Science Office

Artist’s illustration of the Hera spacecraft with its two deployable CubeSats, Juventas and Milani, in the vicinity of the Didymos binary asteroid system. The CubeSats will communicate with ground teams via radio links with the Hera mothership. Credit: ESA-Science Office

One source of uncertainty, and perhaps worry, about the environment around Didymos and Dimorphos is the status of the debris field observed by Hubble a few months after DART’s impact. But this is not likely to be a problem, according to Kueppers.

“I’m not really worried about potential boulders at Didymos,” he said, recalling the relative ease with which ESA’s Rosetta spacecraft navigated around an active comet from 2014 through 2016.

Ignacio Tanco, ESA’s flight director for Hera, doesn’t share Kuepper’s optimism.

“We didn’t hit the comet with a hammer,” said Tanco, who is responsible for keeping the Hera spacecraft safe. “The debris question for me is actually a source of… I wouldn’t say concern, but certainly precaution. It’s something that we’ll need to approach carefully once we get there.”

“That’s the difference between an engineer and a scientist,” Kuepper joked.

Scientists originally wanted Hera to be in the vicinity of the Didymos binary asteroid system before DART’s arrival, allowing it to directly observe the impact and its fallout. But ESA’s member states did not approve funding for the Hera mission in time, and the space agency only signed the contract to build the Hera spacecraft in 2020.

ESA first studied a mission like DART and Hera more than 20 years ago, when scientists proposed a mission called Don Quijote to get an asteroid deflection. But other missions took priority in Europe’s space program. Now, Hera is on course to write the final chapter of the story of humanity’s first planetary defense test.

“This is our contribution of ESA to humanity to help us in the future protect our planet,” said Josef Aschbacher, ESA’s director general.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX launches Europe’s Hera asteroid mission ahead of Hurricane Milton Read More »

ula-hasn’t-given-up-on-developing-a-long-lived-cryogenic-space-tug

ULA hasn’t given up on developing a long-lived cryogenic space tug


On Friday’s launch, United Launch Alliance will test the limits of its Centaur upper stage.

United Launch Alliance’s second Vulcan rocket underwent a countdown dress rehearsal Tuesday. Credit: United Launch Alliance

The second flight of United Launch Alliance’s Vulcan rocket, planned for Friday morning, has a primary goal of validating the launcher’s reliability for delivering critical US military satellites to orbit.

Tory Bruno, ULA’s chief executive, told reporters Wednesday that he is “supremely confident” the Vulcan rocket will succeed in accomplishing that objective. The Vulcan’s second test flight, known as Cert-2, follows a near-flawless debut launch of ULA’s new rocket on January 8.

“As I come up on Cert-2, I’m pretty darn confident I’m going to have a good day on Friday, knock on wood,” Bruno said. “These are very powerful, complicated machines.”

The Vulcan launcher, a replacement for ULA’s Atlas V and Delta IV rockets, is on contract to haul the majority of the US military’s most expensive national security satellites into orbit over the next several years. The Space Force is eager to certify Vulcan to launch these payloads, but military officials want to see two successful test flights before committing one of its satellites to flying on the new rocket.

If Friday’s test flight goes well, ULA is on track to launch at least one—and perhaps two—operational missions for the Space Force by the end of this year. The Space Force has already booked 25 launches on ULA’s Vulcan rocket for military payloads and spy satellites for the National Reconnaissance Office. Including the launch Friday, ULA has 70 Vulcan rockets in its backlog, mostly for the Space Force, the NRO, and Amazon’s Kuiper satellite broadband network.

The Vulcan rocket is powered by two methane-fueled BE-4 engines produced by Jeff Bezos’ space company Blue Origin, and ULA can mount zero, two, four, or six strap-on solid rocket boosters from Northrop Grumman around the Vulcan’s first stage to propel heavier payloads to space. The rocket’s Centaur V upper stage is fitted with a pair of hydrogen-burning RL10 engines from Aerojet Rocketdyne.

The second Vulcan rocket will fly in the same configuration as the first launch earlier this year, with two strap-on solid-fueled boosters. The only noticeable modification to the rocket is the addition of some spray-on foam insulation around the outside of the first stage methane tank, which will keep the cryogenic fuel at the proper temperature as Vulcan encounters aerodynamic heating on its ascent through the atmosphere.

“This will give us just over one second more usable propellant,” Bruno wrote on X.

There is one more change from Vulcan’s first launch, which boosted a commercial lunar lander for Astrobotic on a trajectory toward the Moon. This time, there are no real spacecraft on the Vulcan rocket. Instead, ULA mounted a dummy payload to the Centaur V upper stage to simulate the mass of a functioning satellite.

ULA originally planned to launch Sierra Space’s first Dream Chaser spaceplane on the second Vulcan rocket. But the Dream Chaser won’t be ready to fly its first mission to resupply the International Space Station until next year. Under pressure from the Pentagon, ULA decided to move ahead with the second Vulcan launch without a payload at the company’s own expense, which Bruno tallied in the “high tens of millions of dollars.”

Heliocentricity

The test flight will begin with liftoff from Cape Canaveral Space Force Station, Florida, during a three-hour launch window opening at 6 am EDT (10: 00 UTC). The 202-foot-tall (61.6-meter) Vulcan rocket will head east over the Atlantic Ocean, shedding its boosters, first stage, and payload fairing in the first few minutes of flight.

The Centaur upper stage will fire its RL10 engines two times, completing the primary mission within about 35 minutes of launch. The rocket will then continue on for a series of technical demonstrations before ending up on an Earth escape trajectory into a heliocentric orbit around the Sun.

“We have a number of experiments that we’re conducting that are really technology demonstrations and measurements that are associated with our high-performance, longer-duration version of Centaur V that we’ll be introducing in the future,” Bruno said. “And these will help us go a little bit faster on that development. And, of course, because we don’t have an active spacecraft as a payload, we also have more instrumentation that we’re able to use for just characterizing the vehicle.”

The Centaur V upper stage for the Vulcan rocket.

The Centaur V upper stage for the Vulcan rocket. Credit: United Launch Alliance

ULA engineers have worked on the design of a long-lived upper stage for more than a decade. Their vision was to develop an upper stage fed by super-efficient cryogenic liquid hydrogen and liquid oxygen propellants that could generate its own power and operate in space for days, weeks, or longer rather than an upper stage’s usual endurance limit of several hours. This would allow the rocket to not only deliver satellites into bespoke high-altitude orbits but also continue on to release more payloads at different altitudes or provide longer-term propulsion in support of other missions.

The concept was called the Advanced Cryogenic Evolved Stage (ACES). ULA’s corporate owners, Boeing and Lockheed Martin, never authorized the full development of ACES, and the company said in 2020 that it was no longer pursuing the ACES concept.

The Centaur V upper stage currently used on the Vulcan rocket is a larger version of the thin-walled, pressure-stabilized Centaur upper stage that has been flying since the 1960s. Bruno said the Centaur V design, as it is today, offers as much as 12 hours of operating life in space. This is longer than any other existing rocket using cryogenic propellants, which can boil off over time.

ULA’s chief executive still harbors an ambition for regaining some of the same capabilities promised by ACES.

“What we are looking to do is to extend that by orders of magnitude,” Bruno said. “And what that would allow us to do is have a in-space transportation capability for in-space mobility and servicing and things like that.”

Space Force leaders have voiced a desire for future spacecraft to freely maneuver between different orbits, a concept the military calls “dynamic space operations.” This would untether spacecraft operations from fuel limitations and eventually require the development of in-orbit refueling, propellant depots, or novel propulsion technologies.

No one has tried to store large amounts of super-cold propellants in space for weeks or longer. Accomplishing this is a non-trivial thermal problem, requiring insulation to keep heat from the Sun from reaching the liquid cryogenic propellant, stored at temperatures of several hundred degrees below zero.

Bruno hesitated to share details of the experiments ULA plans for the Centaur V upper stage on Friday’s test flight, citing proprietary concerns. He said the experiments will confirm analytical models about how the upper stage performs in space.

“Some of these are devices, some of these are maneuvers because maneuvers make a difference, and some are related to performance in a way,” he said. “In some cases, those maneuvers are helping us with the thermal load that tries to come in and boil off the propellants.”

Eventually, ULA would like to eliminate hydrazine attitude control fuel and battery power from the Centaur V upper stage, Bruno said Wednesday. This sounds a lot like what ULA wanted to do with ACES, which would have used an internal combustion engine called Integrated Vehicle Fluids (IVF) to recycle gasified waste propellants to pressurize its propellant tanks, generate electrical power, and feed thrusters for attitude control. This would mean the upper stage wouldn’t need to rely on hydrazine, helium, or batteries.

ULA hasn’t talked much about the IVF system in recent years, but Bruno said the company is still developing it. “It’s part of all of this, but that’s all I will say, or I’ll start revealing what all the gadgets are.”

A comparison between ULA’s legacy Centaur upper stage and the new Centaur V.

A comparison between ULA’s legacy Centaur upper stage and the new Centaur V. Credit: United Launch Alliance

George Sowers, former vice president and chief scientist at ULA, was one of the company’s main advocates for extending the lifetime of upper stages and developing technologies for refueling and propellant depot. He retired from ULA in 2017 and is now a professor at the Colorado School of Mines and an independent aerospace industry consultant.

In an interview with Ars earlier this year, Sowers said ULA solved many of the problems with keeping cryogenic propellants at the right temperature in space.

“We had a lot of data on boil-off, just from flying Centaurs all the way to geosynchronous orbit, which doesn’t involve weeks, but it involves maybe half a day or so, which is plenty of time to get all the temperatures to stabilize at deep space levels,” Sowers said. “So you have to understand the heat transfer very well. Good models are very important.”

ULA experimented with different types of insulation and vapor cooling, which involves taking cold gas that boiled off of cryogenic fuel and blowing it on heat penetration points into the tanks.

“There are tricks to managing boil-off,” he said. “One of the tricks is that you never want to boil oxygen. You always want to boil hydrogen. So you size your propellant tanks and your propellant loads, assuming you’re going to have that extra hydrogen boil-off. Then what you can do is use the hydrogen to keep the oxygen cold to keep it from boiling.

“The amount of heat that you can reject by boiling off one kilogram of hydrogen is about five times what you would reject by boiling off one kilogram of oxygen. So those are some of the thermodynamic tricks,” Sowers said. “The way ULA accomplished that is by having a common bulkhead, so the hydrogen tank and the oxygen tank are in thermal contact. So hydrogen keeps the oxygen cold.”

ULA’s experiments showed it could get the hydrogen boil-off rate down to about 10 percent per year, based on thermodynamic models calibrated by data from flying older versions of the Centaur upper stage on Atlas V rockets, according to Sowers.

“In my mind, that kind of cemented the idea that distribution depots and things like that are very well in hand without having to have exotic cryocoolers, which tend to use a lot of power,” Sowers said. “It’s about efficiency. If you can do it passively, you don’t have to expend energy on cryocoolers.”

“We’re going to go to days, and then we’re going to go to weeks, and then we think it’s possible to take us to months,” Bruno said. “That’s a game changer.”

However, ULA’s corporate owners haven’t yet fully bought into this vision. Bruno said the Vulcan rocket and its supporting manufacturing and launch infrastructure cost between $5 billion and $7 billion to develop. ULA also plans to eventually recover and reuse BE-4 main engines from the Vulcan rocket, but that is still at least several years away.

But ULA is reportedly up for sale, and a well-capitalized buyer might find the company’s long-duration cryogenic upper stage more attractive and worth the investment.

“There’s a whole lot of missions that enables,” Bruno said. “So that’s a big step in capability, both for the United States and also commercially.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

ULA hasn’t given up on developing a long-lived cryogenic space tug Read More »

spacex-launches-mission-to-bring-starliner-astronauts-back-to-earth

SpaceX launches mission to bring Starliner astronauts back to Earth

Ch-ch-changes —

SpaceX is bringing back propulsive landings with its Dragon capsule, but only in emergencies.

Updated

SpaceX's Crew Dragon spacecraft climbs away from Cape Canaveral Space Force Station, Florida, on Saturday atop a Falcon 9 rocket.

Enlarge / SpaceX’s Crew Dragon spacecraft climbs away from Cape Canaveral Space Force Station, Florida, on Saturday atop a Falcon 9 rocket.

NASA/Keegan Barber

NASA astronaut Nick Hague and Russian cosmonaut Aleksandr Gorbunov lifted off Saturday from Florida’s Space Coast aboard a SpaceX Dragon spacecraft, heading for a five-month expedition on the International Space Station.

The two-man crew launched on top of SpaceX’s Falcon 9 rocket at 1: 17 pm EDT (17: 17 UTC), taking an advantage of a break in stormy weather to begin a five-month expedition in space. Nine kerosene-fueled Merlin engines powered the first stage of the flight on a trajectory northeast from Cape Canaveral Space Force Station, then the booster detached and returned to landing at Cape Canaveral as the Falcon 9’s upper stage accelerated SpaceX’s Crew Dragon Freedom spacecraft into orbit.

“It was a sweet ride,” Hague said after arriving in space. With a seemingly flawless launch, Hague and Gorbunov are on track to arrive at the space station around 5: 30 pm EDT (2130 UTC) Sunday.

Empty seats

This is SpaceX’s 15th crew mission since 2020, and SpaceX’s 10th astronaut launch for NASA, but Saturday’s launch was unusual in a couple of ways.

“All of our missions have unique challenges and this one, I think, will be memorable for a lot of us,” said Ken Bowersox, NASA’s associate administrator for space operations.

First, only two people rode into orbit on SpaceX’s Crew Dragon spacecraft, rather than the usual complement of four astronauts. This mission, known as Crew-9, originally included Hague, Gorbunov, commander Zena Cardman, and NASA astronaut Stephanie Wilson.

But the troubled test flight of Boeing’s Starliner spacecraft threw a wrench into NASA’s plans. The Starliner mission launched in June with NASA astronauts Butch Wilmore and Suni Williams. Boeing’s spacecraft reached the space station, but thruster failures and helium leaks plagued the mission, and NASA officials decided last month it was too risky to being the crew back to Earth on Starliner.

NASA selected SpaceX and Boeing for multibillion-dollar commercial crew contracts in 2014, with each company responsible for developing human-rated spaceships to ferry astronauts to and from the International Space Station. SpaceX flew astronauts for the first time in 2020, and Boeing reached the same milestone with the test flight that launched in June.

Ultimately, the Starliner spacecraft safely returned to Earth on September 6 with a successful landing in New Mexico. But it left Wilmore and Williams behind on the space station with the lab’s long-term crew of seven astronauts and cosmonauts. The space station crew rigged two temporary seats with foam inside a SpaceX Dragon spacecraft currently docked at the outpost, where the Starliner astronauts would ride home if they needed to evacuate the complex in an emergency.

NASA astronaut Nick Hague and Russian cosmonaut Aleksandr Gorbunov in their SpaceX pressure suits.

Enlarge / NASA astronaut Nick Hague and Russian cosmonaut Aleksandr Gorbunov in their SpaceX pressure suits.

NASA/Kim Shiflett

This is a temporary measure to allow the Dragon spacecraft to return to Earth with six people instead of the usual four. NASA officials decided to remove two of the astronauts from the next SpaceX crew mission to free up normal seats for Wilmore and Williams to ride home in February, when Crew-9 was already slated to end its mission.

The decision to fly the Starliner spacecraft back to Earth without its crew had several second order effects on space station operations. Managers at NASA’s Johnson Space Center in Houston had to decide who to bump from the Crew-9 mission, and who to keep on the crew.

Nick Hague and Aleksandr Gorbunov ended up keeping their seats on the Crew-9 flight. Hague originally trained as the pilot on Crew-9, and NASA decided he would take Zena Cardman’s place as commander. Hague, a 49-year-old Space Force colonel, is a veteran of one long-duration mission on the International Space Station, and also experienced a rare in-flight launch abort in 2018 due to a failure of a Russian Soyuz rocket.

NASA announced the original astronaut assignments for the Crew-9 mission in January. Cardman, a 36-year-old geobiologist, would have been the first rookie astronaut without test pilot experience to command a NASA spaceflight. Three-time space shuttle flier Stephanie Wilson, 58, was the other astronaut removed from the Crew-9 mission.

The decision on who to fly on Crew-9 was a “really close call,” said Bowersox, who oversees NASA’s spaceflight operations directorate. “They were thinking very hard about flying Zena, but in this situation, it made sense to have somebody who had at least one flight under their belt.”

Gorbunov, a 34-year-old Russian aerospace engineer making his first flight to space, moved over to take pilot’s seat in the Crew Dragon spacecraft, although he remains officially designated a mission specialist. His remaining presence on the crew was preordained because of an international agreement between NASA and Russia’s space agency that provides seats for Russian cosmonauts on US crew missions and US astronauts on Russian Soyuz flights to the space station.

Bowersox said NASA will reassign Cardman and Wilson to future flights.

NASA astronauts Suni Williams and Butch Wilmore, seen in their Boeing flight suits before their launch.

Enlarge / NASA astronauts Suni Williams and Butch Wilmore, seen in their Boeing flight suits before their launch.

Operational flexibility

This was also the first launch of astronauts from Space Launch Complex-40 (SLC-40) at Cape Canaveral, SpaceX’s busiest launch pad. SpaceX has outfitted the launch pad with the equipment necessary to support launches of human spaceflight missions on the Crew Dragon spacecraft, including a more than 200-foot-tall tower and a crew access arm to allow astronauts to board spaceships on top of Falcon 9 rockets.

SLC-40 was previously based on a “clean pad” architecture, without any structures to service or access Falcon 9 rockets while they were vertical on the pad. SpaceX also installed slide chutes to give astronauts and ground crews an emergency escape route away from the launch pad in an emergency.

SpaceX constructed the crew tower last year and had it ready for the launch of a Dragon cargo mission to the space station in March. Saturday’s launch demonstrated the pad’s ability to support SpaceX astronaut missions, which have previously all departed from Launch Complex-39A (LC-39A) at NASA’s Kennedy Space Center, a few miles north of SLC-40.

Bringing human spaceflight launch capability online at SLC-40 gives SpaceX and NASA additional flexibility in their scheduling. For example, LC-39A remains the only launch pad configured to support flights of SpaceX’s Falcon Heavy rocket. SpaceX is now preparing LC-39A for a Falcon Heavy launch October 10 with NASA’s Europa Clipper mission, which only has a window of a few weeks to depart Earth this year and reach its destination at Jupiter in 2030.

With SLC-40 now certified for astronaut launches, SpaceX and NASA teams are able to support the Crew-9 and Europa Clipper missions without worrying about scheduling conflicts. The Florida spaceport now has three launch pads certified for crew flights—two for SpaceX’s Dragon and one for Boeing’s Starliner—and NASA will add a fourth human-rated launch pad with the Artemis II mission to the Moon late next year.

“That’s pretty exciting,” said Pam Melroy, NASA’s deputy administrator. “I think it’s a reflection of where we are in our space program at NASA, but also the capabilities that the United States has developed.”

Earlier this week, Hague and Gorbunov participated in a launch day dress rehearsal, when they had the opportunity to familiarize themselves with SLC-40. The launch pad has the same capabilities as LC-39A, but with a slightly different layout. SpaceX also test-fired the Falcon 9 rocket Tuesday evening, before lowering the rocket horizontal and moving it back into a hangar for safekeeping as the outer bands of Hurricane Helene moved through Central Florida.

Inside the hangar, SpaceX technicians discovered sooty exhaust from the Falcon 9’s engines accumulated on the outside of the Dragon spacecraft during the test-firing. Ground teams wiped the soot off of the craft’s solar arrays and heat shield, then repainted portions of the capsule’s radiators around the edge of Dragon’s trunk section before rolling the vehicle back to the launch pad Friday.

“It’s important that the radiators radiate heat in the proper way to space, so we had to put some some new paint on to get that back to the right emissivity and the right reflectivity and absorptivity of the solar radiation that hit those panels so it will reject the heat properly,” said Bill Gerstenmaier, SpaceX’s vice president of build and flight reliability.

Gerstenmaier also outlined a new backup ability for the Crew Dragon spacecraft to safely splash down even if all of its parachutes fail to deploy on final descent back to Earth. This involves using the capsule’s eight powerful SuperDraco thrusters, normally only used in the unlikely instance of a launch abort, to fire for a few seconds and slow Dragon’s speed for a safe splashdown.

A hover test using SuperDraco thrusters on a prototype Crew Dragon spacecraft in 2015.

Enlarge / A hover test using SuperDraco thrusters on a prototype Crew Dragon spacecraft in 2015.

SpaceX

“The way it works is, in the case where all the parachutes totally fail, this essentially fires the thrusters at the very end,” Gerstenmaier said. “That essentially gives the crew a chance to land safely, and essentially escape the vehicle. So it’s not used in any partial conditions. We can land with one chute out. We can land with other failures in the chute system. But this is only in the case where all four parachutes just do not operate.”

When SpaceX first designed the Crew Dragon spacecraft more than a decade ago, the company wanted to use the SuperDraco thrusters to enable the capsule to perform propulsive helicopter-like landings. Eventually, SpaceX and NASA agreed to change to a more conventional parachute-assisted splashdown.

The SuperDracos remained on the Crew Dragon spacecraft to push the capsule away from its Falcon 9 rocket during a catastrophic launch failure. The eight high-thrust engines burn hydrazine and nitrogen tetroxide propellants that combust when making contact with one another.

The backup option has been activated for some previous commercial Crew Dragon missions, but not for a NASA flight, according to Gerstenmaier. The capability “provides a tolerable landing for the crew,” he added. “So it’s a true deep, deep contingency. I think our philosophy is, rather than have a system that you don’t use, even though it’s not maybe fully certified, it gives the crew a chance to escape a really, really bad situation.”

Steve Stich, NASA’s commercial crew program manager, said the emergency propulsive landing capability will be enabled for the return of the Crew-8 mission, which has been at the space station since March. With the arrival of Hague and Gorbunov on Crew-9—and the extension of Wilmore and Williams’ mission—the Crew-8 mission is slated to depart the space station and splash down in early October.

This story was updated after confirmation of a successful launch.

SpaceX launches mission to bring Starliner astronauts back to Earth Read More »

the-war-of-words-between-spacex-and-the-faa-keeps-escalating

The war of words between SpaceX and the FAA keeps escalating

Elon Musk, SpaceX's founder and CEO, has called for the resignation of the FAA administrator.

Enlarge / Elon Musk, SpaceX’s founder and CEO, has called for the resignation of the FAA administrator.

The clash between SpaceX and the Federal Aviation Administration escalated this week, with Elon Musk calling for the head of the federal regulator to resign after he defended the FAA’s oversight and fines levied against the commercial launch company.

The FAA has said it doesn’t expect to determine whether to approve a launch license for SpaceX’s next Starship test flight until late November, two months later than the agency previously communicated to Musk’s launch company. Federal regulators are reviewing changes to the rocket’s trajectory necessary for SpaceX to bring Starship’s giant reusable Super Heavy booster back to the launch pad in South Texas. This will be the fifth full-scale test flight of Starship but the first time SpaceX attempts such a maneuver on the program.

This week, SpaceX assembled the full Starship rocket on its launch pad at the company’s Starbase facility near Brownsville, Texas. “Starship stacked for Flight 5 and ready for launch, pending regulatory approval,” SpaceX posted on X.

Apart from the Starship regulatory reviews, the FAA last week announced it is proposing more than $633,000 in fines on SpaceX due to alleged violations of the company’s launch license associated with two flights of the company’s Falcon 9 rocket from Florida. It is rare for the FAA’s commercial spaceflight division to fine launch companies.

Michael Whitaker, the FAA’s administrator, discussed the agency’s ongoing environmental and safety reviews of SpaceX’s Starship rocket in a hearing before a congressional subcommittee in Washington Tuesday. During the hearing, which primarily focused on the FAA’s oversight of Boeing’s commercial airplane business, one lawmaker asked Whitaker the FAA’s relationship with SpaceX.

Public interest

“I think safety is in the public interest and that’s our primary focus,” said Michael Whitaker, the FAA administrator, in response to questions from Rep. Kevin Kiley, a California Republican. “It’s the only tool we have to get compliance on safety matters,” he said, referring to the FAA’s fines.

The stainless-steel Super Heavy booster is larger than a Boeing 747 jumbo jet. SpaceX says the flight path to return the first stage of the rocket to land will mean a “slightly larger area could experience a sonic boom,” and a stainless-steel ring that jettisons from the top of the booster, called the hot-staging ring, will fall in a different location in the Gulf of Mexico just offshore from the rocket’s launch and landing site.

The FAA, which is primarily charged with ensuring rocket launches don’t endanger the public, is consulting with other agencies on these matters, along with issues involving SpaceX’s discharge of water into the environment around the Starship launch pad in Texas. The pad uses water to cool a steel flame deflector that sits under the 33 main engines of Starship’s Super Heavy booster.

SpaceX says fines levied against it this year by the Texas Commission on Environmental Quality (TCEQ) and the Environmental Protection Agency (EPA) related to the launch pad’s water system were “entirely tied to disagreements over paperwork” and not any dumping of pollutants into the environment around the Starship launch site.

SpaceX installed the water-cooled flame deflector under the Starship launch mount after the engine exhaust rocket’s first test flight excavated a large hole in the ground. Gwynne Shotwell, SpaceX’s president and chief operating officer, summed up her view of the issue in a hearing with Texas legislators in Austin on Tuesday.

“To protect that from happening again, we built this kind of upside-down shower head to basically cool the flame as the rocket was lifting off,” she said. “That was licensed and permitted by TCEQ. The EPA came in afterwards and didn’t like the license or the permit that we had for that, and wanted to turn it into a federal permit, which we are working on now.”

“We work very closely with organizations such as TCEQ,” Shotwell said. “You may have read a little bit of nonsense in the papers recently about that, but we’re working quite well with them.”

The war of words between SpaceX and the FAA keeps escalating Read More »

navy-captains-don’t-like-abandoning-ship—but-with-starliner,-the-ship-left-them

Navy captains don’t like abandoning ship—but with Starliner, the ship left them

NASA astronauts Butch Wilmore and Suni Williams wave to their families, friends, and NASA officials on their way to the launch pad June 5 to board Boeing's Starliner spacecraft.

Enlarge / NASA astronauts Butch Wilmore and Suni Williams wave to their families, friends, and NASA officials on their way to the launch pad June 5 to board Boeing’s Starliner spacecraft.

NASA astronauts Butch Wilmore and Suni Williams are no strangers to time away from their families. Both are retired captains in the US Navy, served in war zones, and are veterans of previous six-month stays on the International Space Station.

When they launched to the space station on Boeing’s Starliner spacecraft on June 5, the astronauts expected to be home in a few weeks, or perhaps a month, at most. Their minimum mission duration was eight days, but NASA was always likely to approve a short extension. Wilmore and Williams were the first astronauts to soar into orbit on Boeing’s Starliner spacecraft, a milestone achieved some seven years later than originally envisioned by Boeing and NASA.

However, the test flight fell short of all of its objectives. Wilmore and Williams are now a little more than three months into what has become an eight-month mission on the station. The Starliner spacecraft was beset by problems, culminating in a decision last month by NASA officials to send the capsules back to Earth without the two astronauts. Rather than coming home on Starliner, Wilmore and Williams will return to Earth in February on a SpaceX Dragon spacecraft.

Grateful for options

On Friday, the two astronauts spoke with reporters for the first time since NASA decided they would stay in orbit until early 2025.

“It was trying at times,” Wilmore said. There were some tough times all the way through. Certainly, as the commander or pilot of your spacecraft, you don’t want to see it go off without you, but that’s where we wound up.”

Both astronauts are veteran Navy test pilots and have previous flights on space shuttles and Russian Soyuz spacecraft. Captains never want to abandon ship, but that’s not what happened with Starliner. Instead, their ship left them.

Williams said she and Wilmore watched Starliner’s departure from the space station from the lab’s multi-window cupola module last week. They kept busy with several tasks, such as monitoring the undocking and managing the space station’s systems during the dynamic phase of the departure.

“We were watching our spaceship fly away at that point in time,” Williams said. “I think it’s good we had some extra activities. Of course, we’re very knowledgeable about Starliner, so it was obvious what was happening at each moment.”

NASA’s top managers did not have enough confidence in Starliner’s safety after five thrusters temporarily failed as the spacecraft approached the space station in June. They weren’t ready to risk the lives of the two astronauts on Starliner when engineers weren’t convinced the same thrusters, or more, would function as needed during the trip home.

It turned out the suspect thrusters on Starliner worked after it departed the space station and headed for reentry on September 6. One thruster on Starliner’s crew module—different in design from the thrusters that previously had trouble—failed on the return journey. Investigating this issue is something Boeing and NASA engineers will add to their to-do list before the next Starliner flight, alongside the earlier problems of overheating thrusters and helium leaks.

“It’s a very risky business, and things do not always turn out the way you want,” Wilmore said. “Every single test flight, especially a first flight of a spacecraft or aircraft that’s ever occurred, has found issues …  90 percent of our training is preparing for the unexpected, and sometimes the actual unexpected goes beyond what you even think that could happen.”

Navy captains don’t like abandoning ship—but with Starliner, the ship left them Read More »

leaving-behind-its-crew,-starliner-departs-space-station-and-returns-to-earth

Leaving behind its crew, Starliner departs space station and returns to Earth

It worked —

“We will review the data and determine the next steps for the program,” says Boeing’s Starliner manager.

Boeing's Starliner spacecraft after landing Friday night at White Sands Space Harbor, New Mexico.

Enlarge / Boeing’s Starliner spacecraft after landing Friday night at White Sands Space Harbor, New Mexico.

Boeing

Boeing’s Starliner spacecraft sailed to a smooth landing in the New Mexico desert Friday night, an auspicious end to an otherwise disappointing three-month test flight that left the capsule’s two-person crew stuck in orbit until next year.

Cushioned by airbags, the Boeing crew capsule descended under three parachutes toward an on-target landing at 10: 01 pm local time Friday (12: 01 am EDT Saturday) at White Sands Space Harbor, New Mexico. From the outside, the landing appeared just as it would have if the spacecraft brought home NASA astronauts Butch Wilmore and Suni Williams, who became the first people to launch on a Starliner capsule on June 5.

But Starliner’s cockpit was empty as it flew back to Earth Friday night. Last month, NASA managers decided to keep Wilmore and Williams on the International Space Station (ISS) until next year after agency officials determined it was too risky for the astronauts to return to the ground on Boeing’s spaceship. Instead of coming home on Starliner, Wilmore and Williams will fly back to Earth on a SpaceX Dragon spacecraft in February. NASA has incorporated the Starliner duo into the space station’s long-term crew.

The Starliner spacecraft began the journey home by backing away from its docking port at the space station at 6: 04 pm EDT (22: 04 UTC), one day after astronauts closed hatches to prepare for the ship’s departure. The capsule fired thrusters to quickly back away from the complex, setting up for a deorbit burn to guide Starliner on a trajectory toward its landing site. Then, Starliner jettisoned its disposable service module to burn up over the Pacific Ocean, while the crew module, with a vacant cockpit, took aim on New Mexico.

After streaking through the atmosphere over the Pacific Ocean and Mexico, Starliner deployed three main parachutes to slow its descent, then a ring of six airbags inflated around the bottom of the spacecraft to dampen the jolt of touchdown. This was the third time a Starliner capsule has flown in space, and the second time the spacecraft fell short of achieving all of its objectives.

Not the desired outcome

“I’m happy to report Starliner did really well today in the undock, deorbit, and landing sequence,” said Steve Stich, manager of NASA’s commercial crew program, which manages a contract worth up to $4.6 billion for Boeing to develop, test, and fly a series of Starliner crew missions to the ISS.

While officials were pleased with Starliner’s landing, the celebration was tinged with disappointment.

“From a human perspective, all of us feel happy about the successful landing, but then there’s a piece of us that we wish it would have been the way we had planned it,” Stich said. “We had planned to have the mission land with Butch and Suni onboard. I think there are, depending on who you are on the team, different emotions associated with that, and I think it’s going to take a little time to work through that.”

Nevertheless, Stich said NASA made the right call last month when officials decided to complete the Starliner test flight without astronauts in the spacecraft.

“We made the decision to have an uncrewed flight based on what we knew at the time, and based on our knowledge of the thrusters and based on the modeling that we had,” Stich said. “If we’d had a model that would have predicted what we saw tonight perfectly, yeah, it looks like an easy decision to go say, ‘We could have had a crew tonight.’ But we didn’t have that.”

Boeing’s Starliner managers insisted the ship was safe to bring the astronauts home. It might be tempting to conclude the successful landing Friday night vindicated Boeing’s views on the thruster problems. However, he spacecraft’s propulsion system, provided by Aerojet Rocketdyne, clearly did not work as intended during the flight. NASA had the option of bringing Wilmore and Williams back to Earth on a different, flight-proven spacecraft, so they took it.

“It’s awfully hard for the team,” Stich said. “It’s hard for me, when we sit here and have a successful landing, to be in that position. But it was a test flight, and we didn’t have confidence, with certainty, of the thruster performance.”

In this infrared view, Starliner descends under its three main parachutes moments before touchdown at White Sands Space Harbor, New Mexico.

Enlarge / In this infrared view, Starliner descends under its three main parachutes moments before touchdown at White Sands Space Harbor, New Mexico.

NASA

As Starliner approached the space station in June, five of 28 control thrusters on Starliner’s service module failed, forcing Wilmore to take manual control as ground teams sorted out the problem. Eventually, engineers recovered four of the five thrusters, but NASA’s decision makers were unable to convince themselves the same problem wouldn’t reappear, or get worse, when the spacecraft departed the space station and headed for reentry and landing.

Engineers later determined the control jets lost thrust due to overheating, which can cause Teflon seals in valves to swell and deform, starving the thrusters of propellant. Telemetry data beamed back to the mission controllers from Starliner showed higher-than-expected temperatures on two of the service module thrusters during the flight back to Earth Friday night, but they continued working.

Ground teams also detected five small helium leaks on Starliner’s propulsion system soon after its launch in June. NASA and Boeing officials were aware of one of the leaks before the launch, but decided to go ahead with the test flight. Starliner was still leaking helium when the spacecraft undocked from the station Friday, but the leak rate remained within safety tolerances, according to Stich.

A couple of fresh technical problems cropped up as Starliner cruised back to Earth. One of 12 control jets on the crew module failed to ignite at any time during Starliner’s flight home. These are separate thrusters from the small engines that caused trouble earlier in the Starliner mission. There was also a brief glitch in Starliner’s navigation system during reentry.

Where to go from here?

Three NASA managers, including Stich, took questions from reporters in a press conference early Saturday following Starliner’s landing. Two Boeing officials were also supposed to be on the panel, but they canceled at the last minute. Boeing didn’t explain their absence, and the company has not made any officials available to answer questions since NASA chose to end the Starliner test flight without the crew aboard.

“We view the data and the uncertainty that’s there differently than Boeing does,” said Jim Free, NASA’s associate administrator, in an August 24 press conference announcing the agency’s decision on how to end the Starliner test flight. It’s unusual for NASA officials to publicly discuss how their opinions differ from those of their contractors.

Joel Montalbano, NASA’s deputy associate administrator for space operations, said Saturday that Boeing deferred to the agency to discuss the Starliner mission in the post-landing press conference.

Here’s the only quote from a Boeing official on Starliner’s return to Earth. It came in the form of a three-paragraph written statement Boeing emailed to reporters about a half-hour after Starliner’s landing: “I want to recognize the work the Starliner teams did to ensure a successful and safe undocking, deorbit, re-entry and landing,” said Mark Nappi, vice president and program manager of Boeing’s commercial crew program. “We will review the data and determine the next steps for the program.”

Nappi’s statement doesn’t answer one of the most important questions reporters would have asked anyone from Boeing if they participated in Saturday morning’s press conference: Does Boeing still have a long-term commitment to the Starliner program?

So far, the only indications of Boeing’s future plans for Starliner have come from second-hand anecdotes relayed by NASA officials. Boeing has been silent on the matter. The company has reported nearly $1.6 billion in financial charges to pay for previous delays and cost overruns on the Starliner program, and Boeing will again be on the hook to pay to fix the problems Starliner encountered in space over the last three months.

Montalbano said Boeing’s Starliner managers met with ground teams at mission control in Houston following the craft’s landing. “The Boeing managers came into the control room and congratulated the team, talked to the NASA team, so Boeing is committed to continue their work with us,” he said.

Boeing's Starliner spacecraft fires thrusters during departure from the International Space Station on Friday.

Enlarge / Boeing’s Starliner spacecraft fires thrusters during departure from the International Space Station on Friday.

NASA

NASA isn’t ready to give up on Starliner. A fundamental tenet of NASA’s commercial crew program is to foster the development of two independent vehicles to ferry astronauts to and from the International Space Station, and eventually commercial outposts in low-Earth orbit. NASA awarded multibillion-dollar contracts to Boeing and SpaceX in 2014 to complete development of their Starliner and Crew Dragon spaceships.

SpaceX’s Dragon started flying astronauts in 2020. NASA would like to have another US spacecraft for crew rotation flights to support the ISS. If Boeing had more success with this Starliner test flight, NASA expected to formally certify the spacecraft for operational crew flights beginning next year. Once that happens, Starliner will enter a rotation with SpaceX’s Dragon to transport crews to and from the station in six-month increments.

Stich said Saturday that NASA has not determined whether the agency will require Boeing launch another Starliner test flight before certifying the spacecraft for regular crew rotation missions. “It’ll take a little time to determine the path forward, but today we saw the vehicle perform really well,” he said.

On to Starliner-1?

But some of Stich’s other statements Saturday suggested NASA would like to proceed with certifying Starliner and flying the next mission with a full crew complement of four astronauts. NASA calls Boeing’s first operational crew mission Starliner-1. It’s the first of at least three and potentially up to six crew rotation missions on Boeing’s contract.

“It’s great to have the spacecraft back, and we’re now focused on Starliner-1,” Stich said.

Before that happens, NASA and Boeing engineers must resolve the thruster problems and helium leaks that plagued the test flight this summer. Stich said teams are studying several ways to improve the reliability of Starliner’s thrusters, including hardware modifications and procedural changes. This will probably push back the next crew flight of Starliner, whether it’s Starliner-1 or another test flight, until the end of next year or 2026, although NASA officials have not laid out a schedule.

The overheating thrusters are located inside four doghouse-shaped propulsion pods around the perimeter of Starliner’s service module. It turns out the doghouses retain heat like a thermos—something NASA and Boeing didn’t fully appreciate before this mission—and the thrusters don’t have time to cool down when the spacecraft fires its control jets in rapid pulses. It might help if Boeing removes some of the insulating thermal blankets from the doghouses, Stich said.

The easiest method of resolving the problem of Starliner’s overheating thrusters would be to change the rate and duration of thruster firings.

“What we would like to do is try not to change the thruster. I think that is the best path,” Stich said. “There thrusters have shown resilience and have shown that they perform well, as long as we keep their temperatures down and don’t fire them in a manner that causes the temperatures to go up.”

There’s one thing from this summer’s test flight that might, counterintuitively, help NASA certify the Starliner spacecraft to begin operational flights with its next mission. Rather than staying at the space station for eight days, Starliner remained docked at the research lab for three months, half of the duration of a full-up crew rotation flight. Despite the setbacks, Stich estimated the test flight achieved about 85 to 90 percent of its objectives.

“There’s a lot of learning that happens in that three months that is invaluable for an increment mission,” Stich said. “So, in some ways, the mission overachieved some objectives, in terms of being there for extra time. Not having the crew onboard, obviously, there are some things that we lack in terms of Butch and Suni’s test pilot expertise, and how the vehicle performed, what they saw in the cockpit. We won’t have that data, but we still have the wealth of data from the spacecraft itself, so that will go toward the mission objectives and the certification.”

Leaving behind its crew, Starliner departs space station and returns to Earth Read More »

after-another-boeing-letdown,-nasa-isn’t-ready-to-buy-more-starliner-missions

After another Boeing letdown, NASA isn’t ready to buy more Starliner missions

Boeing's Starliner spacecraft sits atop a United Launch Alliance Atlas V rocket before liftoff in June to begin the Crew Flight Test.

Enlarge / Boeing’s Starliner spacecraft sits atop a United Launch Alliance Atlas V rocket before liftoff in June to begin the Crew Flight Test.

NASA is ready for Boeing’s Starliner spacecraft, stricken with thruster problems and helium leaks, to leave the International Space Station as soon as Friday, wrapping up a disappointing test flight that has clouded the long-term future of the Starliner program.

Astronauts Butch Wilmore and Suni Williams, who launched aboard Starliner on June 5, closed the spacecraft’s hatch Thursday in preparation for departure Friday. But it wasn’t what they envisioned when they left Earth on Starliner three months ago. Instead of closing the hatch from a position in Starliner’s cockpit, they latched the front door to the spacecraft from the space station’s side of the docking port.

The Starliner spacecraft is set to undock from the International Space Station at 6: 04 pm EDT (22: 04 UTC) Friday. If all goes according to plan, Starliner will ignite its braking rockets at 11: 17 pm EDT (03: 17 UTC) for a minute-long burn to target a parachute-assisted, airbag-cushioned landing at White Sands Space Harbor, New Mexico, at 12: 03 am EDT (04: 03 UTC) Saturday.

The Starliner mission set to conclude this weekend was the spacecraft’s first test flight with astronauts, running seven years behind Boeing’s original schedule. But due to technical problems with the spacecraft, it won’t come home with the two astronauts who flew it into orbit back in June, leaving some of the test flight’s objectives incomplete.

This outcome is, without question, a setback for NASA and Boeing, which must resolve two major problems in Starliner’s propulsion system—supplied by Aerojet Rocketdyne—before the capsule can fly with people again. NASA officials haven’t said whether they will require Boeing to launch another Starliner test flight before certifying the spacecraft for the first of up to six operational crew missions on Boeing’s contract.

A noncommittal from NASA

For over a decade, the space agency has worked with Boeing and SpaceX to develop two independent vehicles to ferry astronauts to and from the International Space Station (ISS). SpaceX launched its first Dragon spacecraft with astronauts in May 2020, and six months later, NASA cleared SpaceX to begin flying regular six-month space station crew rotation missions.

Officially, NASA has penciled in Starliner’s first operational mission for August 2025. But the agency set that schedule before realizing Boeing and Aerojet Rocketdyne would need to redesign seals and perhaps other elements in Starliner’s propulsion system.

No one knows how long that will take, and NASA hasn’t decided if it will require Boeing to launch another test flight before formally certifying Starliner for operational missions. If Starliner performs flawlessly after undocking and successfully lands this weekend, perhaps NASA engineers can convince themselves Starliner is good to go for crew rotation flights once Boeing resolves the thruster problems and helium leaks.

In any event, the schedule for launching an operational Starliner crew flight in less than a year seems improbable. Aside from the decision on another test flight, the agency also must decide whether it will order any more operational Starliner missions from Boeing. These “post-certification missions” will transport crews of four astronauts between Earth and the ISS, orbiting roughly 260 miles (420 kilometers) above the planet.

NASA has only given Boeing the “Authority To Proceed” for three of its six potential operational Starliner missions. This milestone, known as ATP, is a decision point in contracting lingo where the customer—in this case, NASA—places a firm order for a deliverable. NASA has previously said it awards these task orders about two to three years prior to a mission’s launch.

Josh Finch, a NASA spokesperson, told Ars that the agency hasn’t made any decisions on whether to commit to any more operational Starliner missions from Boeing beyond the three already on the books.

“NASA’s goal remains to certify the Starliner system for crew transportation to the International Space Station,” Finch said in a written response to questions from Ars. “NASA looks forward to its continued work with Boeing to complete certification efforts after Starliner’s uncrewed return. Decisions and timing on issuing future authorizations are on the work ahead.”

This means NASA’s near-term focus is on certifying Starliner so that Boeing can start executing its commercial crew contract. The space agency hasn’t determined when or if it will authorize Boeing to prepare for any Starliner missions beyond the three already on the books.

When it awarded commercial crew contracts to SpaceX and Boeing in 2014, NASA pledged to buy at least two operational crew flights from each company. The initial contracts from a decade ago had options for as many as six crew rotation flights to the ISS after certification.

Since then, NASA has extended SpaceX’s commercial crew contract to cover as many as 14 Dragon missions with astronauts, and SpaceX has already launched eight of them. The main reason for this contract extension was to cover NASA’s needs for crew transportation after delays with Boeing’s Starliner, which was originally supposed to alternate with SpaceX’s Dragon for human flights every six months.

After another Boeing letdown, NASA isn’t ready to buy more Starliner missions Read More »

nasa-wants-starliner-to-make-a-quick-getaway-from-the-space-station

NASA wants Starliner to make a quick getaway from the space station

WSSHing for success —

Starliner is set to land at White Sands Space Harbor in New Mexico shortly after midnight.

Boeing's Starliner spacecraft is set to undock from the International Space Station on Friday evening.

Enlarge / Boeing’s Starliner spacecraft is set to undock from the International Space Station on Friday evening.

NASA

Boeing’s Starliner spacecraft will gently back away from the International Space Station Friday evening, then fire its balky thrusters to rapidly depart the vicinity of the orbiting lab and its nine-person crew.

NASA asked Boeing to adjust Starliner’s departure sequence to get away from the space station faster and reduce the workload on the thrusters to reduce the risk of overheating, which caused some of the control jets to drop offline as the spacecraft approached the outpost for docking in June.

The action begins at 6: 04 pm EDT (22: 04 UTC) on Friday, when hooks in the docking mechanism connecting Starliner with the International Space Station (ISS) will open, and springs will nudge the spacecraft away its mooring on the forward end of the massive research complex.

Around 90 seconds later, a set of forward-facing thrusters on Starliner’s service module will fire in a series of 12 pulses over a few minutes to drive the spacecraft farther away from the space station. These maneuvers will send Starliner on a trajectory over the top of the ISS, then behind it until it is time for the spacecraft to perform a deorbit burn at 11: 17 pm EDT (03: 17 UTC) to target landing at White Sands Space Harbor, New Mexico, shortly after midnight EDT (10 pm local time at White Sands).

How to watch, and what to watch for

The two videos embedded below will show NASA TV’s live coverage of the undocking and landing of Starliner.

Starliner is leaving its two-person crew behind on the space station after NASA officials decided last month they did not have enough confidence in the spacecraft’s reaction control system (RCS) thrusters, used to make exact changes to the capsule’s trajectory and orientation in orbit. Five of the 28 RCS thrusters on Starliner’s service module failed during the craft’s rendezvous with the space station three months ago. Subsequent investigations showed overheating could cause Teflon seals in a poppet valve to swell, restricting the flow of propellant to the thrusters.

Engineers recovered four of the five thrusters after they temporarily stopped working, but NASA officials couldn’t be sure the thrusters would not overheat again on the trip home. NASA decided it was too risky for Starliner to come home with astronauts Butch Wilmore and Suni Williams, who launched on Boeing’s crew test flight on June 5, becoming the first people to fly on the commercial capsule. They will remain aboard the station until February, when they will return to Earth on a SpaceX Dragon spacecraft.

The original flight plan, had Wilmore and Williams been aboard Starliner for the trip home, called for the spacecraft to make a gentler departure from the ISS, allowing engineers to fully check out the performance of its navigation sensors and test the craft’s ability to loiter in the vicinity of the station for photographic surveys of its exterior.

“In this case, what we’re doing is the break-out burn, which will be a series of 12 burns, each not very large, about 0.1 meters per second (0.2 mph) and that’s just to take the Starliner away from the station, and then immediately start going up and away, and eventually it’ll curve around to the top and deorbit from above the station a few orbits later,” said Anthony Vareha, NASA’s flight director overseeing ISS operations during Starliner’s undocking sequence.

Astronauts won’t be inside Starliner’s cockpit to take manual control in the event of a major problem, so NASA managers want the spacecraft to get away from the space station as quickly as possible.

On this path, Starliner will exit the so-called approach ellipsoid, a 2.5-by-1.25-by-1.25-mile (4-by-2-by-2-kilometer) invisible boundary around the orbiting laboratory, about 20 to 25 minutes after undocking, NASA officials said. That’s less than half the time Starliner would normally take to leave the vicinity of the ISS.

“It’s a quicker way to get away from the station, with less stress on the thrusters,” said Steve Stich, NASA’s commercial crew program manager. “Essentially, once we open the hooks, the springs will push Starliner away and then we’ll do some really short thruster firings to put us on a trajectory that will take us above the station and behind, we’ll be opening to a nice range to where we can execute the deorbit burn.”

In the unlikely event of a more significant series of thruster failures, the springs that push Starliner away from the station should be enough to ensure there’s no risk of collision, according to Vareha.

“Then, after that, we really are going to just stay in some very benign attitudes and not fire the the thrusters very much at all,” Stich said.

Starliner will need to use the RCS thrusters again to point itself in the proper direction to fire four larger rocket engines for the deorbit burn. Once this burn is complete, the RCS thrusters will reorient the spacecraft to jettison the service module to burn up in the atmosphere. The reusable crew module relies on a separate set of thrusters during reentry.

Finally, the capsule will approach the landing zone in New Mexico from the southwest, flying over the Pacific Ocean and Mexico before deploying three main parachutes and airbags to cushion its landing at White Sands. Boeing and NASA teams there will meet the spacecraft and secure it for a road voyage back to Kennedy Space Center in Florida for refurbishment.

Meanwhile, engineers must resolve the causes of the thruster problems and helium leaks that plagued the Starliner test flight before it can fly astronauts again.

NASA wants Starliner to make a quick getaway from the space station Read More »

boeing-will-try-to-fly-its-troubled-starliner-capsule-back-to-earth-next-week

Boeing will try to fly its troubled Starliner capsule back to Earth next week

Destination desert —

The two astronauts who launched on Starliner will stay behind on the International Space Station.

Boeing's Starliner spacecraft undocks from the International Space Station at the conclusion of an unpiloted test flight in May 2022.

Enlarge / Boeing’s Starliner spacecraft undocks from the International Space Station at the conclusion of an unpiloted test flight in May 2022.

NASA

NASA and Boeing are proceeding with final preparations to undock the Starliner spacecraft from the International Space Station next Friday, September 6, to head for landing at White Sands Space Harbor in southern New Mexico.

Astronauts Butch Wilmore and Suni Williams, who were supposed to return to Earth inside Starliner, will remain behind on the space station after NASA decided last week to conclude the Boeing test flight without its crew on board. NASA officials decided it was too risky to put the astronauts on Starliner after the spacecraft suffered thruster failures during its flight to the space station in early June.

Instead, Wilmore and Williams will come home on a SpaceX Dragon capsule no earlier than February, extending their planned stay on the space station from eight days to eight months. Flying on autopilot, the Starliner spacecraft is scheduled to depart the station at approximately 6: 04 pm EDT (22: 04 UTC) on September 6. The capsule will fire its engines to drop out of orbit and target a parachute-assisted landing in New Mexico at 12: 03 am EDT (04: 03 UTC) on September 7, NASA said in a statement Thursday.

NASA officials completed the second part of a two-day Flight Readiness Review on Thursday to clear the Starliner spacecraft for undocking and landing. However, there are strict weather rules for landing a Starliner spacecraft, so NASA and Boeing managers will decide next week whether to proceed with the return next Friday night or wait for better conditions at the White Sands landing zone.

Over the last few days, flight controllers updated parameters in Starliner’s software to handle a fully autonomous return to Earth without inputs from astronauts flying in the cockpit, NASA said. Boeing has flown two unpiloted Starliner test flights using the same type of autonomous reentry and landing operations. This mission, called the Crew Flight Test (CFT), was the first time astronauts launched into orbit inside a Starliner spacecraft, and was expected to pave the way for future operational missions to rotate four-person crews to and from the space station.

With the Starliner spacecraft unable to complete its test flight as intended, there are fundamental questions about the future of Boeing’s commercial crew program. NASA Administrator Bill Nelson said last week that Boeing’s new CEO, Kelly Ortberg, told him the aerospace company remained committed to Starliner. However, Boeing will be on the hook to pay for the cost of resolving problems with overheating thrusters and helium leaks that hamstrung the CFT mission. Boeing hasn’t made any public statements about the long-term future of the Starliner program since NASA decided to pull its astronauts off the spacecraft for its return to Earth.

Preparing for a contingency

NASA is clearly more comfortable with returning Wilmore and Williams to Earth inside SpaceX’s Dragon capsule, but the change disrupts crew operations at the space station. This week, astronauts have been reconfiguring the interior of a Dragon spacecraft currently docked at the outpost to support six crew members in the event of an emergency evacuation.

With Starliner leaving the space station next week, Dragon will become the lifeboat for Wilmore and Williams. If a fire, a collision with space junk, a medical emergency, or something else forces the crew to leave the complex, the Starliner astronauts will ride home on makeshift seats positioned under the four regular seats inside Dragon, where crews typically put cargo during launch and landing.

At least one of the Starliner astronauts would have to come home without a spacesuit to protect them if the cabin of the Dragon spacecraft depressurized on the descent. This has never happened on a Dragon mission before, but astronauts wear SpaceX-made pressure suits to mitigate the risk. The four astronauts who launched on Dragon have their suits, and NASA officials said a spare SpaceX suit already on the space station fit one of the Starliner astronauts, but they didn’t identify which one.

A pressure suit for the other Starliner crew member will launch on the next Dragon spacecraft—on the Crew-9 mission—set for liftoff on a SpaceX Falcon 9 rocket no earlier than September 24. Starliner’s troubles have also disrupted plans for the Crew-9 mission.

On Friday, NASA announced it would remove two astronauts from the Crew-9 mission, including its commander, Zena Cardman, who is a spaceflight rookie. Veteran astronaut Nick Hague will move from the pilot’s seat to take over as Crew-9 commander. Russian cosmonaut Aleksandr Gorbunov will join him.

NASA and Russia’s space agency, Roscosmos, have an agreement to launch Russian cosmonauts on Dragon missions and US astronauts on Russian Soyuz flights to the station. In exchange for NASA providing a ride for Gorbunov, NASA astronaut Don Pettit will fly to the space station on a Soyuz spacecraft next month.

The so-called “seat swap” arrangement ensures that, even if Dragon or Soyuz were grounded, there is always at least one US astronaut and one Russian cosmonaut on the station overseeing each partner’s segment of the outpost, maintaining propulsion, power generating, pointing control, thermal control, and other critical capabilities to keep the lab operational.

Boeing will try to fly its troubled Starliner capsule back to Earth next week Read More »

sparks-are-flying-day-and-night-as-spacex-preps-starship-pad-to-catch-a-rocket

Sparks are flying day and night as SpaceX preps Starship pad to catch a rocket

Pretty much every day for the last couple of weeks, workers wielding welding guns and torches have climbed onto SpaceX’s Starship launch pad in South Texas to make last-minute upgrades ahead of the next test flight of the world’s largest rocket.

Livestreams of the launch site provided by LabPadre and NASASpaceflight.com have shown sparks raining down two mechanical arms extending from the side of the Starship launch tower at SpaceX’s Starbase launch site on the Gulf Coast east of Brownsville, Texas. We are publishing several views here of the welding activity with the permission of LabPadre, which runs a YouTube page with multiple live views of Starbase.

If SpaceX has its way on the next flight of Starship, these arms will close together to capture the first-stage booster, called Super Heavy, as it descends back to Earth and slows to a hover over the launch pad.

This method of rocket recovery is remarkably different from how SpaceX lands its smaller Falcon 9 booster, which has landing legs to touch down on offshore ocean-going platforms or at concrete sites onshore. Catching the rocket with large metallic arms—sometimes called “mechazilla arms” or “chopsticks”—would reduce the turnaround time to reuse the booster and simplify its design, according to SpaceX.

SpaceX has launched the nearly 400-foot-tall (121 meter) Starship rocket four times, most recently in June, when the Super Heavy booster, itself roughly 233 feet (71 meters) tall, made a pinpoint splashdown in the Gulf of Mexico just off the coast of Starbase.

On the same flight in June, the Starship upper stage flew halfway around the world and reentered the atmosphere over the Indian Ocean. The ship survived reentry and splashed down in the open ocean northwest of Australia. This flight was the first time either part of the Starship rocket made it back to Earth intact, but SpaceX didn’t recover the booster or the ship.

Doubling up

Lessons learned from the June test flight prompted SpaceX to replace thousands of heat shield tiles on the Starship vehicle for the next mission. While the ship survived reentry in June, onboard camera views showed numerous tiles ripped away from the vehicle. Last month, SpaceX test-fired engines on the booster and ship assigned to the next launch.

On August 8, SpaceX said Starship and Super Heavy were “ready to fly, pending regulatory approval” from the Federal Aviation Administration. An FAA spokesperson said the agency is evaluating SpaceX’s proposed flight profile for the next Starship test flight, when SpaceX wants to try catching the booster on the pad. This will be the first time SpaceX will try to bring the stainless-steel Super Heavy booster, as long as and wider than a Boeing 747 jumbo jet, back to a landing on land.

Sparks fly at Starbase as welders work overnight at the Starship launch pad.

Enlarge / Sparks fly at Starbase as welders work overnight at the Starship launch pad.

While the rocket appears to be ready to fly, SpaceX officials clearly believe there’s more work to do on the launch pad. Closer views revealed welders are installing structural supports, or doublers, to certain parts of the catch arms. Elsewhere on the arms, workers were seen removing and adding other unknown pieces of hardware. SpaceX hasn’t specified exactly what kind of work teams are doing on the Starship launch pad in Texas, but the focus is on beefing up hardware necessary for catching the Super Heavy booster.

All of this work is occurring during the hottest part of the year in South Texas. On most days this month, afternoon temperatures have soared into the mid-to-upper 90s Fahrenheit, with sticky humidity. A lot of the work on the catch arms has occurred at night, when temperatures drop into the lower 80s.

It’s unclear how long it will take for the FAA to approve a license for SpaceX to launch and recover the rocket on the next test flight or when SpaceX will complete the upgrades on the launch pad. Elon Musk, SpaceX’s founder and CEO, suggested earlier this month that the flight could take off by the end of August, but the condition of the launch pad and remaining tests indicate a launch is still probably at least a couple of weeks away.

Once workers finish up their tasks upgrading the pad and clearing scaffolding and cranes from the area, SpaceX will likely stack the Super Heavy booster and Starship upper stage and fill them with propellants during a full countdown rehearsal, as it has before each previous Starship launch.

Musk has signaled several times that the company will try to catch the Super Heavy booster on the next flight, which will also accelerate the Starship upper stage to nearly orbital velocity for another reentry demonstration over the Indian Ocean. Last month, SpaceX released a video teasing a catch of the booster on the next Starship flight, showing the rocket returning to Starbase with its Raptor engines firing.

Meanwhile, SpaceX has stacked a second Starship launch tower next to the existing launch pad in Texas. The company still has a lot of work to do to outfit the second launch pad before it is ready to support a Starship flight, but SpaceX could have it ready for activation sometime next year. SpaceX also plans two Starship launch pads at Cape Canaveral, Florida. All these sites will allow SpaceX to launch Starships more often. The company is also finishing a sprawling factory near the Starship factory in South Texas, just a couple of miles inland from the launch pads there.

Sparks are flying day and night as SpaceX preps Starship pad to catch a rocket Read More »

nasa’s-starliner-decision-was-the-right-one,-but-it’s-a-crushing-blow-for-boeing

NASA’s Starliner decision was the right one, but it’s a crushing blow for Boeing

Falling short —

It’s unlikely Boeing can fly all six of its Starliner missions before retirement of the ISS in 2030.

A Starliner spacecraft mounted on top of an Atlas V rocket before an unpiloted test flight in 2022.

Enlarge / A Starliner spacecraft mounted on top of an Atlas V rocket before an unpiloted test flight in 2022.

Ten years ago next month NASA announced that Boeing, one of the agency’s most experienced contractors, won the lion’s share of government money available to end the agency’s sole reliance on Russia to ferry its astronauts to and from low-Earth orbit.

At the time, Boeing won $4.2 billion from NASA to complete development of the Starliner spacecraft and fly a minimum of two, and potentially up to six, operational crew flights to rotate crews between Earth and the International Space Station (ISS). SpaceX won a $2.6 billion contract for essentially the same scope of work.

A decade later the Starliner program finds itself at a crossroads after Boeing learned it will not complete the spacecraft’s first Crew Flight Test with astronauts onboard. NASA formally decided Saturday that Butch Wilmore and Suni Williams, who launched on the Starliner capsule June 5, will instead return to Earth inside a SpaceX Crew Dragon spacecraft. Put simply, NASA isn’t confident enough in Boeing’s spacecraft after it suffered multiple thrusters failures and helium leaks on the way to the ISS.

So where does this leave Boeing with its multibillion contract? Can the company fulfill the breadth of its commercial crew contract with NASA before the space station’s scheduled retirement in 2030? It now seems that there is little chance of Boeing flying six more Starliner missions without a life extension for the ISS. Tellingly, perhaps, NASA has only placed firm orders with Boeing for three Starliner flights once the agency certifies the spacecraft for operational use.

Boeing’s bottom line

Although Boeing did not make an official statement Saturday on its long-term plans for Starliner, NASA Administrator Bill Nelson told reporters he received assurances from Boeing’s new CEO, Kelly Ortberg, that the company remains committed to the commercial crew program. And it will take a significant commitment from Boeing to see it through. Under the terms of its fixed price contract with NASA, the company is on the hook to pay for any expenses to fix the thruster and helium leak problems and get Starliner flying again.

Boeing has already reported $1.6 billion in charges on its financial statements to pay for delays and cost overruns on the Starliner program. That figure will grow as the company will likely need to redesign some elements in the spacecraft’s propulsion system to remedy the problems encountered on the Crew Flight Test (CFT) mission. NASA has committed $5.1 billion to Boeing for the Starliner program, and the agency has already paid out most of that funding.

Boeing's Starliner spacecraft, seen docked at the International Space Station through the window of a SpaceX Dragon spacecraft.

Enlarge / Boeing’s Starliner spacecraft, seen docked at the International Space Station through the window of a SpaceX Dragon spacecraft.

The next step for Starliner remains unclear, and we’ll assess that in more detail later in the story. Had the Starliner test flight ended as expected, with its crew inside, NASA targeted no earlier than August 2025 for Boeing to launch the first of its six operational crew rotation missions to the space station. In light of Saturday’s decision, there’s a high probability Starliner won’t fly with astronauts again until at least 2026.

Starliner safely delivered astronauts Butch Wilmore and Suni Williams to the space station on June 6, a day after their launch from Cape Canaveral Space Force Station, Florida. But five of the craft’s 28 reaction control system thrusters overheated and failed as it approached the outpost. After the failures on the way to the space station, NASA’s engineers were concerned Starliner might suffer similar problems, or worse, when the control jets fired to guide Starliner on the trip back to Earth.

On Saturday, senior NASA leaders decided it wasn’t worth the risk. The two astronauts, who originally planned for an eight-day stay at the station, will now spend eight months on the orbiting research lab until they come back to Earth with SpaceX.

If it’s not a trust problem, is it a judgement issue?

Boeing managers had previously declared Starliner was safe enough to bring Wilmore and Williams home. Mark Nappi, Boeing’s Starliner program manager, regularly appeared to downplay the seriousness of the thruster issues during press conferences throughout Starliner’s nearly three-month mission.

So why did NASA and Boeing engineers reach different conclusions? “I think we’re looking at the data and we view the data and the uncertainty that’s there differently than Boeing does,” said Jim Free, NASA’s associate administrator, and the agency’s most senior civil servant. “It’s not a matter of trust. It’s our technical expertise and our experience that we have to balance. We balance risk across everything, not just Starliner.”

The people at the top of NASA’s decision-making tree have either flown in space before, or had front-row seats to the calamitous decision NASA made in 2003 to not seek more data on the condition of space shuttle Columbia’s left wing after the impact of a block of foam from the shuttle’s fuel tank during launch. This led to the deaths of seven astronauts, and the destruction of Columbia during reentry over East Texas. A similar normalization of technical problems, and a culture of stifling dissent, led to the loss of space shuttle Challenger in 1986.

“We lost two space shuttles as a result there not being a culture in which information could come forward,” Nelson said Saturday. “We have been very solicitous of all of our employees that if you have some objection, you come forward. Spaceflight is risky, even at its safest, and even at its most routine. And a test flight by nature is neither safe nor routine. So the decision to keep Butch and Suni aboard the International Space Station and bring the Starliner home uncrewed is the result of a commitment to safety.”

Now, it seems that culture may truly have changed. With SpaceX’s Dragon spacecraft available to give Wilmore and Williams a ride home, this ended up being a relatively straightforward decision. Ken Bowersox, head of NASA’s space operations mission directorate, said the managers polled for their opinion all supported bringing the Starliner spacecraft back to Earth without anyone onboard.

However, NASA and Boeing need to answer for how the Starliner program got to this point. The space agency approved the launch of the Starliner CFT mission in June despite knowing the spacecraft had a helium leak in its propulsion system. Those leaks multiplied once Starliner arrived in orbit, and are a serious issue on their own that will require corrective actions before the next flight. Ultimately, the thruster problems superseded the seriousness of the helium leaks, and this is where NASA and Boeing are likely to face the most difficult questions moving forward.

NASA astronauts Butch Wilmore and Suni Williams aboard the International Space Station.

Enlarge / NASA astronauts Butch Wilmore and Suni Williams aboard the International Space Station.

Boeing’s previous Starliner mission, known as Orbital Flight Test-2 (OFT-2), successfully launched in 2022 and docked with the space station, later coming back to Earth for a parachute-assisted landing in New Mexico. The test flight achieved all of its major objectives, setting the stage for the Crew Flight Test mission this year. But the spacecraft suffered thruster problems on that flight, too.

Several of the reaction control system thrusters stopped working as Starliner approached the space station on the OFT-2 mission, and another one failed on the return leg of the mission. Engineers thought they fixed the problem by introducing what was essentially a software fix to adjust timing and tolerance settings on sensors in the propulsion system, supplied by Aerojet Rocketdyne.

That didn’t work. The problem lay elsewhere, as engineers discovered during testing this summer, when Starliner was already in orbit. Thruster firings at White Stands, New Mexico, revealed a small Teflon seal in a valve can bulge when overheated, restricting the flow of oxidizer propellant to the thruster. NASA officials concluded there is a chance, however small, that the thrusters could overheat again as Starliner departs the station and flies back to Earth—or perhaps get worse.

“We are clearly operating this thruster at a higher temperature, at times, than it was designed for,” said Steve Stich, NASA’s commercial crew program manager. “I think that was a factor, that as we started to look at the data a little bit more carefully, we’re operating the thruster outside of where it should be operated at.”

NASA’s Starliner decision was the right one, but it’s a crushing blow for Boeing Read More »

after-months-of-mulling,-nasa-will-decide-on-starliner-return-this-weekend

After months of mulling, NASA will decide on Starliner return this weekend

Standby for news —

“The agency flight readiness review is where any formal dissents are presented and reconciled.”

A high-resolution commercial Earth-imaging satellite owned by Maxar captured this view of the International Space Station on June 7 with Boeing's Starliner capsule docked at the lab's forward port (lower right).

Enlarge / A high-resolution commercial Earth-imaging satellite owned by Maxar captured this view of the International Space Station on June 7 with Boeing’s Starliner capsule docked at the lab’s forward port (lower right).

Senior NASA leaders, including the agency’s administrator, Bill Nelson, will meet Saturday in Houston to decide whether Boeing’s Starliner spacecraft is safe enough to ferry astronauts Butch Wilmore and Suni Williams back to Earth from the International Space Station.

The Flight Readiness Review (FRR) is expected to conclude with NASA’s most consequential safety decision in nearly a generation. One option is to clear the Starliner spacecraft to undock from the space station in early September with Wilmore and Williams onboard, as their flight plan initially laid out, or to bring the capsule home without its crew.

As of Thursday, the two veteran astronauts have been on the space station for 77 days, nearly 10 times longer than their planned stay of eight days. Wilmore and Williams were the first people to launch and dock at the space station aboard a Starliner spacecraft, but multiple thrusters failed and the capsule leaked helium from its propulsion system as it approached the orbiting complex on June 6.

That led to months of testing—in space and on the ground—data reviews, and modeling for engineers to try to understand the root cause of the thruster problems. Engineers believe the thrusters overheated, causing Teflon seals to bulge and block the flow of propellant to the small control jets, resulting in losing thrust. The condition of the thrusters improved once Starliner docked at the station when they weren’t repeatedly firing, as they need to do when the spacecraft is flying alone.

However, engineers and managers have not yet reached a consensus about whether the same problem could recur, or get worse, during the capsule’s journey back to Earth. In a worst-case scenario, if too many thrusters fail, the spacecraft would be unable to point in the proper direction for a critical braking burn to guide the capsule back into the atmosphere toward landing.

The suspect thrusters are located on Starliner’s service module, which will perform the deorbit burn and then separate from the astronaut-carrying crew module before reentry. A separate set of small engines will fine-tune Starliner’s trajectory during descent.

If NASA managers decide it’s not worth the risk, Wilmore and Williams would extend their stay on the space station until at least February of next year, when they would return to Earth inside a Dragon spacecraft provided by SpaceX, Boeing’s rival in NASA’s commercial crew program. This would eliminate the threat that thruster problems on the Starliner spacecraft might pose to the crew’s safety during the trip to Earth, but it comes with myriad side effects.

These effects include disrupting crew activities on the space station by bumping two astronauts off the next SpaceX flight, exposing Wilmore and Williams to additional radiation during their time in space, and dealing a debilitating blow to Boeing’s Starliner program.

If Boeing’s capsule cannot return to Earth with its two astronauts, NASA may not certify Starliner for operational crew missions without an additional test flight. In that case, Boeing probably wouldn’t be able to complete all six of its planned operational crew missions under a $4.2 billion NASA contract before the International Space Station is due for retirement in 2030.

FRR-eedom to speak

The Flight Readiness Review at NASA’s Johnson Space Center in Houston will begin Saturday morning. Ken Bowersox, a former astronaut and head of NASA’s Space Operations Mission Directorate, will chair the meeting. NASA Administrator Bill Nelson will participate, too. If there’s no unanimous agreement around the table at the FRR, a final decision on what to do could be elevated above Bowersox to NASA’s associate administrator, Jim Free or to Nelson.

“The agency flight readiness review is where any formal dissents are presented and reconciled,” NASA said in a statement Thursday. “Other agency leaders who routinely participate in launch and return readiness reviews for crewed missions include NASA’s administrator, deputy administrator, associate administrator, various agency center directors, the Flight Operations Directorate, and agency technical authorities.”

NASA has scheduled a press conference for no earlier than 1 pm ET (17: 00 UTC) Saturday to announce the agency’s decision and next steps, the agency said.

Lower-level managers will meet Friday in a so-called Program Control Board to discuss their findings and views before the FRR. At a previous Program Control Board meeting, managers disagreed on whether the agency was ready to sign off that the Starliner spacecraft was safe enough to return its astronauts to Earth.

There’s one new piece of information that engineers will brief to the Program Control Board on Friday:

“Engineering teams have been working to evaluate a new model that represents the thruster mechanics and is designed to more accurately predict performance during the return phase of flight,” NASA said. “This data could help teams better understand system redundancy from undock to service module separation. Ongoing efforts to complete the new modeling, characterize spacecraft performance data, refine integrated risk assessments, and determine community recommendations will fold into the agency-level review.”

After months of mulling, NASA will decide on Starliner return this weekend Read More »