ariane 6

rocket-report:-firefly-delivers-for-nasa;-polaris-dawn-launching-this-month

Rocket Report: Firefly delivers for NASA; Polaris Dawn launching this month

No holds barred —

The all-private Polaris Dawn spacewalk mission is set for launch no earlier than July 31.

Four kerosene-fueled Reaver engines power Firefly's Alpha rocket off the pad at Vandenberg Space Force Base, California.

Enlarge / Four kerosene-fueled Reaver engines power Firefly’s Alpha rocket off the pad at Vandenberg Space Force Base, California.

Welcome to Edition 7.01 of the Rocket Report! We’re compiling this week’s report a day later than usual due to the Independence Day holiday. Ars is beginning its seventh year publishing this weekly roundup of rocket news, and there’s a lot of it this week despite the holiday here in the United States. Worldwide, there were 122 launches that flew into Earth orbit or beyond in the first half of 2024, up from 91 in the same period last year.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Firefly launches its fifth Alpha flight. Firefly Aerospace placed eight CubeSats into orbit on a mission funded by NASA on the first flight of the company’s Alpha rocket since an upper stage malfunction more than half a year ago, Space News reports. The two-stage Alpha rocket lifted off from Vandenberg Space Force Base in California late Wednesday, two days after an issue with ground equipment aborted liftoff just before engine ignition. The eight CubeSats come from NASA centers and universities for a range of educational, research, and technology demonstration missions. This was the fifth flight of Firefly’s Alpha rocket, capable of placing about a metric ton of payload into low-Earth orbit.

Anomaly resolution … This was the fifth flight of an Alpha rocket since 2021 and the fourth Alpha flight to achieve orbit. But the last Alpha launch in December failed to place its Lockheed Martin payload into the proper orbit due to a problem during the relighting of its second-stage engine. On this week’s launch, Alpha deployed its NASA-sponsored payloads after a single burn of the second stage, then completed a successful restart of the engine for a plane change maneuver. Engineers traced the problem on the last Alpha flight to a software error. (submitted by Ken the Bin)

Two companies added to DoD’s launch pool. Blue Origin and Stoke Space Technologies — neither of which has yet reached orbit — have been approved by the US Space Force to compete for future launches of small payloads, Breaking Defense reports. Blue Origin and Stoke Space join a roster of launch companies eligible to compete for launch task orders the Space Force puts up for bid through the Orbital Services Program-4 (OSP-4) contract. Under this contract, Space Systems Command buys launch services for payloads 400 pounds (180 kilograms) or greater, enabling launch from 12 to 24 months of the award of a task order. The OSP-4 contract has an “emphasis on small orbital launch capabilities and launch solutions for Tactically Responsive Space mission needs,” said Lt. Col. Steve Hendershot, chief of Space Systems Command’s small launch and targets division.

An even dozen … Blue Origin aims to launch its orbital-class New Glenn rocket for the first time as soon as late September, while Stoke Space aims to fly its Nova rocket on an orbital test flight next year. The addition of these two companies means there are 12 providers eligible to bid on OSP-4 task orders. The other companies are ABL Space Systems, Aevum, Astra, Firefly Aerospace, Northrop Grumman, Relativity Space, Rocket Lab, SpaceX, United Launch Alliance, and X-Bow. (submitted by Ken the Bin and brianrhurley)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Italian startup test-fires small rocket. Italian rocket builder Sidereus Space Dynamics has completed the first integrated system test of its EOS rocket, European Spaceflight reports. This test occurred Sunday, culminating in a firing of the rocket’s kerosene/liquid oxygen MR-5 main engine for approximately 11 seconds. The EOS rocket is a novel design, utilizing a single-stage-to-orbit architecture, with the reusable booster returning to Earth from orbit for recovery under a parafoil. The rocket stands less than 14 feet (4.2 meters) tall and will be capable of delivering about 29 pounds (13 kilograms) of payload to low-Earth orbit.

A lean operation … After it completes integrated testing on the ground, the company will conduct the first low-altitude EOS test flights. Founded in 2019, Sidereus has raised 6.6 million euros ($7.1 million) to fund the development of the EOS rocket. While this is a fraction of the funding other European launch startups like Isar Aerospace, MaiaSpace, and Orbex have attracted, the Sidereus’s CEO, Mattia Barbarossa, has previously stated that the company intends to “reshape spaceflight in a fraction of the time and with limited resources.” (submitted by EllPeaTea and Ken the Bin)

Rocket Report: Firefly delivers for NASA; Polaris Dawn launching this month Read More »

mere-days-before-its-debut,-the-ariane-6-rocket-loses-a-key-customer-to-spacex

Mere days before its debut, the Ariane 6 rocket loses a key customer to SpaceX

Zut Alors! —

“I am impatiently waiting to understand what reasons could have led Eumetsat to such a decision.”

The flight hardware core stage for Europe’s new rocket, Ariane 6, is moved onto the launch pad for the first time. A launch is due to occur on July 9, 2024.

Enlarge / The flight hardware core stage for Europe’s new rocket, Ariane 6, is moved onto the launch pad for the first time. A launch is due to occur on July 9, 2024.

ESA-M. Pédoussaut

In a shocking announcement this week, the European intergovernmental organization responsible for launching and operating the continent’s weather satellites has pulled its next mission off a future launch of Europe’s new Ariane 6 rocket. Instead, the valuable MTG-S1 satellite will now reach geostationary orbit on SpaceX’s Falcon 9 rocket in 2025.

“This decision was driven by exceptional circumstances” said Phil Evans, director general of the organization Eumetsat. “It does not compromise our standard policy of supporting European partners, and we look forward to a successful SpaceX launch for this masterpiece of European technology.”

The decision, taken at a council meeting of Eumetsat’s 30 member nations on Wednesday and Thursday, comes less than two weeks before the debut of the Ariane 6 rocket, scheduled for July 9.

Stabbed in the back

Outwardly, at least, this decision reflects a lack of confidence in the reliability of the Ariane 6 rocket, the ability of European companies ArianeGroup and Arianespace to produce future versions of the Ariane 6, or both. It comes not just on the eve of the long-awaited debut of the Ariane 6, but also at a time when European officials are trying to close ranks and ensure that satellites built in Europe get launched on European rockets.

The retirement of the Ariane 5 rocket last July, and years of delays in the readiness for the Ariane 6 rocket, have led to a painful period in which European officials have had to come hat-in-hand to their longtime competitor and nemesis in the rocket industry, SpaceX, for launch services. As a result some of Europe’s most valuable missions, including the Euclid space telescope and several Galileo satellites, have already launched on the Falcon 9.

This has been embarrassing enough for European launch officials, who effectively created the concept of “commercial” space launch with the first Ariane rockets decades ago. For a long time, they, alongside Russia, were the kings of launching other people’s satellites. But now, on the eve of restoring European access to space, Eumetsat has effectively stabbed this industry in the back.

That is not too strong of language, either. In its release, Eumetsat described its new Meteosat Third Generation-Sounder 1 satellite as a “unique masterpiece of European technology.” The organization added, “This first European sounding satellite in a geostationary orbit will bring a revolution for weather forecasting and climate monitoring in Europe and Africa, and make it possible, for the first time, to observe the full lifecycle of a convective storm from space.” Critically, Eutmetsat was not willing to entrust this spacecraft to Europe’s new flagship rocket.

Philippe Baptiste, the chairman and chief executive of the French space agency CNES, certainly felt the sting, calling the decision a “brutal change” and saying it was a “disappointing day” for European space efforts.

“I am impatiently waiting to understand what reasons could have led Eumetsat to such a decision, at a time where all major European space countries as well as the European Commission are calling for launching European satellites on European launchers!” Baptiste wrote on LinkedIn. “Not mentioning the fact that we are 10 days away from the maiden flight of Ariane 6. How far will we, Europeans, go in our naivety?”

Why did they do this?

It is difficult to fully understand the motivations of Eumetsat in this decision. Most probably, there were some timing and reliability concerns. The MTG-S1 satellite was due to launch on the third flight of the Ariane 6 rocket, a mission nominally scheduled for early 2025. On this timeline the satellite very likely would have gotten to space more quickly than it otherwise would now on a Falcon 9.

However, because this 4-ton satellite is going to geostationary orbit, it would have been the first mission to require the use of a more powerful version of the Ariane 6 rocket. Instead of using two solid-rocket boosters, this “64” version of the rocket uses four solid-rocket boosters. It seems likely that Eumetsat officials had concerns that the timeline for this launch would drag out and perhaps some mission assurance concerns about being the first launch of an Ariane 64 rocket.

Whatever their reasons, the European satellite officials have thrown a massive turd into the punchbowl at festivities for the debut of the Ariane 6 rocket.

Mere days before its debut, the Ariane 6 rocket loses a key customer to SpaceX Read More »

some-european-launch-officials-still-have-their-heads-stuck-in-the-sand

Some European launch officials still have their heads stuck in the sand

This is fine —

“Starship will not eradicate Ariane 6 at all.”

The first stage of Ariane 6 rocket Europe's Spaceport in Kourou in the French overseas department of Guiana, on March 26, 2024.

Enlarge / The first stage of Ariane 6 rocket Europe’s Spaceport in Kourou in the French overseas department of Guiana, on March 26, 2024.

LUDOVIC MARIN/AFP via Getty Images

There was a panel discussion at a space conference in Singapore 11 years ago that has since become legendary in certain corners of the space industry for what it reveals about European attitudes toward upstart SpaceX.

The panel included representatives from a handful of launch enterprises, including Europe-based Arianespace, and the US launch company SpaceX. At one point during the discussion, the host asked the Arianespace representative—its chief of sales in Southeast Asia, Richard Bowles—how the institutional European company would respond to SpaceX’s promise of lower launch costs and reuse with the Falcon 9 rocket.

“What I’m discovering in the market is that SpaceX primarily seems to be selling a dream, which is good. We should all dream,” Bowles replied. “I think a $5 million launch or a $15 million launch is a bit of a dream. Personally, I think reusability is a dream. How am I going to respond to a dream? My answer to respond to a dream is, first of all, you don’t wake people up.”

To be fair to Bowles, at the time of his remarks, SpaceX had only launched the Falcon 9 five times by the middle of 2013. But his condescension was nevertheless something to behold.

Later in the discussion, Bowles added that he did not believe launching 100 times a year, something that SpaceX was starting to talk about, was “realistic.” Then, in a moment of high paternalism, he turned to the SpaceX official on the panel and said, “You shouldn’t present things that are not realistic.”

In response, Barry Matsumori, a senior vice president at SpaceX, calmly said he would let his company’s response come through its actions.

Actions do speak louder than words

Eleven years later, of course, SpaceX is launching more than 100 times a year. The company’s internal price for launching a Falcon 9 is significantly less than $20 million. And all of this is possible through the reuse of the rocket’s first stage and payload fairings, each of which have now proven capable of flying 20 or more times.

One might think that, in the decade since, European launch officials would have learned their lesson. After all, last year, the continent had to resort to launching its valuable Euclid Space Telescope on a Falcon 9 rocket. This year, because the new European Ariane 6 rocket was not yet ready after myriad delays, multiple Galileo satellites have been launched and will be launched on the Falcon 9 rocket.

Some officials have taken note. In a candid commentary last year, European Space Agency chief Josef Aschbacher acknowledged that the continent faced an “acute” launcher crisis amid the Ariane 6 delays and the rise of SpaceX as a launch competitor. “SpaceX has undeniably changed the launcher market paradigm as we know it,” Aschbacher wrote. “With the dependable reliability of Falcon 9 and the captivating prospects of Starship, SpaceX continues to totally redefine the world’s access to space, pushing the boundaries of possibility as they go along.”

But not everyone got the message, it seems.

Next month, the Ariane 6 rocket should finally make its debut. It will probably be successful. Europe has excellent technical capabilities in regard to launch. But from day one, the Ariane 6 launch vehicle will cost significantly more than the Falcon 9 rocket, which has similar capabilities, and offer no provision for reuse. Certainly, it will meet Europe’s institutional needs. But it likely will not shake up the market, nor realistically compete with a fully reusable Falcon 9.

Who really needs to be woken up?

And what about Starship? If and when SpaceX can deliver it to the market, the next-generation rocket will offer a fully reusable booster with five times the lift capacity of the Ariane 6 rocket for half its cost or less. How can Europe hope to compete with that? The European Space Agency’s director of space transportation, Toni Tolker-Nielsen—who works for Aschbacher, it should be noted—said he’s not concerned.

“Honestly, I don’t think Starship will be a game-changer or a real competitor,” he said in an interview with Space News. “This huge launcher is designed to fly people to the Moon and Mars. Ariane 6 is perfect for the job if you need to launch a four- or five-ton satellite. Starship will not eradicate Ariane 6 at all.”

In one sense, Tolker-Nielsen is correct. Starship will not change how Europe gets its small and medium-sized satellites into space. Made and launched in Europe, the Ariane 6 rocket will be a workhorse for the continent. Indeed, some European officials are going so far as to press for legislation mandating that European satellites launch on European rockets.

But to say Starship will not be a game-changer represents the same head-in-the-sand attitude displayed by Bowles a decade ago with his jokes about not waking the deluded dreamers up. In hindsight, it’s clear that the dreamers were not SpaceX or its customers. Rather, they were European officials who had lulled themselves into thinking their dominance in commercial launch would persist without innovation.

While they slumbered, these officials ignored the rise of reusability. They decided the Ariane 6 rocket should look like its expendable predecessors, with solid rocket boosters. Meanwhile, following the rise of the Falcon 9, nearly all new rocket projects have incorporated a significant reusability component. It’s no longer just SpaceX founder Elon Musk saying companies need to pursue reuse or perish. Almost everyone is.

Perhaps someone should wake Tolker-Nielsen up.

Some European launch officials still have their heads stuck in the sand Read More »

rocket-report:-astroscale-chases-down-dead-rocket;-ariane-6-on-the-pad

Rocket Report: Astroscale chases down dead rocket; Ariane 6 on the pad

RIP B1060 —

Rocket Factory Augsburg, a German launch startup, nears a test-firing of its booster.

This image captured by Astroscale's ADRAS-J satellite shows the discarded upper stage from a Japanese H-IIA rocket.

Enlarge / This image captured by Astroscale’s ADRAS-J satellite shows the discarded upper stage from a Japanese H-IIA rocket.

Welcome to Edition 6.42 of the Rocket Report! Several major missions are set for launch in the next few months. These include the first crew flight on Boeing’s Starliner spacecraft, set for liftoff on May 6, and the next test flight of SpaceX’s Starship rocket, which could happen before the end of May. Perhaps as soon as early summer, SpaceX could launch the Polaris Dawn mission with four private astronauts, who will perform the first fully commercial spacewalk in orbit. In June or July, Europe’s new Ariane 6 rocket is slated to launch for the first time. Rest assured, Ars will have it all covered.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

German rocket arrives at Scottish spaceport. Rocket Factory Augsburg has delivered a booster for its privately developed RFA One rocket to SaxaVord Spaceport in Scotland, the company announced on X. The first stage for the RFA One rocket was installed on its launch pad at SaxaVord to undergo preparations for a static fire test. The booster arrived at the Scottish launch site with five of its kerosene-fueled Helix engines. The remaining four Helix engines, for a total of nine, will be fitted to the RFA One booster at SaxaVord, the company said.

Aiming to fly this year… RFA hopes to launch its first orbital-class rocket by the end of 2024. The UK’s Civil Aviation Authority last month granted a range license to SaxaVord Spaceport to allow the spaceport operator to control the sea and airspace during a launch. RFA is primarily privately funded but has won financial support from the European Space Agency, the UK Space Agency, and the German space agency, known as DLR. The RFA One rocket will have three stages, stand nearly 100 feet (30 meters) tall, and can carry nearly 2,900 pounds (1,300 kilograms) of payload into a polar Sun-synchronous orbit.

Arianespace wins ESA launch contract. The European Space Agency has awarded Arianespace a contract to launch a joint European-Chinese space science satellite in late 2025, European Spaceflight reports. The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a 4,850-pound (2,200-kilogram) spacecraft that will study Earth’s magnetic environment on a global scale. The aim of the mission is to build a more complete understanding of the Sun-Earth connection. On Tuesday, ESA officially signed a contract for Arianespace to launch SMILE aboard a Vega C rocket, which is built by the Italian rocket-maker Avio.

But it may not keep it … In late 2023, ESA member states agreed to allow Avio to market and manage the launch of Vega C flights independent of Arianespace. When the deal was initially struck, 17 flights were contracted through Arianespace to be launched aboard Vega vehicles. While these missions are still managed by Arianespace, Avio is working with the launch provider to strike a deal that would allow the Italian rocket builder to assume the management of all Vega flights. The Vega C rocket has been grounded since a launch failure in 2022 forced Avio to redesign the nozzle of the rocket’s solid-fueled second-stage motor. Vega C is scheduled to return to flight before the end of 2024. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Update on ABL’s second launch. ABL Space Systems expected to launch its second light-class RS1 rocket earlier this year, but the company encountered an anomaly during ground testing at the launch site in Alaska, according to Aria Alamalhodaei of TechCrunch. Kevin Sagis, ABL’s chief engineer, said there is “no significant delay” in the launch of the second RS1 rocket, but the company has not announced a firm schedule. “During ground testing designed to screen the vehicle for flight, an issue presented that caused us to roll back to the hangar,” Sagis said, according to Alamalhodaei. “We have since resolved and dispositioned the issue. There was no loss of hardware and we have validated vehicle health back out on the pad. We are continuing with preparations for static fire and launch.”

Nearly 16 months without a launch … ABL’s first RS1 test flight in January 2023 ended seconds after liftoff with the premature shutdown of its liquid-fueled engines. The rocket crashed back onto its launch pad in Alaska. An investigation revealed a fire in the aft end of the RS1 booster burned through wiring harnesses, causing the rocket to lose power and shut off its engines. Engineers believe the rocket’s mobile launch mount was too small, placing the rocket too close to the ground when it ignited its engines. This caused the hot engine exhaust to recirculate under the rocket and led to a fire in the engine compartment as it took off.

Rocket Report: Astroscale chases down dead rocket; Ariane 6 on the pad Read More »

rocket-report:-starship-could-fly-again-in-may;-ariane-6-coming-together

Rocket Report: Starship could fly again in May; Ariane 6 coming together

Eating their lunch —

“I think we’re really going to focus on getting reentry right.”

Nine kerosene-fueled Rutherford engines power Rocket Lab's Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Enlarge / Nine kerosene-fueled Rutherford engines power Rocket Lab’s Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Welcome to Edition 6.36 of the Rocket Report! SpaceX wants to launch the next Starship test flight as soon as early May, the company’s president and chief operating officer said this week. The third Starship test flight last week went well enough that the Federal Aviation Administration—yes, the FAA, the target of many SpaceX fans’ frustrations—anticipates a simpler investigation and launch licensing process than SpaceX went through before its previous Starship flights. However, it looks like we’ll have to wait a little longer for Starship to start launching real satellites.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Starship could threaten small launch providers. Officials from several companies operating or developing small satellite launch vehicles are worried that SpaceX’s giant Starship rocket could have a big impact on their marketability, Space News reports. Starship’s ability to haul more than 100 metric tons of payload mass into low-Earth orbit will be attractive not just for customers with heavy satellites but also for those with smaller spacecraft. Aggregating numerous smallsats on Starship will mean lower prices than dedicated small satellite launch companies can offer and could encourage customers to build larger satellites with cheaper parts, further eroding business opportunities for small launch providers.

Well, yeah … SpaceX’s dedicated rideshare missions are already reshaping the small satellite launch market. The price per kilogram of payload on a Falcon 9 rocket launching a Transporter mission is less than the price per unit on a smaller rocket, like Rocket Lab’s Electron, Firefly’s Alpha, or Europe’s Vega. Companies operating only in the smallsat launch market tout the benefits of their services, often pointing to their ability to deliver payloads into bespoke orbits, rather than dropping off bunches of satellites into more standardized orbits. But the introduction of Orbital Transfer Vehicles for last-mile delivery services has made SpaceX’s Transporter missions, and potentially Starship rideshares, more attractive. “With Starship, OTVs can become the best option for smallsats,” said Marino Fragnito, senior vice president and head of the Vega business unit at Arianespace. If Starship is able to achieve the very low per-kilogram launch prices proposed for it, “then it will be difficult for small launch vehicles,” Fragnito said.

Rocket Lab launches again from Virginia. Rocket Lab’s fourth launch from Wallops Island, Virginia, and the company’s first there in nine months, took off early Thursday with a classified payload for the National Reconnaissance Office, the US government’s spy satellite agency, Space News reports. A two-stage Electron rocket placed the NRO’s payload into low-Earth orbit, and officials declared it a successful mission. The NRO did not disclose any details about the payload, but in a post-launch statement, the agency suggested the mission was conducting technology demonstrations of some kind. “The knowledge gained from this research will advance innovation and enable the development of critical new technology,” said Chris Scolose, director of the NRO.

A steady customer for Rocket Lab … The National Reconnaissance Office has become a regular customer of Rocket Lab. The NRO has historically launched larger spacecraft, such as massive bus-sized spy satellites, but like the Space Force, is beginning to launch larger numbers of small satellites. This mission, designated NROL-123 by the NRO, was the fifth and last mission under a Rapid Acquisition of a Small Rocket (RASR) contract between NRO and Rocket Lab, dating back to 2020. It was also Rocket Lab’s second launch in nine days, following an Electron flight last week from its primary base in New Zealand. Overall, it was the 46th launch of a light-class Electron rocket since it debuted in 2017. Rocket Lab is building a launch pad for its next-generation Neutron rocket at Wallops. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Night flight for Astrobotic’s Xodiac. The Xodiac rocket, a small terrestrial vertical takeoff and vertical landing technology testbed, made its first night flight, Astrobotic says in a statement. The liquid-fueled Xodiac is designed for vertical hops and can host prototype sensors and other payloads, particularly instruments in development to assist in precision landings on other worlds. This first tethered night flight of Xodiac in Mojave, California, was in preparation for upcoming flight testing with the NASA TechLeap Prize’s Nighttime Precision Landing Challenge. These flights will begin in April, allowing NASA to test the ability of sensors to map a landing field designed to simulate the Moon’s surface in near-total darkness.

Building on the legacy of Masten … Xodiac has completed more than 160 successful flights, dating back to the vehicle’s original owner, Masten Space Systems. Masten filed for bankruptcy in 2022, and the company was acquired by Astrobotic a couple of months later. Astrobotic’s primary business area is in developing and flying robotic Moon landers, so it has a keen interest in mastering automated landing and navigation technologies like those it is testing with NASA on Xodiac. David Masten, founder of Masten Space Systems, is now chief engineer for Astrobotic’s propulsion and test department. “The teams will demonstrate their systems over the LSPG (Lunar Surface Proving Ground) at night to simulate landing on the Moon during the lunar night or in shadowed craters.” (submitted by Ken the Bin)

Rocket Report: Starship could fly again in May; Ariane 6 coming together Read More »

rocket-report:-starliner-launch-preps;-indian-rocket-engine-human-rated

Rocket Report: Starliner launch preps; Indian rocket engine human-rated

Cape-a-palooza —

The Bahamian government and SpaceX signed an agreement for Falcon 9 booster landings.

The first stage of United Launch Alliance's Atlas V rocket was lifted onto its launch platform this week in preparation for an April liftoff with two NASA astronauts on Boeing's Starliner Crew Flight Test.

Enlarge / The first stage of United Launch Alliance’s Atlas V rocket was lifted onto its launch platform this week in preparation for an April liftoff with two NASA astronauts on Boeing’s Starliner Crew Flight Test.

United Launch Alliance

Welcome to Edition 6.32 of the Rocket Report! I’m writing the report again this week as Eric Berger is in Washington, DC, to receive a well-earned honor, the 2024 Excellence in Commercial Space Journalism Award from the Commercial Spaceflight Federation. Cape Canaveral is the world’s busiest spaceport, and this week, three leading US launch companies were active there. SpaceX launched another Falcon 9 rocket, and a few miles away, Blue Origin raised a New Glenn rocket on its launch pad for long-awaited ground testing. Nearby, United Launch Alliance began assembling an Atlas V rocket for the first crew launch of Boeing’s Starliner spacecraft in April. 2024 is shaping up to be a truly exciting year for the spaceflight community.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Astroscale inspector satellite launched by Rocket Lab. Astroscale, a well-capitalized Japanese startup, has launched a small satellite to do something that has never been done in space, Ars reports. This new spacecraft, delivered into orbit on February 18 by Rocket Lab, will approach a defunct upper stage from a Japanese H-IIA rocket that has been circling Earth for more than 15 years. Over the next few months, the satellite will try to move within arm’s reach of the rocket, taking pictures and performing complicated maneuvers to move around the bus-size H-IIA upper stage as it moves around the planet at nearly 5 miles per second (7.6 km/s).

This is a first … Astroscale’s ADRAS-J mission is the first satellite designed to approach and inspect a piece of space junk in orbit. This is a public-private partnership between Astroscale and the Japanese space agency. Of course, space agencies and commercial companies have demonstrated rendezvous operations in orbit for decades. The difference here is the H-IIA rocket is uncontrolled, likely spinning and in a slow tumble, and was never designed to accommodate any visitors. Japan left it in orbit in January 2009 following the launch of a climate monitoring satellite and didn’t look back. ADRAS-J is a technology demonstration that could pave the way for a follow-on mission to actually link up with this H-IIA rocket and remove it from orbit. Astroscale eventually wants to use these technologies for satellite servicing, refueling, and further debris removal missions. (submitted by Ken the Bin and Jay500001)

Software error blamed for Firefly launch malfunction. Firefly Aerospace released an update Tuesday on an investigation into an upper stage malfunction on the company’s Alpha rocket in December. The investigation team, consisting of membership from Firefly, the Federal Aviation Administration, the National Transportation Safety Board, Lockheed Martin, NASA, and the US Space Force, determined a software error in the rocket’s guidance, navigation, and control software algorithm ultimately caused the Alpha rocket to release its payload into a lower-than-planned orbit following a launch from California.

Upper stage woes… The software error prevented the rocket from sending the “necessary pulse commands” to control thrusters on the upper stage before its main engine was supposed to reignite. This second burn by the upper stage was supposed to circularize the rocket’s orbit, but it didn’t happen as planned. Still, the Alpha rocket safely released its commercial satellite payload for Lockheed Martin. Although the lower orbit caused the satellite to reenter the atmosphere earlier this month, Lockheed Martin said it was able to achieve many of the objectives of the technology demonstration mission, which focused on testing an electronically steered antenna. This was the fourth launch of an Alpha rocket, and two of them have suffered from upper stage malfunctions during engine restart attempts. Firefly says it is preparing the next Alpha rocket to fly “in the coming months.” (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

A good fundraising round for Gilmour Space. Australian startup Gilmour Space Technologies has raised $55 million Australian dollars ($36 million) in a Series D funding round announced Monday, Space News reports. The funding supports the small launch vehicle startup’s campaign to manufacture, test, and begin launching rockets and satellites from the Bowen Orbital Spaceport in North Queensland. Gilmour Space, founded in 2012, is developing a three-stage rocket called Eris. The first Eris test flight is expected “in the coming months, pending launch approvals from the Australian Space Agency,” according to the Gilmour Space news release.

Launching from down under… Gilmour Space is aiming to launch the first Australian-built rocket into orbit later this year. The Eris rocket is powered by hybrid engines, and Gilmour says it is capable of delivering about 670 pounds (305 kilograms) of payload mass into a Sun-synchronous orbit. The $36 million fundraising round announced this week follows a $46 million fundraising round in 2021. According to the Australian Broadcasting Corporation, Gilmour Space is aiming for the first flight of Eris in April, and this latest fundraising should give the company enough money to mount four test flights. (submitted by Ken the Bin)

Rocket Report: Starliner launch preps; Indian rocket engine human-rated Read More »

rocket-report:-falcon-9-flies-for-300th-time;-an-intriguing-launch-from-russia

Rocket Report: Falcon 9 flies for 300th time; an intriguing launch from Russia

Co-planar —

Starship is fully stacked in South Texas for the rocket’s third test flight.

The upper stage for the first Ariane 6 flight vehicle is seen inside its factory in Bremen, Germany. The upper stage's hydrogen-fueled Vinci engine is visible in this image.

Enlarge / The upper stage for the first Ariane 6 flight vehicle is seen inside its factory in Bremen, Germany. The upper stage’s hydrogen-fueled Vinci engine is visible in this image.

Welcome to Edition 6.31 of the Rocket Report! Photographers at Cape Canaveral, Florida, noticed a change to the spaceport’s skyline this week. Blue Origin has erected a full-size simulator of its New Glenn rocket vertically on its launch pad for a series of fit checks and tests. Late last year, we reported Blue Origin was serious about getting the oft-delayed New Glenn rocket off the ground by the end of 2024. This is a good sign of progress toward that goal, but there’s a long, long way to go. It was fun to watch preparations for the inaugural flights of a few other heavy-lift rockets in the last couple of years (Starship, SLS, and Vulcan). This year, it’s New Glenn.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Russia launches a classified satellite. On February 9, Russia launched its first orbital mission of the year with the liftoff of a Soyuz-2-1v rocket from the Plesetsk Cosmodrome in the far north of the country. The two-stage rocket delivered a classified satellite into orbit for the Russian military, Anatoly Zak of RussianSpaceWeb.com reports. In keeping with the Russian military’s naming convention, the satellite is known simply as Kosmos 2575, and there’s little indication about what it will do in space, except for one key fact.

But wait, there’s more … It turns out the launch of Kosmos 2575 occurred at exactly the same time of day as another Soyuz-2-1v rocket launched on December 27 with a Russian military satellite named Kosmos 2574. The newer spacecraft launched into the same orbital plane as Kosmos 2574, a strong indication that the two satellites have a shared mission. In recent years, Russia has tested rendezvous, proximity operations, and, at least in one instance, a projectile that would have applications for an anti-satellite weapon. You can be sure the US military and a global community of hobbyist satellite trackers will watch closely to see if these two satellites approach one another. If they do, they could continue technology demonstrations for an anti-satellite system. It’s unclear if the recent revelations regarding US officials’ concerns about Russian anti-satellite capabilities are related to these recent launches.

European startup testing methane-fueled rocket engine. Space transportation startup The Exploration Company has continued testing its methane-fueled Huracán engine, which will power an in-space and lunar transportation vehicle under development, European Spaceflight reports. Most recently, the Huracán engine completed another round of thrust chamber testing using liquid methane fuel as a coolant and tested a new thermal barrier coating. The methane/liquid oxygen engine is undergoing testing at a facility in Lampoldshausen, Germany, ahead of use on The Exploration Company’s Nyx Moon spacecraft, a transfer vehicle designed for transportation to and from cislunar space and also capable of Moon landings. The Nyx Moon is an evolution of a transfer vehicle the European startup is developing to ferry satellites between different orbits around Earth.

Other uses for Huracán… The Exploration Company appears to be positioning itself not only as a builder and operator of orbital and lunar transfer vehicles but also as a propulsion supplier to other space companies. In 2022, The Exploration Company received funding for the Huracán engine from the French government. At the time, the company described the engine as serving the needs of “the upper stages of small launchers and those of orbital vehicles.” (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Rocket Report: Falcon 9 flies for 300th time; an intriguing launch from Russia Read More »