spacex

after-years-of-resisting-it,-spacex-now-plans-to-go-public.-why?

After years of resisting it, SpaceX now plans to go public. Why?


“Much of the AI race comes down to amassing and deploying assets.”

Elon Musk gestures as he speaks during a press conference at SpaceX’s Starbase facility near Boca Chica Village in South Texas on February 10, 2022. Credit: JIM WATSON/AFP via Getty Images

SpaceX is planning to raise tens of billions of dollars through an initial public offering next year, multiple outlets have reported, and Ars can confirm. This represents a major change in thinking from the world’s leading space company and its founder, Elon Musk.

The Wall Street Journal and The Information first reported about a possible IPO last Friday, and Bloomberg followed that up on Tuesday evening with a report suggesting the company would target a $1.5 trillion valuation. This would allow SpaceX to raise in excess of $30 billion.

This is an enormous amount of funding. The largest IPO in history occurred in 2019, when the state-owned Saudi Arabian oil company began public trading as Aramco and raised $29 billion. In terms of revenue, Aramco is a top-five company in the world.

Now SpaceX is poised to potentially match or exceed this value. That SpaceX would be attractive to public investors is not a surprise—it’s the world’s dominant space company in launch, space-based communications, and much more. For investors seeking unlimited growth, space is the final frontier.

Buy why would Musk take SpaceX public now, at a time when the company’s revenues are surging thanks to the growth of the Starlink Internet constellation? The decision is surprising because Musk has, for so long, resisted going public with SpaceX. He has not enjoyed the public scrutiny of Tesla, and feared that shareholder desires for financial return were not consistent with his ultimate goal of settling Mars.

Data centers

Ars spoke with multiple people familiar with Musk and his thinking to understand why he would want to take SpaceX public.

A significant shift in recent years has been the rise of artificial intelligence, which Musk has been involved in since 2015, when he co-founded OpenAI. He later had a falling out with his cofounders and started his own company, xAI, in 2023. At Tesla, he has been pushing smart-driving technology forward and more recently focused on robotics. Musk sees a convergence of these technologies in the near future, which he believes will profoundly change civilization.

Raising large amounts of money in the next 18 months would allow Musk to have significant capital to deploy at SpaceX as he influences and partakes in this convergence of technology.

How can SpaceX play in this space? In the near term, the company plans to develop a modified version of the Starlink satellite to serve as a foundation for building data centers in space. Musk said as much on the social media network he owns, X, in late October: “SpaceX will be doing this.”

But using a next-generation Starlink satellite manufactured on Earth is just the beginning of his vision. “The level beyond that is constructing satellite factories on the Moon and using a mass driver (electromagnetic railgun) to accelerate AI satellites to lunar escape velocity without the need for rockets,” Musk said this weekend on X. “That scales to >100TW/year of AI and enables non-trivial progress towards becoming a Kardashev II civilization.”

Based on some projected analyses, SpaceX is expected to have in the neighborhood of $22 to $24 billion in revenue next year. That is a lot of money—it’s on par with NASA’s annual budget, for example, and SpaceX can deploy its capital far, far more efficiently than the government can. So the company will be able to accomplish a lot. But with a large infusion of cash, SpaceX will be able to go much faster. And it will take a lot of cash to design and build the satellites and launch the rockets to deploy data centers in space.

Abhi Tripathi, a long-time SpaceX employee who is now director of mission operations at the UC Berkeley Space Sciences Laboratory, believes that once Musk realized Starlink satellites could be architected into a distributed network of data centers, the writing was on the wall.

“That is the moment an IPO suddenly came into play after being unlikely for so long,” Tripathi told Ars. “If you have followed Elon’s tactics, you know that once he commits to something, he leans fully into it. Much of the AI race comes down to amassing and deploying assets that work quicker than your competition. A large war chest resulting from an IPO will greatly help his cause and disadvantage all others.”

Foremost among Musk’s goals right now is to “win” the battle for artificial intelligence. He is already attacking the problem at xAI and Tesla, and he now seeks to throw SpaceX into the fray as well. Taking SpaceX public and using it to marshal an incredible amount of resources shows he is playing to win.

What about Mars?

Musk founded SpaceX in 2002 with the goal of one day settling Mars. He has never wavered from that goal, and indeed, the company has made considerable progress in more than two decades. SpaceX now launches more than 90 percent of the world’s mass to orbit, has nearly 90 percent of the satellites in orbit, and backstops a large portion of the US government’s civil and military activities in space. Moreover, with Starship, SpaceX is building the first vehicle that could realistically send humans and a lot of the stuff humans need to survive to Mars one day.

But if Musk’s rationale for keeping SpaceX private was to protect the Mars dream, is he abandoning this long-standing aim?

Not necessarily. It’s likely that Musk sees artificial intelligence as a key part of the Mars vision. Whether one believes the Optimus robot will become a viable product or not, Musk does. And he’s spoken about sending the robots to Mars to make the way smoother for the first human settlers.

Musk also believes that a larger and more financially robust SpaceX is necessary to undertake the settling of Mars. He understands that NASA will not pay for this, as the civil space agency is in the business of exploration and not settlement. For several years now, he has expressed that it will require about 1 million tons of supplies to be shipped to Mars to make a self-sustaining settlement. This is roughly 1,000 ships, and including refueling, at least 10,000 Starship launches. At $100 million per launch, that’s $1 trillion in launch costs alone.

Musk has frequently expressed a concern that there may be a limited window for settling Mars. Perhaps financial markets collapse. Perhaps there’s a worse pandemic. Perhaps a large asteroid hits the planet. Taking SpaceX public now is a bet that he can marshal the resources now, during his lifetime, to make Mars City One a reality. He is 54 years old.

The plan is not without risks, of course. If AI is something of a bubble, ten years from now, SpaceX may be sitting on hundreds of billions of dollars worth of satellites in space for which there is limited use. Maybe shareholders would rather SpaceX make them multimillionaires than make humans multiplanetary.

But Musk has never shied away from risks. So doubling down on his most successful asset in this moment is precisely what one would expect him to do.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

After years of resisting it, SpaceX now plans to go public. Why? Read More »

after-key-russian-launch-site-is-damaged,-nasa-accelerates-dragon-supply-missions

After key Russian launch site is damaged, NASA accelerates Dragon supply missions

With a key Russian launch pad out of service, NASA is accelerating the launch of two Cargo Dragon spaceships in order to ensure that astronauts on board the International Space Station have all the supplies they need next year.

According to the space agency’s internal schedule, the next Dragon supply mission, CRS-34, is moving forward one month from June 2026 to May. And the next Dragon supply mission after this, CRS-35, has been advanced three months from November to August.

A source indicated that the changing schedules are a “direct result” of a launch pad incident on Thanksgiving Day at the Russian spaceport in Baikonur, Kazakhstan.

The issue occurred when a Soyuz rocket launched Roscosmos cosmonauts Sergei Kud-Sverchkov and Sergei Mikayev, as well as NASA astronaut Christopher Williams, on an eight-month mission to the International Space Station. The rocket had no difficulties, but a large mobile platform below the rocket was not properly secured prior to the launch and crashed into the flame trench below, taking the pad offline.

Repairs require at least four months

Russia has other launch pads, both within its borders and neighboring countries, including Kazakhstan, that were formerly part of the Soviet Union. However, Site 31 at Baikonur is the country’s only pad presently configured to handle launches of the Soyuz rocket and two spacecraft critical to the space station, the cargo-only Progress vehicle and the Soyuz crew capsule.

Since the accident Russia’s main space corporation, Roscosmos, has been assessing plans to repair the Site 31 launch site and begun to schedule the delivery of spare parts. Roscosmos officials have told NASA it will take at least four months to repair the site and recover the capability to launch from there.

After key Russian launch site is damaged, NASA accelerates Dragon supply missions Read More »

rocket-report:-blunder-at-baikonur;-do-launchers-really-need-rocket-engines?

Rocket Report: Blunder at Baikonur; do launchers really need rocket engines?


The Department of the Air Force approves a new home in Florida for SpaceX’s Starship.

South Korea’s Nuri 1 rocket is lifted vertical on its launch pad in this multi-exposure photo. Credit: Korea Aerospace Research Institute

Welcome to Edition 8.21 of the Rocket Report! We’re back after the Thanksgiving holiday with more launch news. Most of the big stories over the last couple of weeks came from abroad. Russian rockets and launch pads didn’t fare so well. China’s launch industry celebrated several key missions. SpaceX was busy, too, with seven launches over the last two weeks, six of them carrying more Starlink Internet satellites into orbit. We expect between 15 and 20 more orbital launch attempts worldwide before the end of the year.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Another Sarmat failure. A Russian intercontinental ballistic missile (ICBM) fired from an underground silo on the country’s southern steppe on November 28 on a scheduled test to deliver a dummy warhead to a remote impact zone nearly 4,000 miles away. The missile didn’t even make it 4,000 feet, Ars reports. Russia’s military has been silent on the accident, but the missile’s crash was seen and heard for miles around the Dombarovsky air base in Orenburg Oblast near the Russian-Kazakh border. A video posted by the Russian blog site MilitaryRussia.ru on Telegram and widely shared on other social media platforms showed the missile veering off course immediately after launch before cartwheeling upside down, losing power, and then crashing a short distance from the launch site.

An unenviable track record … Analysts say the circumstances of the launch suggest it was likely a test of Russia’s RS-28 Sarmat missile, a weapon designed to reach targets more than 11,000 miles (18,000 kilometers) away, making it the world’s longest-range missile. The Sarmat missile is Russia’s next-generation heavy-duty ICBM, capable of carrying a payload of up to 10 large nuclear warheads, a combination of warheads and countermeasures, or hypersonic boost-glide vehicles, according to the Center for Strategic and International Studies. Simply put, the Sarmat is a doomsday weapon designed for use in an all-out nuclear war between Russia and the United States. The missile’s first full-scale test flight in 2022 apparently went well, but the program has suffered a string of consecutive failures since then, most notably a catastrophic explosion last year that destroyed the Sarmat missile’s underground silo in northern Russia.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

ESA fills its coffers for launcher challenge. The European Space Agency’s (ESA) European Launcher Challenge received a significant financial commitment from its member states during the agency’s Ministerial Council meeting last week, European Spaceflight reports. The challenge is designed to support emerging European rocket companies while giving ESA and other European satellite operators more options to compete with the continent’s sole operational launch provider, Arianespace. Through the program, ESA will purchase launch services and co-fund capacity upgrades with the winners. ESA member states committed 902 million euros, or $1.05 billion, to the program at the recent Ministerial Council meeting.

Preselecting the competitors … In July, ESA selected two German companies—Isar Aerospace and Rocket Factory Augsburg—along with Spain’s PLD Space, France’s MaiaSpace, and the UK’s Orbex to proceed with the initiative’s next phase. ESA then negotiated with the governments of each company’s home country to raise money to support the effort. Germany, with two companies on the shortlist, is unsurprisingly a large contributor to the program, committing more than 40 percent of the total budget. France contributed nearly 20 percent, Spain funded nearly 19 percent, and the UK committed nearly 16 percent. Norway paid for 3 percent of the launcher challenge’s budget. Denmark, Portugal, Switzerland, and the Czech Republic contributed smaller amounts.

Europe at the service of South Korea. South Korea’s latest Earth observation satellite was delivered into a Sun-synchronous orbit Monday afternoon following a launch onboard a Vega C rocket by Arianespace, Spaceflight Now reports. The Korea Multi-Purpose Satellite-7 (Kompsat-7) mission launched from Europe’s spaceport in French Guiana. About 44 minutes after liftoff, the Kompsat-7 satellite was deployed into SSO at an altitude of 358 miles (576 kilometers). “By launching the Kompsat-7 satellite, set to significantly enhance South Korea’s Earth observation capabilities, Arianespace is proud to support an ambitious national space program,” said David Cavaillolès, CEO of Arianespace, in a statement.

Something of a rarity … The launch of Kompsat-7 is something of a rarity for Arianespace, which has dominated the international commercial launch market. It’s the first time in more than two years that a satellite for a customer outside Europe has been launched by Arianespace. The backlog for the light-class Vega C rocket is almost exclusively filled with payloads for the European Space Agency, the European Commission, or national governments in Europe. Arianespace’s larger Ariane 6 rocket has 18 launches reserved for the US-based Amazon Leo broadband network. (submitted by EllPeaTea)

South Korea’s homemade rocket flies again. South Korea’s homegrown space rocket Nuri took off from Naro Space Center on November 27 with the CAS500-3 technology demonstration and Earth observation satellite, along with 12 smaller CubeSat rideshare payloads, Yonhap News Agency reports. The 200-ton Nuri rocket debuted in 2021, when it failed to reach orbit on a test flight. Since then, the rocket has successfully reached orbit three times. This mission marked the first time for Hanwha Aerospace to oversee the entire assembly process as part of the government’s long-term plan to hand over space technologies to the private sector. The fifth and sixth launches of the Nuri rocket are planned in 2026 and 2027.

Powered by jet fuel … The Nuri rocket has three stages, each with engines burning Jet A-1 fuel and liquid oxygen. The fuel choice is unusual for rockets, with highly refined RP-1 kerosene or methane being more popular among hydrocarbon fuels. The engines are manufactured by Hanwha Aerospace. The fully assembled rocket stands about 155 feet (47.2 meters) tall and can deliver up to 3,300 pounds (1.5 metric tons) of payload into a polar Sun-synchronous orbit.

Hyundai eyes rocket engine. Meanwhile, South Korea’s space sector is looking to the future. Another company best known for making cars has started a venture in the rocket business. Hyundai Rotem, a member of Hyundai Motor Group, announced a joint program with Korean Air’s Aerospace Division (KAL-ASD) to develop a 35-ton-class reusable methane rocket engine for future launch vehicles. The effort is funded with KRW49 billion ($33 million) from the Korea Research Institute for Defense Technology Planning and Advancement (KRIT).

By the end of the decade … The government-backed program aims to develop the engine by the end of 2030. Hyundai Rotem will lead the engine’s planning and design, while Korean Air, the nation’s largest air carrier, will lead development of the engine’s turbopump. “Hyundai Rotem began developing methane engines in 1994 and has steadily advanced its methane engine technology, achieving Korea’s first successful combustion test in 2006,” Hyundai Rotem said in a statement. “Furthermore, this project is expected to secure the technological foundation for the commercialization of methane engines for reusable space launch vehicles and lay the groundwork for targeting the global space launch vehicle market.”

But who needs rocket engines? Moonshot Space, based in Israel, announced Monday that it has secured $12 million in funding to continue the development of a launch system—powered not by chemical propulsion, but electromagnetism, Payload reports. Moonshot plans to sell other aerospace and defense companies the tech as a hypersonic test platform, while at the same time building to eventually offer orbital launch services. Instead of conventional rocket engines, the system would use a series of electromagnetic coils to power a hardened capsule to hypersonic velocities. The architecture has a downside: extremely high accelerations that could damage or destroy normal satellites. Instead, Moonshot wants to use the technology to send raw materials to orbit, lowering the input costs of the budding in-space servicing, refueling, and manufacturing industries, according to Payload.

Out of the shadows … Moonshot Space emerged from stealth mode with this week’s fundraising announcement. The company’s near-term focus is on building a scaled-down electromagnetic accelerator capable of reaching Mach 6. A larger system would be required to reach orbital velocity. The company’s CEO is the former director-general of Israel’s Ministry of Science, while its chief engineer was the former chief systems engineer for David’s Sling, a critical part of Israel’s missile defense system. (submitted by EllPeaTea)

A blunder at Baikonur. A Soyuz rocket launched on November 27 carrying Roscosmos cosmonauts Sergei Kud-Sverchkov and Sergei Mikayev, as well as NASA astronaut Christopher Williams, for an eight-month mission to the International Space Station. The trio of astronauts arrived at the orbiting laboratory without incident. However, on the ground, there was a serious problem during the launch with the ground systems that support processing of the vehicle before liftoff at Site 31, located at the Baikonur Cosmodrome in Kazakhstan, Ars reports. Roscosmos downplayed the incident, saying only, in passive voice, that “damage to several launch pad components was identified” following the launch.

Repairs needed … However, video imagery of the launch site after liftoff showed substantial damage, with a large service platform appearing to have fallen into the flame trench below the launch table. According to one source, this is a platform located beneath the rocket, where workers can access the vehicle before liftoff. It has a mass of about 20 metric tons and was apparently not secured prior to launch, and the thrust of the vehicle ejected it into the flame trench. “There is significant damage to the pad,” said this source. The damage could throw a wrench into Russia’s ability to launch crews and cargo to the International Space Station. This Soyuz launch pad at Baikonur is the only one outfitted to support such missions.

China’s LandSpace almost landed a rocket. China’s first attempt to land an orbital-class rocket may have ended in a fiery crash, but the company responsible for the mission had a lot to celebrate with the first flight of its new methane-fueled launcher, Ars reports. LandSpace, a decade-old company based in Beijing, launched its new Zhuque-3 rocket for the first time Tuesday (US time) at the Jiuquan launch site in northwestern China. The upper stage of the medium-lift rocket successfully reached orbit. This alone is a remarkable achievement for a new rocket. But LandSpace had other goals for this launch. The Zhuque-3, or ZQ-3, booster stage is architected for recovery and reuse, the first rocket in China with such a design. The booster survived reentry and was seconds away from a pinpoint landing when something went wrong during its landing burn, resulting in a high-speed crash at the landing zone in the Gobi Desert.

Let the games begin … LandSpace got closer to landing an orbital-class booster than any other company on their first try. While LandSpace prepares for a second launch, several more Chinese companies are close to debuting their own reusable rockets. The next of these new rockets, the Long March 12A, is awaiting its first liftoff later this month from another launch pad at the Jiuquan spaceport. The Long March 12A comes from one of China’s established rocket developers, the Shanghai Academy of Spaceflight Technology (SAST), part of the country’s state-owned aerospace enterprise.

China launches a lifeboat. An unpiloted Chinese spacecraft launched on November 24 (US time) and linked with the country’s Tiangong space station a few hours later, providing a lifeboat for three astronauts stuck in orbit without a safe ride home, Ars reports. A Long March 2F rocket lifted off with the Shenzhou 22 spacecraft, carrying cargo instead of a crew. The spacecraft docked with the Tiangong station nearly 250 miles (400 kilometers) above the Earth about three-and-a-half hours later. Shenzhou 22 will provide a ride home next year for three Chinese astronauts. Engineers deemed their primary lifeboat unsafe after finding a cracked window, likely from an impact with a tiny piece of space junk.

In record time … Chinese engineers worked fast to move up the launch of the Shenzhou 22, originally set to fly next year. The launch occurred just 16 days after officials decided they needed to send another spacecraft to the Tiangong station. Shenzhou 22 and its rocket were already in standby at the launch site, but teams had to fuel the spacecraft and complete assembly of the rocket, then roll the vehicle to the launch pad for final countdown preps. The rapid turnaround offers a “successful example for efficient emergency response in the international space industry,” the China Manned Space Agency said. “It vividly embodies the spirit of manned spaceflight: exceptionally hardworking, exceptionally capable, exceptionally resilient, and exceptionally dedicated.”

Another big name flirts with the launch industry. OpenAI chief executive Sam Altman has explored putting together funds to either acquire or partner with a rocket company, a move that would position him to compete with Elon Musk’s SpaceX, the Wall Street Journal reports. Altman reached out to at least one rocket maker, Stoke Space, in the summer, and the discussions picked up in the fall, according to people familiar with the talks. Among the proposals was for OpenAI to make a multibillion-dollar series of equity investments in the company and end up with a controlling stake. The talks are no longer active, people close to OpenAI told the Journal.

Here’s the reason … Altman has been interested in building data centers in space for some time, the Journal reports, suggesting that the insatiable demand for computing resources to power artificial-intelligence systems eventually could require so much power that the environmental consequences would make space a better option. Orbital data centers would allow companies to harness the power of the Sun to operate them. Alphabet’s Google is pursuing a similar concept in partnership with satellite operator Planet Labs. Jeff Bezos and Musk himself have also expressed interest in the idea. Outside of SpaceX and Blue Origin, Stoke Space seems to be a natural partner for such a project because it is one of the few companies developing a fully reusable rocket.

SpaceX gets green light for new Florida launch pad. SpaceX has the OK to build out what will be the primary launch hub on the Space Coast for its Starship and Super Heavy rocket, the most powerful launch vehicle in history, the Orlando Sentinel reports. The Department of the Air Force announced Monday it had approved SpaceX to move forward with the construction of a pair of launch pads at Cape Canaveral Space Force Station’s Space Launch Complex 37 (SLC-37). A “record of decision” on the Environmental Impact Statement required under the National Environmental Policy Act for the proposed Canaveral site was posted to the Air Force’s website, marking the conclusion of what has been a nearly two-year approval process.

Get those Starships ready SpaceX plans to build two launch towers at SLC-37 to augment the single tower under construction at NASA’s Kennedy Space Center, just a few miles to the north. The three pads combined could support up to 120 launches per year. The Air Force’s final approval was expected after it released a draft Environmental Impact Statement earlier this year, suggesting the Starship pads at SLC-37 would have no significant negative impacts on local environmental, historical, social, and cultural interests. The Air Force also found SpaceX’s plans at SLC-37, formerly leased by United Launch Alliance, will have no significant impact on the company’s competitors in the launch industry. SpaceX also has two launch towers at its Starbase facility in South Texas.

Next three launches

Dec. 5: Kuaizhou 1A | Unknown Payload | Jiuquan Satellite Launch Center, China | 09: 00 UTC

Dec. 6: Hyperbola 1 | Unknown Payload | Jiuquan Satellite Launch Center, China | 04: 00 UTC

Dec. 6: Long March 8A | Unknown Payload | Wenchang Space Launch Site, China | 07: 50 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Blunder at Baikonur; do launchers really need rocket engines? Read More »

congress-warned-that-nasa’s-current-plan-for-artemis-“cannot-work”

Congress warned that NASA’s current plan for Artemis “cannot work”

As for what to do about it, Griffin said legislators should end the present plan.

“The Artemis III mission and those beyond should be canceled and we should start over, proceeding with all deliberate speed,” Griffin said. He included a link to his plan, which is not dissimilar from the “Apollo on Steroids” architecture he championed two decades ago, but was later found to be unaffordable within NASA’s existing budget.

“There need to be consequences”

Other panel members offered more general advice.

Clayton Swope, deputy director of the Aerospace Security Project for the Center for Strategic and International Studies, said NASA should continue to serve as an engine for US success in space and science. He cited the Commercial Lunar Payload Services program, which has stimulated a growing lunar industry. He also said NASA spending on basic research and development is a critical feedstock for US innovation, and a key advantage over the People’s Republic of China.

“When you’re looking at the NASA authorization legislation, look at it in a way where you are the genesis of that innovation ecosystem, that flywheel that really powers US national security and economic security, in a way that the PRC just can’t match,” Swope said. “Without science, we would never have had something like the Manhattan Project.”

Another witness, Dean Cheng of the Potomac Institute for Policy Studies, said NASA—and by extension Congress—must do a better job of holding itself and its contractors accountable.

Many of NASA’s major exploration programs, including the Orion spacecraft, Space Launch System rocket, and their ground systems, have run years behind schedule and billions of dollars over budget in the last 15 years. NASA has funded these programs with cost-plus contracts, so it has had limited ability to enforce deadlines with contractors. Moreover, Congress has more or less meekly gone along with the delays and continued funding the programs.

Cheng said that whatever priorities policymakers decide for NASA,  failing to achieve objectives should come with consequences.

“One, it needs to be bipartisan, to make very clear throughout our system that this is something that everyone is pushing for,” Cheng said of establishing priorities for NASA. “And two, that there are consequences, budgetary, legal, and otherwise, to the agency, to supplying companies. If they fail to deliver on time and on budget, that it will not be a ‘Well, okay, let’s try again next year.’ There need to be consequences.”

Congress warned that NASA’s current plan for Artemis “cannot work” Read More »

rivals-object-to-spacex’s-starship-plans-in-florida—who’s-interfering-with-whom?

Rivals object to SpaceX’s Starship plans in Florida—who’s interfering with whom?


“We’re going to continue to treat any LOX-methane vehicle with 100 percent TNT blast equivalency.”

Artist’s illustration of Starships stacked on two launch pads at the Space Force’s Space Launch Complex 37 at Cape Canaveral, Florida. Credit: SpaceX

The commander of the military unit responsible for running the Cape Canaveral spaceport in Florida expects SpaceX to begin launching Starship rockets there next year.

Launch companies with facilities near SpaceX’s Starship pads are not pleased. SpaceX’s two chief rivals, Blue Origin and United Launch Alliance, complained last year that SpaceX’s proposal of launching as many as 120 Starships per year from Florida’s Space Coast could force them to routinely clear personnel from their launch pads for safety reasons.

This isn’t the first time Blue Origin and ULA have tried to throw up roadblocks in front of SpaceX. The companies sought to prevent NASA from leasing a disused launch pad to SpaceX in 2013, but they lost the fight.

Col. Brian Chatman, commander of a Space Force unit called Space Launch Delta 45, confirmed to reporters on Friday that Starship launches will sometimes restrict SpaceX’s neighbors from accessing their launch pads—at least in the beginning. Space Launch Delta 45, formerly known as the 45th Space Wing, operates the Eastern Range, which oversees launch safety from Cape Canaveral Space Force Station and NASA’s nearby Kennedy Space Center.

Chatman’s unit is responsible for ensuring all personnel remain outside of danger areas during testing and launch operations. The range’s responsibility extends to public safety outside the gates of the spaceport.

“There is no better time to be here on the Space Coast than where we are at today,” Chatman said. “We are breaking records on the launch manifest. We are getting capability on orbit that is essential to national security, and we’re doing that at a time of strategic challenge.”

SpaceX is well along in constructing a Starship launch site on NASA property at Kennedy Space Center within the confines of Launch Complex-39A, where SpaceX also launches its workhorse Falcon 9 rocket. The company wants to build another Starship launch site on Space Force property a few miles to the south.

“Early to mid-next year is when we anticipate Starship coming out here to be able to launch,” Chatman said. “We’ll have the range ready to support at that time.”

Enter the Goliath

Starship and its Super Heavy booster combine to form the largest rocket ever built. Its newest version stands more than 400 feet (120 meters) tall with more than 11 million pounds (5,000 metric tons) of combustible methane and liquid oxygen propellants. That will be replaced by a taller rocket, perhaps as soon as 2027, with about 20 percent more propellant onboard.

While there’s also risk with Starships and Super Heavy boosters returning to Cape Canaveral from space, safety officials worry about what would happen if a Starship and Super Heavy booster detonated with their propellant tanks full. The concern is the same for all rockets, which is why officials evacuate predetermined keep-out zones around launch pads that are fueled up for flight.

But the keep-out zones around SpaceX’s Starship launch pads will extend farther than those around the other launch sites at Cape Canaveral. First, Starship is simply much bigger and uses more propellant than any other rocket. Secondly, Starship’s engines consume methane fuel in combination with liquid oxygen, a blend commonly known as LOX/methane or methalox.

And finally, Starship lacks the track record of older rockets like the Falcon 9, adding a degree of conservatism to the Space Force’s risk calculations. Other launch pads will inevitably fall within the footprint of Starship’s range safety keep-out zones, also known as blast danger areas, or BDAs.

SpaceX’s Starship and Super Heavy booster lift off from Starbase, Texas, in March 2025. Credit: SpaceX

The danger area will be larger for an actual launch, but workers will still need to clear areas closer to Starship launch pads during static fire tests, when the rocket fires its engines while remaining on the ground. This is what prompted ULA and Blue Origin to lodge their protests.

“They understand neighboring operations,” Chatman said in a media roundtable on Friday. “They understand that we will allow the maximum efficiency possible to facilitate their operations, but there will be times that we’re not going to let them go to their launch complex because it’s neighboring a hazardous activity.”

The good news for these other companies is that Eastern Range’s keep-out zones will almost certainly get smaller by the time SpaceX gets anywhere close to 120 Starship launches per year. SpaceX’s Falcon 9 is currently launching at a similar cadence. The blast danger areas for those launches are small and short-lived because the Space Force’s confidence in the Falcon 9’s safety is “extremely high,” Chatman said.

“From a blast damage assessment perspective, specific to the Falcon 9, we know what that keep-out area is,” Chatman said. “It’s the new combination of new fuels—LOX/methanewhich is kind of a game-changer as we look at some of the heavy vehicles that are coming to launch. We just don’t have the analysis on to be able to say, ‘Hey, from a testing perspective, how small can we reduce the BDA and be safe?’”

Methane has become a popular fuel choice, supplanting refined kerosene, liquid hydrogen, or solid fuels commonly used on previous generations of rockets. Methane leaves behind less soot than kerosene, easing engine reusability, while it’s simpler to handle than liquid hydrogen.

Aside from Starship, Blue Origin’s New Glenn and ULA’s Vulcan rockets use liquified natural gas, a fuel very similar to methane. Both rockets are smaller than Starship, but Blue Origin last week unveiled the design of a souped-up New Glenn rocket that will nearly match Starship’s scale.

A few years ago, NASA, the Space Force, and the Federal Aviation Administration decided to look into the explosive potential of methalox rockets. There had been countless tests of explosions of gaseous methane, but data on detonations of liquid methane and liquid oxygen was scarce at the time—just a couple of tests at less than 10 metric tons, according to NASA. So, the government’s default position was to assume an explosion would be equivalent to the energy released by the same amount of TNT. This assumption drives the large keep-out zones the Space Force has drawn around SpaceX’s future Starship launch pads, one of which is seen in the map below.

This map from a Space Force environmental impact statement shows potential restricted access zones around SpaceX’s proposed Starship launch site at Space Launch Complex-37. The restricted zones cover launch pads operated by United Launch Alliance, Relativity Space, and Stoke Space. Credit: SpaceX

Spending millions to blow stuff up

Chatman said the Space Force is prepared to update its blast danger areas once its government partners, SpaceX, and Blue Origin complete testing and analyze their results. Over dozens of tests, engineers are examining how methane and liquid oxygen react to different kinds of accidents, such as impact velocity, pressure, mass ratio, or how much propellant is in the mix.

“That is ongoing currently,” Chatman said. “[We are] working in close partnership with SpaceX and Blue Origin on the LOX/methane combination and the explicit equivalency to identify how much we can … reduce that blast radius. Those discussions are happening, have been happening the last couple years, and are looking to culminate here in ’26.

“Until we get that data from the testing that is ongoing and the analysis that needs to occur, we’re going to continue to treat any LOX-methane vehicle with 100 percent TNT blast equivalency, and have a maximized keep-out zone, simply from a public safety perspective,” Chatman said.

The data so far show promising results. “We do expect that BDA to shrink,” he said. “We expect that to shrink based on some of the initial testing that has been done and the initial data reviews that have been done.”

That’s imperative, not just for Starship’s neighbors at the Cape Canaveral spaceport, but for SpaceX itself. The company forecasts a future in which it will launch Starships more often than the Falcon 9, requiring near-continuous operations at multiple launch pads.

Chatman mentioned one future scenario in which SpaceX might want to launch Starships in close proximity to one another from neighboring pads.

“At that point in the future, I do anticipate the blast damage assessments to shrink down based on the testing that will have been accomplished and dataset will have been reviewed, [and] that we’ll be in a comfortable set to be able to facilitate all launch operations. But until we have that data, until I’m comfortable with what that data shows, with regards to reducing the BDA, keep-out zone, we’re going to continue with the 100 percent TNT equivalency just from a public safety perspective.”

SpaceX has performed explosive LOX/methane tests, including the one seen here, at its development facility in McGregor, Texas. Credit: SpaceX

The Commercial Space Federation, a lobbying group, submitted written testimony to Congress in 2023 arguing the government should be using “existing industry data” to inform its understanding of the explosive potential methane and liquid oxygen. That data, the federation said, suggests the government should set its TNT blast equivalency to no greater than 25 percent, a change that would greatly reduce the size of keep-out zones around launch pads. The organization’s members include prominent methane users SpaceX, Blue Origin, Relativity Space, and Stoke Space, all of which have launch sites at Cape Canaveral.

The government’s methalox testing plans were expected to cost at least $80 million, according to the Commercial Space Federation.

The concern among engineers is that liquid oxygen and methane are highly miscible, meaning they mix together easily, raising the risk of a “condensed phase detonation” with “significantly higher overpressures” than rockets with liquid hydrogen or kerosene fuels. Small-scale mixtures of liquid oxygen and liquified natural gas have “shown a broad detonable range with yields greater than that of TNT,” NASA wrote in 2023.

SpaceX released some basic results of its own methalox detonation tests in September, before the government draws its own conclusions on the matter. The company said it conducted “extensive testing” to refine blast danger areas to “be commensurate with the physics of new launch systems.”

Like the Commercial Space Federation, SpaceX said government officials are relying on “highly conservative approaches to establishing blast danger areas, simply because they lack the data to make refined, accurate clear zones. In the absence of data, clear areas of LOX/methane rockets have defaulted to very large zones that could be disruptive to operations.”

More like an airport

SpaceX said it has conducted sub-scale methalox detonation tests “in close collaboration with NASA,” while also gathering data from full-scale Starship tests in Starbase, Texas, including information from test flights and from recent ground test failures. SpaceX controls much of the land around its South Texas facility, so there’s little interruption to third parties when Starships launch from there.

“With this data, SpaceX has been able to establish a scientifically robust, physics-based yield calculation that will help ‘fill the gap’ in scientific knowledge regarding LOX/methane rockets,” SpaceX said.

The company did not disclose the yield calculation, but it shared maps showing its proposed clear areas around the future Starship launch sites at Cape Canaveral and Kennedy Space Center. They are significantly smarter than the clear areas originally envisioned by the Space Force and NASA, but SpaceX says it uses “actual test data on explosive yield and include a conservative factor of safety.”

The proposed clear distances will have no effect on any other operational launch site or on traffic on the primary north-south road crossing the spaceport, the company said. “SpaceX looks forward to having an open, honest, and reasonable discussion based on science and data regarding spaceport operations with industry colleagues.”

SpaceX will have that opportunity next month. The Space Force and NASA are convening a “reverse industry day” in mid-December during which launch companies will bring their ideas for the future of the Cape Canaveral spaceport to the government. The spaceport has hosted 101 space launches so far this year, an annual record dominated by SpaceX’s rapid-fire Falcon 9 launch cadence.

Chatman anticipates about the same number—perhaps 100 to 115 launches—from Florida’s Space Coast next year, and some forecasts show 300 to 350 launches per year by 2035. The numbers could go down before they rise again. “As we bring on larger lift capabilities like Starship and follow-on large launch capabilities out here to the Eastern Range, that will reduce the total number of launches, because we can get more mass to orbit with heavier lift vehicles,” Chatman said.

Blue Origin’s first recovered New Glenn booster returned to the company’s launch pad at Cape Canaveral, Florida, last week after a successful launch and landing. Credit: Blue Origin

Launch companies have some work to do to make those numbers become real. Space Force officials have identified their own potential bottlenecks, including a shortage of facilities for preparing satellites for launch and the flow of commodities like propellants and high-pressure gases into the spaceport.

Concerns as mundane as traffic jams are now enough of a factor to consider using automated scanners at vehicle inspection points and potentially adding a dedicated lane for slow-moving transporters carrying rocket boosters from one place to another across the launch base, according to Chatman. This is becoming more important as SpaceX, and now Blue Origin, routinely shuttle their reusable rockets from place to place.

Space Force officials largely attribute the steep climb in launch rates at Cape Canaveral to the launch industry’s embrace of automated self-destruct mechanisms. These pyrotechnic devices have largely replaced manual flight termination systems, which require ground support from a larger team of range safety engineers, including radar operators and flight control officers with the authority to send a destruct command to the rocket if it flies off course. Now, that is all done autonomously on most US launch vehicles.

The Space Force mandated that launch companies using military spaceports switch to autonomous safety systems by October 1 2025, but military officials issued waivers for human-in-the-loop destruct devices to continue flying on United Launch Alliance’s Atlas V rocket, NASA’s Space Launch System, and the US Navy’s ballistic missile fleet. That means those launches will be more labor-intensive for the Space Force, but the Atlas V is nearing retirement, and the SLS and the Navy only occasionally appear on the Cape Canaveral launch schedule.

Listing image: SpaceX

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rivals object to SpaceX’s Starship plans in Florida—who’s interfering with whom? Read More »

rocket-report:-spacex’s-next-gen-booster-fails;-pegasus-will-fly-again

Rocket Report: SpaceX’s next-gen booster fails; Pegasus will fly again


With the government shutdown over, the FAA has lifted its daytime launch curfew.

Blue Origin’s New Glenn booster arrives at Port Canaveral, Florida, for the first time Tuesday aboard the “Jacklyn” landing vessel. Credit: Manuel Mazzanti/NurPhoto via Getty Images

Welcome to Edition 8.20 of the Rocket Report! For the second week in a row, Blue Origin dominated the headlines with news about its New Glenn rocket. After a stunning success November 13 with the launch and landing of the second New Glenn rocket, Jeff Bezos’ space company revealed a roadmap this week showing how engineers will supercharge the vehicle with more engines. Meanwhile, in South Texas, SpaceX took a step toward the first flight of the next-generation Starship rocket. There will be no Rocket Report next week due to the Thanksgiving holiday in the United States. We look forward to resuming delivery of all the news in space lift the first week of December.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Northrop’s Pegasus rocket wins a rare contract. A startup named Katalyst Space Technologies won a $30 million contract from NASA in August to build a robotic rescue mission for the agency’s Neil Gehrels Swift Observatory in low-Earth orbit. Swift, in space since 2004, is a unique instrument designed to study gamma-ray bursts, the most powerful explosions in the Universe. The spacecraft lacks a propulsion system and its orbit is subject to atmospheric drag, and NASA says it is “racing against the clock” to boost Swift’s orbit and extend its lifetime before it falls back to Earth. On Wednesday, Katalyst announced it selected Northrop Grumman’s air-launched Pegasus XL rocket to send the rescue craft into orbit next year.

Make this make sense … At first glance, this might seem like a surprise. The Pegasus XL rocket hasn’t flown since 2021 and has launched just once in the last six years. The solid-fueled rocket is carried aloft under the belly of a modified airliner, then released to fire payloads of up to 1,000 pounds (450 kilograms) into low-Earth orbit. It’s an expensive rocket for its size, with Northrop charging more than $25 million per launch, according to the most recent public data available; the satellites best suited to launch on Pegasus will now find much cheaper tickets to orbit on rideshare missions using SpaceX’s Falcon 9 rocket. There are a few reasons none of this mattered much to Katalyst. First, the rescue mission must launch into a very specific low-inclination orbit to rendezvous with the Swift observatory, so it won’t be able to join one of SpaceX’s rideshare missions. Second, Northrop Grumman has parts available for one more Pegasus XL rocket, and the company might have been willing to sell the launch at a discount to clear its inventory and retire the rocket’s expensive-to-maintain L-1011 carrier aircraft. And third, smaller rockets like Rocket Lab’s Electron or Firefly’s Alpha don’t quite have the performance to place Katalyst’s rescue mission into the required orbit. (submitted by gizmo23)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Ursa Major rakes in more cash. Aerospace and defense startup Ursa Major Technologies landed a $600 million valuation in a new fundraising round, the latest sign that investors are willing to back companies developing new rocket technology, Bloomberg reports. Colorado-based Ursa Major closed its Series E fundraising round with investments from the venture capital firms Eclipse, Woodline Partners, Principia Growth, XN, and Alsop Louie Partners. The company also secured $50 million in debt financing. Ursa Major is best known as a supplier of liquid-fueled rocket engines and solid rocket motors to power a range of commercial and government vehicles.

Hypersonic tailwinds … Ursa Major says it is positioned to provide the US industrial base with propulsion systems faster and more affordably than legacy contractors can supply. “The company will rapidly field its throttleable, storable, liquid-fueled hypersonic and space-based defense solution, as well as scale its solid rocket motor and sustained space mobility manufacturing capacity,” Ursa Major said in a press release. Its customers include BAE Systems, which will use Ursa Major’s solid rocket motors to power tactical military-grade rockets, and Stratolaunch, which uses Ursa Major’s liquid-fueled Hadley engine for its hypersonic Talon-A spaceplane.

Rocket Lab celebrates two launches in 48 hours. Rocket Lab launched a payload for an undisclosed commercial customer Thursday, just hours after the company announced plans for the launch, Space News reports. The launch from Rocket Lab’s primary spaceport in New Zealand used the company’s Electron rocket, but officials released little more information on the mission, other than its nickname: “Follow My Speed.” An artist’s illustration on the mission patch indicated the payload might have been the next in a line of Earth-imaging satellites from the remote sensing company BlackSky, although the firm’s previous satellites have not launched with such secrecy.

Two hemispheres … Thursday’s launch from the Southern Hemisphere came just two days after Rocket Lab’s previous mission lifted off from Wallops Island, Virginia. That flight was a suborbital launch to support a hypersonic technology demonstration for the Defense Innovation Unit and the Missile Defense Agency. All told, Rocket Lab has now launched 18 Electron rockets this year with 100 percent mission success, a company record.

Spanish startup makes a big reveal. The Spanish company PLD Space released photos of a test version of its Miura 5 rocket Thursday, calling it a “decisive step forward in the orbital launcher validation campaign.” The full-scale qualification unit, called QM1, will allow engineers to complete subsystem testing under “real conditions” to ensure the rocket’s reliability before its first mission scheduled for 2026. The first stage of the qualification unit will undergo a full propellant loading test, while the second stage will undergo a destructive test in the United States to validate the rocket’s range safety destruct system. Miura 5 is designed to deliver a little more than a metric ton (2,200 pounds) of payload to low-Earth orbit.

Still a long way to go … “Presenting our first integrated Miura 5 unit is proof that our model works: vertical integration, proprietary infrastructure and a philosophy based on testing, learning, and improving,” said Raúl Torres, CEO and co-founder of PLD Space. The reveal, however, is just the first step in a qualification campaign that takes more than a year for most rocket companies. PLD Space aims to go much faster, with plans to complete a second qualification rocket by the end of December and unveil its first flight rocket in the first quarter of next year. “This unprecedented development cadence in Europe reinforces PLD Space’s position as the company that has developed an orbital launcher in the shortest time–just two years–whilst meeting the highest quality standards,” the company said in a statement. This would be a remarkable achievement, but history suggests PLD Space has a steep climb in the months ahead. (submitted by Leika and EllPeaTea)

Sweden digs deep in pursuit of sovereign launch. In an unsettled world, many nations are eager to develop homegrown rockets to place their own satellites into orbit. These up-and-coming spacefaring nations see it as a strategic imperative to break free from total reliance on space powers like Russia, China, and the United States. Still, some decisions are puzzling. This week, the Swedish aerospace and defense contractor Saab announced a $10 million investment in a company named Pythom. If you’re not familiar with this business, allow me to link back to a 2022 story published by Ars about Pythom’s questionable safety practices. The company has kept quiet since then, until the name surprisingly popped up again in a press release from Saab, a firm with a reputation that seems to be diametrically opposed to that of Pythom.

Just enough … The statement from Saab suggests its $10 million contribution to Pythom will make it the “lead investor” in the company’s recent funding round. Pythom hasn’t said anything more about this funding round, but Saab said the investment will accelerate Pythom’s “development and deployment of its launch systems,” which include an initial rocket capable of putting up to 330 pounds (150 kilograms) of payload into low-Earth orbit. $10 million may be just enough to keep Pythom afloat for a couple more years but is far less than the money Pythom would need to get serious about fielding an orbital launcher. Pythom is headquartered in California, but it has Swedish roots. It was founded by the Swedish married couple Tina and Tom Sjögren. The company has a couple dozen employees, and a handful of them are based in Sweden, according to Pythom’s website. (submitted by Leika and EllPeaTea)

China is about to launch an astronaut lifeboat. China is set to launch an uncrewed Shenzhou spacecraft to the Tiangong space station to provide the Shenzhou 21 astronauts with a means of returning home, Space News reports. The launch of China’s Shenzhou 22 mission is scheduled for Monday night, US time, aboard a Long March 2F rocket. Instead of carrying astronauts, the ship will ferry cargo to the Chinese Tiangong space station. More importantly, it will provide a safe ride home for the three astronauts living and working aboard the orbiting outpost.

How did we get here? … The Shenzhou 20 spacecraft currently docked to the Tiangong station was damaged by a suspected piece of space junk, cracking its window and rendering it unable to meet China’s safety standards for returning astronauts to Earth. The damage discovery occurred just before three outgoing crew members were supposed to ride Shenzhou 20 home earlier this month. Instead, those three astronauts departed the station and returned to Earth on the newer, undamaged Shenzhou 21 spacecraft. That left the other three crew members on Tiangong with only the damaged Shenzhou 20 spacecraft to get them home in the event of an emergency. Shenzhou 22 will replace Shenzhou 20, providing a lifeboat for the rest of the crew’s six-month stay in space. (submitted by EllPeaTea)

Atlas V launches for Viasat. United Launch Alliance launched its Atlas V rocket on November 13 with a satellite for the California-based communications company Viasat, Spaceflight Now reports. The launch came a week after the mission was scrubbed due to a faulty liquid oxygen tank vent valve on the Atlas booster. ULA rolled the rocket back to the Vertical Integration Facility, replaced it with a new valve, and returned the rocket to the pad on November 12. The launch the following day was successful, with the Atlas V’s Centaur upper stage deploying the ViaSat-3 F2 spacecraft into a geosynchronous transfer orbit nearly three-and-a-half hours after liftoff from Cape Canaveral Space Force Station, Florida.

End of an era … This was the final launch of an Atlas V rocket with a payload heading for geosynchronous orbit. These are the kinds of missions the Atlas V was designed for more than 25 years ago, but the market has changed. All of the Atlas V’s remaining 11 missions will target low-Earth orbit carrying broadband satellites for Amazon or Boeing’s Starliner spacecraft heading for the International Space Station. The Atlas V will be retired in the coming years in favor of ULA’s new Vulcan rocket.

SpaceX launches key climate change monitor. SpaceX launched a joint NASA-European environmental research satellite early Monday, the second in an ongoing billion-dollar project to measure long-term changes in sea level, a key indicator of climate change, CBS News reportsThe first satellite, known as Sentinel-6 and named in honor of NASA climate researcher Michael Freilich, was launched in November 2020. The latest spacecraft, Sentinel-6B, was launched from California atop a Falcon 9 rocket this week. Both satellites are equipped with a sophisticated cloud-penetrating radar. By timing how long it takes beams to bounce back from the ocean 830 miles (1,336 kilometers) below, the Sentinel-6 satellites can track sea levels to an accuracy of about one inch while also measuring wave height and wind speeds. The project builds on earlier missions dating back to the early 1990s that have provided an uninterrupted stream of sea level data.

FAA restrictions lifted … The Federal Aviation Administration lifted a restriction on commercial space operations this week that limited launches and reentries to the late night and early morning hours, Spaceflight Now reports. The FAA imposed a daytime curfew on commercial launches as it struggled to maintain air traffic control during the recent government shutdown. Those restrictions, which did not affect government missions, were lifted Monday. (submitted by EllPeaTea)

Blue Origin’s New Glenn will grow larger. One week after the successful second launch of its large New Glenn booster, Blue Origin revealed a road map on Thursday for upgrades to the rocket, including a new variant with more main engines and a super-heavy lift capability, Ars reports. These upgrades to the rocket are “designed to increase payload performance and launch cadence, while enhancing reliability,” the company said in an update published on its website. The enhancements will be phased in over time, starting with the third launch of New Glenn, which is likely to occur during the first half of 2026.

No timelines The most significant part of the update concerned an evolution of New Glenn that will transform the booster into a super-heavy lift launch vehicle. The first stage of this evolved vehicle will have nine BE-4 engines instead of seven, and the upper stage will have four BE-3U engines instead of two. In its update, Blue Origin refers to the new vehicle as 9×4 and the current variant as 7×2, a reference to the number of engines in each stage. “New Glenn 9×4 is designed for a subset of missions requiring additional capacity and performance,” the company said. “The vehicle carries over 70 metric tons to low-Earth orbit, over 14 metric tons direct to geosynchronous orbit, and over 20 metric tons to trans-lunar injection. Additionally, the 9×4 vehicle will feature a larger 8.7-meter fairing.” The company did not specify a timeline for the debut of the 9×4 variant. A spokesperson for the company told Ars, “We aren’t disclosing a specific timeframe today. The iterative design from our current 7×2 vehicle means we can build this rocket quickly.”

Recently landed New Glenn returns to port. Blue Origin welcomed “Never Tell Me the Odds” back to Cape Canaveral Space Force Station, Florida, on Thursday, where the rocket booster launched exactly one week prior, Florida Today reports. The New Glenn’s first stage booster landed on Blue Origin’s offshore recovery barge, which returned it to Port Canaveral on Tuesday with great fanfare. Blue Origin’s founder, Jeff Bezos, rode the barge into port, posing for photos with the rocket and waving to onlookers viewing the spectacle from a nearby public pier. The rocket was lowered horizontally late Wednesday morning, as spectators watched alongside the restaurants and fishing boats at the port.

Through the gates Officials from Blue Origin guided the 188-foot-long New Glenn booster to the Space Force station Thursday, making Blue Origin the only company besides SpaceX to return a space-flown booster through the gates. Once back at Blue Origin’s hangar, the rocket will undergo inspections and refurbishment for a second flight, perhaps early next year. “I could not be more excited to see the New Glenn launch, and Blue Origin recover that booster and bring it back,” Col. Brian Chatman, commander of Space Launch Delta 45, told Florida Today. “It’s all part of our certification process and campaign to certify more national security space launch providers, launch carriers, to get our most crucial satellites up on orbit.”

Meanwhile, down at Starbase. SpaceX rolled the first of its third-generation Super Heavy boosters out of the factory at Starbase, Texas, this week for a road trip to a nearby test site, according to NASASpaceflight.com. The booster rode SpaceX’s transporter from the factory a few miles down the road to Massey’s Test Site, where technicians prepared the rocket for cryogenic proof testing. However, during the initial phases of testing, the booster failed early on Friday morning.

Tumbling down … At the Starship launch site, ground teams are busy tearing down the launch mount at Pad 1, the departure point for all of SpaceX’s Starships to date. SpaceX will upgrade the pad for its next-generation, more powerful Super Heavy boosters, while Starship V3’s initial flights will take off from Pad 2, a few hundred meters away from Pad 1.

Next three launches

Nov. 22: Falcon 9 | Starlink 6-79 | Cape Canaveral Space Force Station, Florida | 06: 59 UTC

Nov. 23: Falcon 9 | Starlink 11-30 | Vandenberg Space Force Base, California | 08: 00 UTC

Nov. 25: Long March 2F | Shenzhou 22 | Jiuquan Satellite Launch Center, China | 04: 11 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: SpaceX’s next-gen booster fails; Pegasus will fly again Read More »

newest-starship-booster-is-significantly-damaged-during-testing-early-friday

Newest Starship booster is significantly damaged during testing early Friday

Friday morning’s failure was less energetic than an explosion of a Starship upper stage during testing at Massey’s in June. That incident caused widespread damage at the test site and a complete loss of the vehicle. The Booster 18 problem on Friday appeared to cause less damage to test infrastructure, and no Raptor engines had yet been installed on the vehicle.

Nevertheless, this is the point in the rocket development program at which SpaceX sought to be accelerating with development of Starship and reaching a healthy flight cadence in 2026. Many of the company’s near-term goals rely on getting Starship flying regularly and reliably.

A full view of super heavy booster 18’s catastrophic damage during testing tonight. Very significant damage to the entire LOX tank section.

11/21/25 pic.twitter.com/Kw8XeZ2qXW

— Starship Gazer (@StarshipGazer) November 21, 2025

With this upgraded vehicle, SpaceX wants to demonstrate booster landing and reuse, an upper stage tower catch next year, the beginning of operational Starlink deployment missions, and a test campaign for NASA’s Artemis Program. To keep this Moon landing program on track, it is critical that SpaceX and NASA conduct an on-orbit refueling test of Starship, which nominally was slated for the second half of 2026.

On this timeline, the company was aiming to conduct a crewed lunar landing for NASA during the second half of 2028. From an outside perspective, before this most recent failure, that timeline already seemed to be fairly optimistic.

One of the core attributes of SpaceX is that it diagnoses failure quickly, addresses problems, and gets back to flying as rapidly as possible. No doubt its engineers are already poring over the data captured Friday morning and quite possibly have already diagnosed the problem. The company is resilient, and it has ample resources.

Nevertheless, this is also a maturing program. The Starship vehicle launched for the first time in 2023, and its first stage made a successful flight two years ago. Losing the first stage of the newest generation of the vehicle, during the initial phases of testing, can only be viewed as a significant setback for a program with so much promise and so much to accomplish so soon.

Newest Starship booster is significantly damaged during testing early Friday Read More »

us-spy-satellites-built-by-spacex-send-signals-in-the-“wrong-direction”

US spy satellites built by SpaceX send signals in the “wrong direction”


Spy satellites emit surprising signals

It seems US didn’t coordinate Starshield’s unusual spectrum use with other countries.

Image of a satellite in space and the Earth in the background.

Image of a Starshield satellite from SpaceX’s website. Credit: SpaceX

Image of a Starshield satellite from SpaceX’s website. Credit: SpaceX

About 170 Starshield satellites built by SpaceX for the US government’s National Reconnaissance Office (NRO) have been sending signals in the wrong direction, a satellite researcher found.

The SpaceX-built spy satellites are helping the NRO greatly expand its satellite surveillance capabilities, but the purpose of these signals is unknown. The signals are sent from space to Earth in a frequency band that’s allocated internationally for Earth-to-space and space-to-space transmissions.

There have been no public complaints of interference caused by the surprising Starshield emissions. But the researcher who found them says they highlight a troubling lack of transparency in how the US government manages the use of spectrum and a failure to coordinate spectrum usage with other countries.

Scott Tilley, an engineering technologist and amateur radio astronomer in British Columbia, discovered the signals in late September or early October while working on another project. He found them in various parts of the 2025–2110 MHz band, and from his location, he was able to confirm that 170 satellites were emitting the signals over Canada, the United States, and Mexico. Given the global nature of the Starshield constellation, the signals may be emitted over other countries as well.

“This particular band is allocated by the ITU [International Telecommunication Union], the United States, and Canada primarily as an uplink band to spacecraft on orbit—in other words, things in space, so satellite receivers will be listening on these frequencies,” Tilley told Ars. “If you’ve got a loud constellation of signals blasting away on the same frequencies, it has the potential to interfere with the reception of ground station signals being directed at satellites on orbit.”

In the US, users of the 2025–2110 MHz portion of the S-Band include NASA and the National Oceanic and Atmospheric Administration (NOAA), as well as nongovernmental users like TV news broadcasters that have vehicles equipped with satellite dishes to broadcast from remote locations.

Experts told Ars that the NRO likely coordinated with the US National Telecommunications and Information Administration (NTIA) to ensure that signals wouldn’t interfere with other spectrum users. A decision to allow the emissions wouldn’t necessarily be made public, they said. But conflicts with other governments are still possible, especially if the signals are found to interfere with users of the frequencies in other countries.

Surprising signals

A man standing outdoors in front of two large antennas.

Scott Tilley and his antennas.

Credit: Scott Tilley

Scott Tilley and his antennas. Credit: Scott Tilley

Tilley previously made headlines in 2018 when he located a satellite that NASA had lost contact with in 2005. For his new discovery, Tilley published data and a technical paper describing the “strong wideband S-band emissions,” and his work was featured by NPR on October 17.

Tilley’s technical paper said emissions were detected from 170 satellites out of the 193 known Starshield satellites. Emissions have since been detected from one more satellite, making it 171 out of 193, he told Ars. “The apparent downlink use of an uplink-allocated band, if confirmed by authorities, warrants prompt technical and regulatory review to assess interference risk and ensure compliance” with ITU regulations, Tilley’s paper said.

Tilley said he uses a mix of omnidirectional antennas and dish antennas at his home to receive signals, along with “software-defined radios and quite a bit of proprietary software I’ve written or open source software that I use for analysis work.” The signals did not stop when the paper was published. Tilley said the emissions are powerful enough to be received by “relatively small ground stations.”

Tilley’s paper said that Starshield satellites emit signals with a width of 9 MHz and signal-to-noise (SNR) ratios of 10 to 15 decibels. “A 10 dB SNR means the received signal power is ten times greater than the noise power in the same bandwidth,” while “20 dB means one hundred times,” Tilley told Ars.

Other Starshield signals that were 4 or 5 MHz wide “have been observed to change frequency from day to day with SNR exceeding 20dB,” his paper said. “Also observed from time to time are other weaker wide signals from 2025–2110 MHz what may be artifacts or actual intentional emissions.”

The 2025–2110 MHz band is used by NASA for science missions and by other countries for similar missions, Tilley noted. “Any other radio activity that’s occurring on this band is intentionally limited to avoid causing disruption to its primary purpose,” he said.

The band is used for some fully terrestrial, non-space purposes. Mobile service is allowed in 2025–2110 MHz, but ITU rules say that “administrations shall not introduce high-density mobile systems” in these frequencies. The band is also licensed in the US for non-federal terrestrial services, including the Broadcast Auxiliary Service, Cable Television Relay Service, and Local Television Transmission Service.

While Earth-based systems using the band, such as TV links from mobile studios, have legal protection against interference, Tilley noted that “they normally use highly directional and local signals to link a field crew with a studio… they’re not aimed into space but at a terrestrial target with a very directional antenna.” A trade group representing the US broadcast industry told Ars that it hasn’t observed any interference from Starshield satellites.

“There without anybody knowing it”

Spectrum consultant Rick Reaser told Ars that Starshield’s space-to-Earth transmissions likely haven’t caused any interference problems. “You would not see this unless you were looking for it, or if it turns out that your receiver looks for everything, which most receivers aren’t going to do,” he said.

Reaser said it appears that “whatever they’re doing, they’ve come up with a way to sort of be there without anybody knowing it,” or at least until Tilley noticed the signals.

“But then the question is, can somebody prove that that’s caused a problem?” Reaser said. Other systems using the same spectrum in the correct direction probably aren’t pointed directly at the Starshield satellites, he said.

Reaser’s extensive government experience includes managing spectrum for the Defense Department, negotiating a spectrum-sharing agreement with the European Union, and overseeing the development of new signals for GPS. Reaser said that Tilley’s findings are interesting because the signals would be hard to discover.

“It is being used in the wrong direction, if they’re coming in downlink, that’s supposed to be an uplink,” Reaser said. As for what the signals are being used for, Reaser said he doesn’t know. “It could be communication, it could be all sorts of things,” he said.

Tilley’s paper said the “results raise questions about frequency-allocation compliance and the broader need for transparent coordination among governmental, commercial, and scientific stakeholders.” He argues that international coordination is becoming more important because of the ongoing deployment of large constellations of satellites that could cause harmful interference.

“Cooperative disclosure—without compromising legitimate security interests—will be essential to balance national capability with the shared responsibility of preserving an orderly and predictable radio environment,” his paper said. “The findings presented here are offered in that spirit: not as accusation, but as a public-interest disclosure grounded in reproducible measurement and open analysis. The data, techniques, and references provided enable independent verification by qualified parties without requiring access to proprietary or classified information.”

While Tilley doesn’t know exactly what the emissions are for, his paper said the “signal characteristics—strong, coherent, and highly predictable carriers from a large constellation—create the technical conditions under which opportunistic or deliberate PNT exploitation could occur.”

PNT refers to Positioning, Navigation, and Timing (PNT) applications. “While it is not suggested that the system was designed for that role, the combination of wideband data channels and persistent carrier tones in a globally distributed or even regionally operated network represents a practical foundation for such use, either by friendly forces in contested environments or by third parties seeking situational awareness,” the paper said.

Emissions may have been approved in secret

Tilley told us that a few Starshield satellites launched just recently, in late September, have not emitted signals while moving toward their final orbits. He said this suggests the emissions are for an “operational payload” and not merely for telemetry, tracking, and control (TT&C).

“This could mean that [the newest satellites] don’t have this payload or that the emissions are not part of TT&C and may begin once these satellites achieve their place within the constellation,” Tilley told Ars. “If these emissions are TT&C, you would expect them to be active especially during the early phases of the mission, when the satellites are actively being tested and moved into position within the constellation.”

Whatever they’re for, Reaser said the emissions were likely approved by the NTIA and that the agency would likely have consulted with the Federal Communications Commission. For federal spectrum use, these kinds of decisions aren’t necessarily made public, he said.

“NRO would have to coordinate that through the NTIA to make sure they didn’t have an interference problem,” Reaser said. “And by the way, this happens a lot. People figure out a way [to transmit] on what they call a non-interference basis, and that’s probably how they got this approved. They say, ‘listen, if somebody reports interference, then you have to shut down.’”

Tilley said it’s clear that “persistent S-band emissions are occurring in the 2025–2110 MHz range without formal ITU coordination.” Claims that the downlink use was approved by the NTIA in a non-public decision “underscore, rather than resolve, the transparency problem,” he told Ars.

An NTIA spokesperson declined to comment. The NRO and FCC did not provide any comment in response to requests from Ars.

SpaceX just “a contractor for the US government”

Randall Berry, a Northwestern University professor of electrical and computer engineering, agreed with Reaser that it’s likely the NTIA approved the downlink use of the band and that this decision was not made public. Getting NTIA clearance is “the proper way this should be done,” he said.

“It would be surprising if NTIA was not aware, as Starshield is a government-operated system,” Berry told Ars. While NASA and other agencies use the band for Earth-to-space transmissions, “they may have been able to show that the Starshield space-to-Earth signals do not create harmful interference with these Earth-to-space signals,” he said.

There is another potential explanation that is less likely but more sinister. Berry said it’s possible that “SpaceX did not make this known to NTIA when the system was cleared for federal use.” Berry said this would be “surprising and potentially problematic.”

Digital rendering of a satellite in space.

SpaceX rendering of a Starshield satellite.

Credit: SpaceX

SpaceX rendering of a Starshield satellite. Credit: SpaceX

Tilley doesn’t think SpaceX is responsible for the emissions. While Starshield relies on technology built for the commercial Starlink broadband system of low Earth orbit satellites, Elon Musk’s space company made the Starshield satellites in its role as a contractor for the US government.

“I think [SpaceX is] just operating as a contractor for the US government,” Tilley said. “They built a satellite to the government specs provided for them and launched it for them. And from what I understand, the National Reconnaissance Office is the operator.”

SpaceX did not respond to a request for comment.

TV broadcasters conduct interference analysis

TV broadcasters with news trucks that use the same frequencies “protect their band vigorously” and would have reported interference if it was affecting their transmissions, Reaser said. This type of spectrum use is known as Electronic News Gathering (ENG).

The National Association of Broadcasters told Ars that it “has been closely tracking recent reports concerning satellite downlink operation in the 2025–2110 MHz frequency band… While it’s not clear that satellite downlink operations are authorized by international treaty in this range, such operations are uncommon, and we are not aware of any interference complaints related to downlink use.”

The NAB investigated after Tilley’s report. “When the Tilley report first surfaced, NAB conducted an interference analysis—based on some assumptions given that Starshield’s operating parameters have not been publicly disclosed,” the group told us. “That analysis found that interference with ENG systems is unlikely. We believe the proposed downlink operations are likely compatible with broadcaster use of the band, though coordination issues with the International Telecommunication Union (ITU) could still arise.”

Tilley said that a finding of interference being unlikely “addresses only performance, not legality… coordination conducted only within US domestic channels does not meet international requirements under the ITU Radio Regulations. This deployment is not one or two satellites, it is a distributed constellation of hundreds of objects with potential global implications.”

Canada agency: No coordination with ITU or US

When contacted by Ars, an ITU spokesperson said the agency is “unable to provide any comment or additional information on the specific matter referenced.” The ITU said that interference concerns “can be formally raised by national administrations” and that the ITU’s Radio Regulations Board “carefully examines the specifics of the case and determines the most appropriate course of action to address it in line with ITU procedures.”

The Canadian Space Agency (CSA) told Ars that its “missions operating within the frequency band have not yet identified any instances of interference that negatively impact their operations and can be attributed to the referenced emissions.” The CSA indicated that there hasn’t been any coordination with the ITU or the US over the new emissions.

“To date, no coordination process has been initiated for the satellite network in question,” the CSA told Ars. “Coordination of satellite networks is carried out through the International Telecommunication Union (ITU) Radio Regulation, with Innovation, Science and Economic Development Canada (ISED) serving as the responsible national authority.”

The European Space Agency also uses the 2025–2100 band for TT&C. We contacted the agency but did not receive any comment.

The lack of coordination “remains the central issue,” Tilley told Ars. “This band is globally allocated for Earth-to-space uplinks and limited space-to-space use, not continuous space-to-Earth transmissions.”

NASA needs protection from interference

An NTIA spectrum-use report updated in 2015 said NASA “operates earth stations in this band for tracking and command of manned and unmanned Earth-orbiting satellites and space vehicles either for Earth-to-space links for satellites in all types of orbits or through space-to-space links using the Tracking Data and Relay Satellite System (TDRSS). These earth stations control ninety domestic and international space missions including the Space Shuttle, the Hubble Space Telescope, and the International Space Station.”

Additionally, the NOAA “operates earth stations in this band to control the Geostationary Operational Environmental Satellite (GOES) and Polar Operational Environmental Satellite (POES) meteorological satellite systems,” which collect data used by the National Weather Service. We contacted NASA and NOAA, but neither agency provided comment to Ars.

NASA’s use of the band has increased in recent years. The NTIA told the FCC in 2021 that 2025–2110 MHz is “heavily used today and require[s] extensive coordination even among federal users.” The band “has seen dramatically increased demand for federal use as federal operations have shifted from federal bands that were repurposed to accommodate new commercial wireless broadband operations.”

A 2021 NASA memo included in the filing said that NASA would only support commercial launch providers using the band if their use was limited to sending commands to launch vehicles for recovery and retrieval purposes. Even with that limit, commercial launch providers would cause “significant interference” for existing federal operations in the band if the commercial use isn’t coordinated through the NTIA, the memo said.

“NASA makes extensive use of this band (i.e., currently 382 assignments) for both transmissions from earth stations supporting NASA spacecraft (Earth-to-space) and transmissions from NASA’s Tracking and Data Relay Satellite System (TDRSS) to user spacecraft (space-to-space), both of which are critical to NASA operations,” the memo said.

In 2024, the FCC issued an order allowing non-federal space launch operations to use the 2025–2110 MHz band on a secondary basis. The allocation is “limited to space launch telecommand transmissions and will require commercial space launch providers to coordinate with non-Federal terrestrial licensees… and NTIA,” the FCC order said.

International non-interference rules

While US agencies may not object to the Starshield emissions, that doesn’t guarantee there will be no trouble with other countries. Article 4.4 of ITU regulations says that member nations may not assign frequencies that conflict with the Table of Frequency Allocations “except on the express condition that such a station, when using such a frequency assignment, shall not cause harmful interference to, and shall not claim protection from harmful interference caused by, a station operating in accordance with the provisions.”

Reaser said that under Article 4.4, entities that are caught interfering with other spectrum users are “supposed to shut down.” But if the Starshield users were accused of interference, they would probably “open negotiations with the offended party” instead of immediately stopping the emissions, he said.

“My guess is they were allowed to operate on a non-interference basis and if there is an interference issue, they’d have to go figure a way to resolve them,” he said.

Tilley told Ars that Article 4.4 allows for non-interference use domestically but “is not a blank check for continuous, global downlinks from a constellation.” In that case, “international coordination duties still apply,” he said.

Tilley pointed out that under the Convention on Registration of Objects Launched into Outer Space, states must report the general function of a space object. “Objects believed to be part of the Starshield constellation have been registered with UNOOSA [United Nations Office for Outer Space Affairs] under the broad description: ‘Spacecraft engaged in practical applications and uses of space technology such as weather or communications,’” his paper said.

Tilley told Ars that a vague description such as this “may satisfy the letter of filing requirements, but it contradicts the spirit” of international agreements. He contends that filings should at least state whether a satellite is for military purposes.

“The real risk is that we are no longer dealing with one or two satellites but with massive constellations that, by their very design, are global in scope,” he told Ars. “Unilateral use of space and spectrum affects every nation. As the examples of US and Chinese behavior illustrate, we are beginning from uncertain ground when it comes to large, militarily oriented mega-constellations, and, at the very least, this trend distorts the intent and spirit of international law.”

China’s constellation

Tilley said he has tracked China’s Guowang constellation and its use of “spectrum within the 1250–1300 MHz range, which is not allocated for space-to-Earth communications.” China, he said, “filed advance notice and coordination requests with the ITU for this spectrum but was not granted protection for its non-compliant use. As a result, later Chinese filings notifying and completing due diligence with the ITU omit this spectrum, yet the satellites are using it over other nations. This shows that the Chinese government consulted internationally and proceeded anyway, while the US government simply did not consult at all.”

By contrast, Canada submitted “an unusual level of detail” to the ITU for its military satellite Sapphire and coordinated fully with the ITU, he said.

Tilley said he reported his findings on Starshield emissions “directly to various western space agencies and the Canadian government’s spectrum management regulators” at the ISED.

“The Canadian government has acknowledged my report, and it has been disseminated within their departments, according to a senior ISED director’s response to me,” Tilley said, adding that he is continuing to collaborate “with other researchers to assist in the gathering of more data on the scope and impact of these emissions.”

The ISED told Ars that it “takes any reports of interference seriously and is not aware of any instances or complaints in these bands. As a general practice, complaints of potential interference are investigated to determine both the cause and possible resolutions. If it is determined that the source of interference is not Canadian, ISED works with its regulatory counterparts in the relevant administration to resolve the issue. ISED has well-established working arrangements with counterparts in other countries to address frequency coordination or interference matters.”

Accidental discovery

Two pictures of large antennas set up outdoors.

Antennas used by Scott Tilley.

Credit: Scott Tilley

Antennas used by Scott Tilley. Credit: Scott Tilley

Tilley’s discovery of Starshield signals happened because of “a clumsy move at the keyboard,” he told NPR. “I was resetting some stuff, and then all of a sudden, I’m looking at the wrong antenna, the wrong band,” he said.

People using the spectrum for Earth-to-space transmissions generally wouldn’t have any reason to listen for transmissions on the same frequencies, Tilley told Ars. Satellites using 2025–2100 MHz for Earth-to-space transmissions have their downlink operations on other frequencies, he said.

“The whole reason why I publicly revealed this rather than just quietly sit on it is to alert spacecraft operators that don’t normally listen on this band… that they should perform risk assessments and assess whether their missions have suffered any interference or could suffer interference and be prepared to deal with that,” he said.

A spacecraft operator may not know “a satellite is receiving interference unless the satellite is refusing to communicate with them or asking for the ground station to repeat the message over and over again,” Tilley said. “Unless they specifically have a reason to look or it becomes particularly onerous for them, they may not immediately realize what’s going on. It’s not like they’re sitting there watching the spectrum to see unusual signals that could interfere with the spacecraft.”

While NPR paraphrased Tilley as saying that the transmissions could be “designed to hide Starshield’s operations,” he told Ars that this characterization is “maybe a bit strongly worded.”

“It’s certainly an unusual place to put something. I don’t want to speculate about what the real intentions are, but it certainly could raise a question in one’s mind as to why they would choose to emit there. We really don’t know and probably never will know,” Tilley told us.

How amateurs track Starshield

After finding the signals, Tilley determined they were being sent by Starshield satellites by consulting data collected by amateurs on the constellation. SpaceX launches the satellites into what Tilley called classified orbits, but the space company distributes some information that can be used to track their locations.

For safety reasons, SpaceX publishes “a notice to airmen and sailors that they’re going to be dropping boosters and debris in hazard areas… amateurs use those to determine the orbital plane the launch is going to go into,” Tilley said. “Once we know that, we just basically wait for optical windows when the lighting is good, and then we’re able to pick up the objects and start tracking them and then start cataloguing them and generating orbits. A group of us around the world do that. And over the last year and a half or so since they started launching the bulk of this constellation, the amateurs have amassed considerable body of orbital data on this constellation.”

After accidentally discovering the emissions, Tilley said he used open source software to “compare the Doppler signal I was receiving to the orbital elements… and immediately started coming back with hits to Starshield and nothing else.” He said this means that “the tens of thousands of other objects in orbit didn’t match the radio Doppler characteristics that these objects have.”

Tilley is still keeping an eye on the transmissions. He told us that “I’m continuing to hear the signals, record them, and monitor developments within the constellation.”

Photo of Jon Brodkin

Jon is a Senior IT Reporter for Ars Technica. He covers the telecom industry, Federal Communications Commission rulemakings, broadband consumer affairs, court cases, and government regulation of the tech industry.

US spy satellites built by SpaceX send signals in the “wrong direction” Read More »

with-another-record-broken,-the-world’s-busiest-spaceport-keeps-getting-busier

With another record broken, the world’s busiest spaceport keeps getting busier


It’s not just the number of rocket launches, but how much stuff they’re carrying into orbit.

With 29 Starlink satellites onboard, a Falcon 9 rocket streaks through the night sky over Cape Canaveral Space Force Station, Florida, on Monday night. Credit: Stephen Clark/Ars Technica

CAPE CANAVERAL, Florida—Another Falcon 9 rocket fired off its launch pad here on Monday night, taking with it another 29 Starlink Internet satellites to orbit.

This was the 94th orbital launch from Florida’s Space Coast so far in 2025, breaking the previous record for the most satellite launches in a calendar year from the world’s busiest spaceport. Monday night’s launch came two days after a Chinese Long March 11 rocket lifted off from an oceangoing platform on the opposite side of the world, marking humanity’s 255th mission to reach orbit this year, a new annual record for global launch activity.

As of Wednesday, a handful of additional missions have pushed the global figure this year to 259, putting the world on pace for around 300 orbital launches by the end of 2025. This will more than double the global tally of 135 orbital launches in 2021.

Routine vs. complacency

Waiting in the darkness a few miles away from the launch pad, I glanced around at my surroundings before watching SpaceX’s Falcon 9 thunder into the sky. There were no throngs of space enthusiasts anxiously waiting for the rocket to light up the night. No line of photographers snapping photos. Just this reporter and two chipper retirees enjoying what a decade ago would have attracted far more attention.

Go to your local airport and you’ll probably find more people posted up at a plane-spotting park at the end of the runway. Still, a rocket launch is something special. On the same night that I watched the 94th launch of the year depart from Cape Canaveral, Orlando International Airport saw the same number of airplane departures in just three hours.

The crowds still turn out for more meaningful launches, such as a test flight of SpaceX’s Starship megarocket in Texas or Blue Origin’s attempt to launch its second New Glenn heavy-lifter here Sunday. But those are not the norm. Generations of aerospace engineers were taught that spaceflight is not routine for fear of falling into complacency, leading to failure, and in some cases, death.

Compared to air travel, the mantra remains valid. Rockets are unforgiving, with engines operating under extreme pressures, at high thrust, and unable to suck in oxygen from the atmosphere as a reactant for combustion. There are fewer redundancies in a rocket than in an airplane.

The Falcon 9’s established failure rate is less than 1 percent, well short of any safety standard for commercial air travel but good enough to be the most successful orbital-class in history. Given the Falcon 9’s track record, SpaceX seems to have found a way to overcome the temptation for complacency.

A Chinese Long March 11 rocket carrying three Shiyan 32 test satellites lifts off from waters off the coast of Haiyang in eastern China’s Shandong province on Saturday. Credit: Guo Jinqi/Xinhua via Getty Images

Following the trend

The upward trend in rocket launches hasn’t always been the case. Launch numbers were steady for most of the 2010s, following a downward trend in the 2000s, with as few as 52 orbital launches in 2005, the lowest number since the nascent era of spaceflight in 1961. There were just seven launches from here in Florida that year.

The numbers have picked up dramatically in the last five years as SpaceX has mastered reusable rocketry.

It’s important to look at not just the number of launches but also how much stuff rockets are actually putting into orbit. More than half of this year’s launches were performed using SpaceX’s Falcon 9 rocket, and the majority of those deployed Starlink satellites for SpaceX’s global Internet network. Each spacecraft is relatively small in size and weight, but SpaceX stacks up to 29 of them on a single Falcon 9 to max out the rocket’s carrying capacity.

All this mass adds up to make SpaceX’s dominance of the launch industry appear even more absolute. According to analyses by BryceTech, an engineering and space industry consulting firm, SpaceX has launched 86 percent of all the world’s payload mass over the 18 months from the beginning of 2024 through June 30 of this year.

That’s roughly 2.98 million kilograms of the approximately 3.46 million kilograms (3,281 of 3,819 tons) of satellite hardware and cargo that all the world’s rockets placed into orbit during that timeframe.

The charts below were created by Ars Technica using publicly available launch numbers and payload mass estimates from BryceTech. The first illustrates the rising launch cadence at Cape Canaveral Space Force Station and NASA’s Kennedy Space Center, located next to one another in Florida. Launches from other US-licensed spaceports, primarily Vandenberg Space Force Base, California, and Rocket Lab’s base at Māhia Peninsula in New Zealand, are also on the rise.

These numbers represent rockets that reached low-Earth orbit. We didn’t include test flights of SpaceX’s Starship rocket in the chart because all of its launches to have intentionally flown on suborbital trajectories.

In the second chart, we break down the payload upmass to orbit from SpaceX, other US companies, China, Russia, and other international launch providers.

Launch rates are on a clear upward trend, while SpaceX has launched 86 percent of the world’s total payload mass to orbit since the beginning of 2024. Credit: Stephen Clark/Ars Technica/BryceTech

Will it continue?

It’s a good bet that payload upmass will continue to rise in the coming years, with heavy cargo heading to orbit to further expand SpaceX’s Starlink communications network and build out new megaconstellations from Amazon, China, and others. The US military’s Golden Dome missile defense shield will also have a ravenous appetite for rockets to get it into space.

SpaceX’s Starship megarocket could begin flying to low-Earth orbit next year, and if it does, SpaceX’s preeminence in delivering mass to orbit will remain assured. Starship’s first real payloads will likely be SpaceX’s next-generation Starlink satellites. These larger, heavier, more capable spacecraft will launch 60 at a time on Starship, further stretching SpaceX’s lead in the upmass war.

But Starship’s arrival will come at the expense of the workhorse Falcon 9, which lacks the capacity to haul the next-gen Starlinks to orbit. “This year and next year I anticipate will be the highest Falcon launch rates that we will see,” said Stephanie Bednarek, SpaceX’s vice president of commercial sales, at an industry conference in July.

SpaceX is on pace for between 165 and 170 Falcon 9 launches this year, with 144 flights already in the books for 2025. Last year’s total for Falcon 9 and Falcon Heavy was 134 missions. SpaceX has not announced how many Falcon 9 and Falcon Heavy launches it plans for next year.

Starship is designed to be fully and rapidly reusable, eventually enabling multiple flights per day. But that’s still a long way off, and it’s unknown how many years it might take for Starship to surpass the Falcon 9’s proven launch tempo.

A Starship rocket and Super Heavy booster lift off from Starbase, Texas. Credit: SpaceX

In any case, with Starship’s heavy-lifting capacity and upgraded next-gen satellites, SpaceX could match an entire year’s worth of new Starlink capacity with just two fully loaded Starship flights. Starship will be able to deliver 60 times more Starlink capacity to orbit than a cluster of satellites riding on a Falcon 9.

There’s no reason to believe SpaceX will be satisfied with simply keeping pace with today’s Starlink growth rate. There are emerging market opportunities in connecting satellites with smartphones, space-based computer processing and data storage, and military applications.

Other companies have medium-to-heavy rockets that are either new to the market or soon to debut. These include Blue Origin’s New Glenn, now set to make its second test flight in the coming days, with a reusable booster designed to facilitate a rapid-fire launch cadence.

Despite all of the newcomers, most satellite operators see a shortage of launch capacity on the commercial market. “The industry is likely to remain supply-constrained through the balance of the decade,” wrote Caleb Henry, director of research at the industry analysis firm Quilty Space. “That could pose a problem for some of the many large constellations on the horizon.”

United Launch Alliance’s Vulcan rocket, Rocket Lab’s Neutron, Stoke Space’s Nova, Relativity Space’s Terran R, and Firefly Aerospace and Northrop Grumman’s Eclipse are among the other rockets vying for a bite at the launch apple.

“Whether or not the market can support six medium to heavy lift launch providers from the US aloneplus Starshipis an open question, but for the remainder of the decade launch demand is likely to remain high, presenting an opportunity for one or more new players to establish themselves in the pecking order,” Henry wrote in a post on Quilty’s website.

China’s space program will need more rockets, too. That nation’s two megaconstellations, known as Guowang and Qianfan, will have thousands of satellites requiring a significant uptick on Chinese launches.

Taking all of this into account, the demand curve for access to space is sure to continue its upward trajectory. How companies meet this demand, and with how many discrete departures from Earth, isn’t quite as clear.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

With another record broken, the world’s busiest spaceport keeps getting busier Read More »

rocket-report:-canada-invests-in-sovereign-launch;-india-flexes-rocket-muscles

Rocket Report: Canada invests in sovereign launch; India flexes rocket muscles


Europe’s Ariane 6 rocket gave an environmental monitoring satellite a perfect ride to space.

Rahul Goel, the CEO of Canadian launch startup NordSpace, poses with a suborbital demo rocket and members of his team in Toronto earlier this year. Credit: Andrew Francis Wallace/Toronto Star via Getty Images

Welcome to Edition 8.18 of the Rocket Report! NASA is getting a heck of a deal from Blue Origin for launching the agency’s ESCAPADE mission to Mars. Blue Origin is charging NASA about $20 million for the launch on the company’s heavy-lift New Glenn rocket. A dedicated ride on any other rocket capable of the job would undoubtedly cost more.

But there are trade-offs. First, there’s the question of risk. The New Glenn rocket is only making its second flight, and it hasn’t been certified by NASA or the US Space Force. Second, the schedule for ESCAPADE’s launch has been at the whim of Blue Origin, which has delayed the mission several times due to issues developing New Glenn. NASA’s interplanetary missions typically have a fixed launch period, and the agency pays providers like SpaceX and United Launch Alliance a premium to ensure the launch happens when it needs to happen.

New Glenn is ready, the satellites are ready, and Blue Origin has set a launch date for Sunday, November 9. The mission will depart Earth outside of the usual interplanetary launch window, so orbital dynamics wizards came up with a unique trajectory that will get the satellites to Mars in 2027.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Canadian government backs launcher development. The federal budget released by the Liberal Party-led government of Canada this week includes a raft of new defense initiatives, including 182.6 million Canadian dollars ($129.4 million) for sovereign space launch capability, SpaceQ reports. The new funding is meant to “establish a sovereign space launch capability” with funds available this fiscal year and spent over three years. How the money will be spent and on what has yet to be released. As anticipated, Canada will have a new Defense Investment Agency (DIA) to oversee defense procurement. Overall, the government outlined 81.8 billion Canadian dollars ($58 billion) over five years for the Canadian Armed Forces. The Department of National Defense will manage the government’s cash infusion for sovereign launch capability.

Kick-starting an industry … Canada joins a growing list of nations pursuing homegrown launchers as many governments see access to space as key to national security and an opportunity for economic growth. International governments don’t want to be beholden to a small number of foreign launch providers from established space powers. That’s why startups in Germany, the United Kingdom, South Korea, and Australia are making a play in the launch arena, often with government support. A handful of Canadian startups, such as Maritime Launch Services, Reaction Dynamics, and NordSpace, are working on commercial satellite launchers. The Canadian government’s announcement came days after MDA Space, the largest established space company in Canada, announced its own multimillion-dollar investment in Maritime Launch Services.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Money alone won’t solve Europe’s space access woes. Increasing tensions with Russia have prompted defense spending boosts throughout Europe that will benefit fledgling smallsat launcher companies across the continent. But Europe is still years away from meeting its own space access needs, Space News reports. Space News spoke with industry analysts from two European consulting firms. They concluded that a lack of experience, not a deficit of money, is holding European launch startups back. None of the new crop of European rocket companies have completed a successful orbital flight.

Swimming in cash … The German company Isar Aerospace has raised approximately $600 million, the most funding of any of the European launch startups. Isar is also the only one of the bunch to make an orbital launch attempt. Its Spectrum rocket failed less than 30 seconds after liftoff last March, and a second launch is expected next year. Isar has attracted more investment than Rocket Lab, Firefly Aerospace, and Astra collectively raised on the private market before each of them successfully launched a rocket into orbit. In addition to Isar, several other European companies have raised more than $100 million on the road to developing a small satellite launcher. (submitted by EllPeaTea)

Successful ICBM test from Vandenberg. Air Force Global Strike Command tested an unarmed Minuteman III intercontinental ballistic missile in the predawn hours of Wednesday, Air and Space Forces Magazine reports. The test, the latest in a series of launches that have been carried out at regular intervals for decades, came as Russian President Vladimir Putin has touted the development of two new nuclear weapons and President Donald Trump has suggested in recent days that the US might resume nuclear testing. The ICBM launched from an underground silo at Vandenberg Space Force Base, California, and traveled some 4,200 miles to a test range in the Pacific Ocean after receiving launch orders from an airborne nuclear command-and-control plane.

Rehearsing for the unthinkable … The test, known as Glory Trip 254 (GT 254), provided a “comprehensive assessment” of the Minuteman III’s readiness to launch at a moment’s notice, according to the Air Force. “The data collected during the test is invaluable in ensuring the continued reliability and accuracy of the ICBM weapon system,” said Lt. Col. Karrie Wray, commander of the 576th Flight Test Squadron. For Minuteman III tests, the Air Force pulls its missiles from the fleet of some 400 operational ICBMs. This week’s test used one from F.E. Warren Air Force Base, Wyoming, and the missile was equipped with a single unarmed reentry vehicle that carried telemetry instrumentation instead of a warhead, service officials said. (submitted by EllPeaTea)

One crew launches, another may be stranded. Three astronauts launched to China’s Tiangong space station on October 31 and arrived at the outpost a few hours later, extending the station’s four-year streak of continuous crew operations. The Shenzhou 21 crew spacecraft lifted off on a Chinese Long March 2F rocket from the Jiuquan space center in the Gobi Desert. Shenzhou 21 is supposed to replace a three-man crew that has been on the Tiangong station since April, but China’s Manned Space Agency announced Tuesday the outgoing crew’s return craft may have been damaged by space junk, Ars reports.

Few details … Chinese officials said the Shenzhou 20 spacecraft will remain at the station while engineers investigate the potential damage. As of Thursday, China has not set a new landing date or declared whether the spacecraft is safe to return to Earth at all. “The Shenzhou 20 manned spacecraft is suspected of being impacted by small space debris,” Chinese officials wrote on social media. “Impact analysis and risk assessment are underway. To ensure the safety and health of the astronauts and the complete success of the mission, it has been decided that the Shenzhou 20 return mission, originally scheduled for November 5, will be postponed.” In the event Shenzhou 20 is unsafe to return, China could launch a rescue craft—Shenzhou 22—already on standby at the Jiuquan space center.

Falcon 9 rideshare boosts Vast ambitions. A pathfinder mission for Vast’s privately owned space station launched into orbit Sunday and promptly extended its solar panel, kicking off a shakedown cruise to prove the company’s designs can meet the demands of spaceflight, Ars reports. Vast’s Haven Demo mission lifted off just after midnight Sunday from Cape Canaveral Space Force Station, Florida, and rode a SpaceX Falcon 9 rocket into orbit. Haven Demo was one of 18 satellites sharing a ride on SpaceX’s Bandwagon 4 mission, launching alongside a South Korean spy satellite and a small testbed for Starcloud, a startup working with Nvidia to build an orbital data center.

Subscale testing … After release from the Falcon 9, the half-ton Haven Demo spacecraft stabilized itself and extended its power-generating solar array. The satellite captured 4K video of the solar array deployment, and Vast shared the beauty shot on social media. “Haven Demo’s mission success has turned us into a proven spacecraft company,” Vast’s CEO, Max Haot, posted on X. “The next step will be to become an actual commercial space station company next year. Something no one has achieved yet.” Vast plans to launch its first human-rated habitat, named Haven-1, into low-Earth orbit in 2026. Haven Demo lacks crew accommodations but carries several systems that are “architecturally similar” to Haven-1, according to Vast. For example, Haven-1 will have 12 solar arrays, each identical to the single array on Haven Demo. The pathfinder mission uses a subset of Haven-1’s propulsion system, but with identical thrusters, valves, and tanks.

Lights out at Vostochny. One of Russia’s most important projects over the last 15 years has been the construction of the Vostochny spaceport as the country seeks to fly its rockets from native soil and modernize its launch operations. Progress has been slow as corruption clouded Vostochny’s development. Now, the primary contractor building the spaceport, the Kazan Open Stock Company (PSO Kazan), has failed to pay its bills, Ars reports. The story, first reported by the Moscow Times, says that the energy company supplying Vostochny cut off electricity to areas of the spaceport still under construction after PSO Kazan racked up $627,000 in unpaid energy charges. The electricity company did so, it said, “to protect the interests of the region’s energy system.”

A dark reputation … Officials at the government-owned spaceport said PSO Kazan would repay its debt by the end of November, but the local energy company said it intends to file a lawsuit against KSO Kazan to declare the entity bankrupt. The two operational launch pads at Vostochny are apparently not affected by the power cuts. Vostochny has been a fiasco from the start. After construction began in 2011, the project was beset by hunger strikes, claims of unpaid workers, and the theft of $126 million. Additionally, a man driving a diamond-encrusted Mercedes was arrested after embezzling $75,000. Five years ago, there was another purge of top officials after another round of corruption.

Ariane 6 delivers for Europe again. European launch services provider Arianespace has successfully launched the Sentinel 1D Earth observation satellite aboard an Ariane 62 rocket for the European Commission, European Spaceflight reports. Launched in its two-booster configuration, the Ariane 6 rocket lifted off from the Guiana Space Center in South America on Tuesday. Approximately 34 minutes after liftoff, the satellite was deployed from the rocket’s upper stage into a Sun-synchronous orbit at an altitude of 693 kilometers (430 miles). Sentinel 1D is the newest spacecraft to join Europe’s Copernicus program, the world’s most expansive network of environmental monitoring satellites. The new satellite will extend Europe’s record of global around-the-clock radar imaging, revealing information about environmental disasters, polar ice cover, and the use of water resources.

Doubling cadence … This was the fourth flight of Europe’s new Ariane 6 rocket, and its third operational launch. Arianespace plans one more Ariane 62 launch to close out the year with a pair of Galileo navigation satellites. The company aims to double its Ariane 6 launch cadence in 2026, with between six and eight missions planned, according to David Cavaillès, Arianespace’s CEO. The European launch provider will open its 2026 manifest with the first flight of the more powerful four-booster variant of the rocket. If the company does manage eight Ariane 6 flights in 2026, it will already be close to reaching the stated maximum launch cadence of between nine and 10 flights per year.

India sets its own record for payload mass. The Indian Space Research Organization on Sunday successfully launched the Indian Navy’s advanced communication satellite GSAT-7R, or CMS-03, on an LVM3 rocket from the Satish Dhawan Space Center, The Hindu reports. The indigenously designed and developed satellite, weighing approximately 4.4 metric tons (9,700 pounds), is the heaviest satellite ever launched by an Indian rocket and marks a major milestone in strengthening the Navy’s space-based communications and maritime domain awareness.

Going heavy … The launch Sunday was India’s fourth of 2025, a decline from the country’s high-water mark of eight orbital launches in a year in 2023. The failure in May of India’s most-flown rocket, the PSLV, has contributed to this year’s slower launch cadence. India’s larger rockets, the GSLV and LVM3, have been more active while officials grounded the PSLV for an investigation into the launch failure. (submitted by EllPeaTea)

Blue Origin preps for second flight of New Glenn. The road to the second flight of Blue Origin’s heavy-lifting New Glenn rocket got a lot clearer this week. The company confirmed it is targeting Sunday, November 9, for the launch of New Glenn from Cape Canaveral Space Force Station, Florida. This follows a successful test-firing of the rocket’s seven BE-4 main engines last week, Ars reports. Blue Origin, the space company owned by billionaire Jeff Bezos, said the engines operated at full power for 22 seconds, generating nearly 3.9 million pounds of thrust on the launch pad.

Fully integrated … With the launch date approaching, engineers worked this week to attach the rocket’s payload shroud containing two NASA satellites set to embark on a journey to Mars. Now that the rocket is fully integrated, ground crews will roll it back to Blue Origin’s Launch Complex-36 (LC-36) for final countdown preps. The launch window on Sunday opens at 2: 45 pm EST (19: 45 UTC). Blue Origin is counting on recovering the New Glenn first stage on the next flight after missing the landing on the rocket’s inaugural mission in January. Officials plan to reuse this booster on the third New Glenn launch early next year, slated to propel Blue Origin’s first unpiloted Blue Moon lander toward the Moon.

Next three launches

Nov. 8: Falcon 9 | Starlink 10-51 | Kennedy Space Center, Florida | 08: 30 UTC

Nov. 8: Long March 11H| Unknown Payload | Haiyang Spaceport, China Coastal Waters | 21: 00 UTC

Nov. 9: New Glenn | ESCAPADE | Cape Canaveral Space Force Station, Florida | 19: 45 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Canada invests in sovereign launch; India flexes rocket muscles Read More »

the-government-shutdown-is-starting-to-have-cosmic-consequences

The government shutdown is starting to have cosmic consequences

The federal government shutdown, now in its 38th day, prompted the Federal Aviation Administration to issue a temporary emergency order Thursday prohibiting commercial rocket launches from occurring during “peak hours” of air traffic.

The FAA also directed commercial airlines to reduce domestic flights from 40 “high impact airports” across the country in a phased approach beginning Friday. The agency said the order from the FAA’s administrator, Bryan Bedford, is aimed at addressing “safety risks and delays presented by air traffic controller staffing constraints caused by the continued lapse in appropriations.”

The government considers air traffic controllers essential workers, so they remain on the job without pay until Congress passes a federal budget and President Donald Trump signs it into law. The shutdown’s effects, which affected federal workers most severely at first, are now rippling across the broader economy.

Sharing the airspace

Vehicles traveling to and from space share the skies with aircraft, requiring close coordination with air traffic controllers to clear airspace for rocket launches and reentries. The FAA said its order restricting commercial air traffic, launches, and reentries is intended to “ensure the safety of aircraft and the efficiency of the [National Airspace System].”

In a statement explaining the order, the FAA said the air traffic control system is “stressed” due to the shutdown.

“With continued delays and unpredictable staffing shortages, which are driving fatigue, risk is further increasing, and the FAA is concerned with the system’s ability to maintain the current volume of operations,” the regulator said. “Accordingly, the FAA has determined additional mitigation is necessary.”

Beginning Monday, the FAA said commercial space launches will only be permitted between 10 pm and 6 am local time, when the national airspace is most calm. The order restricts commercial reentries to the same overnight timeframe. The FAA licenses all commercial launches and reentries.

The government shutdown is starting to have cosmic consequences Read More »

a-commercial-space-station-startup-now-has-a-foothold-in-space

A commercial space station startup now has a foothold in space

The integration tasks still include installing Haven-1’s environmental control and life support elements, power, data, and thermal control systems, thrusters, fuel tanks, and internal crew accommodations. While that work continues on Earth, Vast’s demo mission will validate some of the company’s designs in space.

Flying at an altitude of 300 miles (500 kilometers), Haven Demo will test Vast’s computer, power, software, guidance and control, propulsion, and radio systems. The pathfinder will also provide Vast an opportunity to exercise its ground stations and mission control teams.

Meanwhile, Vast will ship Haven-1 from its California headquarters to NASA’s Neil Armstrong Test Facility in Ohio for a rigorous environmental test campaign. The Haven-1 module, roughly 33 feet (10.1 meters) long and 14 feet (4.4 meters) wide, will undergo acoustics, vibration, and electromagnetic interference testing. Engineers will also place the habitat into a test chamber to check its performance in the extreme temperatures and airless vacuum environment of low-Earth orbit.

Then, Haven-1 will ship to Cape Canaveral, Florida, for final launch preparations. Vast’s official schedule calls for a launch of Haven-1 no earlier than May 2026, but there’s still a lot to do before the spacecraft is ready to travel to the launch site.

The primary structure of Vast’s Haven-1 habitat is seen undergoing structural testing in Mojave, California. Credit: Vast

Once in orbit, Haven-1 will host a series of crew visits flying on SpaceX’s Dragon spacecraft, each staying for two weeks before returning to Earth.

Haven-1 has a habitable volume of about 1,600 cubic feet (45 cubic meters), somewhat smaller than one of the primary modules on the International Space Station, but five times more than SpaceX’s Dragon capsule. Vast’s longer-term roadmap includes a larger multi-module space station called Haven-2 to support larger crews and longer expeditions in the 2030s.

Vast’s demo mission is an initial step toward these goals. The satellite now circling the planet carries several systems that are “architecturally similar” to Haven-1, according to Vast. For example, Haven-1 will have 12 solar arrays, each identical to the single array on Haven Demo. The pathfinder mission uses a subset of Haven-1’s propulsion system, but with identical thrusters, valves, and tanks.

A commercial space station startup now has a foothold in space Read More »