spacex

rocket-report:-the-pitfalls-of-rideshare;-china-launches-next-tiangong-crew

Rocket Report: The pitfalls of rideshare; China launches next Tiangong crew


This week, engineers ground-tested upgrades for Blue Origin’s New Glenn and Europe’s Ariane 6.

A Long March 2F carrier rocket, carrying the Shenzhou 20 spacecraft and a crew of three astronauts, lifts off from the Jiuquan Satellite Launch Center in northwest China on April 24, 2025. Credit: Photo by Pedro Pardo/AFP via Getty Images

Welcome to Edition 7.41 of the Rocket Report! NASA and its contractors at Kennedy Space Center in Florida continue building a new mobile launch tower for the Space Launch System Block 1B rocket, a taller, upgraded version of the SLS rocket being used for the agency’s initial Artemis lunar missions. Workers stacked another segment of the tower a couple of weeks ago, and the structure is inching closer to its full height of 355 feet (108 meters). But this is just the start. Once the tower is fully assembled, it must be outfitted with miles of cabling, tubing, and piping, then tested before it can support an SLS launch campaign. Last year, NASA’s inspector general projected the tower won’t be ready for a launch until the spring of 2029 and its costs could reach $2.7 billion. The good news, if you can call it that, is there probably won’t be an SLS Block 1B rocket that needs to use it in 2029, whether it’s due to delays or cancellation.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Fresh details on Astra’s strategic pivot. Astra, the once high-flying rocket startup that crashed back to Earth with investors before going private last year, has unveiled new details about its $44 million contract with the Department of Defense, Space News reports. The DOD contract announced last year supports the development of Rocket 4, a two-stage, mobile launch vehicle with ambitions to deliver cargo across the globe in under an hour. While Astra’s ill-fated Rocket 3 focused on launching small satellites to low-Earth orbit, Astra wants to make Rocket 4 a military utility vehicle. Rocket 4 will still be able to loft conventional satellites, but Astra’s most lucrative contract for the new launch vehicle involves using the rocket for precise point-to-point delivery of up to 1,300 pounds (590 kilograms) of supplies from orbit via specialized reentry vehicles. The military has shown interest in developing a rocket-based rapid global cargo delivery system for several years, and has a contract with SpaceX to study how the much larger Starship rocket could do a similar job.

Back from the brink … The Alameda, California-based company, which was delisted from Nasdaq in June 2024 after its shares collapsed, is now targeting the first test flight of Rocket 4 in 2026. Astra’s arrangement with the Defense Innovation Unit includes two milestones: one suborbital (point-to-point), and the other orbital with the option to launch from a location outside the United States, as Astra is developing a mobile launcher. Chris Kemp, Astra’s co-founder and CEO, told Space News the orbital launch will likely originate from Australia. Astra’s first launches with the new-retired Rocket 3 vehicle were based from Alaska and Florida.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

The Army has a catchy name for its newest weapon. The Long Range Hypersonic Weapon has a new name: Dark Eagle. The US Army announced the popular name for the service’s quick strike missile this week. “Part of the name pays tribute to the eagle—a master hunter known for its speed, stealth and agility—due to the LRHW’s combination of velocity, accuracy, maneuverability, survivability and versatility,” the Army said in a press release. “In addition, the bald eagle—our national bird—represents independence, strength and freedom.” The Dark Eagle is designed to strike targets little or no warning with a hypersonic glide vehicle capable of maneuvering in the upper atmosphere after an initial launch with a conventional missile. The hypersonic weapon’s ability to overcome an adversary’s air and missile defenses is embodied in the word “dark” in Dark Eagle, the Army said.

Flying again soon … The Army tested the hypersonic weapon’s “all-up round” during a missile launch from Cape Canaveral, Florida, in December. The test was delayed more than a year due to unspecified issues. The Army appears to be preparing for another Dark Eagle test from Florida’s Space Coast as soon as Friday, according to airspace and maritime warning notices in the Atlantic Ocean. (submitted by EllPeaTea)

Northrop’s niche with Minotaur. Ars mentioned in last week’s Rocket Report that Northrop Grumman’s Minotaur IV rocket launched April 16 with a classified payload for the National Reconnaissance Office. This was the first Minotaur IV launch in nearly five years, and the first orbital Minotaur launch from Vandenberg Space Force Base, California, in 14 years. The low-volume Minotaur IV uses solid rocket motors from the Air Force’s stockpile of retired Peacekeeper ballistic missiles, turning part of a weapon of mass destruction into, this case, a tool to support the US government’s spy satellite agency. The Minotaur IV’s lift capability fits neatly between the capacity of smaller commercial rockets, like Firefly’s Alpha or Rocket Lab’s Electron, and larger rockets like SpaceX’s Falcon 9. The most recent Minotaur IV launch contract cost the Space Force roughly $30 million, more than a mission with Firefly but less than a dedicated ride on a Falcon 9.

Minotaur IV will keep flying … The Space Force has at least two more missions reserved to launch on the expendable Minotaur IV rocket. One of the missions will launch multiple small satellites for the US military’s Space Test Program, and the other will place a military weather satellite into orbit. Both missions will launch from California, with planning launch dates in 2026, a Space Systems Command spokesperson told Ars. “We do have multiple launches planned using Minotaur family launch vehicles between our OSP-4 (Orbital/Suborbital Program) and SRP-4 (Sounding Rocket Program) contracts,” the spokesperson said. “We will release more information on those missions as we get closer to launch.” The Commercial Space Act of 1998 prohibits the use of surplus ICBM motors for commercial launches and limits their use to only specific kinds of military launches. The restrictions were intended to encourage NASA and commercial satellite operators to use privately-developed launch vehicles.

NASA’s launch prices have somehow gone up. In an era of reusable rockets and near-daily access to space, NASA is still paying more than it did 30 years ago to launch missions into orbit, according to a study soon to be published in the scientific journal Acta Astronautica. Adjusted for inflation, the prices NASA pays for launch services rose at an annual average rate of 2.82 percent from 1996 to 2024, the report says. “Furthermore, there is no evidence of shift in the launch service costs trend after the introduction of a new launch service provider [SpaceX] in 2016.” Ars analyzed NASA’s launch prices in a story published Thursday.

Why is this? … One might think SpaceX’s reuse of Falcon 9 rocket components would drive down launch prices, but no. Rocket reuse and economies of scale have significantly reduced SpaceX’s launch costs, but the company is charging NASA roughly the same it did before booster reuse became commonplace. There are a few reasons this is happening. One is that SpaceX hasn’t faced any meaningful competition for NASA launch contracts in the last six years. That should change soon with the recent debuts of United Launch Alliance’s Vulcan rocket and Blue Origin’s New Glenn launcher. NASA levies additional requirements on its commercial launch providers, and the agency must pay for them. These include schedule priority, engineering oversight, and sometimes special payload cleanliness requirements and the choice of a particular Falcon 9 booster from SpaceX’s inventory.

What’s holding up ULA’s next launch? After poor weather forced ULA to scrub a launch attempt April 9, the company will have to wait nearly three weeks for another try to launch an Atlas V rocket with Amazon’s first full-up load of 27 Kuiper broadband satellites, Ars reports. The rocket and satellites are healthy, according to ULA. But the military-run Eastern Range at Cape Canaveral Space Force Station, Florida, is unable to accommodate ULA until Monday, April 28. The Space Force is being unusually cagey about the reasons for the lengthy delay, which isn’t affecting SpaceX launches to the same degree.

Finally, a theory … The publishing of airspace and maritime warning notices for an apparent test launch of the Army’s Long Range Hypersonic Weapon, or Dark Eagle, might explain the range’s unavailability. The test launch could happen as soon as Friday, and offshore keep-out zones cover wide swaths of the Atlantic Ocean. If this is the reason for the long Atlas V launch delay, we still have questions. If this launch is scheduled for Friday, why has it kept ULA from launching the last few weeks? Why was SpaceX permitted to launch multiple times in the same time period? And why didn’t the first test flight of the Dark Eagle missile in December result in similar lengthy launch delays on the Eastern Range?

Shenzhou 20 bound for Tiangong. A spaceship carrying three astronauts docked Thursday with China’s space station in the latest crew rotation, approximately six hours after their launch on a Long March 2F rocket from the Gobi Desert, the Associated Press reports. The Shenzhou 20 mission is commanded by Chen Dong, who is making his third flight. He is accompanied by fighter pilot Chen Zhongrui and engineer Wang Jie, both making their maiden voyages. They will replace three astronauts currently on the Chinese Tiangong space station. Like those before them, they will stay on board for roughly six months.

Finding a rhythm … China’s human spaceflight missions have launched like clockwork since the country’s first domestic astronaut launch in 2003. Now, with the Tiangong space station fully operational, China is launching fresh crews at six-month intervals. While in space, the astronauts will conduct experiments in medical science and new technologies and perform spacewalks to carry out maintenance and install new equipment. Their tasks will include adding space debris shielding to the exterior of the Tiangong station. (submitted by EllPeaTea)

SpaceX resupplies the ISS. SpaceX launched an uncrewed Cargo Dragon spacecraft to the International Space Station early Monday on a resupply mission with increased importance after a transportation mishap derailed a flight by another US cargo ship, Spaceflight Now reports. The Dragon cargo vessel docked at the space station early Tuesday with 4,780 pounds (2,168 kilograms) of pressurized cargo and 1,653 pounds (750 kilograms) of unpressurized payloads in the vehicle’s trunk. NASA adjusted the Dragon spacecraft’s payload because an upcoming flight by Northrop Grumman’s Cygnus supply freighter was canceled after the Cygnus cargo module was damaged during transport to the launch site.

Something strange … The payloads aboard this Dragon cargo mission—the 32nd by SpaceX—include normal things like fresh food (exactly 1,262 tortillas), biomedical and pharmaceutical experiments, and the technical demonstration of a new atomic clock. However, there’s something onboard nobody at NASA or SpaceX wants to talk about. A payload package named STP-H10 inside Dragon’s trunk section will be installed to a mounting post outside of the space station to perform a mission for the US military’s Space Test Program. STP-H10 wasn’t mentioned in NASA’s press kit for this mission, and SpaceX didn’t show the usual views of Dragon’s trunk when the spacecraft deployed from its Falcon 9 rocket shortly after launch. These kinds of Space Test Program experiment platforms have launched to the ISS before without any secrecy. Stranger still is the fact that the STP-H10 experiments are unclassified. You can see the list here. (submitted by EllPeaTea)

There are some drawbacks to rideshare. SpaceX launched its third “Bandwagon” rideshare mission into a mid-inclination orbit Monday evening from Cape Canaveral Space Force Station, Space News reports. The payloads included a South Korean military radar spy satellite, a small commercial weather satellite, and the most interesting payload: an experimental reentry vehicle from a German startup named Atmos Space Cargo. The startup’s Phoenix vehicle, fitted with an inflatable heat shield, separated from the Falcon 9’s upper stage about 90 minutes after liftoff and, roughly a half-hour later, began reentry for a splashdown in the South Atlantic Ocean about 1,200 miles (2,000 kilometers) off the coast of Brazil. Until last month, the Phoenix vehicle was supposed to reenter over the Indian Ocean east of Madagascar, near the island of Réunion. The late change to the mission’s trajectory meant Atmos could not recover the spacecraft after splashdown.

Changes in longitude … Five weeks before the launch, SpaceX informed Atmos of a change in trajectory because of “operational constraints” of the primary payload, a South Korean reconnaissance satellite. Smaller payloads on rideshare launches benefit from lower launch prices, but their owners have no control over the schedule or trajectory of the launch. The change for this mission resulted in a splashdown well off the coast of Brazil, ruling out any attempt to recover Phoenix after splashdown. It also meant a steeper reentry than previously planned, creating higher loads on the spacecraft. The company lined up new ground stations in South America to communicate with the spacecraft during key phases of flight leading up to reentry. In addition, it chartered a plane to attempt to collect data during reentry, but the splashdown location was beyond the range of the aircraft. Some data suggests that the heat shield inflated as planned, but Atmos’s CEO said the company needed more time to analyze the data it had, adding that it was “very difficult” to get data from Phoenix in the final phases of its flight given its distance from ground stations.

Ariane 6 is gonna need a bigger booster. A qualification motor for an upgraded solid rocket booster for Europe’s Ariane 6 rocket successfully fired up for the first time on a test stand Thursday in Kourou, French Guiana, according to the European Space Agency. The new P160C solid rocket motor burned for more than two minutes, and ESA declared the test-firing a success. ESA’s member states approved development of the P160C motor in 2022. The upgraded motor is about 3 feet (1 meter) longer than the P120C motor currently flying on the Ariane 6 rocket, and carries about 31,000 pounds (14 metric tons) more solid propellant. The Ariane 6 rocket can fly with two or four of these strap-on boosters. Officials plan to introduce the P160C on Ariane 6 flights next year, giving the rocket’s heaviest version the ability to haul up to 4,400 pounds (2 metric tons) of additional cargo mass to orbit.

A necessary change … The heavier P160C solid rocket motor is required for Arianespace to fulfill its multi-mission launch contract with Amazon’s Project Kuiper satellite broadband network. Alongside similar contracts with ULA and Blue Origin, Amazon reserved 18 Kuiper launches on Ariane 6 rockets, and 16 of them must use the upgraded P160C booster to deliver additional Kuiper satellites to orbit. The P160C is a joint project between ArianeGroup and Avio, which will use the same motor design on Europe’s smaller Vega C rocket to improve its performance. (submitted by EllPeaTea)

Progress toward the second flight of New Glenn. Blue Origin’s CEO, Dave Limp, said his team completed a full duration 15-second hot-fire test Thursday of the upper stage for the company’s second New Glenn rocket. In a post on X, Limp wrote that the upper stage for the next New Glenn flight will have “enhanced performance.” The maximum power of its hydrogen-fueled BE-3U engine will increase from 173,000 pounds to 175,000 pounds of thrust. Two BE-3U engines fly on New Glenn’s second stage.

A good engine … The BE-3U engine is a derivative of the BE-3 engine flying on Blue Origin’s suborbital New Shepard rocket. Limp wrote that the upper stage on the first New Glenn launch in January “performed remarkably” and achieved an orbital injection with less than 1 percent deviation from its target. So, when will New Glenn launch again? We’ve heard late spring, June, or October, depending on the source. I’ll note that Blue Origin test-fired the New Glenn upper stage for the rocket’s first flight about four months before it launched.

Next three launches

April 27: Alpha | “Message in a Booster” | Vandenberg Space Force Base, California | 13: 37 UTC

April 27: Long March 3B/E | Unknown Payload | Xichang Satellite Launch Center, China | 15: 55 UTC

April 27: Falcon 9 | Starlink 11-9 | Vandenberg Space Force Base, California | 20: 55 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: The pitfalls of rideshare; China launches next Tiangong crew Read More »

reusable-rockets-are-here,-so-why-is-nasa-paying-more-to-launch-stuff-to-space?

Reusable rockets are here, so why is NASA paying more to launch stuff to space?

• 1998: Deep Space 1 Delta II rocket — $86 million

• 1999: Mars Polar Lander Delta II rocket — $88 million

• 2001: Mars Odyssey Delta II rocket — $96 million

• 2003: Spirit and Opportunity Mars rovers — two Delta II rockets — $87 million per launch

• 2004: Swift Delta II rocket — $90 million

• 2005: Mars Reconnaissance Orbiter Atlas V rocket — $147 million

• 2007: Phoenix Mars lander — Delta II rocket — $132 million

Launch prices for NASA missions soared after the late 2000s, following the creation of United Launch Alliance through a merger of the Atlas and Delta rocket programs developed by Lockheed Martin and Boeing. The merger eliminated competition for most of NASA’s launch contracts until SpaceX’s Falcon 9 became available for NASA science missions in the mid-2010s. Here’s a sample of missions as examples of the rising costs, with contract values adjusted for inflation from the time of their award to reflect 2025 dollars:

• 2009: Lunar Reconnaissance Orbiter — Atlas V rocket — $220 million

• 2012: Radiation Belt Storm Probes — Atlas V rocket — $226 million (averaged from a bulk buy)

• 2014: Orbiting Carbon Observatory-2 — Delta II rocket — $191 million (averaged from a bulk buy)

• 2016: OSIRIS-REx asteroid mission — Atlas V rocket — $252 million

• 2017: TDRS-M data relay satellite — Atlas V rocket — $179 million

• 2017: JPSS-2 weather satellite — Atlas V rocket — $224 million

• 2018: InSight Mars lander — Atlas V rocket — $220 million

• 2018: ICESAT-2 — Delta II rocket — $134 million

Again, the missions listed above would likely launch on SpaceX’s Falcon 9 rockets if NASA awarded these contracts today. So, how do SpaceX’s more recent Falcon 9 prices compare? Let’s take a look. These contract values are adjusted for inflation from the time of their award to reflect 2025 dollars:

• 2016: Jason 3 oceanography satellite — Falcon 9 rocket — $114 million

• 2018: Transiting Exoplanets Survey Satellite — Falcon 9 rocket — $118 million

• 2020: Sentinel-6A — Falcon 9 rocket — $126 million

• 2021: Double Asteroid Redirection Test — Falcon 9 rocket — $86 million

• 2021: Imaging X-ray Polarimetry Explorer — Falcon 9 rocket — $62 million

• 2022: Surface Water and Ocean Topography — Falcon 9 rocket — $148 million

• 2024: PACE Earth sciences mission — Falcon 9 rocket — $99 million

• 2025: SPHEREx astronomy mission — Falcon 9 rocket — $99 million

And here are a few future launches NASA has booked to fly on SpaceX’s Falcon 9 rocket. Some of these contracts were awarded in the last 12 months, and those have not been adjusted for inflation. The others reflect 2025 dollars:

• 2025: Interstellar Mapping and Acceleration Probe — Falcon 9 rocket — $134 million

• 2025: Sentinel-6B — Falcon 9 rocket — $101 million

• 2027: NEO Surveyor — Falcon 9 rocket — $100 million

• 2027: JPSS-4 weather satellite — Falcon 9 rocket — $113 million

• 2027: Compton Spectrometer and Imager — Falcon 9 rocket — $69 million

There are a few other things worth noting when we chart NASA’s launch prices. One is that SpaceX’s Falcon Heavy, used for NASA’s heaviest missions, costs more than a Falcon 9 rocket. For example, two identical weather satellites launched in 2022 and 2024 on ULA’s Atlas V and SpaceX’s Falcon Heavy rocket for $207 million and $178 million, respectively, again adjusted for inflation.

Reusable rockets are here, so why is NASA paying more to launch stuff to space? Read More »

a-chinese-born-crypto-tycoon—of-all-people—changed-the-way-i-think-of-space

A Chinese-born crypto tycoon—of all people—changed the way I think of space


“Are we the first generation of digital nomad in space?”

Chun Wang orbits the Earth inside the cupola of SpaceX’s Dragon spacecraft. Credit: Chun Wang via X

For a quarter-century, dating back to my time as a budding space enthusiast, I’ve watched with a keen eye each time people have ventured into space.

That’s 162 human spaceflight missions since the beginning of 2000, ranging from Space Shuttle flights to Russian Soyuz missions, Chinese astronauts’ first forays into orbit, and commercial expeditions on SpaceX’s Dragon capsule. Yes, I’m also counting privately funded suborbital hops launched by Blue Origin and Virgin Galactic.

Last week, Jeff Bezos’ Blue Origin captured headlines—though not purely positive—with the launch of six women, including pop star Katy Perry, to an altitude of 66 miles (106 kilometers). The capsule returned to the ground 10 minutes and 21 seconds later. It was the first all-female flight to space since Russian cosmonaut Valentina Tereshkova’s solo mission in 1963.

Many commentators criticized the flight as a tone-deaf stunt or a rich person’s flex. I won’t make any judgments, except to say two of the passengers aboard Blue Origin’s capsule—Aisha Bowe and Amanda Nguyen—have compelling stories worth telling.

Immerse yourself

Here’s another story worth sharing. Earlier this month, an international crew of four private astronauts took their own journey into space aboard a Dragon spacecraft owned and operated by Elon Musk’s SpaceX. Like Blue Origin’s all-female flight, this mission was largely bankrolled by a billionaire.

Actually, it was a couple of billionaires. Musk used his fortune to fund a large portion of the Dragon spacecraft’s development costs alongside a multibillion-dollar contribution from US taxpayers. Chun Wang, a Chinese-born cryptocurrency billionaire, paid SpaceX an undisclosed sum to fly one of SpaceX’s ships into orbit with three of his friends.

So far, this seems like another story about a rich guy going to space. This is indeed a major part of the story, but there’s more to it. Chun, now a citizen of Malta, named the mission Fram2 after the Norwegian exploration ship Fram used for polar expeditions at the turn of the 20th century. Following in the footsteps of Fram, which means “forward” in Norwegian, Chun asked SpaceX if he could launch into an orbit over Earth’s poles to gain a perspective on our planet no human eyes had seen before.

Joining Chun on the three-and-a-half-day Fram2 mission were Jannicke Mikkelsen, a Norwegian filmmaker and cinematographer who took the role of vehicle commander. Rabea Rogge, a robotics researcher from Germany, took the pilot’s seat and assisted Mikkelsen in monitoring the spacecraft’s condition in flight. Wang and Eric Philips, an Australian polar explorer and guide, flew as “mission specialists” on the mission.

Chun’s X account reads like a travelogue, with details of each jet-setting jaunt around the world. His propensity for sharing travel experiences extended into space, and I’m grateful for it.

The Florida peninsula, including Kennedy Space Center and Cape Canaveral, through the lens of Chun’s iPhone. Credit: Chun Wang via X

Usually, astronauts might share their reflections from space by writing posts on social media, or occasionally sharing pictures and video vignettes from the International Space Station (ISS). This, in itself, is a remarkable change from the way astronauts communicated with the public from space just 15 years ago.

Most of these social media posts involve astronauts showcasing an experiment they’re working on or executing a high-flying tutorial in physics. Often, these videos include acrobatic backflips or show the novelty of eating and drinking in microgravity. Some astronauts, like Don Pettit, who recently came home from the ISS, have a knack for gorgeous orbital photography.

Chun’s videos offer something different. They provide an unfiltered look into how four people live inside a spacecraft with an internal volume comparable to an SUV, and the awe of seeing something beautiful for the first time. His shares have an intimacy, authenticity, and most importantly, an immediacy I’ve never seen before in a video from space.

One of the videos Chun recorded and posted to X shows the Fram2 crew members inside Dragon the day after their launch. The astronauts seem to be enjoying themselves. Their LunchBot meal kits float nearby, and the capsule’s makeshift trash bin contains Huggies baby wipes and empty water bottles, giving the environment a vibe akin to a camping trip, except for the constant hum of air fans.

Later, Chun shared a video of the crew opening the hatch leading to Dragon’s cupola window, a plexiglass extension with panoramic views. Mikkelsen and Chun try to make sense of what they’re seeing.

“Oh, Novaya Zemlya, do you see it?” Mikkelsen asks. “Yeah. Yeah. It’s right here,” Chun replies. “Oh, damn. Oh, it is,” Mikkelsen says.

Chun then drops a bit of Cold War trivia. “The largest atomic bomb was tested here,” he says. “And all this ice. Further north, the Arctic Ocean. The North Pole.”

Flight Day 3 pic.twitter.com/vLlbAKIOvl

— Chun (@satofishi) April 3, 2025

On the third day of the mission, the Dragon spacecraft soared over Florida, heading south to north on its pole-to-pole loop around the Earth. “I can see our launch pad from here,” Mikkelsen says, pointing out NASA’s Kennedy Space Center several hundred miles away.

Flying over our launch site. pic.twitter.com/eHatUsOJ20

— Chun (@satofishi) April 3, 2025

Finally, Chun capped his voyage into space with a 30-second clip from his seat inside Dragon as the spacecraft fires thrusters for a deorbit burn. The capsule’s small rocket jets pulsed repeatedly to slow Dragon’s velocity enough to drop out of orbit and head for reentry and splashdown off the coast of California.

Lasers in LEO

It wasn’t only Chun’s proclivity for posting to social media that made this possible. It was also SpaceX’s own Starlink Internet network, which the Dragon spacecraft connected to with a “Plug and Plaser” terminal mounted in the capsule’s trunk. This device allowed Dragon and its crew to transmit and receive Internet signals through a laser link with Starlink satellites orbiting nearby.

Astronauts have shared videos similar to those from Fram2 in the past, but almost always after they are back on Earth, and often edited and packaged into a longer video. What’s unique about Chun’s videos is that he was able to immediately post his clips, some of which are quite long, to social media via the Starlink Internet network.

“With a Starlink laser terminal in the trunk, we can theoretically achieve speeds up to 100 or more gigabits per second,” said Jon Edwards, SpaceX’s vice president for Falcon launch vehicles, before the Fram2 mission’s launch. “For Fram2, we’re expecting around 1 gigabit per second.”

Compare this with the connectivity available to astronauts on the International Space Station, where crews have access to the Internet with uplink speeds of about 4 to 6 megabits per second and 500 kilobits to 1 megabit per second of downlink, according to Sandra Jones, a NASA spokesperson. The space station communications system provides about 1 megabit per second of additional throughput for email, an Internet telephone, and video conferencing. There’s another layer of capacity for transmitting scientific and telemetry data between the space station and Mission Control.

So, Starlink’s laser connection with the Dragon spacecraft offers roughly 200 to 2,000 times the throughput of the Internet connection available on the ISS. The space station sends and receives communication signals, including the Internet, through NASA’s fleet of Tracking and Data Relay Satellites.

The laser link is also cheaper to use. NASA’s TDRS relay stations are dedicated to providing communication support for the ISS and numerous other science missions, including the Hubble Space Telescope, while Dragon plugs into the commercial Starlink network serving millions of other users.

SpaceX tested the Plug and Plaser device for the first time in space last year on the Polaris Dawn mission, which was most notable for the first fully commercial spacewalk in history. The results of the test were “phenomenal,” said Kevin Coggins, NASA’s deputy associate administrator for Space Communications and Navigation.

“They have pushed a lot of data through in these tests to demonstrate their ability to do data rates just as high as TDRS, if not higher,” Coggins said in a recent presentation to a committee of the National Academies.

Artist’s illustration of a laser optical link between a Dragon spacecraft and a Starlink satellite. Credit: SpaceX

Edwards said SpaceX wants to make the laser communication capability available for future Dragon missions and commercial space stations that may replace the ISS. Meanwhile, NASA is phasing out the government-owned TDRS network. Coggins said NASA’s relay satellites in geosynchronous orbit will remain active through the remaining life of the International Space Station, and then will be retired.

“Many of these spacecraft are far beyond their intended service life,” Coggins said. “In fact, we’ve retired one recently. We’re getting ready to retire another one. In this period of time, we’re going to retire TDRSs pretty often, and we’re going to get down to just a couple left that will last us into the 2030s.

“We have to preserve capacity as the constellation gets smaller, and we have to manage risks,” Coggins said. “So, we made a decision on November 8, 2024, that no new users could come to TDRS. We took it out of the service catalog.”

NASA’s future satellites in Earth orbit will send their data to the ground through a commercial network like Starlink. The agency has agreements worth more than $278 million with five companies—SpaceX, Amazon, Viasat, SES, and Telesat—to demonstrate how they can replace and improve on the services currently provided by TDRS (pronounced “tee-dress”).

These companies are already operating or will soon deploy satellites that could provide radio or laser optical communication links with future space stations, science probes, and climate and weather monitoring satellites. “We’re not paying anyone to put up a constellation,” Coggins said.

After these five companies complete their demonstration phase, NASA will become a subscriber to some or all of their networks.

“Now, instead of a 30-year-old [TDRS] constellation and trying to replenish something that we had before, we’ve got all these new capabilities, all these new things that weren’t possible before, especially optical,” Coggins said. “That’s going to that’s going to mean so much with the volume and quality of data that you’re going to be able to bring down.”

Digital nomads

Chun and his crewmates didn’t use the Starlink connection to send down any prize-winning discoveries about the Universe, or data for a comprehensive global mapping survey. Instead, the Fram2 crew used the connection for video calls and text messages with their families through tablets and smartphones linked to a Wi-Fi router inside the Dragon spacecraft.

“Are we the first generation of digital nomad in space?” Chun asked his followers in one X post.

“It was not 100 percent available, but when it was, it was really fast,” Chun wrote of the Internet connection in an email to Ars. He told us he used an iPhone 16 Pro Max for his 4K videos. From some 200 miles (300 kilometers) up, the phone’s 48-megapixel camera, with a simulated optical zoom, brought out the finer textures of ice sheets, clouds, water, and land formations.

While the flight was fully automated, SpaceX trained the Fram2 crew how to live and work inside the Dragon spacecraft and take over manual control if necessary. None of Fram2 crew members had a background in spaceflight or in any part of the space industry before they started preparing for their mission. Notably, it was the first human spaceflight mission to low-Earth orbit without a trained airplane pilot onboard.

Chun Wang, far right, extends his arm to take an iPhone selfie moments after splashdown in the Pacific Ocean. Credit: SpaceX

Their nearly four days in orbit was largely a sightseeing expedition. Alongside Chun, Mikkelsen put her filmmaking expertise to use by shooting video from Dragon’s cupola. Before the flight, Mikkelsen said she wanted to create an immersive 3D account of her time in space. In some of Wang’s videos, Mikkelsen is seen working with a V-RAPTOR 8K VV camera from Red Digital Cinema, a device that sells for approximately $25,000, according to the manufacturer’s website.

The crew spent some of their time performing experiments, including the first X-ray of a human in space. Scientists gathered some useful data on the effects of radiation on humans in space because Fram2 flew in a polar orbit, where the astronauts were exposed to higher doses of ionizing radiation than a person might see on the International Space Station.

After they splashed down in the Pacific Ocean at the end of the mission, the Fram2 astronauts disembarked from the Dragon capsule without the assistance of SpaceX ground teams, which typically offer a helping hand for balance as crews readjust to gravity. This demonstrated how people might exit their spaceships on the Moon or Mars, where no one will be there to greet them.

Going into the flight, Chun wanted to see Antarctica and Svalbard, the Norwegian archipelago where he lives north of the Arctic Circle. In more than 400 human spaceflight missions from 1961 until this year, nobody ever flew in an orbit directly over the poles. Sophisticated satellites routinely fly over the polar regions to take high-resolution imagery and measure things like sea ice.

The Fram2 astronauts’ observations of the Arctic and Antarctic may not match what satellites can see, but their experience has some lasting catchet, standing alone among all who have flown to space before.

“People often refer to Earth as a blue marble planet, but from our point of view, it’s more of a frozen planet,” Chun told Ars.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

A Chinese-born crypto tycoon—of all people—changed the way I think of space Read More »

here’s-how-a-satellite-ended-up-as-a-ghostly-apparition-on-google-earth

Here’s how a satellite ended up as a ghostly apparition on Google Earth

Regardless of the identity of the satellite, this image is remarkable for several reasons.

First, despite so many satellites flying in space, it’s still rare to see a real picture—not just an artist’s illustration—of what one actually looks like in orbit. For example, SpaceX has released photos of Starlink satellites in launch configuration, where dozens of the spacecraft are stacked together to fit inside the payload compartment of the Falcon 9 rocket. But there are fewer well-resolved views of a satellite in its operational environment, with solar arrays extended like the wings of a bird.

This is changing as commercial companies place more and more imaging satellites in orbit. Several companies provide “non-Earth imaging” services by repurposing Earth observation cameras to view other objects in space. These views can reveal information that can be useful in military or corporate espionage.

Secondly, the Google Earth capture offers a tangible depiction of a satellite’s speed. An object in low-Earth orbit must travel at more than 17,000 mph (more than 27,000 km per hour) to keep from falling back into the atmosphere.

While the B-2’s motion caused it to appear a little smeared in the Google Earth image a few years ago, the satellite’s velocity created a different artifact. The satellite appears five times in different colors, which tells us something about how the image was made. Airbus’ Pleiades satellites take pictures in multiple spectral bands: blue, green, red, panchromatic, and near-infrared.

At lower left, the black outline of the satellite is the near-infrared capture. Moving up, you can see the satellite in red, blue, and green, followed by the panchromatic, or black-and-white, snapshot with the sharpest resolution. Typically, the Pleiades satellites record these images a split-second apart and combine the colors to generate an accurate representation of what the human eye might see. But this doesn’t work so well for a target moving at nearly 5 miles per second.

Here’s how a satellite ended up as a ghostly apparition on Google Earth Read More »

rocket-report:-“no-man’s-land”-in-rocket-wars;-isaacman-lukewarm-on-sls

Rocket Report: “No man’s land” in rocket wars; Isaacman lukewarm on SLS


China’s approach to space junk is worrisome as it begins launching its own megaconstellations.

A United Launch Alliance Atlas V rocket rolls to its launch pad in Florida in preparation for liftoff with 27 satellites for Amazon’s Kuiper broadband network. Credit: United Launch Alliance

Welcome to Edition 7.39 of the Rocket Report! Not getting your launch fix? Buckle up. We’re on the cusp of a boom in rocket launches as three new megaconstellations have either just begun or will soon begin deploying thousands of satellites to enable broadband connectivity from space. If the megaconstellations come to fruition, this will require more than a thousand launches in the next few years, on top of SpaceX’s blistering Starlink launch cadence. We discuss the topic of megaconstellations in this week’s Rocket Report.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

So, what is SpinLaunch doing now? Ars Technica has mentioned SpinLaunch, the company that literally wants to yeet satellites into space, in previous Rocket Report newsletters. This company enjoyed some success in raising money for its so-crazy-it-just-might-work idea of catapulting rockets and satellites into the sky, a concept SpinLaunch calls “kinetic launch.” But SpinLaunch is now making a hard pivot to small satellites, a move that, on its face, seems puzzling after going all-in on kinetic launch and even performing several impressive hardware tests, throwing a projectile to altitudes of up to 30,000 feet. Ars got the scoop, with the company’s CEO detailing why and how it plans to build a low-Earth orbit telecommunications constellation with 280 satellites.

Traditional versus kinetic … The planned constellation, named Meridian, is an opportunity for SpinLaunch to diversify away from being solely a launch company, according to David Wrenn, the company’s CEO. We’ve observed this in a number of companies that started out as rocket developers before branching out to satellite manufacturing or space services. Wrenn said SpinLaunch could loft all of the Meridian satellites on a single large conventional rocket, or perhaps two medium-lift rockets, and then maintain the constellation with its own kinetic launch system. A satellite communications network presents a better opportunity for profit, Wrenn said. “The launch market is relatively small compared to the economic potential of satellite communication,” he said. “Launch has generally been more of a cost center than a profit center. Satcom will be a much larger piece of the overall industry.”

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Peter Beck suggests Electron is here to stay. The conventional wisdom is that the small launch vehicle business isn’t a big moneymaker. There is really only one company, Rocket Lab, that has gained traction in selling dedicated rides to orbit for small satellites. Rocket Lab’s launcher, Electron, can place payloads of up to a few hundred pounds into orbit. As soon as Rocket Lab had some success, SpaceX began launching rideshare missions on its much larger Falcon 9 rocket, cobbling together dozens of satellites on a single vehicle to spread the cost of the mission among many customers. This offers customers a lower price point than buying a dedicated launch on Electron. But Peter Beck, Rocket Lab’s founder and CEO, says his company has found a successful market providing dedicated launches for small satellites, despite price pressure from SpaceX, Space News reports. “Dedicated small launch is a real market, and it should not be confused with rideshare,” he argued. “It’s totally different.”

No man’s land … Some small satellite companies that can afford the extra cost of a dedicated launch realize the value of controlling their schedule and orbit, traits that a dedicated launch offers over a rideshare, Beck said. It’s easy to blame SpaceX for undercutting the prices of Rocket Lab and other players in this segment of the launch business, but Beck said companies that have failed or withdrawn from the small launch market didn’t have a good business plan, a good product, or good engineering. He added that the capacity of the Electron vehicle is well-suited for dedicated launch, whereas slightly larger rockets in the one-ton-to-orbit class—a category that includes Firefly Aerospace’s Alpha and Isar Aerospace’s Spectrum rockets—are an ill fit. The one-ton performance range is “no man’s land” in the market, Beck said. “It’s too small to be a useful rideshare mission, and it’s too big to be a useful dedicated rocket” for smallsats. (submitted by EllPeaTea)

ULA scrubs first full-on Kuiper launch. A band of offshore thunderstorms near Florida’s Space Coast on Wednesday night forced United Launch Alliance to scrub a launch attempt of the first of dozens of missions on behalf of its largest commercial customer, Amazon, Spaceflight Now reports. The mission will use an Atlas V rocket to deploy 27 satellites for Amazon’s Project Kuiper network. It’s the first launch of what will eventually be more than 3,200 operational Kuiper satellites beaming broadband connectivity from space, a market currently dominated by SpaceX’s Starlink. As of Thursday, ULA hadn’t confirmed a new launch date, but airspace warning notices released by the FAA suggest the next attempt might occur Monday, April 14.

What’s a few more days? … This mission has been a long time coming. Amazon announced the Kuiper megaconstellation in 2019, and the company says it’s investing at least $10 billion in the project (the real number may be double that). Problems in manufacturing the Kuiper satellites, which Amazon is building in-house, delayed the program’s first full-on launch by a couple of years. Amazon launched a pair of prototype satellites in 2023, but the operational versions are different, and this mission fills the capacity of ULA’s Atlas V rocket. Amazon has booked more than 80 launches with ULA, Arianespace, Blue Origin, and SpaceX to populate the Kuiper network. (submitted by EllPeaTea)

Space Force swaps ULA for SpaceX. For the second time in six months, SpaceX will deploy a US military satellite that was sitting in storage, waiting for a slot on United Launch Alliance’s launch schedule, Ars reports. Space Systems Command, which oversees the military’s launch program, announced Monday that it is reassigning the launch of a Global Positioning System satellite from ULA’s Vulcan rocket to SpaceX’s Falcon 9. This satellite, designated GPS III SV-08 (Space Vehicle-08), will join the Space Force’s fleet of navigation satellites beaming positioning and timing signals for military and civilian users around the world. The move allows the GPS satellite to launch as soon as the end of May, the Space Force said. The military executed a similar rocket swap for a GPS mission that launched on a Falcon 9 in December.

Making ULA whole … The Space Force formally certified ULA’s Vulcan rocket for national security missions last month, so Vulcan may finally be on the cusp of delivering for the military. But there are several military payloads in the queue to launch on Vulcan before GPS III SV-08, which was already completed and in storage at its Lockheed Martin factory in Colorado. Meanwhile, SpaceX is regularly launching Falcon 9 rockets with ample capacity to add the GPS mission to the manifest. In exchange for losing the contract to launch this particular GPS satellite, the Space Force swapped a future GPS mission that was assigned to SpaceX to fly on ULA’s Vulcan instead.

Russia launches a former Navy SEAL to space. Jonny Kim, a former Navy SEAL, Harvard Medical School graduate, and now a NASA astronaut, blasted off with two cosmonaut crewmates aboard a Russian Soyuz rocket early Tuesday, CBS News reports. Three hours later, Kim and his Russian crewmates—Sergey Ryzhikov and Alexey Zubritsky—chased down the International Space Station and moved in for a picture-perfect docking aboard their Soyuz MS-27 spacecraft. “It was the trip of a lifetime and an honor to be here,” Kim told flight controllers during a traditional post-docking video conference.

Rotating back to Earth … Ryzhikov, Zubritsky, and Kim joined a crew of seven living aboard the International Space Station, temporarily raising the lab’s crew complement to 10 people. The new station residents are replacing an outgoing Soyuz crew—Alexey Ovchinin, Ivan Wagner, and Don Pettit—who launched to the ISS last September and who plan to return to Earth aboard their own spacecraft April 19 to wrap up a 219-day stay in space. This flight continues the practice of launching US astronauts on Russian Soyuz missions, part of a barter agreement between NASA and the Russian space agency that also reserves a seat on SpaceX Dragon missions for Russian cosmonauts.

China is littering in LEO. China’s construction of a pair of communications megaconstellations could cloud low Earth orbit with large spent rocket stages for decades or beyond, Space News reports. Launches for the government’s Guowang and Shanghai-backed but more commercially oriented Qianfan (Thousand Sails) constellation began in the second half of 2024, with each planned to consist of over 10,000 satellites, demanding more than a thousand launches in the coming years. Placing this number of satellites is enough to cause concern about space debris because China hasn’t disclosed its plans for removing the spacecraft from orbit at the end of their missions. It turns out there’s another big worry: upper stages.

An orbital time bomb … While Western launch providers typically deorbit their upper stages after dropping off megaconstellation satellites in space, China does not. This means China is leaving rockets in orbits high enough to persist in space for more than a century, according to Jim Shell, a space domain awareness and orbital debris expert at Novarum Tech. Space News reported on Shell’s commentary in a social media post, where he wrote that orbital debris mass in low-Earth orbit “will be dominated by PRC [People’s Republic of China] upper stages in short order unless something changes (sigh).” So far, China has launched five dedicated missions to deliver 90 Qianfan satellites into orbit. Four of these missions used China’s Long March 6A rocket, with an upper stage that has a history of breaking up in orbit, exacerbating the space debris problem. (submitted by EllPeaTea)

SpaceX wins another lunar lander launch deal. Intuitive Machines has selected a SpaceX Falcon 9 rocket to launch a lunar delivery mission scheduled for 2027, the Houston Chronicle reports. The upcoming IM-4 mission will carry six NASA payloads, including a European Space Agency-led drill suite designed to search for water at the lunar south pole. It will also include the launch of two lunar data relay satellites that support NASA’s so-called Near Space Network Services program. This will be the fourth lunar lander mission for Houston-based Intuitive Machines under the auspices of NASA’s Commercial Lunar Payload Services program.

Falcon 9 has the inside track … SpaceX almost certainly offered Intuitive Machines the best deal for this launch. The flight-proven Falcon 9 rocket is reliable and inexpensive compared to competitors and has already launched two Intuitive Machines missions, with a third one set to fly late this year. However, there’s another factor that made SpaceX a shoe-in for this contract. SpaceX has outfitted one of its launch pads in Florida with a unique cryogenic loading system to pump liquid methane and liquid oxygen propellants into the Intuitive Machines lunar lander as it sits on top of its rocket just before liftoff. The lander from Intuitive Machines uses these super-cold propellants to feed its main engine, and SpaceX’s infrastructure for loading it makes the Falcon 9 rocket the clear choice for launching it.

Time may finally be running out for SLS. Jared Isaacman, President Trump’s nominee for NASA administrator, said Wednesday in a Senate confirmation hearing that he wants the space agency to pursue human missions to the Moon and Mars at the same time, an effort that will undoubtedly require major changes to how NASA spends its money. My colleague Eric Berger was in Washington for the hearing and reported on it for Ars. Senators repeatedly sought Isaacman’s opinion on the Space Launch System, the NASA heavy-lifter designed to send astronauts to the Moon. The next SLS mission, Artemis II, is slated to launch a crew of four astronauts around the far side of the Moon next year. NASA’s official plans call for the Artemis III mission to launch on an SLS rocket later this decade and attempt a landing at the Moon’s south pole.

Limited runway … Isaacman sounded as if he were on board with flying the Artemis II mission as envisioned—no surprise, then, that the four Artemis II astronauts were in the audience—and said he wanted to get a crew of Artemis III to the lunar surface as quickly as possible. But he questioned why it has taken NASA so long, and at such great expense, to get its deep space human exploration plans moving. In one notable exchange, Isaacman said NASA’s current architecture for the Artemis lunar plans, based on the SLS rocket and Orion spacecraft, is probably not the ideal “long-term” solution to NASA’s deep space transportation plans. The smart reading of this is that Isaacman may be willing to fly the Artemis II and Artemis III missions as conceived, given that much of the hardware is already built. But everything that comes after this, including SLS rocket upgrades and the Lunar Gateway, could be on the chopping block.

Welcome to the club, Blue Origin. Finally, the Space Force has signaled it’s ready to trust Jeff Bezos’ space company, Blue Origin, for launching the military’s most precious satellites, Ars reports. Blue Origin received a contract on April 4 to launch seven national security missions for the Space Force between 2027 and 2032, an opening that could pave the way for more launch deals in the future. These missions will launch on Blue Origin’s heavy-lift New Glenn rocket, which had a successful debut test flight in January. The Space Force hasn’t certified New Glenn for national security launches, but military officials expect to do so sometime next year. Blue Origin joins SpaceX and United Launch Alliance in the Space Force’s mix of most-trusted launch providers.

A different class … The contract Blue Origin received last week covers launch services for the Space Force’s most critical space missions, requiring rocket certification and a heavy dose of military oversight to ensure reliability. Blue Origin was already eligible to launch a separate batch of missions the Space Force set aside to fly on newer rockets. The military is more tolerant of risk on these lower-priority missions, which include launches of “cookie-cutter” satellites for the Pentagon’s large fleet of missile-tracking satellites and a range of experimental payloads.

Why is SpaceX winning so many Space Force contracts? In less than a week, the US Space Force awarded SpaceX a $5.9 billion deal to make Elon Musk’s space company the Pentagon’s leading launch provider, replacing United Launch Alliance in the top position. Then, the Space Force assigned most of this year’s most lucrative launch contracts to SpaceX. As we mentioned earlier in the Rocket Report, the military also swapped a ULA rocket for a SpaceX launch vehicle for an upcoming GPS mission. So, is SpaceX’s main competitor worried Elon Musk is tipping the playing field for lucrative government contracts by cozying up to President Trump?

It’s all good, man … Tory Bruno, ULA’s chief executive, doesn’t seem too worried in his public statements, Ars reports. In a roundtable with reporters this week at the annual Space Symposium conference in Colorado, Bruno was asked about Musk’s ties with Trump. “We have not been impacted by our competitor’s position advising the president, certainly not yet,” Bruno said. “I expect that the government will follow all the rules and be fair and follow all the laws, and so we’re behaving that way.” The reason Bruno can say Musk’s involvement in the Trump administration so far hasn’t affected ULA is simple. SpaceX is cheaper and has a ready-made line of Falcon 9 and Falcon Heavy rockets available to launch the Pentagon’s satellites. ULA’s Vulcan rocket is now certified to launch military payloads, but it reached this important milestone years behind schedule.

Two Texas lawmakers are still fighting the last war. NASA has a lot to figure out in the next couple of years. Moon or Mars? Should, or when should, the Space Launch System be canceled? Can the agency absorb a potential 50 percent cut to its science budget? If Senators John Cornyn and Ted Cruz get their way, NASA can add moving a space shuttle to its list. The Lone Star State’s two Republican senators introduced the “Bring the Space Shuttle Home Act” on Thursday, CollectSpace reports. If passed by Congress and signed into law, the bill would direct NASA to take the space shuttle Discovery from the national collection at the Smithsonian National Air and Space Museum and transport it to Space Center Houston, a museum and visitor attraction next to Johnson Space Center, home to mission control and NASA’s astronaut training base. Discovery has been on display at the Smithsonian since 2012. NASA awarded museums in California, Florida, and New York the other three surviving shuttle orbiters.

Dollars and nonsense … Moving a space shuttle from Virginia to Texas would be a logistical nightmare, cost an untold amount of money, and would create a distraction for NASA when its focus should be on future space exploration. In a statement, Cruz said Houston deserves one of NASA’s space shuttles because of the city’s “unique relationship” with the program. Cornyn alleged in a statement that the Obama administration blocked Houston from receiving a space shuttle for political reasons. NASA’s inspector general found no evidence of this. On the contrary, transferring a space shuttle to Texas now would be an unequivocal example of political influence. The Boeing 747s that NASA used to move space shuttles across the country are no longer flightworthy, and NASA scrapped the handling equipment needed to prepare a shuttle for transport. Moving the shuttle by land or sea would come with its own challenges. “I can easily see this costing a billion dollars,” Dennis Jenkins, a former shuttle engineer who directed NASA’s shuttle transition and retirement program more than a decade ago, told CollectSpace in an interview. On a personal note, the presentation of Discovery at the Smithsonian is remarkable to see in person, with aerospace icons like the Concorde and the SR-71 spy plane under the same roof. Space Center Houston can’t match that.

Next three launches

April 12: Falcon 9 | Starlink 12-17 | Kennedy Space Center, Florida | 01: 15 UTC

April 12: Falcon 9 | NROL-192 | Vandenberg Space Force Base, California | 12: 17 UTC

April 14: Falcon 9 | Starlink 6-73 | Cape Canaveral Space Force Station, Florida | 01: 59 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: “No man’s land” in rocket wars; Isaacman lukewarm on SLS Read More »

here-are-the-reasons-spacex-won-nearly-all-recent-military-launch-contracts

Here are the reasons SpaceX won nearly all recent military launch contracts


“I expect that the government will follow all the rules and be fair and follow all the laws.”

President Donald Trump and Elon Musk, CEO of Tesla and SpaceX, speak to the press as they stand next to a Tesla vehicle on the South Portico of the White House on March 11, 2025. Credit: Photo by Mandel Ngan/AFP

In the last week, the US Space Force awarded SpaceX a $5.9 billion deal to make Elon Musk’s space company the Pentagon’s leading launch provider, and then it assigned the vast majority of this year’s most lucrative launch contracts to SpaceX.

On top of these actions, the Space Force reassigned the launch of a GPS navigation satellite from United Launch Alliance’s long-delayed Vulcan rocket to fly on SpaceX’s Falcon 9. ULA, a joint venture between Boeing and Lockheed Martin, is SpaceX’s chief US rival in the market for military satellite launches.

Given the close relationship between Musk and President Donald Trump, it’s not out of bounds to ask why SpaceX is racking up so many wins. Some plans floated by the Trump administration involving SpaceX in recent months have raised concerns over conflicts of interest.

Tory Bruno, ULA’s president and CEO, doesn’t seem too worried in his public statements. In a roundtable with reporters this week at the annual Space Symposium conference in Colorado, Bruno was asked about Musk’s ties with Trump.

“We have not been impacted by our competitor’s position advising the president, certainly not yet,” Bruno said. “I expect that the government will follow all the rules and be fair and follow all the laws, and so we’re behaving that way.”

It’s a separate concern whether the Pentagon should predominantly rely on a single provider for access to space, be it a launch company like SpaceX led by a billionaire government insider or a provider like ULA that, so far, hasn’t proven its new Vulcan rocket can meet the Space Force’s schedules.

Military officials are unanimous in the answer to that question: “No.” That’s why the Space Force is keen on adding to the Pentagon’s roster of launch providers. In the last 12 months, the Space Force has brought Blue Origin, Rocket Lab, and Stoke Space to join SpaceX and ULA in the mix for national security launches.

Results matter

The reason Bruno can say Musk’s involvement in the Trump administration so far hasn’t affected ULA is simple. SpaceX is cheaper and has a ready-made line of Falcon 9 and Falcon Heavy rockets available to launch the Pentagon’s satellites. ULA’s Vulcan rocket is now certified to launch military payloads, but it reached this important milestone years behind schedule.

The Pentagon announced Friday that SpaceX, ULA, and Blue Origin—Jeff Bezos’ space company—won contracts worth $13.7 billion to share responsibilities for launching approximately 54 of the military’s most critical space missions from 2027 through 2032. SpaceX received the lion’s share of the missions with an award for 28 launches, while ULA got 19. Blue Origin, a national security launch business newcomer, will fly seven missions.

This comes out to a 60-40 split between SpaceX and ULA, not counting Blue Origin’s seven launches, which the Space Force set aside for a third contractor. It’s a reversal of the 60-40 sharing scheme in the last big military launch competition in 2020, when ULA took the top award over SpaceX. Space Force officials anticipate Blue Origin’s New Glenn rocket will be certified for national security missions next year, allowing it to begin winning launch task orders.

Tory Bruno, president and CEO of United Launch Alliance, speaks with reporters at NASA’s Kennedy Space Center in Florida on May 6, 2024. Credit: Paul Hennessy/Anadolu via Getty Images

Bruno said he wasn’t surprised with the outcome of this year’s launch competition, known as Phase 3 of the National Security Space Launch (NSSL) program. “We’re happy to get it,” he said Monday.

“I felt that winning 60 percent the first time was a little bit of an upset,” Bruno said of the 2020 competition with SpaceX. “I believe they expected to win 60 then … Therefore, I believed this time around that they would compete that much harder, and that I was not going to price dive in order to guarantee a win.”

While we know roughly how many launches each company will get from the Space Force, the military hasn’t determined which specific missions will fly with ULA, SpaceX, or Blue Origin. Once per year, the Space Force will convene a “mission assignment board” to divvy up individual task orders.

Simply geography

Officials announced Monday that this year’s assignment board awarded seven missions to SpaceX and two launches to ULA. The list includes six Space Force missions and three for the National Reconnaissance Office (NRO).

SpaceX’s seven wins are worth a combined $845.8 million, with an average price of $120.8 million per launch. Three will fly on Falcon 9 rockets, and four will launch on SpaceX’s Falcon Heavy.

  • NROL-97 on a Falcon Heavy from Cape Canaveral
  • USSF-15 (GPS IIIF-3) on a Falcon Heavy from Cape Canaveral
  • USSF-174 on a Falcon Heavy from Cape Canaveral
  • USSF-186 on a Falcon Heavy from Cape Canaveral
  • USSF-234 on a Falcon 9 from Cape Canaveral
  • NROL-96 on a Falcon 9 from Vandenberg
  • NROL-157 on a Falcon 9 from Vandenberg

The Space Force’s two orders to ULA are valued at $427.6 million, averaging $213.8 million per mission. Both missions will launch from Florida, one with a GPS navigation satellite to medium-Earth orbit and another with a next-generation geosynchronous missile warning satellite named NGG-2.

  • USSF-49 (GPS IIIF-2) on a Vulcan from Cape Canaveral
  • USSF-50 (NGG-2) on a Vulcan from Cape Canaveral

So, why did ULA only get 22 percent of this year’s task orders, instead of something closer to 40 percent? It turns out ULA was not eligible for two of these missions because the company’s West Coast launch pad for the Vulcan rocket is still under construction at Vandenberg Space Force Base. The Space Force won’t assign specific West Coast missions to ULA until the launch pad is finished and certified, according to Brig. Gen. Kristin Panzenhagen, chief of the Space Force’s “Assured Access to Space” office.

Vandenberg, a military facility on the Southern California coast, has a wide range of open ocean to the south, perfect for rockets delivering payloads into polar orbits. Rockets flown out of Cape Canaveral typically fly to the east on trajectories useful for launching satellites into the GPS network or into geosynchronous orbit.

“A company can be certified for a subset of missions while it continues to work on meeting the certification criteria for the broader set of missions,” Panzenhagen said. “In this case, ULA was not certified for West Coast launches yet. They’re working on that.”

Because of this rule, SpaceX won task orders for the NROL-96 and NROL-157 missions by default.

The Space Force’s assignment of the USSF-15 mission to SpaceX makes some sense, too. Going forward, the Space Force wants to have Vulcan and Falcon Heavy as options for adding to the GPS network. This will be the first GPS payload to launch on Falcon Heavy, allowing SpaceX engineers to complete a raft of up-front analysis and integration work. Engineers won’t have to repeat this work on future Falcon Heavy flights carrying identical GPS satellites.

From monopoly to niche

A decade ago, ULA was the sole launch provider to deploy the Pentagon’s fleet of surveillance, communication, and navigation satellites. The Air Force certified SpaceX’s Falcon 9 rocket for national security missions in May 2015, opening the market for competition for the first time since Boeing and Lockheed Martin merged their rocket divisions to create ULA in 2006.

ULA’s monopoly, which Bruno acknowledged, has now eroded into making the company a niche player in the military launch market.

“A monopoly is not healthy,” he said. “We were one for a few years before I came to ULA, and that was because no one else had the capability, and there weren’t that many missions. There weren’t enough to support many providers. There are now, so this is better.”

There are at least a couple of important reasons the Space Force is flying more missions than 10 or 20 years ago.

One is that Pentagon officials believe the United States is now in competition with a near-peer great power, China, with a rapidly growing presence in space. Military leaders say this requires more US hardware in orbit. Another is that the cost of launching something into space is lower than it was when ULA enjoyed its dominant position. SpaceX has led the charge in reducing the cost of accessing space, thanks to its success in pioneering reusable commercial rockets.

Many of the new types of missions the Space Force plans to launch in the next few years will go to low-Earth orbit (LEO), a region of space a few hundred miles above the planet. There, the Space Force plans to deploy hundreds of satellites for a global missile detection, missile tracking, and data relay network. Eventually, the military may place hundreds or more space-based interceptors in LEO as part of the “Golden Dome” missile defense program pushed by the Trump administration.

United Launch Alliance’s second Vulcan rocket underwent a countdown dress rehearsal last year. Credit: United Launch Alliance

Traditionally, the military has operated missile tracking and communications satellites in much higher geosynchronous orbits some 22,000 miles (36,000 kilometers) over the equator. At that altitude, satellites revolve around the Earth at the same speed as the planet’s rotation, allowing a spacecraft to maintain a constant vigil over the same location.

The Space Force still has a few of those kinds of missions to launch, along with mobile, globe-trotting surveillance satellites and eavesdropping signals intelligence spy platforms for the National Reconnaissance Office. Bruno argues ULA’s Vulcan rocket, despite being more expensive, is best suited for these bespoke missions. So far, the Space Force’s awards seem to bear it out.

“Our rocket has a unique niche within this marketplace,” Bruno said. “There really are two kinds of missions from the rocket’s standpoint. There are ones where you drop off in LEO, and there are ones where you drop off in higher orbits. You design your rockets differently for that. It doesn’t mean we can’t drop off in LEO, it doesn’t mean [SpaceX] can’t drop off in a higher energy orbit, but we’re more efficient at those because we designed for that.”

There’s some truth in that argument. The Vulcan rocket’s upper stage, called the Centaur V, burns liquid hydrogen fuel with better fuel efficiency than the kerosene-fueled engine on SpaceX’s upper stage. And SpaceX must use the more expensive Falcon Heavy rocket for the most demanding missions, expending the rocket’s core booster to devote more propellant toward driving the payload into orbit.

SpaceX has launched at a rate nearly 34 times higher than United Launch Alliance since the start of 2023, but ULA has more experience with high-energy missions, featuring more complex maneuvers to place military payloads directly into geosynchronous orbit, and sometimes releasing multiple payloads at different locations in the geosynchronous belt.

This is one of the most challenging mission profiles for any rocket, requiring a high-endurance upper stage, like Vulcan’s Centaur V, capable of cruising through space for eight or more hours.

SpaceX has flown a long-duration version of its upper stage on several missions by adding an extended mission kit. This gives the rocket longer battery life and a custom band of thermal paint to help ensure its kerosene fuel does not freeze in the cold environment of space.

A SpaceX Falcon Heavy rocket rolls to the launch pad in Florida in June 2024. The rocket’s upper stage sports a strip of gray thermal paint to keep propellants at the proper temperature for a long-duration cruise through space. Credit: SpaceX

On the other hand, the overwhelming majority of SpaceX’s missions target low-Earth orbit, where Falcon 9 rockets deploy Starlink Internet satellites, send crews and cargo to the International Space Station, and regularly launch multi-payload rideshare missions. These launches maximize the Falcon 9’s efficiencies with booster recovery and reuse. SpaceX is proficient and prolific with these missions, launching them every couple of days. Launch, land, repeat.

“They tend to be more efficient at the LEO drop-offs, I’ll be honest about that,” Bruno said. “That means there’s a competitive space in the middle, and then there’s kind of these end cases. So, we’ll keep winning when it’s way over in our space, they will win when it’s way over in theirs, and then in the middle it’s kind of a toss-up for any given mission.”

Recent history seems to support Bruno’s hypothesis. Last year, SpaceX and ULA competed head-to-head for nine specific launch contracts, or task orders, in a different Space Force competition. The launches will place national security satellites into low-Earth orbit, and SpaceX won all nine of them. Since 2020, ULA has won more Space Force task orders than SpaceX for high-energy missions, although the inverse was true in this year’s round of launch orders.

The military’s launch contracting strategy gives the Space Force flexibility to swap payloads between rockets, add more missions, or deviate from the 60-40 share to SpaceX and ULA. This has precedent. Between 2020 and 2024, ULA received 54 percent of military launches, short of the 60 percent anticipated in their original contract. This amounted to ULA winning three fewer task orders, or a lost value of about $350 million, because of delays in development of the Vulcan rocket.

That’s the cost of doing business with the Pentagon. Military officials don’t want their satellites sitting on the ground. The national policy of assured access to space materialized after the Challenger accident in 1986. NASA grounded the Space Shuttle for two-and-a-half years, and the military had no other way to put its largest satellites into orbit, leading the Pentagon to accelerate development of new versions of the Atlas, Delta, and Titan rockets dating back to the 1960s.

Military and intelligence officials were again stung by a spate of failures with the Titan IV in the 1990s, when it was the only heavy-lift launcher in the Pentagon’s inventory. Then, ULA’s Delta IV Heavy rocket was the sole heavy-lifter available to the military for nearly two decades. Today, the Space Force has two heavy-lift options, and may have a third soon with Blue Origin’s New Glenn rocket.

This all has the added benefit of bringing down costs, according to Col. Doug Pentecost, deputy director of the Space Force’s Assured Access to Space directorate.

“If you bundle a bunch of missions together, you can get a better price point,” he said. “We awarded $13.7 billion. We thought this was going to cost us 15.5, so we saved $1.7 billion with this competition, showing that we have great industry out there trying to do good stuff for us.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Here are the reasons SpaceX won nearly all recent military launch contracts Read More »

a-military-satellite-waiting-to-launch-with-ula-will-now-fly-with-spacex

A military satellite waiting to launch with ULA will now fly with SpaceX

For the second time in six months, SpaceX will deploy a US military satellite that was sitting in storage, waiting for a slot on United Launch Alliance’s launch schedule.

Space Systems Command, which oversees the military’s launch program, announced Monday that it is reassigning the launch of a Global Positioning System satellite from ULA’s Vulcan rocket to SpaceX’s Falcon 9. This satellite, designated GPS III SV-08 (Space Vehicle-08), will join the Space Force’s fleet of navigation satellites beaming positioning and timing signals for military and civilian users around the world.

The Space Force booked the Vulcan rocket to launch this spacecraft in 2023, when ULA hoped to begin flying military satellites on its new rocket by mid-2024. The Vulcan rocket is now scheduled to launch its first national security mission around the middle of this year, following the Space Force’s certification of ULA’s new launcher last month.

The “launch vehicle trade” allows the Space Force to launch the GPS III SV-08 satellite from Cape Canaveral, Florida, as soon as the end of May, according to a press release.

“Capability sitting on the ground”

With Vulcan now cleared to launch military missions, officials are hopeful ULA can ramp up the rocket’s flight cadence. Vulcan launched on two demonstration flights last year, and ULA eventually wants to launch Vulcan twice per month. ULA engineers have their work cut out for them. The company’s Vulcan backlog now stands at 89 missions, following the Space Force’s announcement last week of 19 additional launches awarded to ULA.

Last year, the Pentagon’s chief acquisition official for space wrote a letter to ULA’s ownersBoeing and Lockheed Martin—expressing concern about ULA’s ability to scale the manufacturing of the Vulcan rocket.

“Currently there is military satellite capability sitting on the ground due to Vulcan delays,” Frank Calvelli, the Pentagon’s chief of space acquisition, wrote in the letter.

Vulcan may finally be on the cusp of delivering for the Space Force, but there are several military payloads in the queue to launch on Vulcan before GPS III SV-08, which was complete and in storage at its Lockheed Martin factory in Colorado.

Col. Jim Horne, senior materiel leader of launch execution, said in a statement that the rocket swap showcases the Space Force’s ability to launch in three months from call-up, compared to the typical planning cycle of two years. “It highlights another instance of the Space Force’s ability to complete high-priority launches on a rapid timescale, which demonstrates the capability to respond to emergent constellation needs as rapidly as Space Vehicle readiness allows,” Horne said.

A military satellite waiting to launch with ULA will now fly with SpaceX Read More »

with-new-contracts,-spacex-will-become-the-us-military’s-top-launch-provider

With new contracts, SpaceX will become the US military’s top launch provider


The military’s stable of certified rockets will include Falcon 9, Falcon Heavy, Vulcan, and New Glenn.

A SpaceX Falcon Heavy rocket lifts off on June 25, 2024, with a GOES weather satellite for NOAA. Credit: SpaceX

The US Space Force announced Friday it selected SpaceX, United Launch Alliance, and Blue Origin for $13.7 billion in contracts to deliver the Pentagon’s most critical military to orbit into the early 2030s.

These missions will launch the government’s heaviest national security satellites, like the National Reconnaissance Office’s large bus-sized spy platforms, and deploy them into bespoke orbits. These types of launches often demand heavy-lift rockets with long-duration upper stages that can cruise through space for six or more hours.

The contracts awarded Friday are part of the next phase of the military’s space launch program once dominated by United Launch Alliance, the 50-50 joint venture between legacy defense contractors Boeing and Lockheed Martin.

After racking up a series of successful launches with its Falcon 9 rocket more than a decade ago, SpaceX sued the Air Force for the right to compete with ULA for the military’s most lucrative launch contracts. The Air Force relented in 2015 and allowed SpaceX to bid. Since then, SpaceX has won more than 40 percent of missions the Pentagon has ordered through the National Security Space Launch (NSSL) program, creating a relatively stable duopoly for the military’s launch needs.

The Space Force took over the responsibility for launch procurement from the Air Force after its creation in 2019. The next year, the Space Force signed another set of contracts with ULA and SpaceX for missions the military would order from 2020 through 2024. ULA’s new Vulcan rocket initially won 60 percent of these missions—known as NSSL Phase 2—but the Space Force reallocated a handful of launches to SpaceX after ULA encountered delays with Vulcan.

ULA’s Vulcan and SpaceX’s Falcon 9 and Falcon Heavy rockets will launch the remaining 42 Phase 2 missions over the next several years, then move on to Phase 3, which the Space Force announced Friday.

Spreading the wealth

This next round of Space Force launch contracts will flip the script, with SpaceX taking the lion’s share of the missions. The breakdown of the military’s new firm fixed-price launch agreements goes like this:

  • SpaceX will get 28 missions worth approximately $5.9 billion
  • ULA will get 19 missions worth approximately $5.4 billion
  • Blue Origin will get seven missions worth approximately

That equates to a 60-40 split between SpaceX and ULA for the bulk of the missions. Going into the competition, military officials set aside seven additional missions to launch with a third provider, allowing a new player to gain a foothold in the market. The Space Force reserves the right to reapportion missions between the three providers if one of them runs into trouble.

The Pentagon confirmed an unnamed fourth company also submitted a proposal, but wasn’t selected for Phase 3.

Rounded to the nearest million, the contract with SpaceX averages out to $212 million per launch. For ULA, it’s $282 million, and Blue Origin’s price is $341 million per launch. But take these numbers with caution. The contracts include a lot of bells and whistles, pricing them higher than what a commercial customer might pay.

According to the Pentagon, the contracts provide “launch services, mission unique services, mission acceleration, quick reaction/anomaly resolution, special studies, launch service support, fleet surveillance, and early integration studies/mission analysis.”

Essentially, the Space Force is paying a premium to all three launch providers for schedule priority, tailored solutions, and access to data from every flight of each company’s rocket, among other things.

New Glenn lifts off on its debut flight. Credit: Blue Origin

“Winning 60% percent of the missions may sound generous, but the reality is that all SpaceX competitors combined cannot currently deliver the other 40%!,” Elon Musk, SpaceX’s founder and CEO, posted on X. “I hope they succeed, but they aren’t there yet.”

This is true if you look at each company’s flight rate. SpaceX has launched Falcon 9 and Falcon Heavy rockets 140 times over the last 365 days. These are the flight-proven rockets SpaceX will use for its share of Space Force missions.

ULA has logged four missions in the same period, but just one with the Vulcan rocket it will use for future Space Force launches. And Blue Origin, Jeff Bezos’s space company, launched the heavy-lift New Glenn rocket on its first test flight in January.

“We are proud that we have launched 100 national security space missions and honored to continue serving the nation with our new Vulcan rocket,” said Tory Bruno, ULA’s president and CEO, in a statement.

ULA used the Delta IV and Atlas V rockets for most of the missions it has launched for the Pentagon. The Delta IV rocket family is now retired, and ULA will end production of the Atlas V rocket later this year. Now, ULA’s Vulcan rocket will take over as the company’s sole launch vehicle to serve the Pentagon. ULA aims to eventually ramp up the Vulcan launch cadence to fly up to 25 times per year.

After two successful test flights, the Space Force formally certified the Vulcan rocket last week, clearing the way for ULA to start using it for military missions in the coming months. While SpaceX has a clear advantage in number of launches, schedule assurance, and pricingand reliability comparable to ULABruno has recently touted the Vulcan rocket’s ability to maneuver over long periods in space as a differentiator.

“This award constitutes the most complex missions required for national security space,” Bruno said in a ULA press release. “Vulcan continues to use the world’s highest energy upper stage: the Centaur V. Centaur V’s unmatched flexibility and extreme endurance enables the most complex orbital insertions continuing to advance our nation’s capabilities in space.”

Blue Origin’s New Glenn must fly at least one more successful mission before the Space Force will certify it for Lane 2 missions. The selection of Blue Origin on Friday suggests military officials believe New Glenn is on track for certification by late 2026.

“Honored to serve additional national security missions in the coming years and contribute to our nation’s assured access to space,” Dave Limp, Blue Origin’s CEO, wrote on X. “This is a great endorsement of New Glenn’s capabilities, and we are committed to meeting the heavy lift needs of our US DoD and intelligence agency customers.”

Navigating NSSL

There’s something you must understand about the way the military buys launch services. For this round of competition, the Space Force divided the NSSL program into two lanes.

Friday’s announcement covers Lane 2 for traditional military satellites that operate thousands of miles above the Earth. This bucket includes things like GPS navigation satellites, NRO surveillance and eavesdropping platforms, and strategic communications satellites built to survive a nuclear war. The Space Force has a low tolerance for failure with these missions. Therefore, the military requires rockets be certified before they can launch big-ticket satellites, each of which often cost hundreds of millions, and sometimes billions, of dollars.

The Space Force required all Lane 2 bidders to show their rockets could reach nine “reference orbits” with payloads of a specified mass. Some of the orbits are difficult to reach, requiring technology that only SpaceX and ULA have demonstrated in the United States. Blue Origin plans to do so on a future flight.

This image shows what the Space Force’s fleet of missile warning and missile tracking satellites might look like in 2030, with a mix of platforms in geosynchronous orbit, medium-Earth orbit, and low-Earth orbit. The higher orbits will require launches by “Lane 2” providers. Credit: Space Systems Command

The military projects to order 54 launches in Lane 2 from this year through 2029, with announcements each October of exactly which missions will go to each launch provider. This year, it will be just SpaceX and ULA. The Space Force said Blue Origin won’t be eligible for firm orders until next year. The missions would launch between 2027 and 2032.

“America leads the world in space launch, and through these NSSL Phase 3 Lane 2 contracts, we will ensure continued access to this vital domain,” said Maj. Gen. Stephen Purdy, Acting Assistant Secretary of the Air Force for Space Acquisition and Integration. “These awards bolster our ability to launch critical defense satellites while strengthening our industrial base and enhancing operational readiness.”

Lane 1 is primarily for missions to low-Earth orbit. These payloads include tech demos, experimental missions, and the military’s mega-constellation of missile tracking and data relay satellites managed by the Space Development Agency. For Lane 1 missions, the Space Force won’t levy the burdensome certification and oversight requirements it has long employed for national security launches. The Pentagon is willing to accept more risk with Lane 1, encompassing at least 30 missions through the end of the 2020s, in an effort to broaden the military’s portfolio of launch providers and boost competition.

Last June, Space Systems Command chose SpaceX, ULA, and Blue Origin for eligibility to compete for Lane 1 missions. SpaceX won all nine of the first batch of Lane 1 missions put up for bids. The military recently added Rocket Lab’s Neutron rocket and Stoke Space’s Nova rocket to the Lane 1 mix. Neither of those rockets have flown, and they will need at least one successful launch before approval to fly military payloads.

The Space Force has separate contract mechanisms for the military’s smallest satellites, which typically launch on SpaceX rideshare missions or dedicated launches with companies like Rocket Lab and Firefly Aerospace.

Military leaders like having all these options, and would like even more. If one launch provider or launch site is unavailable due to a technical problem—or, as some military officials now worry, an enemy attack—commanders want multiple backups in their toolkit. Market forces dictate that more competition should also lower prices.

“A robust and resilient space launch architecture is the foundation of both our economic prosperity and our national security,” said US Space Force Chief of Space Operations Gen. Chance Saltzman. “National Security Space Launch isn’t just a program; it’s a strategic necessity that delivers the critical space capabilities our warfighters depend on to fight and win.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

With new contracts, SpaceX will become the US military’s top launch provider Read More »

spacex-just-took-a-big-step-toward-reusing-starship’s-super-heavy-booster

SpaceX just took a big step toward reusing Starship’s Super Heavy booster

SpaceX is having trouble with Starship’s upper stage after back-to-back failures, but engineers are making remarkable progress with the rocket’s enormous booster.

The most visible sign of SpaceX making headway with Starship’s first stage—called Super Heavycame at 9: 40 am local time (10: 40 am EDT; 14: 40 UTC) Thursday at the company’s Starbase launch site in South Texas. With an unmistakable blast of orange exhaust, SpaceX fired up a Super Heavy booster that has already flown to the edge of space. The burn lasted approximately eight seconds.

This was the first time SpaceX has test-fired a “flight-proven” Super Heavy booster, and it paves the way for this particular rocket—designated Booster 14—to fly again soon. SpaceX confirmed a reflight of Booster 14, which previously launched and returned to Earth in January, will happen on next Starship launch With Thursday’s static fire test, Booster 14 appears to be closer to flight readiness than any of the boosters in SpaceX’s factory, which is a short distance from the launch site.

SpaceX said 29 of the booster’s 33 methane-fueled Raptor engines are flight-proven. “The first Super Heavy reuse will be a step towards our goal of zero-touch reflight,” SpaceX wrote on X.

A successful reflight of the Super Heavy booster would be an important milestone for the Starship program, while engineers struggle with problems on the rocket’s upper stage, known simply as the ship.

What a difference

Super Heavy’s engines are capable of producing nearly 17 million pounds of thrust, twice the power of NASA’s Saturn V rocket that sent astronauts toward the Moon. Super Heavy is perhaps the most complex rocket booster ever built. It’s certainly the largest. To get a sense of how big this booster is, imagine the fuselage of a Boeing 747 jumbo jet standing on end.

SpaceX has now launched eight full-scale test flights of Starship, with a Super Heavy booster and Starship’s upper stage stacked together to form a rocket that towers 404 feet (123.1 meters) tall. The booster portion of the rocket has performed well so far, with seven consecutive successful launches since a failure on Starship’s debut flight.

Booster 14 comes in for the catch after flying to the edge of space on January 16. Credit: SpaceX

Most recently, SpaceX has recovered three Super Heavy boosters in four attempts. SpaceX has a wealth of experience with recovering and reusing Falcon 9 boosters. The total number of Falcon rocket landings is now 426.

SpaceX reused a Falcon 9 booster for the first time in March 2017. This was an operational flight with a communications satellite on a mission valued at several hundred million dollars.

Ahead of the milestone Falcon 9 reflight eight years ago, SpaceX spent nearly a year refurbishing and retesting the rocket after it returned from its first mission. The rocket racked up more mileage on the ground than it did in flight, first returning to its Florida launch base on a SpaceX drone ship and then moving by truck to SpaceX’s headquarters in Hawthorne, California, for thorough inspections and refurbishment.

SpaceX just took a big step toward reusing Starship’s Super Heavy booster Read More »

rocket-report:-stoke-is-stoked;-sovereignty-is-the-buzzword-in-europe

Rocket Report: Stoke is stoked; sovereignty is the buzzword in Europe


“The idea that we will be able to do it through America… I think is very, very doubtful.”

Stoke Space’s Andromeda upper stage engine is hot-fired on a test stand. Credit: Stoke Space

Welcome to Edition 7.37 of the Rocket Report! It’s been interesting to watch how quickly European officials have embraced ensuring they have a space launch capability independent of other countries. A few years ago, European government satellites regularly launched on Russian Soyuz rockets, and more recently on SpaceX Falcon 9 rockets from the United States. Russia is now non grata in European government circles, and the Trump administration is widening the trans-Atlantic rift. European leaders have cited the Trump administration and its close association with Elon Musk, CEO of SpaceX, as prime reasons to support sovereign access to space, a capability currently offered only by Arianespace. If European nations can reform how they treat their commercial space companies, there’s enough ambition, know-how, and money in Europe to foster a competitive launch industry.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Isar Aerospace aims for weekend launch. A German startup named Isar Aerospace will try to launch its first rocket Saturday, aiming to become the first in a wave of new European launch companies to reach orbit, Ars reports. The Spectrum rocket consists of two stages, stands about 92 feet (28 meters) tall, and can haul payloads up to 1 metric ton (2,200 pounds) into low-Earth orbit. Based in Munich, Isar was founded by three university graduate students in 2018. Isar scrubbed a launch attempt Monday due to unfavorable winds at the launch site in Norway.

From the Arctic … Notably, this will be the first orbital launch attempt from a launch pad in Western Europe. The French-run Guiana Space Center in South America is the primary spaceport for European rockets. Virgin Orbit staged an airborne launch attempt from an airport in the United Kingdom in 2023, and the Plesetsk Cosmodrome is located in European Russia. The launch site for Isar is named Andøya Spaceport, located about 650 miles (1,050 kilometers) north of Oslo, inside the Arctic Circle. (submitted by EllPeaTea)

A chance for competition in Europe. The European Space Agency is inviting proposals to inject competition into the European launch market, an important step toward fostering a dynamic multiplayer industry officials hope one day will mimic that of the United States, Ars reports. The near-term plan for the European Launcher Challenge is for ESA to select companies for service contracts to transport ESA and other European government payloads to orbit from 2026 through 2030. A second component of the challenge is for companies to perform at least one demonstration of an upgraded launch vehicle by 2028. The competition is open to any European company working in the launch business.

Challenging the status quo … This is a major change from how ESA has historically procured launch services. Arianespace has been the only European launch provider available to ESA and other European institutions for more than 40 years. But there are private companies across Europe at various stages of developing their own small launchers, and potentially larger rockets, in the years ahead. With the European Launcher Challenge, ESA will provide each of the winners up to 169 million euros ($182 million), a significant cash infusion that officials hope will shepherd Europe’s nascent private launch industry toward liftoff. Companies like Isar Aerospace, Rocket Factory Augsburg, MaiaSpace, and PLD Space are among the contenders for ESA contracts.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Rocket Lab launches eight satellites. Rocket Lab launched eight satellites Wednesday for a German company that is expanding its constellation to detect and track wildfires, Space News reports. An Electron rocket lifted off from New Zealand and completed deploying its payload of eight CubeSats for OroraTech about 55 minutes later, placing them into Sun-synchronous orbits at an altitude of about 341 miles (550 kilometers). This was Rocket Lab’s fifth launch of the year, and the third in less than two weeks.

Fire goggles … OroraTech launched three satellites before this mission, fusing data from those satellites and government missions to detect and track wildfires. The new satellites are designed to fill a gap in coverage in the afternoon, a peak time for wildfire formation and spread. OroraTech plans to launch eight more satellites later this year. Wildfire monitoring from space is becoming a new application for satellite technology. Last month, OroraTech partnered with Spire for a contract to build a CubeSat constellation called WildFireSat for the Canadian Space Agency. Google is backing FireSat, another constellation of more than 50 satellites to be deployed in the coming years to detect and track wildfires. (submitted by EllPeaTea)

Should Britain have a sovereign launch capability? A UK House of Lords special inquiry committee has heard from industry experts on the importance of fostering a sovereign launch capability, European Spaceflight reports. On Monday, witnesses from the UK space industry testified that the nation shouldn’t rely on others, particularly the United States, to put satellites into orbit. “The idea that we will be able to do it through America… certainly in today’s, you know, the last 50 days, I think is very, very doubtful. The UK needs access to space,” said Scott Hammond, deputy CEO of SaxaVord Spaceport in Scotland.

Looking inward … A representative from one of the most promising UK launch startups agreed. “Most people who are looking to launch are beholden to the United States solutions or services that are there,” said Alan Thompson, head of government affairs at Skyrora. “Without having our own home-based or UK-based service provider, we risk not having that voice and not being able to undertake all these experiments or be able to manifest ourselves better in space.” The UK is the only nation to abandon an independent launch capability after putting a satellite into orbit. The British government canceled the Black Arrow rocket in the early 1970s, citing financial reasons. A handful of companies, including Skyrora, is working to restore the orbital launch business to the UK.

This rocket engine CEO faces some salacious allegations. The Independent published what it described as an exclusive report Monday describing a lawsuit filed against the CEO of RocketStar, a New York-based company that says its mission is “improving upon the engines that power us to the stars.” Christopher Craddock is accused of plundering investor funds to underwrite pricey jaunts to Europe, jewelry for his wife, child support payments, and, according to the company’s largest investor, “airline tickets for international call girls to join him for clandestine weekends in Miami,” The Independent reports. Craddock established RocketStar in 2014 after financial regulators barred him from working on Wall Street over a raft of alleged violations.

Go big or go home … The $6 million lawsuit filed by former CEO Michael Mojtahedi alleges RocketStar “is nothing more than a Ponzi scheme… [that] has been predicated on Craddock’s ability to con new people each time the company has run out of money.” On its website, RocketStar says its work focuses on aerospike rocket engines and a “FireStar Fusion Drive, the world’s first electric propulsion device enhanced with nuclear fusion.” These are tantalizing technologies that have proven elusive for other rocket companies. RocketStar’s attorney told The Independent: “The company denies the allegations and looks forward to vindicating itself in court.”

Another record for SpaceX. Last Thursday, SpaceX launched a batch of clandestine SpaceX-built surveillance satellites for the National Reconnaissance Office from Vandenberg Space Force Base in California, Spaceflight Now reports. This was the latest in a series of flights populating the NRO’s constellation of low-Earth orbit reconnaissance satellites. What was unique about this mission was its use of a Falcon 9 first stage booster that flew to space just nine days prior with a NASA astronomy satellite. The successful launch broke the record for the shortest span between flights of the same Falcon 9 booster, besting a 13.5-day turnaround in November 2024.

A mind-boggling number of launches … This flight also marked the 450th launch of a Falcon 9 rocket since its debut in 2010, and the 139th within a 365-day period, despite suffering its first mission failure in nearly 10 years and a handful of other glitches. SpaceX’s launch pace is unprecedented in the history of the space industry. No one else is even close. In the last Rocket Report I authored, I wrote that SpaceX’s steamroller no longer seems to be rolling downhill. That may be the case as the growth in the Falcon 9 launch cadence has slowed, but it’s hard for me to see anyone else matching SpaceX’s launch rate until at least the 2030s.

Rocket Lab and Stoke Space find an on-ramp. Space Systems Command announced Thursday that it selected Rocket Lab and Stoke Space to join the Space Force’s National Security Space Launch (NSSL) program. The contracts have a maximum value of $5.6 billion, and the Space Force will dole out “task orders” for individual missions as they near launch. Rocket Lab and Stoke Space join SpaceX, ULA, and Blue Origin as eligible launch providers for lower-priority national security satellites, a segment of missions known as Phase 3 Lane 1 in the parlance of the Space Force. For these missions, the Space Force won’t require certification of the rockets, as the military does for higher-value missions in the so-called “Lane 2” segment. However, Rocket Lab and Stoke Space must complete at least one successful flight of their new Neutron and Nova rockets before they are cleared to launch national security payloads.

Stoked at Stoke … This is a big win for Rocket Lab and Stoke. For Rocket Lab, it bolsters the business case for the medium-class Neutron rocket it is developing for flights from Wallops Island, Virginia. Neutron will be partially reusable with a recoverable first stage. But Rocket Lab already has a proven track record with its smaller Electron launch vehicle. Stoke hasn’t launched anything, and it has lofty ambitions for a fully reusable two-stage rocket called Nova. This is a huge vote of confidence in Stoke. When the Space Force released its invitation for an on-ramp to the NSSL program last year, it said bidders must show a “credible plan for a first launch by December 2025.” Smart money is that neither company will launch its rockets by the end of this year, but I’d love to be proven wrong.

Falcon 9 deploys spy satellite. Monday afternoon, a SpaceX Falcon 9 took flight from Florida’s Space Coast and delivered a national security payload designed, built, and operated by the National Reconnaissance Office into orbit, Florida Today reports. Like almost all NRO missions, details about the payload are classified. The mission codename was NROL-69, and the launch came three-and-a-half days after SpaceX launched another NRO mission from California. While we have some idea of what SpaceX launched from California last week, the payload for the NROL-69 mission is a mystery.

Space sleuthing … There’s an online community of dedicated skywatchers who regularly track satellites as they sail overhead around dawn and dusk. The US government doesn’t publish the exact orbital parameters for its classified spy satellites (they used to), but civilian trackers coordinate with one another, and through a series of observations, they can produce a pretty good estimate of a spacecraft’s orbit. Marco Langbroek, a Dutch archeologist and university lecturer on space situational awareness, is one of the best at this, using publicly available information about the flight path of a launch to estimate when the satellite will fly overhead. He and three other observers in Europe managed to locate the NROL-69 payload just two days after the launch, plotting the object in an orbit between 700 and 1,500 kilometers at an inclination of 64.1 degrees to the equator. Analysts speculated this mission might carry a pair of naval surveillance spacecraft, but this orbit doesn’t match up well with any known constellations of NRO satellites.

NASA continues with Artemis II preps. Late Saturday night, technicians at Kennedy Space Center in Florida moved the core stage for NASA’s second Space Launch System rocket into position between the vehicle’s two solid-fueled boosters, Ars reports. Working inside the iconic 52-story-tall Vehicle Assembly Building, ground teams used heavy-duty cranes to first lift the butterscotch orange core stage from its cradle, then rotate it to a vertical orientation and lift it into a high bay, where it was lowered into position on a mobile launch platform. The 212-foot-tall (65-meter) core stage is the largest single hardware element for the Artemis II mission, which will send a team of four astronauts around the far side of the Moon and back to Earth as soon as next year.

Looking like a go … With this milestone, the slow march toward launch continues. A few months ago, some well-informed people in the space community thought there was a real possibility the Trump administration could quickly cancel NASA’s Space Launch System, the high-priced heavy-lifter designed to send astronauts from the Earth to the Moon. The most immediate possibility involved terminating the SLS program before it flies with Artemis II. This possibility appears to have been overcome by circumstances. The rockets most often mentioned as stand-ins for the Space Launch System—SpaceX’s Starship and Blue Origin’s New Glenn—aren’t likely to be cleared for crew missions for at least several years. The long-term future of the Space Launch System remains in doubt.

Space Force says Vulcan is good to go. The US Space Force on Wednesday announced that it has certified United Launch Alliance’s Vulcan rocket to conduct national security missions, Ars reports. “Assured access to space is a core function of the Space Force and a critical element of national security,” said Brig. Gen. Kristin Panzenhagen, program executive officer for Assured Access to Space, in a news release. “Vulcan certification adds launch capacity, resiliency, and flexibility needed by our nation’s most critical space-based systems.” The formal announcement closes a yearslong process that has seen multiple delays in the development of the Vulcan rocket, as well as two anomalies in recent years that were a further setback to certification.

Multiple options … This certification allows ULA’s Vulcan to launch the military’s most sensitive national security missions, a separate lot from those Rocket Lab and Stoke Space are now eligible for (as we report in a separate Rocket Report entry). It elevates Vulcan to launch these missions alongside SpaceX’s Falcon 9 and Falcon Heavy rockets. Vulcan will not be the next rocket that the company launches, however. First up is one of the company’s remaining Atlas V boosters, carrying Project Kuiper broadband satellites for Amazon. This launch could occur in April, although ULA has not set a date. This will be followed by the first Vulcan national security launch, which the Space Force says could occur during the coming “summer.”

Next three launches

March 29: Spectrum | “Going Full Spectrum” | Andøya Spaceport, Norway | 11: 30 UTC

March 29: Long March 7A | Unknown Payload | Wenchang Space Launch Site, China | 16: 05 UTC

March 30: Alpha | LM-400 | Vandenberg Space Force Base, California | 13: 37 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Stoke is stoked; sovereignty is the buzzword in Europe Read More »

can-nasa-remain-nonpartisan-when-basic-spaceflight-truths-are-shredded?

Can NASA remain nonpartisan when basic spaceflight truths are shredded?

It looked like the final scene of a movie, the denouement of a long adventure in which the good guys finally prevail. Azure skies and brilliant blue seas provided a perfect backdrop on Tuesday evening as a spacecraft carrying four people neared the planet’s surface.

“Just breathtaking views of a calm, glass-like ocean off the coast of Tallahassee, Florida,” commented Sandra Jones, a NASA spokesperson, during the webcast co-hosted by the space agency and SpaceX, whose Dragon vehicle returned the four astronauts from orbit.

A drone near the landing site captured incredible images of Crew Dragon Freedom as it slowly descended beneath four parachutes. Most of NASA’s astronauts today, outside of the small community of spaceflight devotees, are relatively anonymous. But not two of the passengers inside Freedom, Butch Wilmore and Suni Williams. After nine months of travails, 286 days to be precise, they were finally coming home.

Dragon continued its stately descent, falling to 400 meters, then 300, and then 200 above the ocean.

Kate Tice, an engineer from SpaceX on the webcast, noted that touchdown was imminent. “We’re going to stand by for splashdown located in the Gulf of America,” she said.

Ah, yes. The Gulf of America.

This is why we can’t have nice things.

A throne of lies

For those of us who have closely followed the story of Wilmore and Williams over the last nine months—and Ars Technica has had its share of exclusive stories about this long and strange saga—the final weeks before the landing have seen it take a disturbing turn.

Can NASA remain nonpartisan when basic spaceflight truths are shredded? Read More »

what’s-behind-the-recent-string-of-failures-and-delays-at-spacex?

What’s behind the recent string of failures and delays at SpaceX?


SpaceX has long had a hard-charging culture. Is it now charging too hard?

File photo of a Falcon 9 launch from Vandenberg Space Force Base, California. Credit: SpaceX

It has been an uncharacteristically messy start to the year for the world’s leading spaceflight company, SpaceX.

Let’s start with the company’s most recent delay. The latest launch date for a NASA mission to survey the sky and better understand the early evolution of the Universe comes Monday night. The launch window for this SPHEREx mission opened on February 28, but a series of problems with integrating the rocket and payloads have delayed the mission nearly two weeks.

Then there are the Falcon 9 first stage issues. Last week, a Falcon 9 rocket launched nearly two dozen Starlink satellites into low-Earth orbit. However, one of the rocket’s nine engines suffered a fuel leak during ascent. Due to a lack of oxygen in the thinning atmosphere, the fuel leak did not preclude the satellites from reaching orbit. But when the first stage returned to Earth, it caught fire after landing on a droneship, toppling over. This followed a similar issue in August, when there was a fire in the engine compartment. After nearly three years without a Falcon 9 landing failure, SpaceX had two in six months.

SpaceX has also experienced recent and recurring problems with the Falcon 9 rocket’s expendable upper stage. On February 1, a second stage deorbit burn failed after a Starlink launch. This led to propellant tanks from the stage crashing into western Poland, causing property damage but harming no one. It was the third time in six months that SpaceX had encountered an issue with the Falcon 9 second stage.

Finally, and most publicly, the company’s massive Starship has failed on its last two test flights.

Although the vehicle’s first stage performed nominally during test flights in January and March, returning safely to its launch site, the Starship upper stage exploded spectacularly in flight twice. On both occasions, a fire developed in the engine section of Starship, and the vehicle rained fiery debris trails over the Bahamas and other nearby islands. Air traffic controllers diverted or delayed dozens of commercial airline flights flying through the debris footprint.

Putting this into perspective

These issues have occurred against the backdrop of a largely successful and unprecedented launch performance.

For all of the problems described earlier, the company’s only operational payload loss was its own Starlink satellites in July 2024 due to a second stage issue. Before that, SpaceX had not lost a payload with the Falcon 9 in nearly a decade. So SpaceX has been delivering for its customers in a big way.

SpaceX has achieved a launch cadence with the Falcon 9 rocket that’s unmatched by any previous rocket—or even nation—in history. If the SPHEREx mission launches tonight, as anticipated, it would be the company’s 27th mission of this year. The rest of the world combined, including China and its growing space activity, will have a total of 19 orbital launch attempts.

In the United States, SpaceX’s historic launch competitor, United Launch Alliance, has yet to fly a single rocket this year. In fact, the company has not launched in 156 days. During that time, SpaceX has launched 64 Falcon 9 rockets. So yes, SpaceX has had some technical issues. But it is also flying circles around its competition.

The recent failures are also unlikely to jeopardize, at least in the near term, SpaceX’s globally dominant position. The company provides the Western world’s only human access to orbit, and that’s unlikely to change for a while. SpaceX launches the vast majority of NASA’s science missions, and until United Launch Alliance’s Vulcan rocket becomes certified, it remains the US military’s only way to get larger payloads into space. The company also operates a global Internet network with more than 5 million users, and that number is growing rapidly.

All the same, these recent failures may be telling us something about SpaceX.

What is causing this

Without being inside SpaceX, it is impossible to put a fine point on what precisely is happening to cause these technical issues.

Probably the most significant factor is the company’s ever-present pressure to accelerate, even while taking on more and more challenging tasks. No country or private company ever launched as many times as SpaceX did in 2024. By way of comparison, NASA launched the Space Shuttle 135 times, a comparable number to the total of Falcon 9 launches last year (132), over a 30-year period.

At the same time, the company has been attempting to move its talented engineering team off the Falcon 9 and Dragon programs and onto Starship to keep that ambitious program moving forward.

To put it succinctly, SpaceX is balancing a lot of spinning plates, and the company’s leadership is telling its employees to spin the plates faster and faster.

Multiple sources have indicated that the Starship engineering team was under immense pressure after the January 16 failure to identify the cause of a “harmonic response” in the vehicle’s upper stage that contributed to its loss. The goal was to find and fix the problem as quickly as possible.

Let’s step back and appreciate that Starship is an experimental system, by far the largest and most powerful rocket ever flown, and it catastrophically failed in January. During a span of just seven weeks, the Starship team had to study the failure, address any problems, and prepare new hardware.

How much of this is on SpaceX founder Elon Musk? Some have suggested his deep involvement in the 2024 presidential election, oversight of the Department of Government Efficiency, excessive social media activity, and more—like picking fights with US senators— have distracted him from the problems of SpaceX. And there’s no doubt that Musk has been focused on things other than SpaceX for the last half-year or longer.

However, in Musk’s absence, he has capable lieutenants such as Mark Juncosa leading the way. SpaceX has long had a hard-charging culture instilled by Musk since the founding of the company. Musk’s modus operandi is to push his teams to reach some ambitious goal, and when they do, he sets a new, even more audacious target. It may be not so much Musk’s absence that is causing these issues but rather the company’s relentless culture.

It seems possible that, at least for now, SpaceX has reached the speed limit for commercial spaceflight. When you’re launching 150 times a year and building two second stages a week, it’s hard to escape the possibility that some details are slipping through the cracks. And it’s not just the launches. SpaceX is operating a constellation of more than 7,000 satellites, flying humans into space regularly, and developing an unprecedented rocket like Starship.

The recent failures may be signs of cracks in the foundation.

What are the implications

So far, the consequences of these failures have not been lethal. But space remains a difficult, hazardous game. Reentering debris from a Falcon 9 upper stage could have struck someone in Poland. God forbid, a second stage could fail early in a crewed mission.

The risks of serious problems with Starlink should not be understated, either. There have been unconfirmed rumors in recent months of near misses between Starlink satellites and objects in low-Earth orbit. Additional debris in this increasingly cluttered space would be disastrous.

To date, the Falcon 9 rocket program has not been slowed down by these issues. It’s perhaps not fully appreciated how utterly reliant NASA’s human spaceflight activities are on the Falcon 9. It currently launches the only crew-capable vehicle in Dragon. However, a Cargo version of Dragon also flies on the Falcon 9, and this is NASA’s only way to get scientific experiments back to Earth. And for at least the next year, the only other US cargo vehicle, Northrop Grumman’s Cygnus, also must launch on the Falcon 9.

Not just NASA, but every other space station partner outside of Russia, depends on the Falcon 9 for human spaceflight activities. The rocket must fly, and fly safely, or the West will be grounded.

With Starship, the recent failures are a significant setback. Although there will no doubt be pressure from SpaceX leadership to rapidly move forward, there appears to be a debilitating design flaw in the upgraded version of Starship. It will be important to understand and address this. Another launch before this summer seems unlikely. A third consecutive catastrophic failure would be really, really bad.

For the space agency’s Artemis program to return humans to the Moon, Starship’s problems spell more delays. Musk had already signaled in late February that a critical refueling demonstration will now not happen this year. This test is an essential milestone on the path to the Moon, and its delay all but ensures the first lunar landing will not happen in 2027 as currently envisioned.

Most likely, the back-to-back Starship failures will also cement the path forward for Artemis II and Artemis III to fly as planned, with crews flying on the Space Launch System rocket and Orion spacecraft.

As for Mars, the red planet remains in the far distance, waiting for SpaceX to address its red flags here on Earth.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

What’s behind the recent string of failures and delays at SpaceX? Read More »