Space

rocket-report:-starship-could-fly-again-in-may;-ariane-6-coming-together

Rocket Report: Starship could fly again in May; Ariane 6 coming together

Eating their lunch —

“I think we’re really going to focus on getting reentry right.”

Nine kerosene-fueled Rutherford engines power Rocket Lab's Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Enlarge / Nine kerosene-fueled Rutherford engines power Rocket Lab’s Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Welcome to Edition 6.36 of the Rocket Report! SpaceX wants to launch the next Starship test flight as soon as early May, the company’s president and chief operating officer said this week. The third Starship test flight last week went well enough that the Federal Aviation Administration—yes, the FAA, the target of many SpaceX fans’ frustrations—anticipates a simpler investigation and launch licensing process than SpaceX went through before its previous Starship flights. However, it looks like we’ll have to wait a little longer for Starship to start launching real satellites.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Starship could threaten small launch providers. Officials from several companies operating or developing small satellite launch vehicles are worried that SpaceX’s giant Starship rocket could have a big impact on their marketability, Space News reports. Starship’s ability to haul more than 100 metric tons of payload mass into low-Earth orbit will be attractive not just for customers with heavy satellites but also for those with smaller spacecraft. Aggregating numerous smallsats on Starship will mean lower prices than dedicated small satellite launch companies can offer and could encourage customers to build larger satellites with cheaper parts, further eroding business opportunities for small launch providers.

Well, yeah … SpaceX’s dedicated rideshare missions are already reshaping the small satellite launch market. The price per kilogram of payload on a Falcon 9 rocket launching a Transporter mission is less than the price per unit on a smaller rocket, like Rocket Lab’s Electron, Firefly’s Alpha, or Europe’s Vega. Companies operating only in the smallsat launch market tout the benefits of their services, often pointing to their ability to deliver payloads into bespoke orbits, rather than dropping off bunches of satellites into more standardized orbits. But the introduction of Orbital Transfer Vehicles for last-mile delivery services has made SpaceX’s Transporter missions, and potentially Starship rideshares, more attractive. “With Starship, OTVs can become the best option for smallsats,” said Marino Fragnito, senior vice president and head of the Vega business unit at Arianespace. If Starship is able to achieve the very low per-kilogram launch prices proposed for it, “then it will be difficult for small launch vehicles,” Fragnito said.

Rocket Lab launches again from Virginia. Rocket Lab’s fourth launch from Wallops Island, Virginia, and the company’s first there in nine months, took off early Thursday with a classified payload for the National Reconnaissance Office, the US government’s spy satellite agency, Space News reports. A two-stage Electron rocket placed the NRO’s payload into low-Earth orbit, and officials declared it a successful mission. The NRO did not disclose any details about the payload, but in a post-launch statement, the agency suggested the mission was conducting technology demonstrations of some kind. “The knowledge gained from this research will advance innovation and enable the development of critical new technology,” said Chris Scolose, director of the NRO.

A steady customer for Rocket Lab … The National Reconnaissance Office has become a regular customer of Rocket Lab. The NRO has historically launched larger spacecraft, such as massive bus-sized spy satellites, but like the Space Force, is beginning to launch larger numbers of small satellites. This mission, designated NROL-123 by the NRO, was the fifth and last mission under a Rapid Acquisition of a Small Rocket (RASR) contract between NRO and Rocket Lab, dating back to 2020. It was also Rocket Lab’s second launch in nine days, following an Electron flight last week from its primary base in New Zealand. Overall, it was the 46th launch of a light-class Electron rocket since it debuted in 2017. Rocket Lab is building a launch pad for its next-generation Neutron rocket at Wallops. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Night flight for Astrobotic’s Xodiac. The Xodiac rocket, a small terrestrial vertical takeoff and vertical landing technology testbed, made its first night flight, Astrobotic says in a statement. The liquid-fueled Xodiac is designed for vertical hops and can host prototype sensors and other payloads, particularly instruments in development to assist in precision landings on other worlds. This first tethered night flight of Xodiac in Mojave, California, was in preparation for upcoming flight testing with the NASA TechLeap Prize’s Nighttime Precision Landing Challenge. These flights will begin in April, allowing NASA to test the ability of sensors to map a landing field designed to simulate the Moon’s surface in near-total darkness.

Building on the legacy of Masten … Xodiac has completed more than 160 successful flights, dating back to the vehicle’s original owner, Masten Space Systems. Masten filed for bankruptcy in 2022, and the company was acquired by Astrobotic a couple of months later. Astrobotic’s primary business area is in developing and flying robotic Moon landers, so it has a keen interest in mastering automated landing and navigation technologies like those it is testing with NASA on Xodiac. David Masten, founder of Masten Space Systems, is now chief engineer for Astrobotic’s propulsion and test department. “The teams will demonstrate their systems over the LSPG (Lunar Surface Proving Ground) at night to simulate landing on the Moon during the lunar night or in shadowed craters.” (submitted by Ken the Bin)

Rocket Report: Starship could fly again in May; Ariane 6 coming together Read More »

spacex’s-workhorse-launch-pad-now-has-the-accoutrements-for-astronauts

SpaceX’s workhorse launch pad now has the accoutrements for astronauts

A Falcon 9 rocket lifts off Thursday from Cape Canaveral, Florida.

Enlarge / A Falcon 9 rocket lifts off Thursday from Cape Canaveral, Florida.

Upgrades at SpaceX’s most-used launch pad in Florida got a trial run Thursday with the liftoff of a Falcon 9 rocket with a Dragon cargo ship heading for the International Space Station.

SpaceX’s Cargo Dragon spacecraft launched at 4: 55 pm EDT (20: 55 UTC) Thursday from Space Launch Complex 40 (SLC-40) at Cape Canaveral Space Force Station in Florida. This mission, known as CRS-30, is SpaceX’s 30th resupply mission to the space station since 2012.

The automated Dragon supply ship took off on top of a Falcon 9 rocket, heading for a monthlong stay at the International Space Station, where it will deliver more than 6,000 pounds of hardware, fresh food, and experiments for the lab’s seven-person crew.

In the last few months, SpaceX has outfitted the launch pad with the equipment necessary to support launches of human spaceflight missions on the Crew Dragon spacecraft. The Cargo Dragon capsule is the same size and shape as SpaceX’s Crew Dragon, but it’s filled with cargo racks and storage platforms rather than seats and cockpit displays.

This week, SpaceX technicians used the newly installed launch tower and crew access arm at SLC-40 to load time-sensitive experiments and supplies into the Cargo Dragon capsule atop the Falcon 9 rocket.

“CRS-30 will be our first Dragon to launch from Pad 40 since we put that brand-new crew tower in place,” said Sarah Walker, SpaceX’s director of Dragon mission management, in a prelaunch press conference.

Building new capability

Starting last year, construction crews at Cape Canaveral erected segments of a more than 200-foot-tall metal lattice tower at SLC-40, right next to the starting blocks for SpaceX’s Falcon 9 rocket. Before then, SLC-40 was based on a “clean pad” architecture, without any structures to service or access Falcon 9 rockets while they were vertical on the pad.

In November, contractors raised the crew access arm to an attach point near the top of the tower. This walkway will allow astronauts to crawl into the Crew Dragon spacecraft during a launch countdown. It also provides access to the hatch on the Cargo Dragon spacecraft for final cargo loading.

Earlier this year, SpaceX tested an escape chute at SLC-40 that would be used in an emergency to help astronauts and ground crews quickly get away from the pad. The chute is similar in function to slide-wire baskets in use for decades at LC-39A, but instead of riding a basket from the top of the tower, personnel escaping a pad emergency would slide down a chute to carry them several hundred feet from the rocket.

SpaceX employees tested the pad escape chute last month at SLC-40. Gwynne Shotwell, SpaceX’s president and chief operating officer, took the ride down the chute. “Astronaut and personnel safety is SpaceX’s highest priority, which is why I had to personally test the new slide,” she posted on X, alongside a wink emoji.

Teams test the new emergency chutes from the pad 40 crew tower in Florida pic.twitter.com/rWVj7zaHp0

— SpaceX (@SpaceX) March 19, 2024

“The team took commercially available off the shelf technology and applied it to the crew tower,” Kiko Dontchev, SpaceX’s vice president of launch, wrote on X. “You are trained on it the same way you are trained on using an emergency exit door on airplane. Only takes a couple of quick physical actions to deploy the slide and anyone can effectively do it.”

As more people travel to space, particularly on larger vehicles like SpaceX’s Starship, simplifying safety systems will be important.

“This system will help us scale to bigger towers and spaceships (think 100 people on Starship),” Dontchev wrote.

SpaceX and its contractors completed all of this work as Falcon 9s fired off SLC-40 every few days with Starlink satellites and other missions.

For the last four years, all of SpaceX’s crew and cargo launches to the space station have departed from Launch Complex 39A (LC-39A) at NASA’s Kennedy Space Center, a few miles up the coast from SLC-40. In 2018 and 2019, SpaceX outfitted LC-39A for Cargo Dragon and Crew Dragon missions ahead of the company’s first human spaceflight mission in 2020.

Walker said the new infrastructure added at SLC-40 is “nearly functionally identical” to the equipment for crew missions at LC-39A. The primary differences are the means of pad escape—the chute instead of slide-wire baskets—and a more robust elevator in the tower at SLC-40.

Previously, SpaceX used both SLC-40 and LC-39A for launches of its now-retired first-generation Dragon cargo capsules, which had their final supplies loaded before SpaceX raised the rocket vertical for launch. Like regular satellite launches on Falcon 9s, both pads could support the first-generation Dragon cargo missions.

“Thanks to this new state-of-the-art crew tower required for our human spaceflight missions, that late-load cargo operation got a massive upgrade, too,” Walker said. “It is much easier to load a huge complement of time-critical NASA science into our Dragon spacecraft in the flight orientation.”

SpaceX has drastically ramped up its launch cadence since building LC-39A for Dragon missions. The company plans nearly 150 Falcon 9 or Falcon Heavy launches this year. When you’re flying rockets every two or three days, it’s inevitable two missions will end up vying for the same launch slots. Most recently, that happened in February, when a NASA crew mission was ready to launch from LC-39A around the same time as a narrow launch window for Intuitive Machines’ first commercial lunar lander. Both had to go off of LC-39A.

“Historically, Pad 40 has kind of become our high rate pad,” Walker said. “We’ve gotten the time between launches down to just a couple of days.”

LC-39A has seen less use, primarily for Dragon crew and cargo flights, Falcon Heavy missions, and other “uniquely complex” missions like the Intuitive Machines lander, Walker said.

SpaceX’s workhorse launch pad now has the accoutrements for astronauts Read More »

it’s-a-few-years-late,-but-a-prototype-supersonic-airplane-has-taken-flight

It’s a few years late, but a prototype supersonic airplane has taken flight

Flying high —

“This milestone will be invaluable to Boom’s revival of supersonic travel.”

XB-1 takes off on its inaugural flight.

Enlarge / XB-1 takes off on its inaugural flight.

Boom Supersonic

A prototype jet independently developed by Boom Supersonic made its first flight on Friday, the company said.

The XB-1 vehicle flew from Mojave Air & Space Port in California, reaching an altitude of 7,120 feet (2.2 km) and a maximum speed of 273 mph (439 kph). In a news release, Boom Supersonic said the initial test flight of the XB-1 aircraft met all of its objectives.

“The experience we have gained in reaching this milestone will be invaluable to Boom’s revival of supersonic travel,” said Bill “Doc” Shoemaker, Chief Test Pilot for Boom Supersonic.

The XB-1 aircraft is a demonstrator intended to test materials and the aerodynamics of a larger commercial supersonic aircraft the company is calling Overture.

Boom is one of a handful of companies attempting to revive supersonic commercial air travel since the Concorde’s final flight in 2003. Its planes are intended to carry between 64 and 80 passengers at about twice the speed of conventional commercial jets in service today. Boom says it has received 130 orders and pre-orders from American Airlines, United Airlines, and Japan Airlines for the Overture vehicle, which it plans to deliver later this decade.

A lot of milestones to go

Boom Supersonic was founded a decade ago, in 2014. It rolled out the XB-1 prototype for the first time in October 2020. At the time, the company said it planned to begin a flight test campaign during the third quarter of 2021. It is not clear why Boom missed that timeline by two and a half years.

The company plans to fly the XB-1 to learn the lessons of supersonic flight with a lower-cost vehicle and incorporate these findings into Overture’s final design. There is only so much technology that can be tested on the ground, and in wind tunnels, so the company needs to fly now to mature its design.

After Friday’s flight, the company said the aircraft’s development team will continue to expand the flight envelope to confirm its performance and handling qualities through and beyond Mach 1.

One key element of the Overture aircraft that the XB-1 prototype is not testing is the engines. The XB-1 is powered by three GE J85-15 engines, a turbojet engine that has been in service for several decades. Boom Supersonic is developing a new engine, a medium-bypass turbofan engine Symphony, for the Overture aircraft.

Previously, the company showcased a one-third scale design model of Symphony, but it has not released information about developmental tests of the hardware. The additively manufactured engine is advertised as having 35,000 pounds of thrust.

It’s a few years late, but a prototype supersonic airplane has taken flight Read More »

daily-telescope:-gigantic-new-stars-stir-up-a-nebula

Daily Telescope: Gigantic new stars stir up a nebula

It’s full of red —

Astronomers know of no other region so packed with large stars as this nebula.

Behold, the star-forming region of NGC 604.

Enlarge / Behold, the star-forming region of NGC 604.

NASA, ESA, CSA, STScI

Welcome to the Daily Telescope. There is a little too much darkness in this world and not enough light, a little too much pseudoscience and not enough science. We’ll let other publications offer you a daily horoscope. At Ars Technica, we’re going to take a different route, finding inspiration from very real images of a universe that is filled with stars and wonder.

Good morning. It’s March 12, and today’s photo comes from the James Webb Space Telescope.

Astronomers have long been fascinated by a nebula, NGC 604, in the relatively nearby Triangulum Galaxy. That’s because this nebula contains about 200 of the hottest and largest types of stars, most of which are in the early stages of their lives. Some of these stars are 100 times or more massive than the Sun. Astronomers know of no other region in the Universe so densely packed with large stars as this nebula.

In this image, captured by the Near-Infrared Camera on the Webb telescope, there are brilliant reds and oranges. Here’s the explanation from astronomers for these colors:

The most noticeable features are tendrils and clumps of emission that appear bright red, extending out from areas that look like clearings, or large bubbles in the nebula. Stellar winds from the brightest and hottest young stars have carved out these cavities, while ultraviolet radiation ionizes the surrounding gas. This ionized hydrogen appears as a white and blue ghostly glow. The bright orange streaks in the Webb near-infrared image signify the presence of carbon-based molecules known as polycyclic aromatic hydrocarbons.

The nebula is only about 3.5 million years old.

Source: NASA, ESA, CSA, STScI

Do you want to submit a photo for the Daily Telescope? Reach out and say hello.

Daily Telescope: Gigantic new stars stir up a nebula Read More »

nasa-grapples-with-budget-cuts-as-it-undertakes-ambitious-programs

NASA grapples with budget cuts as it undertakes ambitious programs

PBR me —

“Naturally, we have to make hard choices.”

An older man in a suit smiles.

Enlarge / NASA Administrator Bill Nelson is putting a positive spin on NASA’s budget.

It’s budget-palooza, NASA nerds. For the first time in more than a decade, the US space agency is grappling with budget cuts. Be forewarned, there will be a lot of numbers in this story, but we’ll do our best to make sense of them.

First of all, the space agency only just received its budget for the current fiscal year (October 1, 2023, to September 30, 2024) last Friday. If it seems weird that a federal agency should find out how much money it has to spend nearly halfway through that budget year, well, it is. But this is the world we live in, with a fractious Congress unable to agree on much of anything, including budgets.

In any case, NASA’s budget for fiscal year 2024 came to $24.9 billion. This represents an approximately 2 percent cut in the space agency’s funding relative to the final budget for fiscal year 2023. It’s worth noting that the last time NASA’s budget decreased from year to year came more than a decade ago, from fiscal year 2012 to 2013. This was due, in large part, to the end of the Space Shuttle program.

This budget cut does not reflect congressional displeasure with NASA’s performance. Rather, to avert a debt limit crisis in June 2023, the US Congress and President Biden agreed to budget caps for fiscal years 2024 and 2025.

“We’re not going to get out of this hole until you finish both fiscal years, 24 and 25,” NASA Administrator Bill Nelson said Monday during a teleconference with reporters. “NASA makes do with whatever we’re given. This is an agency where the impossible becomes possible.”

FY 2025 request

On Monday, mere hours after finally learning its final budget for the current year, NASA released its budget request for the coming fiscal year, 2025. All of the federal agencies did so on Monday in conjunction with the rollout of the president’s budget request for FY 2025.

Such budget requests are part of the political theater of Washington, DC. The White House has the power to appoint the leaders of federal agencies, such as NASA. However, Congress authorizes funding, so the final budget will be subject to negotiations among the House, Senate, and the White House.

The blueprint clearly outlines the White House’s priorities regarding NASA’s direction. The space agency’s budget request can be found here. The Planetary Society has published a useful comparison here that delineates the NASA budget for 2023, the president’s budget request for 2024, and the final budget enacted last week.

NASA is asking for $25.4 billion for the coming fiscal year. This is more than the agency will receive in fiscal year 2024 but significantly less than the $27.2 billion NASA asked for in last year’s budget request. Put another way, NASA has recognized the real-world constraints and is asking for 7 percent less funding this year than it did in 2023.

“Naturally, we have to make hard choices,” Nelson said.

About those hard choices

There are no significant changes in NASA’s proposed budget for the Artemis program, which seeks to return humans to the Moon later this decade. There remains broad support in Congress for this program, at least for the initial lunar landings. Funding for the Artemis landings, which have a mix of cost-plus and fixed-price contracts, should more or less continue.

The harder choices will have to be made in the science portion of NASA’s budget, which covers planetary missions as well as deep space observatories. In particular, NASA requested $2.7 billion for planetary science missions in fiscal year 2025, virtually the same amount received this fiscal year.

But there’s a catch: This funding level includes no allocation for the Mars Sample Return mission, a multi-year, multi-billion-dollar program to return rock samples from Mars to Earth for scientific study. This mission is a high priority for NASA and the scientific community, but the overall plans were recently declared to be “unrealistic” by an independent review board.

A NASA committee is studying alternative mission designs to bring Mars samples back to Earth with better cost and schedule estimates. It will release its findings later this month. After that time, NASA may reformulate plans and allocate funding for the Mars Sample Return. The catch is that it would not seek new funding but rather pull money from other planetary science missions.

“We don’t expect that the planetary top line will go up,” said Nicky Fox, chief of science for NASA, during the press call.

NASA grapples with budget cuts as it undertakes ambitious programs Read More »

after-coming-back-from-the-dead,-the-world’s-largest-aircraft-just-flew-a-real-payload

After coming back from the dead, the world’s largest aircraft just flew a real payload

Roc-n-roll —

Falling just short of hypersonic velocity.

The world's largest aircraft takes off with the Talon A vehicle on Saturday.

Enlarge / The world’s largest aircraft takes off with the Talon A vehicle on Saturday.

Stratolaunch/Matt Hartman

Built and flown by Stratolaunch, the massive Roc aircraft took off from Mojave Air and Space Port in California on Saturday. The airplane flew out over the Pacific Ocean, where it deployed the Talon-A vehicle, which looks something like a mini space shuttle.

This marked the first time this gargantuan airplane released an honest-to-goodness payload, the first Talon-A vehicle, TA-1, which is intended to fly at hypersonic speed. During the flight, TA-1 didn’t quite reach hypersonic velocity, which begins at Mach 5, or five times greater than the speed of sound.

“While I can’t share the specific altitude and speed TA-1 reached due to proprietary agreements with our customers, we are pleased to share that in addition to meeting all primary and customer objectives of the flight, we reached high supersonic speeds approaching Mach 5 and collected a great amount of data at an incredible value to our customers,” said Zachary Krevor, chief executive of Stratolaunch, in a statement.

In essence, the TA-1 vehicle is a pathfinder for subsequent versions of the vehicle that will be both reusable and capable of reaching hypersonic speeds. The flight of the company’s next vehicle, TA-2, could come later this year, Krevor said.

A long road

It has been a long, strange road for Stratolaunch to reach this moment. The company was founded in 2011 to build a super-sized carrier aircraft from which rockets would be launched mid-air. It was bankrolled by Microsoft cofounder and airplane enthusiast Paul Allen, who put at least hundreds of millions of dollars into the private project.

As the design of the vehicle evolved, its wingspan grew to 117 meters, nearly double the size of a Boeing 747 aircraft. It far exceeded the wingspan of the Spruce Goose, built by Howard Hughes in the 1940s, which had a wingspan of 97.5 meters. The Roc aircraft was so large that it seemed impractical to fly on a regular basis.

At the same time, the company was struggling to identify a rocket that could be deployed from the aircraft. At various times, Stratolaunch worked with SpaceX and Orbital ATK to develop a launch vehicle. But both of those partnerships fell through, and eventually, the company said it would develop its own line of rockets.

Allen would never see his large plane fly, dying of septic shock in October 2018 due to his non-Hodgkin lymphoma. Roc did finally take flight for the first time in April 2019, but it seemed like a Pyrrhic victory. Following the death of Allen, for whom Stratolaunch was a passion project, the company’s financial future was in doubt. Later in 2019, Allen’s family put the company’s assets up for sale and said it would cease to exist.

However, Stratolaunch did not die. Rather, the aircraft was acquired by the private equity firm Cerberus, and in 2020, the revitalized Stratolaunch changed course. Instead of orbital rockets, it would now launch hypersonic vehicles to test the technology—a priority for the US military. China, Russia, and the United States are all racing to develop hypersonic missiles, as well as new countermeasure technology as high-speed missiles threaten to penetrate most existing defenses.

Featuring a new engine

This weekend’s flight also marked an important moment for another US aerospace company, Ursa Major Technologies. The TA-1 vehicle was powered by the Hadley rocket engine designed and built by Ursa Major, which specializes in the development of rocket propulsion engines.

Hadley is a 5,000-lb-thrust liquid oxygen and kerosene, oxygen-rich staged combustion cycle rocket engine for small vehicles. Its known customers include Stratolaunch and a vertical launch company, Phantom Space, which is developing a small orbital rocket.

Founded in 2015, Ursa Major seeks to provide off-the-shelf propulsion solutions to launch customers. While Ursa Major started small, the company is already well into the development of its much larger Ripley engine. With 50,000 pounds of thrust, Ripley is aimed at the medium-launch market. The company completed a hot-fire test campaign of Ripley last year. For Ursa Major, it must feel pretty good to finally see an engine in flight.

After coming back from the dead, the world’s largest aircraft just flew a real payload Read More »

a-hunk-of-junk-from-the-international-space-station-hurtles-back-to-earth

A hunk of junk from the International Space Station hurtles back to Earth

In March 2021, the International Space Station's robotic arm released a cargo pallet with nine expended batteries.

Enlarge / In March 2021, the International Space Station’s robotic arm released a cargo pallet with nine expended batteries.

NASA

A bundle of depleted batteries from the International Space Station careened around Earth for almost three years before falling out of orbit and plunging back into the atmosphere Friday. Most of the trash likely burned up during reentry, but it’s possible some fragments may have reached Earth’s surface intact.

Larger pieces of space junk regularly fall to Earth on unguided trajectories, but they’re usually derelict satellites or spent rocket stages. This involved a pallet of batteries from the space station with a mass of more than 2.6 metric tons (5,800 pounds). NASA intentionally sent the space junk on a path toward an unguided reentry.

Naturally self-cleaning

Sandra Jones, a NASA spokesperson, said the agency “conducted a thorough debris analysis assessment on the pallet and has determined it will harmlessly reenter the Earth’s atmosphere.” This was, by far, the most massive object ever tossed overboard from the International Space Station.

The batteries reentered the atmosphere at 2: 29 pm EST (1929 UTC), according to US Space Command. At that time, the pallet would have been flying between Mexico and Cuba. “We do not expect any portion to have survived reentry,” Jones told Ars.

The European Space Agency (ESA) also monitored the trajectory of the battery pallet. In a statement this week, the ESA said the risk of a person being hit by a piece of the pallet was “very low” but said “some parts may reach the ground.” Jonathan McDowell, an astrophysicist who closely tracks spaceflight activity, estimated about 500 kilograms (1,100 pounds) of debris would hit the Earth’s surface.

“The general rule of thumb is that 20 to 40 percent of the mass of a large object will reach the ground, though it depends on the design of the object,” the Aerospace Corporation says.

A dead ESA satellite reentered the atmosphere in a similar uncontrolled manner February 21. At 2.3 metric tons, this satellite was similar in mass to the discarded battery pallet. ESA, which has positioned itself as a global leader in space sustainability, set up a website that provided daily tracking updates on the satellite’s deteriorating orbit.

This map shows the track of the unguided cargo pallet around the Earth over the course of six hours Friday. It reentered the atmosphere near Cuba on southwest-to-northeast heading.

Enlarge / This map shows the track of the unguided cargo pallet around the Earth over the course of six hours Friday. It reentered the atmosphere near Cuba on southwest-to-northeast heading.

As NASA and ESA officials have said, the risk of injury or death from a spacecraft reentry is quite low. Falling space debris has never killed anyone. According to ESA, the risk of a person getting hit by a piece of space junk is about 65,000 times lower than the risk of being struck by lightning.

This circumstance is unique in the type and origin of the space debris, which is why NASA purposely cast it away on an uncontrolled trajectory back to Earth.

The space station’s robotic arm released the battery cargo pallet on March 11, 2021. Since then, the batteries have been adrift in orbit, circling the planet about every 90 minutes. Over a span of months and years, low-Earth orbit is self-cleaning thanks to the influence of aerodynamic drag. The resistance of rarefied air molecules in low-Earth orbit gradually slowed the pallet’s velocity until, finally, gravity pulled it back into the atmosphere Friday.

The cargo pallet, which launched inside a Japanese HTV cargo ship in 2020, carried six new lithium-ion batteries to the International Space Station. The station’s two-armed Dextre robot, assisted by astronauts on spacewalks, swapped out aging nickel-hydrogen batteries for the upgraded units. Nine of the old batteries were installed on the HTV cargo pallet before its release from the station’s robotic arm.

A hunk of junk from the International Space Station hurtles back to Earth Read More »

rocket-report:-starbase-will-expand-into-state-park;-another-japanese-rocket

Rocket Report: Starbase will expand into state park; another Japanese rocket

43 for 477 —

“Those launches are exciting the young minds that are watching them.”

This satellite view of SpaceX's Starbase facility shows a fully-stacked Starship rocket on the launch pad, just inland from the Gulf of Mexico.

Enlarge / This satellite view of SpaceX’s Starbase facility shows a fully-stacked Starship rocket on the launch pad, just inland from the Gulf of Mexico.

Welcome to Edition 6.34 of the Rocket Report! It’s Starship season again. Yes, SpaceX appears to be about a week away from launching the third full-scale Starship test flight from the company’s Starbase site in South Texas, pending final regulatory approval from the Federal Aviation Administration. Ars will be there. SpaceX plans to build a second Starship launch pad at Starbase, and the company’s footprint there is also about to get a little bigger, with the expected acquisition of 43 acres of Texas state park land.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Astra’s founders take the company private. Astra’s three-year run as a public company is over. Chris Kemp and Adam London, Astra’s co-founders, are taking the company private after a string of rocket failures and funding shortfalls, Ars reports. Kemp and London bought the company for 50 cents a share. Astra’s board approved the transaction, the company announced Thursday, as the only alternative to bankruptcy. Kemp and London founded Astra in 2016. After emerging from stealth mode in 2020, Astra launched its light-class launcher, called Rocket 3, seven times, but five of those flights were failures. Astra went public via a special purpose acquisition company (or SPAC) in 2021, reaching a valuation of more than $2 billion. Today, its market cap sits at approximately $13 million.

What’s next for Astra? … Where Astra goes from here is anyone’s guess. The company abandoned its unreliable Rocket 3 vehicle in 2022 to focus on the larger Rocket 4 vehicle. But Rocket 4 is likely months or years from the launch pad. It faces stiff competition not just from established small launch players such as Rocket Lab and Firefly but also from new entrants as well, including ABL Space and Stoke Space. Additionally, all of these small launch companies have been undercut in price by SpaceX’s Transporter missions, which launch dozens of satellites at a time on the Falcon 9 booster. Additionally, Astra’s spacecraft engine business—acquired previously from Apollo Fusion—may or may not be profitable now, but there are questions about its long-term viability as well.

Virgin Galactic is retiring its only operational spaceship. Over the last year, Virgin Galactic has proven it has the technical acumen to pull off monthly flights of its VSS Unity rocket plane, each carrying six people on a suborbital climb to the edge of space. But VSS Unity has never been profitable. It costs too much and takes too much time to reconfigure between flights. Virgin Galactic plans to fly the suborbital spaceship one more time before taking a hiatus from flight operations, Ars reports. This, along with layoffs announced last year, will allow the company to preserve cash while focusing on the development of a new generation of rocket planes, called Delta-class ships, designed to fly more often and with more people. Michael Colglazier, Virgin Galactic’s president and CEO, says the first of the Delta ships is on track to begin ground and flight testing next year, with commercial service targeted for 2026 based out of Spaceport America in New Mexico.

Bigger and faster… The Delta ships will each carry six customers in the spacecraft’s pressurized passenger cabin, compared to a maximum of four passengers on each VSS Unity flight. Virgin Galactic’s goal is to fly each Delta ship eight times per month, and the company will do this by eliminating many of the inspections required between each VSS Unity flight. The company is building a Delta ship structural test article to put through extensive checks on the ground, validating component life and cycle limits for major components of the vehicle. This will give engineers enough confidence to forego many inspections, according to Mike Moses, president of Virgin Galactic’s spaceline operations. Virgin Galactic has nearly $1 billion in cash or cash equivalents on its balance sheet, so it’s not in any immediate financial trouble. But the company reported just $7 million in revenue last year, with a net loss of $502 million. So, there’s an obvious motivation to make a change.

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

A new Japanese rocket will launch this weekend. A privately held Japanese company named Space One is set to shoot for orbit with the first flight of its Kairos rocket Friday night (US time), News on Japan reports. Space One will attempt to become the first Japanese private company to launch a rocket into orbit. Japan’s existing launch vehicles, like the H-IIA, the H3, and the Epsilon, were developed with funding from the Japanese space agency. But there is some involvement from the Japanese government on this flight. The Kairos rocket will launch with a small “quick response” spacecraft for the Cabinet Intelligence and Research Office, which is responsible for Japan’s fleet of spy satellites. Kairos, which is the Ancient Greek word for “timeliness,” is made up of three solid-fueled stages and a liquid-fueled upper stage. It can place a payload of up to 550 pounds (250 kilograms) into low-Earth orbit.

Winning hearts and minds… The Kairos rocket will take off from Space One’s Space Port Kii, located on a south-facing peninsula on the main Japanese island of Honshu. This new launch site is hundreds of miles away from Japan’s existing spaceports. Local businesses see the arrival of the space industry in this remote part of Japan as a marketing opportunity. A local confectionery store, not wanting to miss the opportunity to attract visitors, is selling manju shaped like rockets. There are two paid viewing areas to watch the launch, and a total of 5,000 seats sold out in just two days, according to News on Japan. (submitted by tsunam)

UK spaceport project to get 10 million pounds from government. The UK government has pledged 10 million pounds in funding to SaxaVord Spaceport in Scotland, European Spaceflight reports. This funding is sorely needed for SaxaVord, which slowed construction last year after its developer ran into financial trouble. In the last couple of months, SaxaVord raised enough money to resume payments to the contractors building the launch site. The UK government’s pledge of 10 million pounds for SaxaVord apparently is not quite a done deal. The UK’s science minister posted on X that the funding was “subject to due diligence.” SaxaVord will eventually have three launch pads, one of which has been dedicated to German launch startup Rocket Factory Augsburg. This company’s rocket, RFA ONE, is expected to be the first orbital launch from SaxaVord later this year.

The UK spaceport scene… The UK government, local entities, and private industry are making a pretty serious effort to bring orbital launches to the British Isles. Spaceport Cornwall became the first UK facility to host an orbital attempt last year with the failed launch of Virgin Orbit’s LauncherOne rocket, which was released from a carrier jet that took off from Cornwall. There are several vertical launch spaceports under construction or in the concept development phase. SaxaVord appears to be among those closest to reality, along with Sutherland spaceport, also in Scotland, to be used by the UK launch startup Orbex Space. (submitted by Ken the Bin)

Rocket Report: Starbase will expand into state park; another Japanese rocket Read More »

after-astra-loses-99-percent-of-its-value,-founders-take-rocket-firm-private

After Astra loses 99 percent of its value, founders take rocket firm private

What goes up must come down —

First you burn the cash, then comes the crash.

Image of a rocket launch.

Enlarge / Liftoff of Astra’s Rocket 3.0 from Cape Canaveral, Florida.

Astra’s long, strange trip in the space business is taking another turn. The company announced Thursday that it is going private at an extremely low valuation.

Four years ago, the rocket company, based in Alameda, California, emerged from stealth with grand plans to develop a no-frills rocket that could launch frequently. “The theme that really makes this company stand out, which will capture the imagination of our customers, our investors, and our employees, is the idea that every day we will produce and launch a rocket,” Astra co-founder Chris Kemp said during a tour of the factory in February 2020.

Almost exactly a year later, on February 2, 2021, Astra went public via a special purpose acquisition company (or SPAC). “The transaction reflects an implied pro-forma enterprise value for Astra of approximately $2.1 billion,” the company stated at the time. For a time, the company’s stock even traded above this valuation.

But then, rockets started failing. Only two of the seven launches of the company’s “Rocket 3” vehicle were successful. In August 2022, the company announced a pivot to the larger Rocket 4 vehicle. It planned to begin conducting test launches in 2023, but that did not happen. Accordingly, the company’s stock price plummeted.

Last November Kemp and the company’s co-founder, Adam London, proposed to buy Astra shares at $1.50, approximately double their price. The company’s board of directors did not accept the deal. Then, in late February, Kemp and London sharply cut their offer to take the company private, warning of “imminent bankruptcy” if the company doesn’t accept their new proposal. They offered $0.50 a share, well below the trading value of approximately $0.80 a share.

On Thursday, Astra said that this deal was being consummated.

“Astra Space, Inc. announced today that it has entered into a definitive merger agreement pursuant to which the acquiring entity has agreed, subject to customary closing conditions, to acquire all shares of Astra common stock not already owned by it for $0.50 per share in cash,” the company stated. The acquiring entity consists of Kemp, London, and other long-term investors.

Where Astra goes from here is anyone’s guess. Rocket 4 is likely months or years from the launch pad. It faces stiff competition not just from established small launch players such as Rocket Lab and Firefly but also from new entrants as well, including ABL Space and Stoke Space. Additionally, all of these small launch companies have been undercut in price by SpaceX’s Transporter missions, which launch dozens of satellites at a time on the Falcon 9 booster.

Additionally, Astra’s spacecraft engine business—acquired previously from Apollo Fusion—may or may not be profitable now, but there are questions about its long-term viability as well.

“I don’t fault management for seizing the opportunity to raise hundreds of millions of dollars by SPAC’ing, but a pre-revenue launch company without a proven rocket was probably never a good match for the public markets,” said Case Taylor, investor and author of the Case Closed newsletter.

Taylor added that he hopes that Astra spacecraft engines find a way to thrive in the new Astra, as the space industry values their performance. “I hope to see that diamond survive and thrive,” he said.

After Astra loses 99 percent of its value, founders take rocket firm private Read More »

daily-telescope:-a-brilliant-shot-of-a-comet-as-it-nears-the-sun

Daily Telescope: A brilliant shot of a comet as it nears the Sun

A streaker —

The comet should brighten further as it nears the Sun in the coming weeks.

Comet 12P/Pons-Brooks and the great Andromeda Galaxy.

Enlarge / Comet 12P/Pons-Brooks and the great Andromeda Galaxy.

Welcome to the Daily Telescope. There is a little too much darkness in this world and not enough light, a little too much pseudoscience and not enough science. We’ll let other publications offer you a daily horoscope. At Ars Technica, we’re going to take a different route, finding inspiration from very real images of a universe that is filled with stars and wonder.

Good morning. It’s March 7, and today’s photo features a Halley-type comet that is currently approaching the Sun. It will reach perihelion on April 21.

The comet, named 12P/Pons–Brooks, features a brilliant ion tail, and its nucleus is estimated to be around 30 km in diameter. The comet should brighten further as it nears the Sun in the coming weeks. However, at an apparent magnitude of 4.5, it is unlikely to be visible to the naked eye—that’s why we have telescopes.

12P/Pons–Brooks was imaged here by the Virtual Telescope Project facility in Manciano, Italy. The covered field of view is about 16×11 square degrees, and there is a bonus photobombing by the Andromeda Galaxy.

Source: Gianluca Masi

Do you want to submit a photo for the Daily Telescope? Reach out and say hello.

Daily Telescope: A brilliant shot of a comet as it nears the Sun Read More »

russia’s-next-generation-rocket-is-a-decade-old-and-still-flying-dummy-payloads

Russia’s next-generation rocket is a decade old and still flying dummy payloads

A winding road —

Russia’s heavy-lift Angara A5 rocket is about to launch on its fourth test flight.

Technicians assemble an Angara A5 rocket at the Vostochny Cosmodrome in Russia's Far East.

Enlarge / Technicians assemble an Angara A5 rocket at the Vostochny Cosmodrome in Russia’s Far East.

Roscosmos

By some measures, Russia’s next-generation flagship rocket program—the Angara—is now three decades old. The Russian government approved the development of the Angara rocket in 1992, soon after the fall of the Soviet Union ushered in a prolonged economic recession.

It has been nearly 10 years since Russia launched the first Angara test flights. The heaviest version of the Angara rocket family—the Angara A5—is about to make its fourth flight, and like the three launches before, this mission won’t carry a real satellite.

This next launch will be a milestone for the beleaguered Angara rocket program because it will be the first Angara flight from the Vostochny Cosmodrome, Russia’s newest launch site in the country’s far east. The previous Angara launches were based out of the military-run Plesetsk Cosmodrome in northern Russia.

All dressed up and nowhere to go

On Wednesday, Russia’s space agency, Roscosmos, said technicians at Vostochny have fueled the Angara A5’s Orion upper stage and will soon install it on the rest of the rocket. The Angara A5 will roll to its launch pad a few days before liftoff, currently scheduled for next month.

The Angara A5 rocket is supposed to replace Russia’s Proton launch vehicle, which uses toxic propellant and only launches from the Baikonur Cosmodrome in Kazakhstan. Angara’s launch pads are on Russian territory. Until a few years ago, the Proton was a competitor in the global commercial launch market, but the rocket lost its position due to reliability problems, competitive pressure from SpaceX, and the fallout of Russia’s invasion of Ukraine.

Russian officials once touted Angara as a successor to Proton on the commercial market. Now, Angara will solely serve the Russian government, but it’s doubtful the government has enough demand to fill the Angara A5’s heavy launch capacity on a regular basis. According to RussianSpaceWeb.com, a website run by veteran Russian space reporter Anatoly Zak, the Russian government didn’t have any functional satellites ready to fly on the upcoming Angara A5 launch from Vostochny.

Eventually, the Angara A5 could take over the launch responsibility of the handful of large satellites that require the capacity of the Proton rocket. But this is a small number of flights. The Proton has launched three times in the last two years, and there are roughly a dozen Proton launch vehicles remaining in Russia’s inventory.

Russia plans a next-generation crew spacecraft, Orel, that officials claim will begin launching on the Angara A5 rocket in 2028. There’s no evidence Orel could be ready for test flights within four years. So, while the Angara rocket is finally flying, albeit at an anemic rate, there aren’t many payloads for Russia to put on it.

North Korean leader Kim Jong Un and Russian President Vladimir Putin visited the Angara rocket's launch pad at the Vostochny Cosmodrome last year.

Enlarge / North Korean leader Kim Jong Un and Russian President Vladimir Putin visited the Angara rocket’s launch pad at the Vostochny Cosmodrome last year.

Russia’s economic woes might explain some of the delays that have befallen the Angara program since 1992, but Russia’s space program has long suffered from chronic underfunding, mismanagement, and corruption. Angara is the only rocket Russia has developed from scratch since the 1980s, and the Russian government selected Khrunichev, one of the country’s oldest space companies, to oversee the Angara program.

Finally, in 2014, Russia launched the first two Angara test flights, one with a single-booster lightweight version of the rocket, called the Angara 1.2, and another with the heavy-lift Angara A5, made up of five Angara rocket cores combined into one rocket.

The Angara A5 can place up to 24.5 metric tons (about 54,000 pounds) into low-Earth orbit, according to Khrunichev. The expendable rocket has enough power to launch modules for a space station or deploy the Russian military’s largest spy satellites, but in 2020, each Angara A5 reportedly cost more than $100 million, significantly more than the Proton.

The smaller Angara 1.2 has flown twice since 2014, but both missions delivered functional satellites into orbit for the Russian military. The much larger Angara A5 has launched three times, all with dummy payloads. The most recent Angara A5 launch in 2021 failed due to a problem with the rocket’s Persei upper stage. The Orion upper stage set to fly on the next Angara A5 mission is a modified version of the Persei, which is itself modeled on the Block-DM upper stage, a design with its roots in the 1960s.

Essentially, the Angara A5 flight will allow engineers to test out changes to the upper stage and allow Russia to activate a second launch pad at Vostochny, which itself has been mired in corruption and delays. Medium-lift Soyuz rockets have been flying from Vostochny since 2016.

Russia’s next-generation rocket is a decade old and still flying dummy payloads Read More »

the-next-starship-mission-has-a-tentative-launch-date:-march-14

The next Starship mission has a tentative launch date: March 14

Excitement guaranteed —

This third flight has a reasonable chance of success.

SpaceX's Starship rocket completes a fueling test on Sunday night.

Enlarge / SpaceX’s Starship rocket completes a fueling test on Sunday night.

SpaceX

After SpaceX completed a fueling test of its third full Starship stack on Sunday night, successfully loading more than 10 million pounds of methane and liquid oxygen propellant onto the rocket, it was only a matter of time before the world’s largest rocket took flight.

Now, we have a tentative date. In a post on the social media site X, the company posted a link to watch “Starship’s third flight test” at 7: 30 am ET (11: 30 UTC) on March 14. Published on Tuesday morning, the social media post was ‘hidden,’ but somehow discovered late Tuesday night.

Nevertheless, this is a credible date that the company is working toward. Following the fueling test on Sunday night at the company’s Starbase site in South Texas, the hardware appears to be in good shape. Although SpaceX has yet to receive its launch license from the Federal Aviation Administration, the agency recently announced that it has closed its investigation into the second Starship test flight in November. So a mid-March launch date is plausible from a regulatory standpoint.

The first two Starship flights in April and November last year ultimately failed, but each of the experimental launches provided valuable data. On the second mission four months ago, the first-stage Super Heavy booster performed a nominal flight before it separated from the Starship upper stage. The Starship vehicle exploded a few minutes into its flight due to a leak during a liquid oxygen vent.

Based upon learnings from these first two flights, this next mission, with upgraded hardware and flight software, likely has a reasonable chance of success. Among the milestones SpaceX will seek to complete during this test flight are:

  • Nominal first-stage performance, followed by a controlled descent of the Super Heavy booster into the Gulf of Mexico
  • Starship separation from the first stage using “hot staging,” meaning engine ignition while the first stage is still firing its engines
  • Starship reaching an orbital velocity and engine shutdown
  • Early-stage testing of in-space refueling technology inside the propellant tanks of Starship
  • Controlled splashdown of Starship near the Hawaiian islands after flying around two-thirds of the planet.

SpaceX is seeking to demonstrate the basic flight capabilities of Starship so that it can move into a more operational phase with the big rocket. The company wants to begin deploying larger Starlink satellites from the vehicle this year, which will enable direct-to-cell phone Internet connectivity.

Additionally, a higher cadence of missions will allow the company to begin developing the technology and procedures needed for the in-space storage and transfer of propellant for deep-space missions. This is a necessary step for SpaceX to fulfill its obligations to NASA for the Artemis program, which seeks to return humans to the Moon later this decade.

In a recent update, the company said more Starships are ready for flight, so a higher cadence is possible if this month’s flight is a success. Recently, the Federal Aviation Administration disclosed that SpaceX is seeking to launch Starship at least nine times this year.

The next Starship mission has a tentative launch date: March 14 Read More »