It’s nearly time. After years of delays, billions of dollars in federal funding, and a spectacular second-stage explosion, the large and impressive Vulcan rocket is finally ready to take flight.
United Launch Alliance’s heavy lift vehicle underwent its final review on Thursday, and the company cleared the rocket for its debut flight. With weather looking favorable, the Vulcan rocket is on track to lift off at 2: 18 am ET (7: 18 UTC) on Monday from Cape Canaveral Space Force Station in Florida. The mission’s primary payload is a lunar lander built by Astrobotic, and the launch will be streamed live here.
This marks an absolutely pivotal moment for the 20-year-old launch company, which has gone from the titan of the US launch industry to playing a distant second fiddle to its one-time upstart competitor SpaceX. Last year, SpaceX launched 98 rockets. United Launch Alliance, or ULA, tallied just three. The owners of ULA, Lockheed Martin and Boeing, are also on the cusp of selling the launch company if they can find a buyer willing to pay the right price. And critically, for the first time, ULA will be flying a new vehicle it designed and developed on its own—a rocket with some but not a majority of its heritage from the legacy Atlas and Delta rockets that have flown since the Cold War.
So yeah, it’s a moment.
A little history
A quarter of a century ago, two of America’s largest aerospace contractors, Lockheed and Boeing, were the national leaders in providing launch services for the US military and many of NASA’s science missions. But they struggled to capture commercial satellite launches in an emerging market. Lockheed, with its Atlas rockets, and Boeing, with its Deltas, could not compete with Europe-based Arianespace and Russia on price. So the two US contractors doubled down on their competition for US government launch contracts.
The competition grew ugly, with allegations that Boeing stole rocket designs from Lockheed. The US Department of Justice began investigating how Boeing acquired tens of thousands of pages of trade secrets belonging to Lockheed Martin. There were lawsuits, and then questions about whether Boeing’s rocket business was viable. Military officials began to worry that if Boeing stopped flying the Delta, their only pathway into space would be through a Russian engine—the RD-180 that powered Lockheed’s Atlas V.
To ensure it had redundant access to space on two different rocket families, the military stepped in and arranged a shotgun marriage. The Department of Defense brokered a deal in which Lockheed and Boeing would merge their rocket-building ventures into one company, United Launch Alliance, in 2005. The parents retained a 50 percent ownership stake, and to sweeten the pot, the military agreed to pay a subsidy of about $1 billion a year.
Everything seemed to be working out well until SpaceX started launching rockets.
A little rivalry
ULA had tried to kill the baby. When SpaceX sought a launch site for its Falcon 9 rocket at Cape Canaveral in 2007, the parents lobbied the Air Force brass hard to stop the lease of Space Launch Complex-40 to Elon Musk and his rocket company. But the commander of the 45th Space Wing with oversight of Cape Canaveral, Gen. Susan Helms, approved the lease anyway.
Since then, ULA and SpaceX have been uneasy bedfellows in Florida, working side by side at nearby launch pads. Some of the rivalry was good-natured. Every week, for a while, engineers from SpaceX and ULA would meet up at Hogan’s Irish Bar in Cape Canaveral for trivia night. They would vie for nerd supremacy, drinking Guinness and blowing off steam.
But there have been more difficult confrontations. Musk kept pointing out the $1 billion subsidy at Congressional hearings—ULA officials bristled at the characterization of this ELC payment as a subsidy, but in effect, that’s what it was—and arguing that SpaceX’s Falcon 9 rocket could fly many of the military’s missions for much-reduced prices.
The issue came to a head in 2014, when the Air Force and ULA announced a new agreement for 36 national security launches to be flown during the remainder of the decade. ULA’s chief executive at the time, Mike Gass, hailed this “block buy” agreement because it would save the government $4.4 billion. Musk seethed. By then, his Falcon 9 rocket had launched eight times, all successfully. He sued the US government to stop the block buy and open up competition for the Falcon 9.
Several months into the lawsuit, SpaceX and the Air Force entered mediation. As part of the settlement, the military agreed to accelerate the certification of the Falcon 9 rocket and open up a number of the block buy launches to competition. SpaceX launched its first national security payload in 2017. SpaceX has not really looked back since.
Welcome to the Daily Telescope. There is a little too much darkness in this world and not enough light, a little too much pseudoscience and not enough science. We’ll let other publications offer you a daily horoscope. At Ars Technica, we’re going to take a different route, finding inspiration from very real images of a universe that is filled with stars and wonder.
Good morning. It’s January 5, and today’s photo reveals the Crab Nebula in all of its glory.
This object, known more formally as Messier 1 or M1, earned its colloquial name when Anglo-Irish astronomer William Parsons observed and drew this object in the early 1840s. It looked something like a crab with arms, and the appellation stuck. The nebula had been discovered about a century earlier by English astronomer John Bevis.
The nebula is actually a supernova remnant from a star that was observed popping in 1054 and recorded by Chinese astronomers. That must have been quite a sight, because the supernova occurred only about 2,000 light-years from Earth, which is relatively close as these things go. It likely was as bright as Venus and visible during daylight hours for a few weeks.
This image was captured by amateur astronomer Paul Macklin in Indiana. And it’s quite spectacular.
Welcome to Edition 6.25 of the Rocket Report! We hope all our readers had a peaceful holiday break. While many of us were enjoying time off work, launch companies like SpaceX kept up the pace until the final days of 2023. Last year saw a record level of global launch activity, with 223 orbital launch attempts and 212 rockets successfully reaching orbit. Nearly half of these missions were by SpaceX.
As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.
Firefly’s fourth launch puts payload in wrong orbit. The fourth flight of Firefly Aerospace’s Alpha rocket on December 22 placed a small Lockheed Martin technology demonstration satellite into a lower-than-planned orbit after lifting off from Vandenberg Space Force Base, California. US military tracking data indicated the Alpha rocket released its payload into an elliptical orbit ranging between 215 and 523 kilometers in altitude, not the mission’s intended circular target orbit. Firefly later confirmed the Alpha rocket’s second stage, which was supposed to reignite about 50 minutes after liftoff, did not deliver Lockheed Martin’s satellite into the proper orbit. This satellite, nicknamed Tantrum, was designed to test Lockheed Martin’s new wideband Electronically Steerable Antenna technology to demonstrate faster on-orbit sensor calibration to deliver rapid capabilities to US military forces.
Throwing a tantrum? … This was the third time in four flights that Firefly’s commercial Alpha rocket, designed to loft payloads up to a metric ton in mass, has not reached its orbital target. The first test flight in 2021 suffered an engine failure on the first stage before losing control shortly after liftoff. The second Alpha launch in 2022 deployed its satellites into a lower-than-planned orbit, leaving them unable to complete their missions. In September, Firefly launched a small US military satellite on a responsive launch demonstration. Firefly and the US Space Force declared that mission fully successful. Atmospheric drag will likely pull Lockheed Martin’s payload back into Earth’s atmosphere for a destructive reentry in a matter of weeks. The good news is ground teams are in contact with the satellite, so there could be a chance to complete at least some of the mission’s objectives. (submitted by Ken the Bin)
Australian startup nears first launch. The first locally made rocket to be launched into space from Australian soil is scheduled for liftoff from a commercial facility in Queensland early next year, the Australian Broadcasting Corporation reports. A company named Gilmour Space says it hopes to launch its first orbital-class Eris rocket in March, pending final approval from Australian regulatory authorities. This would be the first Australian-built orbital rocket, although a US-made rocket launched Australia’s first satellite from a military base in South Australia in 1967. The UK’s Black Arrow rocket also launched a satellite from the same remote Australian military base in 1971.
Getting to know Eris … The three-stage Eris rocket stands 25 meters (82 feet) tall with the ability to deliver up to 300 kilograms (660 pounds) of payload into low-Earth orbit, according to Gilmour Space. The company says the Eris rocket will be powered by Gilmour’s “new and proprietary hybrid rocket engine.” These kinds of propulsion systems use a solid fuel and a liquid oxidizer. We’ll be watching to see if Gilmour shares more tangible news about the progress toward the first Eris launch in March. In late 2022, the company targeted April 2023 for the first Eris flight, so this program has a history of delays. (submitted by Marzipan and Onychomys)
The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.
A commander’s lament on the loss of a historic SpaceX booster. The Falcon 9 rocket that launched NASA astronauts Doug Hurley and Bob Behnken on SpaceX’s first crew mission in 2020 launched and landed for the 19th and final time just before Christmas, then tipped over on its recovery ship during the trip back to Cape Canaveral, Florida, Ars reports. This particular booster, known by the tail number B1058, was special among SpaceX’s fleet of reusable rockets. It was the fleet leader, having tallied 19 missions over the course of more than three-and-a-half years. More importantly, it was the rocket that thundered into space on May 30, 2020, on a flight that made history.
A museum piece? … The lower third of the booster was still on the deck of SpaceX’s recovery ship as it sailed into Port Canaveral on December 26. This portion of the rocket contains the nine Merlin engines and landing legs, some of which appeared mangled after the booster tipped over in high winds and waves. Hurley, who commanded SpaceX’s Crew Dragon spacecraft on the booster’s historic first flight in 2020, said he hopes to see the remaining parts of the rocket in a museum. “Hopefully they can do something because this is a little bit of an inauspicious way to end its flying career, with half of it down at the bottom of the Atlantic Ocean,” said Hurley.
SpaceX opens 2024 campaign with a new kind of Starlink satellite. SpaceX has launched the first six Starlink satellites that will provide cellular transmissions for customers of T-Mobile and other carriers, Ars reports. A Falcon 9 rocket launched from California on January 2 carried 21 Starlink satellites overall, including the first six Starlinks with Direct to Cell capabilities. SpaceX says these satellites, and thousands of others to follow, will “enable mobile network operators around the world to provide seamless global access to texting, calling, and browsing wherever you may be on land, lakes, or coastal waters without changing hardware or firmware.” T-Mobile said that field testing of Starlink satellites with the T-Mobile network will begin soon. “The enhanced Starlink satellites have an advanced modem that acts as a cellphone tower in space, eliminating dead zones with network integration similar to a standard roaming partner,” SpaceX said.
Two of 144 … SpaceX followed this launch with another Falcon 9 flight from Florida on January 3 carrying a Swedish telecommunications satellite. These were the company’s first two missions of 2024, a year when SpaceX officials aim to launch up to 144 rockets, an average of 12 per month, exceeding the 98 rockets it launched in 2023. A big focus of SpaceX’s 2024 launch manifest will be delivering these Starlink Direct to Cell satellites into orbit. (submitted by Ken the Bin)
Chinese booster lands near homes. China added a new pair of satellites to its Beidou positioning and navigation system on December 25, but spent stages from the launch landed within inhabited areas, Space News reports. Meanwhile, a pair of the side boosters from the Long March 3B rocket used for the launch appeared to fall to the ground near inhabited areas in Guangxi region, downrange of the Xichang spaceport in Sichuan province, according to apparent bystander footage on Chinese social media. One video shows a booster falling within a forested area and exploding, while another shows a falling booster and later, wreckage next to a home.
Life downrange … Chinese government authorities reportedly issue warnings and evacuation notices for citizens living in regions where spent rocket boosters are likely to fall after launch, but these videos clearly show people are still close by as the rockets fall from the sky. We’ve seen this kind of imagery before, including views of a rocket that crashed into a rural building in 2019. What’s more, the rockets return to Earth with leftover toxic propellants—hydrazine and nitrogen tetroxide—that could be deadly to breathe or touch. Clouds of brownish-orange gas are visible around the rocket wreckage, an indication of the presence of nitrogen tetroxide. China built its three Cold War-era spaceports in interior regions to protect them from possible military attacks, while its newest launch site is at a coastal location on Hainan Island, allowing rockets launched there to drop boosters into the sea. (submitted by Ken the Bin and EllPeaTea)
Launch date set for next H3 test flight. The second flight of Japan’s new flagship H3 rocket is scheduled for February 14 (US time; February 15 in Japan), the Japan Aerospace Exploration Agency announced on December 28. This will come nearly one year after the first H3 test flight failed to reach orbit last March when the rocket’s second stage failed to ignite a few minutes after liftoff. This failure destroyed a pricey Japanese Earth observation satellite and dealt a setback to Japan’s rocket program. The H3 is designed to be cheaper and more capable than the H-IIA and H-IIB rockets it will replace. Eventually, the H3 will launch Japan’s scientific research probes, spy satellites, and commercial payloads.
Fixes since the first flight … Engineers narrowed the likely cause for the first H3 launch failure to an electrical issue, although Japanese officials have not provided an update on the investigation for several months. In August, Japan’s space agency said investigators had narrowed the cause of the H3’s second-stage malfunction to three possible failure scenarios. Nevertheless, officials are apparently satisfied the H3 is ready to fly again. But this time, there won’t be an expensive satellite aboard. A dummy payload will fly inside the H3 rocket’s nose cone, along with two relatively low-cost small satellites hitching a piggyback ride to orbit. (submitted by Ken the Bin and EllPeaTea)
India’s PSLV launches first space mission of 2024. The first orbital launch of the new year, as measured in the globally recognized Coordinated Universal Time, or UTC, was the flight of an Indian Polar Satellite Launch Vehicle (PSLV) on January 1 (December 31 in the United States). This launch deployed an X-ray astronomy satellite named XPoSat, which will measure X-ray emissions from black holes, neutron stars, active galactic nuclei, and pulsars. This is India’s first X-ray astronomy satellite, and its launch is another sign of India’s ascendence among the world’s space powers. India has some of the world’s most reliable launch vehicles, is developing a human-rated capsule to carry astronauts into orbit, and landed its first robotic mission on the Moon last year.
Going lower … After releasing the XPoSat payload, the PSLV’s fourth stage lowered its orbit to begin an extended mission hosting 10 scientific and technology demonstration experiments. These payloads will test new radiation shielding technologies, green propulsion, and fuel cells in orbit, according to the Indian Space Research Organization. On missions with excess payload capacity, India has started offering researchers and commercial companies the opportunity to fly experiments on the PSLV fourth stage, which has its own solar power source to essentially turn itself from a rocket into a satellite platform. (submitted by EllPeaTea and Ken the Bin)
Mixed crews will continue flying to the International Space Station. NASA and the Russian space agency, Roscosmos, will extend an agreement on flying each other’s crew members to the International Space Station through 2025, Interfax reports. This means SpaceX’s Crew Dragon spacecraft and Boeing’s Starliner capsule, once operational, will continue transporting Russian cosmonauts to and from the space station, as several recent SpaceX crew missions have done. In exchange, Russia will continue flying US astronauts on Soyuz missions.
There’s a good reason for this… Despite poor relations on Earth, the US and Russian governments continue to be partners on the ISS. While NASA no longer has to pay for seats on Soyuz spacecraft, the US space agency still wants to fly its astronauts on Soyuz to protect against the potential for a failure or lengthy delay with a SpaceX or Boeing crew mission. Such an event could lead to a situation where the space station has no US astronauts aboard. Likewise, Roscosmos benefits from this arrangement to ensure there’s always a Russian on the space station, even in the event of a problem with Soyuz. (submitted by Ken the Bin)
SpaceX sets new records to close out 2023. SpaceX launched two rockets, three hours apart, to wrap up a record-setting 2023 launch campaign, Ars reports. On December 28, SpaceX launched a Falcon Heavy rocket from NASA’s Kennedy Space Center in Florida with the US military’s super-secret X-37B spaceplane. Less than three hours later, a Falcon 9 rocket took off a few miles to the south with another batch of Starlink Internet satellites. These were SpaceX’s final launches of 2023. SpaceX ended the year with 98 flights, including 91 Falcon 9s, five Falcon Heavy rockets, and two test launches of the giant new Super Heavy-Starship rocket. These flights were spread across four launch pads in Florida, California, and Texas. It was also the shortest turnaround between two SpaceX flights in the company’s history, and set a modern-era record at Cape Canaveral, Florida, with the shortest span between two orbital-class launches there since 1966.
Where’s the X-37B?… The military’s reusable X-37B spaceplane that launched on the Falcon Heavy rocket apparently headed into an unusually high orbit, much higher than the spaceplane program’s previous six flights. But the military kept the exact orbit a secret, and amateur skywatchers will be closely watching for signs of the spaceplane passing overhead in hopes of estimating its apogee, perigee, and inclination. What the spaceplane is doing is also largely a mystery. The X-37B resembles a miniature version of NASA’s retired space shuttle orbiter, with wings, deployable landing gear, and black thermal protection tiles to shield its belly from the scorching heat of reentry.
Elon Musk says SpaceX needs to built a lot of Starships. Even with reusability, SpaceX will need to build Starships as often as Boeing builds 737 jetliners in order to realize Elon Musk’s ambition for a Mars settlement, Ars reports. “To achieve Mars colonization in roughly three decades, we need ship production to be 100/year, but ideally rising to 300/year,” Musk wrote on his social media platform X. SpaceX still aims to make the Starship and its Super Heavy booster rapidly reusable. The crux is that the ship, the part that would travel into orbit, and eventually to the Moon or Mars, won’t be reused as often as the booster. These ships will come in a number of different configurations, including crew and cargo transports, refueling ships, fuel depots, and satellite deployers.
Laws of physics… The first stage of the giant launch vehicle, named Super Heavy, is designed to return to SpaceX’s launch sites about six minutes after liftoff, similar to the way SpaceX recovers its Falcon boosters today. Theoretically, Musk wrote, the booster could be ready for another flight in an hour. With the Starship itself, the laws of physics and the realities of geography come into play. As an object flies in low-Earth orbit, the Earth rotates underneath it. This means that a satellite, or Starship, will find itself offset some 22.5 degrees in longitude from its launch site after a single 90-minute orbit around the planet. It could take several hours, or up to a day, for a Starship in low-Earth orbit to line up with one of the recovery sites. “The ship needs to complete at least one orbit, but often several to have the ground track line back up with the launch site, so reuse may only be daily,” Musk wrote. “This means that ship production needs to be roughly an order of magnitude higher than booster production.”
Next three launches
January 5: Kuaizhou 1A | Unknown Payload | Jiuquan Satellite Launch Center, China | 11: 20 UTC
January 7: Falcon 9 | Starlink 6-35 | Cape Canaveral Space Force Station, Florida | 21: 00 UTC
January 8: Falcon 9 | Starlink 7-10 | Vandenberg Space Force Base, California | 05: 00 UTC
It’s no secret that Elon Musk has big ambitions for SpaceX’s Starship mega-rocket. This is the vehicle that, with plenty of permutations and upgrades, Musk says will ferry cargo and people across the Solar System to build a settlement on Mars, making humanity a multi-planetary species and achieving the billionaire’s long-standing dream.
Of course, that is a long way off. SpaceX is still working on getting Starship into orbit or close to it, an achievement that appears to be possible this year. Then, the company will start launching Starlink satellites on Starship missions while testing in-space refueling technology needed to turn Starship into a human-rated Moon lander for NASA.
SpaceX’s South Texas team is progressing toward the third full-scale Starship test flight. On December 20, the Starship’s upper stage slated for the next test flight completed a test-firing of its Raptor engines at the Starbase launch site on the Texas Gulf Coast. Nine days later, the 33-engine Super Heavy booster fired up on the launch pad for its own static fire test. On the same day, SpaceX hot-fired the Starship upper stage once again on a test stand next to the launch pad.
With those milestones complete, ground teams rolled the booster back to its hangar for final preflight checks and reconfigurations. The ship, too, will need to be rolled back to its high bay.
SpaceX could be weeks away from having both vehicles ready to fly, but the company hasn’t released an update on lessons learned from the previous Starship test flight in November. That flight was largely successful, with apparently flawless performance from the 33 engines on the Super Heavy booster during launch. The Starship upper stage reached space before self-destructing downrange over the Gulf of Mexico. The booster exploded during a maneuver to bring itself back to Earth for a controlled splashdown at sea.
The company’s engineers will want to understand and correct whatever caused those issues. The Federal Aviation Administration then needs to approve SpaceX’s investigation into the last Starship flight before issuing a new commercial launch license. When it flies again, Starship will try to reach near orbital velocity, enough speed to travel most of the way around the world before reentering the atmosphere near Hawaii.
Verifying the performance of Starship’s heat shield tiles during reentry will be valuable learning for SpaceX, but Starship first needs to be fully successful with a launch. This is just the start for the privately funded Starship program.
Welcome to the Daily Telescope. There is a little too much darkness in this world and not enough light, a little too much pseudoscience and not enough science. We’ll let other publications offer you a daily horoscope. At Ars Technica, we’re going to take a different route, finding inspiration from very real images of a universe that is filled with stars and wonder.
Good morning. It’s January 4, and today’s image is a photo of our star, Sol. The image was captured by NASA’s Solar Dynamics Observatory, a spacecraft in geosynchronous orbit, on Wednesday.
So why a picture of the Sun? Because we’ve just passed perihelion, the point at which planet Earth reaches its closest point to the Sun. This year perihelion came at 00: 38 UTC on Wednesday, January 3. We got to within about 91.4 million miles (147 million km) of the star. Due to its slightly elliptical orbit around the Sun, Earth will reach aphelion this year on July 5, at a distance of 94.5 million miles (152 million km).
There is a bit of irony for those of us who live in the Northern Hemisphere, of course. We approach nearest to the Sun at almost the coldest time of year, just a couple of weeks after the winter solstice. Our planet’s seasons are determined by Earth’s axial tilt, however, not its proximity to the Sun.
In any case, happy new year, a time when the world can seem full of possibility—shiny and bright like a star.
The Falcon 9 rocket that launched NASA astronauts Doug Hurley and Bob Behnken on SpaceX’s first crew mission in 2020 launched and landed for the 19th and final time just before Christmas, then tipped over on its recovery ship during the trip back to Cape Canaveral, Florida.
This particular booster, known by the tail number B1058, was special among SpaceX’s fleet of reusable rockets. It was the fleet leader, having tallied 19 missions over the course of more than three-and-a-half years. More importantly, it was the rocket that thundered into space on May 30, 2020, on a flight that made history on several counts.
It was the first time a commercial rocket and spacecraft launched people into orbit, and ended a nine-year gap in America’s ability to send astronauts into orbit from US soil, following the retirement of the space shuttle. This mission, known as Demo-2 and launched by SpaceX under contract with NASA, ended US reliance on Russian rockets to send crews to the International Space Station.
SpaceX recovered the booster on one of its offshore landing platforms after the historic launch in May 2020, while the Falcon 9’s upper stage fired into orbit with the Crew Dragon spacecraft containing Hurley and Behnken. Then, the rocket went into SpaceX’s fleet rotation to launch 18 more times, primarily on missions to deploy Starlink Internet satellites.
Hurley, who commanded the Crew Dragon spacecraft on the Demo-2 mission, kept up with the booster’s exploits well after his return to Earth. He regularly exchanged text messages with Behnken and Kiko Dontchev, SpaceX’s vice president of launch, as the rocket just kept flying.
“For Bob and I, that particular booster was always pretty special for a lot of reasons,” said Hurley, a veteran Marine Corps fighter pilot who retired from NASA’s astronaut corps in 2021. He now works at Northrop Grumman.
An inauspicious ending
Hurley told Ars he would like to see the booster’s remains displayed in a museum alongside the Crew Dragon spacecraft (named Endeavour) he and Behnken flew in 2020. “In a perfect world, I’d love to see Endeavour and at least now part of that booster in the Smithsonian or in a museum somewhere,” he said.
“It’s kind of a bummer,” Hurley told Ars. But he understands SpaceX got a lot of use out of this rocket. SpaceX also has a lot of love for Hurley and Behnken. The company named two of its recovery ships for payload fairings “Bob” and “Doug” after the astronaut duo.
“SpaceX has got a business to run,” he said. “I think, at this point, certainly Endeavour is going to fly more, but this booster isn’t, so hopefully they can find a spot to display it somewhere. Even part of it would look kind of cool somewhere. They could figure something out … People, I think, can get a lot of inspiration from seeing stuff that’s actually flown in space, and being able to get right up close to it, I think, is a big deal to a lot of people.”
The 19th launch of this booster on December 23 was just as successful as the previous 18, with a smooth climb into space before shutting down its nine kerosene-fueled Merlin engines. The booster coasted to the highest point in its trajectory—72 miles (116 kilometers)—before Earth’s gravity pulled it back into the atmosphere.
Two engine burns slowed the rocket as it descended toward SpaceX’s drone ship positioned near the Bahamas, and then four carbon-fiber legs deployed moments before an on-target touchdown. Then, as usual, the recovery vessel started its slow journey back to Florida with the 15-story-tall booster standing vertically.
On Saturday NASA’s Juno spacecraft, which has been orbiting Jupiter for the better part of a decade, made its closest flyby of the innermost moon in the Jovian system.
The spacecraft came to within 930 miles (1,500 km) of the surface of Io, a dense moon that is the fourth largest in the Solar System. Unlike a lot of moons around Jupiter and Saturn, which have surface ice or subsurface water, Io is a very dry world. It is also extremely geologically active. Io has more than 400 active volcanoes and is therefore an object of great interest to astronomers and planetary scientists.
Images from the December 30 flyby were posted by NASA over the New Year holiday weekend, and they provide some of the clearest views yet of this hell-hole world. The new data will help planetary scientists determine how often these volcanoes erupt and how this activity is connected to Jupiter’s magnetosphere—Io is bathed in intense radiation from the gas-giant planet.
To date Juno has mostly observed Io from afar as the spacecraft has made 56 flybys of Jupiter, studying the complex gas giant in far greater detail than ever before. Since arriving in the planetary system in July 2016, Juno has previously gotten to within several thousand miles of the moon. Juno will make another close flyby of Io on February 3, 2024, and this will allow scientists to compare changes on the moon’s surface over a short period of time.
Since its launch on an Atlas V rocket, Juno has performed very well while operating in the Jovian system, surviving extended operations in the harsh radiation of the planet. This is a significant challenge for any spacecraft bound for Jupiter, which must carry radiation-hardened instruments, including its cameras.
“The cumulative effect of all that radiation has begun to show on JunoCam over the last few orbits,” said Ed Hirst, project manager of Juno at NASA’s Jet Propulsion Laboratory in Southern California. “Pictures from the last flyby show a reduction in the imager’s dynamic range and the appearance of ‘striping’ noise. Our engineering team has been working on solutions to alleviate the radiation damage and to keep the imager going.”
Eventually, the radiation will win, so NASA has a disposal planned for Juno before it ceases being operational. Originally, the space agency planned to end the vehicle’s life in 2018, but because Juno has been such a survivor as it has probed the largest planet in the Solar System, the spacecraft now is planned to operate until September 2025.
At that point, however, it will descend into Jupiter’s atmosphere to burn up, in order to not contaminate any of the planet’s moons with any stray Earth microbes on board, unlikely though that may be.
It’s been quite a year for laser communications in space. In October and November, NASA launched two pioneering demonstrations to test high-bandwidth optical communication links, and these tech demos are now showing some initial results.
On December 11, a laser communications terminal aboard NASA’s Psyche spacecraft on the way to an asteroid linked up with a receiver in Southern California. The near-infrared laser beam contained an encoded message in the form of a 15-second ultra-high-definition video showing a cat bouncing around a sofa, chasing the light of a store-bought laser toy.
Laser communications offer the benefit of transmitting data at a higher rate than achievable with conventional radio links. In fact, the Deep Space Optical Communications (DSOC) experiment on the Psyche spacecraft is testing technologies capable of sending data at rates 10 to 100 times greater than possible on prior missions.
“We’re looking to increase the amount of data we can get down to Earth, and that has a lot of advantages to us,” said Jeff Volosin, acting deputy associate administrator for NASA space communications and navigation program, before the launch of Psyche earlier this year.
Now, DSOC has set a record for the farthest distance a high-definition video has streamed from space. At the time, Psyche was traveling 19 million miles (31 kilometers) from Earth, about 80 times the distance between Earth and the Moon. Traveling at the speed of light, the video signal took 101 seconds to reach Earth, sent at the system’s maximum bit rate of 267 megabits per second, NASA said.
A playful experiment
After reaching the receiver at Palomar Observatory in San Diego County, each video frame was transmitted “live” to NASA’s Jet Propulsion Laboratory in Pasadena, California, where it was played in real time, according to NASA.
“One of the goals is to demonstrate the ability to transmit broadband video across millions of miles. Nothing on Psyche generates video data, so we usually send packets of randomly generated test data,” said Bill Klipstein, the tech demo’s project manager at JPL, in a statement. “But to make this significant event more memorable, we decided to work with designers at JPL to create a fun video, which captures the essence of the demo as part of the Psyche mission.”
The video of Taters, the orange tabby cat of a JPL employee, was recorded before the launch of Psyche and stored on the spacecraft for this demonstration. The robotic probe launched on October 13 aboard a SpaceX Falcon Heavy rocket, with the primary goal of flying to the asteroid Psyche, a metal-rich world in the asteroid belt between the orbits of Mars and Jupiter.
It will take six years for the Psyche probe to reach its destination, and NASA tacked on a laser communications experiment to help keep the spacecraft busy during the cruise. Since the launch in October, ground teams at JPL switched on the Deep Space Optical Communications (DSOC) experiment and ran it through some early tests.
One of the most significant technical challenges involved in the DSOC experiment was aligning the 8.6-inch (22-centimeter) optical telescope aboard Psyche with a transmitter and receiver fitted to ground-based telescopes in California and vice versa. Because Psyche is speeding through deep space, this problem is akin to trying to hit a dime from a mile away while the dime is moving, according to Abi Biswas, DSOC’s project technologist at JPL.
Once you achieve that feat, the signal that is received is still very weak and therefore requires very sensitive detectors and processing electronics which can take that signal and extract information that’s encoded in it,” Biswas said.
The telescope aboard Psyche is mounted on an isolation-and-pointing assembly to stabilize the optics and isolate them from spacecraft vibrations, according to NASA. This is necessary to eliminate jitters that could prevent a stable laser lock between Earth and the Psyche spacecraft.
“What optical or laser communications allows you is to achieve very high data rates, but on the downside, it’s a very narrow laser beam that requires very accurate pointing control,” Biswas told reporters before the launch. “For example, the platform disturbance from a typical spacecraft would throw off the pointing, so you need to actively isolate from it or control against it.
“For near-Earth missions, you can just control against it because you have enough control bandwidth,” he said. “From deep space, where the signals received are very weak, you don’t have that much control bandwidth, so you have to isolate from the disturbance.”
There’s another drawback of direct-to-Earth laser communications from space. Cloud cover over transmitting and receiving telescopes on Earth could block signals, so an operational optical communications network will require several ground nodes at different locations worldwide, ideally positioned in areas known for clear skies.
It seems like SpaceX did everything this year but launch 100 times.
On Thursday night, the launch company sent two more rockets into orbit from Florida. One was a Falcon Heavy, the world’s most powerful rocket in commercial service, carrying the US military’s X-37B spaceplane from a launch pad at NASA’s Kennedy Space Center at 8: 07 pm EST (01: 07 UTC). Less than three hours later, at 11: 01 pm EST (04: 01 UTC), SpaceX’s workhorse Falcon 9 launcher took off a few miles to the south with a payload of 23 Starlink Internet satellites.
The Falcon Heavy’s two side boosters and the Falcon 9’s first stage landed back on Earth for reuse.
These were SpaceX’s final launches of 2023. SpaceX ends the year with 98 flights, including 91 Falcon 9s, five Falcon Heavy rockets, and two test launches of the giant new Super Heavy-Starship rocket. These flights were spread across four launch pads in Florida, California, and Texas.
Elon Musk, SpaceX’s founder and CEO, set a goal of 100 launches this year, up from the company’s previous record of 61 in 2022. For a while, it looked like SpaceX was on track to accomplish the feat, but a spate of bad weather and technical problems with the final Falcon Heavy launch of the year kept the company short of 100 flights.
King of ‘upmass’
“Congrats to the entire Falcon team at SpaceX on a record breaking 96 launches in 2023!” wrote Jon Edwards, vice president of Falcon launch vehicles at SpaceX, on the social media platform X. “I remember when Elon Musk first threw out a goal of 100 launches as a thought experiment, intended to unlock our thinking as to how we might accelerate Falcon across all levels of production and launch.
“Only a few years later and here we are,” Edwards wrote. “I’m so incredibly proud to work with the best team on Earth, and so excited to see what we achieve next year.”
It’s important to step back and put these numbers in context. No other family of orbit-class rockets has ever flown more than 63 times in a year. SpaceX’s Falcon rockets have now exceeded this number by roughly 50 percent. SpaceX’s competitors in the United States, such as United Launch Alliance and Rocket Lab, managed far fewer flights in 2023. ULA had three missions, and Rocket Lab launched its small Electron booster 10 times.
Nearly two-thirds of SpaceX’s missions this year were dedicated to delivering satellites to orbit for SpaceX’s Starlink broadband network, a constellation that now numbers more than 5,000 spacecraft.
SpaceX also launched five missions with the Falcon Heavy rocket, created by aggregating three Falcon 9 rocket boosters together. Highlights from SpaceX’s 2023 Falcon launch schedule included three crew missions to the International Space Station, and the launch of NASA’s Psyche mission to explore a metallic asteroid.
In all, SpaceX’s Falcon rockets hauled approximately 1,200 metric tons, or more than 2.6 million pounds, of payload mass into orbit this year. This “upmass” is equivalent to nearly three International Space Stations. Most of this was made up of mass-produced Starlink satellites.
Welcome to Edition 6.24 of the Rocket Report! This will be the final edition of this newsletter until January 4—hey, space enthusiasts need a holiday break too! And given all that’s expected to happen in 2024 in the world of launch, a bit of a recharge seems like a smart move. Stephen and I wish everyone happy holidays and a healthy and prosperous new year. Until then!
As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.
Ranking the top 10 US launch companies of 2023. Oops, we did it again and published a list of the most accomplished US commercial launch companies. It’s no surprise that SpaceX is atop the list, but what comes after is more intriguing, including a new company in second position. I hope the list sparks debate, discussion, and appreciation for the challenge of operating a successful rocket company.
This is a really hard business … The article closes with this message, which I think is a fitting way to end the calendar year and kick off the holiday season: “As ever, I remain in awe of all the talented engineers and business people out there trying to make a go of it in the launch industry. This is a difficult and demanding business, replete with problems. I salute your hard work and hope for your success.”
New Shepard finally flies again. With redesigned engine components, Blue Origin’s New Shepard rocket took off from West Texas and flew to the edge of space on Tuesday with a package of scientific research and technology demonstration experiments, Ars reports. This was the first flight of Blue Origin’s New Shepard rocket since September 12, 2022, when an engine failure destroyed the booster and triggered an in-flight abort for the vehicle’s pressurized capsule during an uncrewed flight.
Does “soon'” really mean soon? … It took 15 months for Blue Origin to return to flight with New Shepard, but Tuesday’s successful launch puts the company on a path to resuming human missions. So when will Blue Origin start flying people again? “Following a thorough review of today’s mission, we look forward to flying our next crewed flight soon,” said Erika Wagner, a longtime Blue Origin manager who co-hosted the company’s webcast of Tuesday’s flight. (submitted by EllPeaTea and Ken the Bin)
The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.
Electron successfully returns to flight. Rocket Lab successfully launched a Japanese radar imaging satellite on the first flight of its Electron rocket since a failure nearly three months ago, Space News reports. The Electron lifted off from the company’s Launch Complex 1 in New Zealand at 11: 05 pm ET on December 14. The vehicle deployed its payload, the QPS-SAR-5 or Tsukuyomi-1 satellite, for Japanese company iQPS, afterward.
A record number of launches this year … The launch was the first for Electron since a September 19 failure during a launch of another radar-imaging satellite for Capella Space. On that mission, the first stage performed as expected, but the second stage’s engine appeared to shut down immediately after ignition, preventing it from reaching orbit. The launch was the 10th flight of the Electron this year, including one launch of a suborbital version of Electron called HASTE. (submitted by Ken the Bin)
Shetland approved for UK launches. SaxaVord Spaceport on the small island of Unst has been given approval from the Civil Aviation Authority to begin orbital launches in 2024, the BBC reports. It will be the first fully licensed spaceport in Western Europe able to launch vertically into orbit. It permits up to 30 launches a year that will be used to take satellites and other payloads into space.
Launches this summer? … The site, which is the first spaceport in Scotland, has several launch operators around the world currently developing rockets. It is anticipated that German rocket firm HyImpulse will attempt sub-orbital launches as early as this August. Full orbital launches are expected to take place at SaxaVord from 2025. Cornwall Spaceport was the UK’s first licensed spaceport; however, its rockets are launched horizontally and carried by an aircraft. (submitted by gizmo23 and Ken the Bin)
One of the ways massive stars, those at least 10-times bigger than the Sun, reach their end is in a supernova—an enormous explosion caused by the star’s core running out of fuel.
One consequence of a supernova is the production of galactic winds, which play a key role in regulating star formation. Although galactic winds have already been observed in several nearby galaxies, a team of scientists has now made the first direct observations of this phenomenon in a large population of galaxies in the distant Universe, at a time when galaxies are in their early stages of formation.
Feedback
According to the study’s lead author, Yucheng Guo, of the Centre de Recherche Astrophysique de Lyon, galactic winds are an important part of the galaxy evolution models.
“It was assumed there should be galactic winds that can regulate galaxies’ growth. However, it was very difficult to directly observe these winds. With our study, we show that at the early stage of the Universe, every normal galaxy had such winds,” Guo said.
According to Guo, galactic winds form a key part of the so-called feedback process that is important in our understanding of galaxy evolution. “Galactic winds originate as a result of star formation activity. These winds inject a lot of energy and momentum into the gas, resulting in it [being] expelled from the galaxy. If there is not enough gas in the galaxy, the star formation stops. This is called the feedback process,” he said.
According to Guo, galactic winds also enable exchange of matter between galaxies and their surroundings. “Each galaxy is surrounded by a gas halo. Galaxies can breathe out as well as breathe in gas,” Guo said.
Hard to see
He said that traditionally it has been very difficult to observe galactic winds, because the gas halos are almost transparent.
Guo and his team overcame this hurdle by using the Multi-Unit Spectroscopic Explorer (MUSE) instrument on the Very Large Telescope. “The instrument is able to observe the galaxies at redshift z ≈ 1, which corresponds to 7 billion years of the cosmic evolution.” Guo said at that wavelength, the MUSE instrument is able to detect and directly observe the emission from magnesium atoms in the galactic winds.
He said the other important feature of the research is that they managed to observe the galactic winds in more than 100 galaxies. “We also managed to detect the average shape of these winds, which is like an ice cream cone,” he said.
Guo said the direct observation of the galactic winds outside the local Universe was the first step of their research. “We still don’t know about their physical properties such as size, power, and also how they change with time and in different kinds of galaxies.”
One of the core tenets of NASA’s Artemis program to return astronauts to the Moon is its inclusion of international partners. This intertwines the program, like the International Space Station, with considerations of geopolitics and international relations, alongside key themes like US national prestige, exploration, and scientific discovery.
Earlier this year, NASA named a Canadian astronaut, Jeremy Hansen, to the Artemis II crew training to fly around the far side of the Moon, a mission that will likely launch sometime in 2025. This flight won’t land on the Moon, but NASA plans a series of lunar landing missions beginning with Artemis III later this decade.
On Wednesday, Vice President Kamala Harris announced an international astronaut will land on the Moon during one of NASA’s Artemis missions.
“Today, in recognition of the essential role that our allies and partners play in the Artemis program, I am proud to announce that alongside American astronauts, we intend to land an international astronaut on the surface of the Moon by the end of the decade,” Harris said at a meeting of the National Space Council.
Although the National Space Council is useful in aggregating disparate interests across the US government to help form more cohesive space policies, public meetings like the one Wednesday can seem perfunctory. Harris departed the stage soon after her speech, and other government officials read from prepared remarks during the rest of the event.
Nevertheless, Harris’ announcement highlighted the role the space program plays in elevating the soft power of the United States. It was widely assumed an international astronaut would eventually land on the Moon with NASA. Harris put a deadline on achieving this goal.
Among friends
NASA has long included astronauts from its international partners on human spaceflight missions, dating back to the ninth flight of the space shuttle in 1983, when West German astronaut Ulf Merbold joined five Americans on a flight to low-Earth orbit. This was seen by US government officials as a way to foster closer relations with like-minded countries. The inclusion of foreign astronauts on US missions also repays partner nations who make financial commitments to US-led space projects with a high-profile flight opportunity for one of their citizens.
In a similar way, the Soviet Union provided its Cold War allies with seats on Soyuz flights to low-Earth orbit. For several years, China has extended invitations for international astronauts to fly to its Tiangong space station. So far, only Chinese astronauts have visited Tiangong.
NASA managers dole out crew assignments on the International Space Station based on each partner’s financial contribution to the operating costs of the US-led segment of the complex. NASA is responsible for more than three-quarters of this part of the ISS budget, followed by Japan, the European Space Agency (ESA), and Canada. Russia is responsible for paying operating costs for its section of the ISS.
Among the international partners contributing to Artemis, it seems most likely a European astronaut would get the first slot for a landing with NASA.
ESA funded the development of the service modules used on NASA’s Orion spacecraft, which will ferry astronauts from Earth to the Moon and back. These modules provide power and propulsion for Orion. ESA is also developing refueling and communications infrastructure for the Gateway mini-space station to be constructed in orbit around the Moon.
A Japanese astronaut might also have a shot at getting a seat on an Artemis landing. Japan’s government has committed to providing the life-support system for the Gateway’s international habitation module, along with resupply services to deliver cargo to Gateway. Japan is also interested in building a pressurized rover for astronauts to drive across the lunar surface. In recognition of Japan’s contributions, NASA last year committed to flying a Japanese astronaut aboard Gateway.
Canada is building a robotic arm for Gateway, but a Canadian astronaut already has a seat on NASA’s first crewed Artemis mission, albeit without a trip to the lunar surface.