Space

nasa-plans-to-build-a-nuclear-reactor-on-the-moon—a-space-lawyer-explains-why

NASA plans to build a nuclear reactor on the Moon—a space lawyer explains why

These sought-after regions are scientifically vital and geopolitically sensitive, as multiple countries want to build bases or conduct research there. Building infrastructure in these areas would cement a country’s ability to access the resources there and potentially exclude others from doing the same.

Critics may worry about radiation risks. Even if designed for peaceful use and contained properly, reactors introduce new environmental and operational hazards, particularly in a dangerous setting such as space. But the UN guidelines do outline rigorous safety protocols, and following them could potentially mitigate these concerns.

Why nuclear? Because solar has limits

The Moon has little atmosphere and experiences 14-day stretches of darkness. In some shadowed craters, where ice is likely to be found, sunlight never reaches the surface at all. These issues make solar energy unreliable, if not impossible, in some of the most critical regions.

A small lunar reactor could operate continuously for a decade or more, powering habitats, rovers, 3D printers, and life-support systems. Nuclear power could be the linchpin for long-term human activity. And it’s not just about the Moon – developing this capability is essential for missions to Mars, where solar power is even more constrained.

The UN Committee on the Peaceful Uses of Outer Space sets guidelines to govern how countries act in outer space. United States Mission to International Organizations in Vienna. Credit: CC BY-NC-ND

A call for governance, not alarm

The United States has an opportunity to lead not just in technology but in governance. If it commits to sharing its plans publicly, following Article IX of the Outer Space Treaty and reaffirming a commitment to peaceful use and international participation, it will encourage other countries to do the same.

The future of the Moon won’t be determined by who plants the most flags. It will be determined by who builds what, and how. Nuclear power may be essential for that future. Building transparently and in line with international guidelines would allow countries to more safely realize that future.

A reactor on the Moon isn’t a territorial claim or a declaration of war. But it is infrastructure. And infrastructure will be how countries display power—of all kinds—in the next era of space exploration.The Conversation

Michelle L.D. Hanlon, Professor of Air and Space Law, University of Mississippi. This article is republished from The Conversation under a Creative Commons license. Read the original article.

NASA plans to build a nuclear reactor on the Moon—a space lawyer explains why Read More »

james-lovell,-the-steady-astronaut-who-brought-apollo-13-home-safely,-has-died

James Lovell, the steady astronaut who brought Apollo 13 home safely, has died


Gemini and Apollo astronaut

Lovell was the first person to fly to the Moon twice.

Astronaut Jim Lovell takes a self-portrait aboard NASA’s Gemini 12 spacecraft during the final mission of the program in 1966. Credit: NASA

James Lovell, a member of humanity’s first trip to the moon and commander of NASA’s ill-fated Apollo 13 mission, has died at the age of 97.

Lovell’s death on Thursday was announced by the space agency.

“NASA sends its condolences to the family of Capt. Jim Lovell, whose life and work inspired millions of people across the decades,” said acting NASA Administrator Sean Duffy in a statement on Friday. “Jim’s character and steadfast courage helped our nation reach the moon and turned a potential tragedy into a success from which we learned an enormous amount. We mourn his passing even as we celebrate his achievements.”

A four-time Gemini and Apollo astronaut, Lovell was famously portrayed in the 1995 feature film Apollo 13. The movie dramatized his role as the leader of what was originally planned as NASA’s third moon landing, but instead became a mission of survival after an explosion tore through his spacecraft’s service module.

“I know today when I came out many of you were expecting Tom Hanks, but you’re going to have to settle for little old me,” Lovell often said at his public appearances after the movie was released.

two men in tuxedos talk to each other while one stands and the other sits on a stage

Astronaut Jim Lovell (right) addressing Tom Hanks at the premiere of Apollo 13: The IMAX Experience at the Kennedy Space Center Visitor Complex in November 2002. Credit: collectSPACE.com

Practicing for the moon

Selected with NASA’s second group of astronauts in 1962, Lovell first launched aboard Gemini 7, the first mission to include a rendezvous with another crewed spacecraft (Gemini 6). Lifting off on a Titan II rocket on December 4, 1965, Lovell and the mission’s commander, Frank Borman, had one goal: to spend two weeks in Earth orbit in preparation for the later Apollo missions to the moon.

“It was very exciting to me,” said Lovell in a 1999 NASA oral history interview. “I mean, it was tedious work, you know, two weeks. We did have a break when [Wally] Schirra and [Tom] Stafford came up [on Gemini 6] and rendezvoused with us. And then they were up, I think, 24 hours and they went back down again. And we stayed up there for the full time. But it was quite rewarding.”

At 13 days, 18 hours, 35 minutes and one second, Gemini 7 was the longest space flight until a Russian Soyuz mission surpassed it in 1970. Lovell and Borman continued to hold the US record until the first crewed mission to Skylab, the nation’s first space station, in 1973.

Lovell then commanded Gemini 12, the final flight of the program, which launched on November 11, 1966. Only four days long, the mission stood out for demonstrating all of the skills needed to send astronauts to the moon, including rendezvousing and docking with an Agena target and the first successful spacewalks conducted by crewmate Buzz Aldrin.

“Buzz completed three spacewalks of about 5.5 hours and everything was fine,” said Lovell. “[We did] everything we were supposed to do, and [had] no problem at all. So, it was a major turning point in the ability to work outside a spacecraft.”

First and fifth

Lovell made his first trip to the moon as a member of the first-ever crew to fly to another celestial body. Reunited with Borman and joined by William “Bill” Anders, Lovell launched on Apollo 8 on December 21, 1968. The mission was also the first crewed flight of the Saturn V, the massive rocket designed to send astronauts from Earth to the moon.

“You had to pinch yourself,” Lovell said of the journey out. “Hey, we’re really going to the moon!” I mean, “You know, this is it!”

a man is seen wearing a white coveralls and brown head cap inside a spacecraft

A still from a 16mm motion picture film shows Jim Lovell during the Apollo 8 mission, the first flight by humans to the moon. Credit: NASA

Lovell and his Apollo 8 crewmates were the first to see the far side of the moon with their own eyes and the first to witness “Earthrise”—the sight of our home planet rising above the lunar horizon—their photographs of such were later credited with inspiring the environmental movement.

“We were so curious, so excited about being at the moon that we were like three school kids looking into a candy store window, watching those ancient old craters go by from—only 60 miles [97 kilometers] above the surface,” said Lovell.

Splashing down on December 27, 1968, the Apollo 8 mission brought to a close a year that had otherwise been troubled with riots, assassinations, and an ongoing war. A telegram sent to the crew after they were home said, “You saved 1968.”

“I was part of a thing that finally gave an uplift to the American people about doing something positive, which was really—that’s why I say Apollo 8 was really the high point of my space career,” said Lovell.

Even before launching on Apollo 13 on April 11, 1970, Lovell had decided it was going to be his last. At 42, he was the first person to launch four times into space. Had the flight gone to plan, he would have become the fifth person to walk on the moon and the first to wear red commander stripes while do so.

a man in a white spacesuit stands in front of a launch pad where a rocket is being prepared for his mission

Jim Lovell, commander of the Apollo 13 mission, poses for a photo with his Saturn V rocket on the launch pad in April 1970. Credit: NASA

Instead, there was a “problem.”

“I don’t know why I did this, but I looked out the right window, and that’s when I saw that at a high rate of speed, gas was escaping from the spacecraft. You could see a little plume of it,” said Lovell in an April 2000 interview with collectSPACE. “I then glanced at the oxygen gauges and one read zero and another was in the process of going down.”

“That is when I really felt we were in a very dangerous situation,” he said.

Lovell and his Apollo 13 crewmates Fred Haise and John “Jack” Swigert splashed down safely on April 17, 1970. In total, Lovell logged 29 days, 19 hours and three minutes on his four spaceflights.

Lovell was the 22nd person to enter orbit, and the 28th to fly into space, according to the Association of Space Explorers’ Registry of Space Travelers.

From the cockpit to the board

Born on March 25, 1928, in Cleveland, Ohio, Lovell achieved Eagle Scout as a member of the Boy Scouts and studied engineering as part of the US Navy’s “Flying Midshipman” program at the University of Wisconsin in Madison from 1946 to 1948. Four years later, he was commissioned as an ensign and graduated with a Bachelor of Science degree from the Naval Academy in Annapolis, Maryland.

Lovell reported for flight training at Naval Air Station Pensacola in October 1952, and he was designated a naval aviator on February 1, 1954. He served at Moffett Field in Northern California and logged 107 deck landings during a deployment aboard the aircraft carrier USS Shangri-La.

In July 1958, Lovell graduated at the top of the class at the Naval Air Test Center (today, the US Naval Test Pilot School) at Naval Air Station Patuxent River in Maryland. He was one of 110 candidates to be considered for NASA’s original Mercury 7 astronauts but was turned away due to a temporary medical concern. Instead, Lovell became the program manager for the McDonnell Douglas F-4 Phantom II supersonic jet.

In 1962, Lovell was serving as a flight instructor and safety engineering officer at Naval Air Station Oceana in Virginia Beach when he was chosen for the second class of NASA astronauts, the “Next Nine.”

In addition to his prime crew assignments, Lovell also served on the backup crews for the Gemini 4, Gemini 9, and Apollo 11 missions, the latter supporting Neil Armstrong as backup commander. He also served on a panel studying what could be done in case of an in-flight fire after a fire on the launch pad claimed the lives of the Apollo 1 crew in 1967.

After the Apollo 13 mission, Lovell was named the deputy director of science and applications at NASA’s Manned Spacecraft Center (today, Johnson Space Center) before retiring from both the space agency and Navy on March 1, 1973. Lovell became chief executive officer of Bay-Houston Towing Company in 1975 and then president of Fisk Telephone Systems in 1977.

On January 1, 1981, Lovell joined Centel Corporation as group vice president for business communications systems and, 10 years later, retired as executive vice president and a member of the company’s board of directors.

For 11 years, from 1967 to 1978, Lovell served as a consultant and then chairman of the Physical Fitness Council (today, the President’s Council on Sports, Fitness and Nutrition). He was a member of the board for several organizations, including Federal Signal Corporation in Chicago from 1984 to 2003 and the Astronautics Corporation of America in Milwaukee from 1990 to 1999. He was also chairman of the Astronaut Scholarship Foundation from 1997 to 2005.

Appearances and awards

From 1999 to 2006, Lovell helped run “Lovell’s of Lake Forest,” a restaurant that he and his family opened in Illinois. (The restaurant was then sold to Jay, Lovell’s son, but ultimately closed in 2015.)

In 1994, Lovell worked with Jeffrey Kluger to publish Lost Moon: The Perilous Voyage of Apollo 13, which was later retitled Apollo 13 after serving as the basis for the Ron Howard movie.

In addition to being played by Hanks and having a cameo in Apollo 13, Lovell was also portrayed by Tim Daly in the 1998 HBO miniseries From the Earth to the Moon and Pablo Schreiber in the 2018 Neil Armstrong biopic First Man. Lovell also made a cameo appearance in the 1976 movie The Man Who Fell to Earth.

a man in a blue flight suit and ball cap shakes hands with a man in a business suit outside under a clear blue sky

Jim Lovell, Apollo 13 commander, shakes hands with President Richard Nixon after being presented with the Presidential Medal of Freedom at Hickham Air Force Base, Hawaii, in 1970. Credit: NASA

For his service to the US space program, Lovell was awarded the NASA Distinguished Service and Exceptional Service medals; the Congressional Space Medal of Honor, and Presidential Medal of Freedom. As a member of the Gemini 7, Gemini 12, and Apollo 8 crews, Lovell was bestowed the Harmon International Trophy three times and, with his Apollo 8 crewmates, the Robert J. Collier and Dr. Robert H. Goddard Memorial trophies and was named Time Magazine’s Man of the Year for 1968.

Lovell was inducted into the International Space Hall of Fame in 1982, the US Astronaut Hall of Fame in 1993, and National Aviation Hall of Fame in 1998.

A crater on the far side of the moon was named for Lovell in 1970. In 2009, he was awarded a piece of the moon as part of NASA’s Ambassador of Exploration Award, which Lovell placed on display at the Patuxent River Naval Air Museum in Lexington Park, Maryland.

A statue of Lovell with his two Apollo 13 crewmates stands inside the Saturn V building at Johnson Space Center’s George W.S. Abbey Rocket Park in Houston.

Lovell’s legacy

In 2005, Lovell donated his personal collection of NASA memorabilia to the Adler Planetarium in Chicago, where it is on display in the “Mission Moon” exhibition.

With Lovell’s death, only five out of the 24 people who flew to the moon during the Apollo program remain living (Buzz Aldrin, 95; Fred Haise, 91; David Scott, 93; Charlie Duke, 89; and Harrison Schmitt, 90).

Lovell is survived by his children, Barbara Harrison, James Lovell III, Susan Lovell, and Jeffrey Lovell; 11 grandchildren; and nine great-grandchildren. Lovell was preceded in death by his wife Marilyn Lovell and parents James Lovell, Sr, and Blanche Lovell (Masek).

“We are enormously proud of his amazing life and career accomplishments, highlighted by his legendary leadership in pioneering human space flight,” said Lovell’s family in a statement. “But, to all of us, he was dad, granddad and the leader of our family. Most importantly, he was our hero. We will miss his unshakeable optimism, his sense of humor and the way he made each of us feel we could do the impossible. He was truly one of a kind.”

A memorial service and burial will be held at the Naval Academy in Annapolis on a date still to be announced.

Photo of Robert Pearlman

Robert Pearlman is a space historian, journalist and the founder and editor of collectSPACE, a daily news publication and online community focused on where space exploration intersects with pop culture. He is also a contributing writer for Space.com and co-author of “Space Stations: The Art, Science, and Reality of Working in Space” published by Smithsonian Books in 2018. He is on the leadership board for For All Moonkind and is a member of the American Astronautical Society’s history committee.

James Lovell, the steady astronaut who brought Apollo 13 home safely, has died Read More »

texas-politicians-warn-smithsonian-it-must-not-lobby-to-retain-its-space-shuttle

Texas politicians warn Smithsonian it must not lobby to retain its space shuttle

(Oddly, Cornyn and Weber’s letter to Roberts described the law as requiring Duffy “to transfer a space vehicle involved in the Commercial Crew Program” rather than choosing a destination NASA center related to the same, as the bill actually reads. Taken as written, if that was indeed their intent, Discovery and the other retired shuttles would be exempt, as the winged orbiters were never part of that program. A request for clarification sent to both Congress members’ offices was not immediately answered.)

two men in business suits sit front of a large model of a space shuttle

Sen. John Cornyn (R-TX, at right) sits in front of a model of Space Shuttle Discovery at Space Center Houston, where they want to move the real orbiter. Credit: collectSPACE.com

In the letter, Cornyn and Weber cited the Anti-Lobbying Act as restricting the use of funds provided by the federal government to “influence members of the public to pressure Congress regarding legislation or appropriations matters.”

“As the Smithsonian Institution receives annual appropriations from Congress, it is subject to the restrictions imposed by this statute,” they wrote.

The money that Congress allocates to the Smithsonian accounts for about two-thirds of the Institution’s annual budget, primarily covering federal staff salaries, collections care, facilities maintenance, and the construction and revitalization of the buildings that house the Smithsonian’s 21 museums and other centers.

Pols want Smithsonian to stay mum

As evidence of the Smithsonian’s alleged wrongdoing, Cornyn and Weber cited a July 11 article by Zach Vasile for Flying Magazine, which ran under the headline “Smithsonian Pushing Back on Plans to Relocate Space Shuttle.” Vasile quoted from a message the Institution sent to Congress saying that there was no precedent for removing an object from its collection to send it elsewhere.

The Texas officials wrote that the anti-lobbying restrictions apply to “staff time or public relations resources” and claimed that the Smithsonian’s actions did not fall under the law’s exemptions, including “public speeches, incidental expenditures for public education or communications, or activities unrelated to legislation or appropriations.”

Cornyn and Weber urged Roberts, as the head of the Smithsonian’s Board of Regents, to “conduct a comprehensive internal review” as it applied to how the institution responded to the One Big Beautiful Bill Act.

“Should the review reveal that appropriated funds were used in a manner inconsistent with the prohibitions outlined in the Anti-Lobbying Act, we respectfully request that immediate and appropriate corrective measures be implemented to ensure the Institution’s full compliance with all applicable statutory and ethical obligations,” Cornyn and Weber wrote.

Texas politicians warn Smithsonian it must not lobby to retain its space shuttle Read More »

rocket-report:-firefly-lights-the-markets-up;-spacex-starts-selling-trips-to-mars

Rocket Report: Firefly lights the markets up; SpaceX starts selling trips to Mars


All the news that’s fit to lift

“Get on board! We are going to Mars!”

The Vulcan rocket for ULA’s first national security mission nears its initial launch, NET August 12. Credit: United Launch Alliance

The Vulcan rocket for ULA’s first national security mission nears its initial launch, NET August 12. Credit: United Launch Alliance

Welcome to Edition 8.06 of the Rocket Report! After years of disappointing results from SPACs and space companies, it is a good sign to see Firefly’s more traditional initial public offering doing so well. The company has had such a long and challenging road over more than a decade; the prospect of their success should be heartening to the commercial space industry.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Virgin Galactic delays resumption of spaceflights. The Richard Branson-founded company plans to resume private space tourism trips in the autumn of 2026 after its Delta spacecraft’s first commercial flight, a research mission that was delayed from summer 2026 to also occur in the fall, Bloomberg reports. Virgin Galactic announced an updated timeline on Wednesday, when it reported quarterly financial results that fell short of analysts’ expectations. Revenue was about $410,000 for the second quarter.

Waiting on Delta … The company paused commercial operations in June 2024 to focus on developing the upgraded Delta vehicle, which is being optimized for reusability and faster turnaround time between flights. Virgin Galactic had been selling seats on the Delta spacecraft for about $600,000 and said that it plans to raise prices when ticket sales resume in the first quarter of 2026. The company also recently adjusted the size of its in-house engineering team and reduced the overall headcount by 7 percent to control costs.

Firefly is a big hit with investors. Shares in the Cedar Park, Texas-based space company began trading at $70 on the NASDAQ stock exchange midday Thursday under the symbol FLY, jumping from their initial public offering price of $45, The Wall Street Journal reports. The company sold more than 19 million shares in the listing, raising $868 million. Bankers and traders are closely tracking the stock’s performance as a sign of both the US IPO market strength and investor interest in space companies. The offering will allow the company to accelerate production and its launch cadence, Firefly CEO Jason Kim said in an interview.

Time to build and fly … “We have to execute,” said Kim, who led a Boeing satellite business before taking the top role at Firefly last year. “We’ve got a really strong backlog.” Firefly’s listing comes five months after it successfully guided its Blue Ghost lander to the lunar surface, carrying scientific gear to research moondust and ground temperatures. The NASA-funded mission marked the first fully successful private moon landing, following misfires on three other flights handled by competitors. The company’s next challenge is to prove that its other vehicles can work as well, including the Alpha rocket.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

iRocket says it has signed a huge deal. A largely unknown small launch startup, iRocket, says it has signed a multi-year agreement with SpaceBelt KSA valued at up to $640 million. iRocket will support up to 30 satellite launches, providing mission planning, propulsion systems, and integration services to help establish a secure, autonomous space communications network across Saudi Arabia and the Gulf region.

Yes, but … iRocket says the agreement represents a significant commercial milestone. However, since its founding in 2018, New York-based iRocket hasn’t released much information on any technical progress toward a first flight of the Shockwave launch vehicle. It is difficult to know how much (if any) money changed hands with this agreement.

Indian space startup builds 3D-printed engine. The Chennai-based startup Agnikul Cosmos has announced the successful development of the world’s largest single-piece 3D-printed Inconel rocket engine, Business Today reports. The engine, printed in one go without any welds, joints, or fasteners, represents a leap in additive manufacturing for aerospace, the company said.

Earned a patent … Agnikul also said it has been granted a US patent for the design and manufacturing process of single-piece rocket engines. “Means something to have a completely Indian-origin design patented in the US—a nation that has built some of the most complex engines in this industry,” the company said. Agnikul is developing a small-lift booster that can put about 100 kg to low-Earth orbit.

Skyrora wins first UK launch license. Skyrora became the first British commercial rocket manufacturer to secure a launch license from the UK Civil Aviation Authority, paving the way for its Skylark L suborbital rocket to lift off from the SaxaVord spaceport in the Shetland Islands, Payload reports. Derek Harris, Skyrora’s business development lead, said this test flight could take place as early as May 2026.

Waiting on launch pads … Skyrora said it could launch sooner if it opted to fly from an international launch pad. That’s the route it took in 2022, when it launched a rocket from Iceland’s mobile Langanes launch site. “Unfortunately, we are still technically locked out of SaxaVord,” Harris said. “What is still open to us is Oman, and Australia, or even going back to Iceland…[but] it would be a sad indictment of what’s going on with the government funding if we have to go elsewhere to launch it.”

The Philippines condemns China’s rocket launch. A top Philippine security official on Tuesday condemned China’s latest rocket launch, which caused suspected debris to fall near a western Philippine province, the AP reports. Authorities said the incident sparked alarm and posed a danger to people, ships, and aircraft. There were no immediate reports of injuries or damage from the suspected Chinese rocket debris that fell near Palawan province Monday night, following a launch of the medium-lift Long March 12.

No NOTAMs it seems … China’s official Xinhua News Agency reported that the Long March-12 rocket that lifted off Monday night from a commercial spacecraft launch site on the southern island province of Hainan successfully carried a group of Internet satellites into pre-set orbit. It was not immediately clear whether Chinese authorities had notified nearby countries, such as the Philippines, of possible debris from its latest rocket launch. Philippine aircraft and vessels were deployed on Tuesday to search for the rocket debris.

Crew-11 mission launches from Florida. The next four-person team to live and work aboard the International Space Station departed from NASA’s Kennedy Space Center last Friday, taking aim at the massive orbiting research complex for a planned stay of six to eight months, Ars reports. Spacecraft commander Zena Cardman leads the mission, designated Crew-11, with three others aboard SpaceX’s Crew Dragon Endeavour capsule: veteran NASA astronaut Mike Fincke, Kimiya Yui of Japan, and Oleg Platonov of Russia.

Au revoir to an old friend … The Falcon 9’s reusable first stage booster detached and returned to a propulsive touchdown at Landing Zone 1 (LZ-1) at Cape Canaveral Space Force Station, a few miles south of the launch site. This was the 53rd and final rocket landing at LZ-1 since SpaceX aced the first intact recovery of a Falcon 9 booster there on December 21, 2015. SpaceX will move onshore rocket landings to new landing zones to be constructed next to the two Falcon 9 launch pads at the Florida spaceport. Landing Zone 2, located adjacent to Landing Zone 1, will also be decommissioned and handed back over to the Space Force once SpaceX activates the new landing sites.

NASA says it will move a space shuttle. The head of NASA has decided to move one of the agency’s retired space shuttles to Houston, but which shuttle remains unclear, Ars reports. Senator John Cornyn (R-Texas), who earlier this year introduced and championed an effort to relocate the space shuttle Discovery from the Smithsonian to Space Center Houston, issued a statement on Tuesday evening applauding the decision. The senator did not state which of NASA’s winged orbiters would be making the move.

Playing coy for no clear reason … The legislation that required Duffy to choose a “space vehicle” that had “flown in space” and “carried people” did not specify an orbiter by name, but the language in the “One Big Beautiful Bill” that President Donald Trump signed into law last month was inspired by Cornyn and fellow Texas Senator Ted Cruz’s bill to relocate Discovery. It is unclear why the choice of orbiters is being kept a secret. According to the bill, the decision was to be made “with the concurrence of an entity designated” by the NASA administrator to display the shuttle. Cornyn’s release only confirmed that Duffy had identified the location to be “a non-profit near the Johnson Space Center.”

SpaceX begins offering Starship services to Mars. On Thursday, Gwynne Shotwell, the president and chief operating officer of SpaceX, announced that the company has begun selling rides to Mars. “Get on board! We are going to Mars! SpaceX is now offering Starship services to the red planet,” Shotwell said on X. As part of the announcement, Shotwell said SpaceX has signed a “first of its kind” agreement with the Italian Space Agency.

Racing the Giro d’Mars … The president of the Italian Space Agency, Teodoro Valente, confirmed the news, saying the first Starship flights to Mars (which will, of course, be uncrewed) will carry Italian experiments. “The payloads will gather scientific data during the missions. Italy continues to lead in space exploration!” Valente wrote on X. Left unsaid, of course, is when such flights will take place. It is difficult to see Starship now being ready for a late 2026 window, but early 2029 seems plausible.

ULA will eventually test reuse technology. On Thursday, ahead of the first Vulcan launch of a national security payload next week, United Launch Alliance chief executive Tory Bruno spoke with reporters about various topics, NASA Spaceflight reports. A highlight was ULA’s progress on SMART Reuse, a system aimed at recovering and reusing booster components to reduce costs. Bruno announced that the critical design review for key components is complete, paving the way for building flight-like hardware for certification.

Testing remains a ways away … As development progresses, ULA plans to relocate more components to the aft section of the booster for recovery. “By the time that path is finished, pretty much the only thing being discarded from the booster will be the fuel tanks,” he said. Experimental flights incorporating SMART Reuse could begin as early as 2026, or at least by 2027, but only when aligned with customer needs. One wonders when actual engine recovery and reuse might begin.

Next three launches

August 8: Falcon 9 | Project Kuiper KF-02 | Cape Canaveral Space Force Station, Florida | 13: 40 UTC

August 8: Jielong 3 | Undeclared payload | Offshore site, Chinese coastal waters | 16: 30 UTC

August 10: Falcon 9 | Starlink 17-4 | Vandenberg Space Force Base, Calif. | 03: 43 UTC

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Rocket Report: Firefly lights the markets up; SpaceX starts selling trips to Mars Read More »

houston,-you’ve-got-a-space-shuttle…-only-nasa-won’t-say-which-one

Houston, you’ve got a space shuttle… only NASA won’t say which one


An orbiter by any other name…

“The acting administrator has made an identification.”

a side view of a space shuttle orbiter with its name digitally blurred out

Don’t say Discovery: Acting NASA Administrator Sean Duffy has decided to send a retired space shuttle to Houston, but won’t say which one. Credit: Smithsonian/collectSPACE.com

Don’t say Discovery: Acting NASA Administrator Sean Duffy has decided to send a retired space shuttle to Houston, but won’t say which one. Credit: Smithsonian/collectSPACE.com

The head of NASA has decided to move one of the agency’s retired space shuttles to Houston, but which one seems to still be up in the air.

Senator John Cornyn (R-Texas), who earlier this year introduced and championed an effort to relocate the space shuttle Discovery from the Smithsonian to Space Center Houston, issued a statement on Tuesday evening (August 5) applauding the decision by acting NASA Administrator Sean Duffy.

“There is no better place for one of NASA’s space shuttles to be displayed than Space City,” said Cornyn in the statement. “Since the inception of our nation’s human space exploration program, Houston has been at the center of our most historic achievements, from training the best and brightest to voyage into the great unknown to putting the first man on the moon.”

Keeping the shuttle a secret, for some reason

The senator did not state which of NASA’s winged orbiters would be making the move. The legislation that required Duffy to choose a “space vehicle” that had “flown in space” and “carried people” did not specify an orbiter by name, but the language in the “One Big Beautiful Bill” that President Donald Trump signed into law last month was inspired by Cornyn and fellow Texas Senator Ted Cruz’s bill to relocate Discovery.

“The acting administrator has made an identification. We have no further public statement at this time,” said a spokesperson for Duffy in response to an inquiry.

a man with gray hair and pale complexion wears a gray suit and red tie while sitting at a table under a red, white and blue NASA logo on the wall behind him

NASA’s acting administrator, Sean Duffy, identified a retired NASA space shuttle to be moved to “a non-profit near the Johnson Space Center” in Houston, Texas, on Aug. 5, 2025. Credit: NASA/Bill Ingalls

It is not clear why the choice of orbiters is being held a secret. According to the bill, the decision was to be made “with the concurrence of an entity designated” by the NASA administrator to display the shuttle. Cornyn’s release only confirmed that Duffy had identified the location to be “a non-profit near the Johnson Space Center (JSC).”

Space Center Houston is owned by the Manned Space Flight Education Foundation, a 501(c)3 organization, and is the official visitor’s center for NASA’s Johnson Space Center.

“We continue to work on the basis that the shuttle identified is Discovery and proceed with our preparations for its arrival and providing it a world-class home,” Keesha Bullock, interim COO and chief communications and marketing officer at Space Center Houston, said in a statement.

Orbiter owners

Another possible reason for the hesitation to name an orbiter may be NASA’s ability, or rather inability, to identify one of its three remaining space-flown shuttles that is available to be moved.

NASA transferred the title for space shuttle Endeavour to the California Science Center in Los Angeles in 2012, and as such it is no longer US government property. (The science center is a public-private partnership between the state of California and the California Science Center Foundation.)

NASA still owns space shuttle Atlantis and displays it at its own Kennedy Space Center Visitor Complex in Florida.

Discovery, the fleet leader and “vehicle of record,” was the focus of Cornyn and Cruz’s original “Bring the Space Shuttle Home Act.” The senators said they chose Discovery because it was “the only shuttle still owned by the federal government and able to be transferred to Houston.”

For the past 13 years, Discovery has been on public display at the Steven F. Udvar-Hazy Center in Chantilly, Virginia, the annex for the Smithsonian’s National Air and Space Museum in Washington, DC. As with Endeavour, NASA signed over title upon the orbiter’s arrival at its new home.

As such, Smithsonian officials are clear: Discovery is no longer NASA’s to have or to move.

“The Smithsonian Institution owns the Discovery and holds it in trust for the American public,” read a statement from the National Air and Space Museum issued before Duffy made his decision. “In 2012, NASA transferred ‘all rights, title, interest and ownership’ of the shuttle to the Smithsonian.”

The Smithsonian operates as a trust instrumentality of the United States and is partially funded by Congress, but it is not part of any of the three branches of the federal government.

“The Smithsonian is treated as a federal agency for lots of things to do with federal regulations and state action, but that’s very different than being an agency of the executive branch, which it most certainly is not,” Nick O’Donnell, an attorney who specializes in legal issues in the museum and visual arts communities and co-chairs the Art, Cultural Property, and Heritage Law Committee of the International Bar Association, said in an interview.

a space shuttle orbiter sits at the center of a hangar on display

The Smithsonian has displayed the space shuttle Discovery at the National Air and Space Museum’s Steven F. Udvar-Hazy Center in Chantilly, Virginia, since April 2012. Credit: Smithsonian National Air and Space Museum

“If there’s a document that accompanied the transfer of the space shuttle, especially if it says something like, ‘all rights, title, and interest,’ that’s a property transfer, and that’s it,” O’Donnell said.

“NASA has decided to transfer all rights, interest, title, and ownership of Discovery to the Smithsonian Institution’s National Air and Space Museum,” reads the signed transfer of ownership for space shuttle orbiter Discovery (OV-103), according to a copy of the paperwork obtained by collectSPACE.

The Congressional Research Service also raised the issue of ownership in its paper, “Transfer of a Space Vehicle: Issues for Congress.”

“The ability of the NASA Administrator to direct transfer of objects owned by non-NASA entities—including the Smithsonian and private organizations—is unclear and may be subject to question. This may, in turn, limit the range of space vehicles that may be eligible for transfer under this provision.”

Defending Discovery

The National Air and Space Museum also raised concerns about the safety of relocating the space shuttle now. The One Big Beautiful Bill allocated $85 million to transport the orbiter and construct a facility to display it. The Smithsonian contends it could be much more costly.

“Removing Discovery from the Udvar-Hazy Center and transporting it to another location would be very complicated and expensive, and likely result in irreparable damage to the shuttle and its components,” the museum’s staff said in a statement. “The orbiter is a fragile object and must be handled according to the standards and equipment NASA used to move it originally, which exceeds typical museum transport protocols.”

“Given its age and condition, Discovery is at even greater risk today. The Smithsonian employs world-class preservation and conservation methods, and maintaining Discovery‘s current conditions is critical to its long-term future,” the museum’s statement concluded.

The law directs NASA to transfer the space shuttle (the identified space vehicle) to Space Center Houston (the entity designated by the NASA administrator) within 18 months of the bill’s enactment, or January 4, 2027.

In the interim, an amendment to block funding the move is awaiting a vote by the full House of Representatives when its members return from summer recess in September.

“The forced removal and relocation of the Space Shuttle Discovery from the Smithsonian Institution’s Air and Space Museum is inappropriate, wasteful, and wrong. Neither the Smithsonian nor American taxpayers should be forced to spend hundreds of millions of dollars on this misguided effort,” said Rep. Joe Morelle (D-NY), who introduced the amendment.

A grassroots campaign, KeepTheShutle.org, has also raised objection to removing Discovery from the Smithsonian.

Perhaps the best thing the Smithsonian can do—if indeed it is NASA’s intention to take Discovery—is nothing at all, says O’Donnell.

“I would say the Smithsonian’s recourse is to keep the shuttle exactly where it is. It’s the federal government that has no recourse to take it,” O’Donnell said. “The space shuttle [Discovery] is the Smithsonian’s, and any law that suggests the intention to take it violates the Fifth Amendment on its face—the government cannot take private property.”

Photo of Robert Pearlman

Robert Pearlman is a space historian, journalist and the founder and editor of collectSPACE, a daily news publication and online community focused on where space exploration intersects with pop culture. He is also a contributing writer for Space.com and co-author of “Space Stations: The Art, Science, and Reality of Working in Space” published by Smithsonian Books in 2018. He is on the leadership board for For All Moonkind and is a member of the American Astronautical Society’s history committee.

Houston, you’ve got a space shuttle… only NASA won’t say which one Read More »

lunar-outpost-celebrates-release-of-lego-moon-rover-space-vehicle

Lunar Outpost celebrates release of Lego Moon Rover Space Vehicle

The set’s large, main futuristic rover with its rocker suspension, four-wheel steering, deployable solar panels, and rotating arm is not based on any specific vehicle Lunar Outpost is building now, but was inspired by the company’s plans.

More to come

“We have five lunar surface missions in total booked. One of the upcoming ones is really cool. It’s with the Australian Space Agency, so it will be Australia’s flagship lunar rover, which they affectionately call ‘Roo-ver,’ which I just love,” said Gemer.

Lunar Outpost’s next MAPP is targeted for launch in spring 2026. Using science instruments developed by NASA and the Johns Hopkins University Applied Physics Laboratory (JHU APL), the rover will investigate a magnetic anomaly that has gone unexplained for hundreds of years.

“So those missions will be going, [but] we want to do bigger things, better things, more collaborative, robotic missions. We really want to be the foundational infrastructure on the Moon,” Gemer said. “Mobility is one of those key enablers to building big and exciting things like a permanent human presence on the moon. So that’s why we set out to be the leaders in space mobility, and I think that’s what we’ve accomplished.”

building brick toys shaped as moon rovers on display in a blue-tinted dimly-lit room

Lunar Outpost displayed its new Lego Technic Moon Rover Space Vehicle at Space Center Houston on August 2, 2025. Credit: collectSPACE.com

Similarly, Lego is a leader when it comes to inspiring the next generation as to what is possible.

“I bet most engineers started out as a kid playing with Lego,” said Gemer. “We’ve got lots of great work to do with Lego, because it’s one of those foundational, inspirational things for kids in STEM [science, technology, engineering, and math]. Tying that to space exploration, which is another one of those things everyone can connect with, it’s just a really natural partnership.”

Which brings it all back to Ari and Aiden and the Moon Rover Space Vehicle set.

“We built the MAPP rover, and then the resource collection rover. We are working our way up to the big one,” said Gemer. “I just want them to enjoy building it.”

When you purchase through links in this article, collectSPACE may earn an affiliate commission. Here’s how it works.

Lunar Outpost celebrates release of Lego Moon Rover Space Vehicle Read More »

is-the-dream-chaser-space-plane-ever-going-to-launch-into-orbit?

Is the Dream Chaser space plane ever going to launch into orbit?

“We wanted to have a fuel system that was green instead of using hypergolics, so we could land it on a runway and we could walk up to the vehicle without being in hazmat suits,” Tom Vice, then Sierra’s chief executive, told Ars in late 2023. “That was hard, I have to say.”

Apparently it still is because, according to Weigel, the process to finish testing of the propulsion system and certify it for an uncrewed spaceflight remains ongoing.

“We still have some of our integrated safety reviews to do, and we’re in the process with updating both of our schedules to try to understand where does that really put us,” she said. “And so Sierra’s working on that, and so I need to wait and just get information back from them to see where they think some of that work lines out.”

First mission may not berth with ISS

According to one source, Sierra is considering a modification to its first mission to shorten the certification period.

The company had planned to fly the vehicle close enough to the space station such that it could be captured and berthed to the orbiting laboratory. One option now under consideration is a mission that would bring Dream Chaser close enough to the station to test key elements of the vehicle in flight but not have it berth.

This would increase confidence in the spacecraft’s propulsion system and provide the data NASA and partner space agencies need to clear the vehicle to approach and berth with the station on its second flight. However, this would require a modification of the company’s contract with NASA, and a final decision has not yet been reached on whether to perform a flyby mission before an actual berthing.

It appears highly unlikely that Dream Chaser will be ready for its debut spaceflight this year for these technical reasons. Another challenge is the availability of its Vulcan launch vehicle. After years of delays, Vulcan is finally due to make its first national security launch as early as this coming Sunday. Assuming this launch is successful, Vulcan has a busy manifest in the coming months for the US Space Force.

Given this, it is uncertain when a Vulcan launch vehicle will become available for Dream Chaser, which was initially designated to fly on Vulcan’s second flight. However, because Dream Chaser was not ready last fall, that rocket flew with a mass simulator on this second launch, back in October 2024.

Is the Dream Chaser space plane ever going to launch into orbit? Read More »

with-trump’s-cutbacks,-crew-heads-for-iss-unsure-of-when-they’ll-come-back

With Trump’s cutbacks, crew heads for ISS unsure of when they’ll come back


“We are looking at the potential to extend this current flight, Crew-11.”

NASA astronaut Zena Cardman departs crew quarters at Kennedy Space Center, Florida, for the ride to SpaceX’s launch pad. Credit: Miguel J. Rodriguez Carrillo/Getty Images

The next four-person team to live and work aboard the International Space Station departed from NASA’s Kennedy Space Center in Florida on Friday, taking aim at the massive orbiting research complex for a planned stay of six to eight months.

Spacecraft commander Zena Cardman leads the mission, designated Crew-11, that lifted off from Florida’s Space Coast at 11: 43 am EDT (15: 43 UTC) on Friday. Sitting to her right inside SpaceX’s Crew Dragon Endeavour capsule was veteran NASA astronaut Mike Fincke, serving as the vehicle pilot. Flanking the commander and pilot were two mission specialists: Kimiya Yui of Japan and Oleg Platonov of Russia.

Cardman and her crewmates rode a Falcon 9 rocket off the launch pad and headed northeast over the Atlantic Ocean, lining up with the space station’s orbit to set the stage for an automated docking at the complex early Saturday.

Goodbye LZ-1

The Falcon 9’s reusable first stage booster detached and returned to a propulsive touchdown at Landing Zone 1 (LZ-1) at Cape Canaveral Space Force Station, a few miles south of the launch site. This was the 53rd and final rocket landing at LZ-1 since SpaceX aced the first intact recovery of a Falcon 9 booster there on December 21, 2015.

On most of SpaceX’s missions, Falcon 9 boosters land on the company’s offshore drone ships hundreds of miles downrange from the launch site. For launches with enough fuel margin, the first stage can return to an onshore landing. But the Space Force, which leases out the landing zones to SpaceX, wants to convert the site of LZ-1 into a launch site for another rocket company.

SpaceX will move onshore rocket landings to new landing zones to be constructed next to the two Falcon 9 launch pads at the Florida spaceport. Landing Zone 2, located adjacent to Landing Zone 1, will also be decommissioned and handed back over to the Space Force once SpaceX activates the new landing sites.

“We’re working with the Cape and with the Kennedy Space Center folks to figure out the right time to make that transition from Landing Zone 2 in the future,” said Bill Gerstenmaier, SpaceX’s vice president of build and flight reliability. “But I think we’ll stay with Landing Zone 2 at least near-term, for a little while, and then look at the right time to move to the other areas.”

The Falcon 9 booster returns to Landing Zone 1 after the launch of the Crew-11 mission on Friday, August 1, 2025. Credit: SpaceX

Meanwhile, the Falcon 9’s second stage fired its single engine to accelerate the Crew Dragon spacecraft into low-Earth orbit. Less than 10 minutes after liftoff, the capsule separated from the second stage to wrap up the 159th consecutive successful launch of a Falcon 9 rocket.

“I have no emotions but joy right now,” Cardman said moments after arriving in orbit. “That was absolutely transcendent, the ride of a lifetime.”

This is the first trip to space for Cardman, a 37-year-old geobiologist and Antarctic explorer selected as a NASA astronaut in 2017. She was assigned to command a Dragon flight to the ISS last year, but NASA bumped her and another astronaut from the mission to make room for the spacecraft to return the two astronauts left behind on the station by Boeing’s troubled Starliner capsule.

Mike Fincke, 58, is beginning his fourth spaceflight after previous launches on Russian Soyuz spacecraft and NASA’s space shuttle. He was previously training to fly on the Starliner spacecraft’s first long-duration mission, but NASA moved him to Dragon as the Boeing program faced more delays.

“Boy, it’s great to be back in orbit!” Fincke said. “Thank you to SpaceX and NASA for getting us here. What a ride!”

Yui is on his second flight to orbit. The 55-year-old former fighter pilot in the Japanese Air Self-Defense Force spent 141 days in space in 2015. Platonov, a 39-year-old spaceflight rookie, was a fighter pilot in the Russian Air Force before training to become a cosmonaut.

A matter of money

There’s some unexpected uncertainty going into this mission about how long the foursome will be in space. Missions sometimes get extended for technical reasons, or because of poor weather in recovery zones on Earth, but there’s something different in play with Crew-11. For the first time, there’s a decent chance that NASA will stretch out this expedition due to money issues.

The Trump administration has proposed across-the-board cuts to most NASA programs, including the International Space Station. The White House’s budget request for NASA in fiscal year 2026, which begins on October 1, calls for an overall cut in agency funding of nearly 25 percent.

The White House proposes a slightly higher reduction by percentage for the International Space Station and crew and cargo transportation to and from the research outpost. The cuts to the ISS would keep the station going through 2030, but with a smaller crew and a reduced capacity for research. Effectively, the ISS would limp toward retirement after more than 30 years in orbit.

Steve Stich, NASA’s commercial crew program manager, said the agency’s engineers are working with SpaceX to ensure the Dragon spacecraft can stay in orbit for at least eight months. The current certification limit is seven months, although officials waived the limit for one Dragon mission that lasted longer.

“When we launch, we have a mission duration that’s baseline,” Stich said in a July 10 press conference. “And then we can extend [the] mission in real-time, as needed, as we better understand… the reconciliation bill and the appropriations process and what that means relative to the overall station manifest.”

An update this week provided by Dana Weigel, NASA’s ISS program manager, indicated that officials are still planning for Crew-11 to stay in space a little longer than usual.

“We are looking at the potential to extend this current flight, Crew-11,” Weigel said Wednesday. “There are a few more months worth of work to do first.”

This photo of the International Space Station was captured by a crew member on a Soyuz spacecraft. Credit: NASA/Roscosmos

Budget bills advanced in the Senate and House of Representatives in July would maintain funding for most NASA programs, including the ISS and transportation, close to this year’s levels. But it’s no guarantee that Congress will pass an appropriations bill for NASA before the deadline of midnight on October 1. It’s also unknown whether President Donald Trump would sign a budget bill into law that rejects his administration’s cuts.

If Congress doesn’t act, lawmakers must pass a continuing resolution as a temporary stopgap measure or accept a government shutdown. Some members of Congress are also concerned that the Trump administration might simply refuse to spend money allotted to NASA and other federal agencies in any budget bill. This move, called impoundment, would be controversial, and its legality would likely have to be adjudicated in the courts.

A separate amendment added in Congress to a so-called reconciliation bill and signed into law by Trump on July 4 also adds $1.25 billion for ISS operations through 2029. “We’re still evaluating how that’s going to affect operations going forward, but it’s a positive step,” said Ken Bowersox, NASA’s associate administrator for space operations.

Suffice it to say that while Congress has signaled its intention to keep funding the ISS and many other NASA programs, the amount of money the space agency will actually receive remains uncertain. Trump appointees have directed NASA managers to prepare to operate as if the White House’s proposed cuts will become reality.

For officials in charge of the International Space Station, this means planning for fewer astronauts, reductions in research output, and longer-duration missions to minimize the number of crew rotation flights NASA must pay for. SpaceX is NASA’s primary contractor for crew rotation missions, using its Dragon spacecraft. NASA has a similar contract with Boeing, but that company’s Starliner spacecraft has not been certified for any operational flights to the station.

SpaceX’s next crew mission to the space station, Crew-12, is scheduled to launch early next year. Weigel said NASA is looking at the “entire spectrum” of options to cut back on the space station’s operations and transportation costs. One of those options would be to launch three crew members on Crew-12 instead of the regular four-person complement.

“We don’t have to answer that right now,” Weigel said. “We can actually wait pretty late to make the crew size smaller if we need to. In terms of cargo vehicles, we’re well-supplied through this fall, so in the short term, I’d say, through the end of this year and the beginning of ’26, things look pretty normal in terms of what we have planned for the program.

“But we’re evaluating things, and we’ll be ready to adjust when the budget is passed and when we figure out where we really land.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

With Trump’s cutbacks, crew heads for ISS unsure of when they’ll come back Read More »

the-curious-case-of-russia’s-charm-offensive-with-nasa-this-week

The curious case of Russia’s charm offensive with NASA this week

Although NASA and its counterpart in Russia, Roscosmos, continue to work together on a daily basis, the leaders of the two organizations have not held face-to-face meetings since the middle of the first Trump administration, back in October 2018.

A lot has changed in the nearly eight years since then, including the Russian invasion of Ukraine, the rocky departure of Roscosmos leader Dmitry Rogozin in 2022 who was subsequently dispatched to the front lines of the war, several changes in NASA leadership, and more.

This drought in high-level meetings was finally broken this week when the relatively new leader of Roscosmos, Roscosmos Director General Dmitry Bakanov, visited the United States to view the launch of the Crew-11 mission from Florida, which included cosmonaut Oleg Platonov. Bakanov has also met with some of NASA’s human spaceflight leaders at Johnson Space Center in Houston.

Notably, NASA has provided almost no coverage of the visit. However, the state-operated Russian news service, TASS, has published multiple updates. For example, on Thursday at Kennedy Space Center, TASS reported that Bakanov and Acting NASA Administrator Sean Duffy discussed the future of the International Space Station.

Future of ISS partnership

“The conversation went quite well,” Bakanov is quoted as saying. “We agreed to continue using the ISS until 2028. It’s important that the new NASA chief confirmed this. We will work on the deorbiting process until 2030.”

A separate TASS report also quoted Duffy as saying NASA and Roscosmos should continue to work together despite high geopolitical tensions on Earth.

“What’s unique is we might find disagreement with conflict here, which we have,” Duffy said. “We have wild disagreement with the Russians on Ukraine, but what you see is we find points of agreement and points of partnership, which is what we have with the International Space Station and Russians, and so through hard times, we don’t throw those relationships away. We’re going to continue to work on the problems that we have here, but we’re going to continue to build alliances and partnerships and friendships as humanity continues to advance in space exploration.”

The curious case of Russia’s charm offensive with NASA this week Read More »

the-military’s-squad-of-satellite-trackers-is-now-routinely-going-on-alert

The military’s squad of satellite trackers is now routinely going on alert


“I hope this blows your mind because it blows my mind.”

A Long March 3B rocket carrying a new Chinese Beidou navigation satellite lifts off from the Xichang Satellite Launch Center on May 17, 2023. Credit: VCG/VCG via Getty Images

This is Part 2 of our interview with Col. Raj Agrawal, the former commander of the Space Force’s Space Mission Delta 2.

If it seems like there’s a satellite launch almost every day, the numbers will back you up.

The US Space Force’s Mission Delta 2 is a unit that reports to Space Operations Command, with the job of sorting out the nearly 50,000 trackable objects humans have launched into orbit.

Dozens of satellites are being launched each week, primarily by SpaceX to continue deploying the Starlink broadband network. The US military has advance notice of these launches—most of them originate from Space Force property—and knows exactly where they’re going and what they’re doing.

That’s usually not the case when China or Russia (and occasionally Iran or North Korea) launches something into orbit. With rare exceptions, like human spaceflight missions, Chinese and Russian officials don’t publish any specifics about what their rockets are carrying or what altitude they’re going to.

That creates a problem for military operators tasked with monitoring traffic in orbit and breeds anxiety among US forces responsible for making sure potential adversaries don’t gain an edge in space. Will this launch deploy something that can destroy or disable a US satellite? Will this new satellite have a new capability to surveil allied forces on the ground or at sea?

Of course, this is precisely the point of keeping launch details under wraps. The US government doesn’t publish orbital data on its most sensitive satellites, such as spy craft collecting intelligence on foreign governments.

But you can’t hide in low-Earth orbit, a region extending hundreds of miles into space. Col. Raj Agrawal, who commanded Mission Delta 2 until earlier this month, knows this all too well. Agrawal handed over command to Col. Barry Croker as planned after a two-year tour of duty at Mission Delta 2.

Col. Raj Agrawal, then-Mission Delta 2 commander, delivers remarks to audience members during the Mission Delta 2 redesignation ceremony in Colorado Springs, Colorado, on October 31, 2024. Credit: US Space Force

Some space enthusiasts have made a hobby of tracking US and foreign military satellites as they fly overhead, stringing together a series of observations over time to create fairly precise estimates of an object’s altitude and inclination.

Commercial companies are also getting in on the game of space domain awareness. But most are based in the United States or allied nations and have close partnerships with the US government. Therefore, they only release information on satellites owned by China and Russia. This is how Ars learned of interesting maneuvers underway with a Chinese refueling satellite and suspected Russian satellite killers.

Theoretically, there’s nothing to stop a Chinese company, for example, from taking a similar tack on revealing classified maneuvers conducted by US military satellites.

The Space Force has an array of sensors scattered around the world to detect and track satellites and space debris. The 18th and 19th Space Defense Squadrons, which were both under Agrawal’s command at Mission Delta 2, are the units responsible for this work.

Preparing for the worst

One of the most dynamic times in the life of a Space Force satellite tracker is when China or Russia launches something new, according to Agrawal. His command pulls together open source information, such as airspace and maritime warning notices, to know when a launch might be scheduled.

This is not unlike how outside observers, like hobbyist trackers and space reporters, get a heads-up that something is about to happen. These notices tell you when a launch might occur, where it will take off from, and which direction it will go. What’s different for the Space Force is access to top-secret intelligence that might clue military officials in on what the rocket is actually carrying. China, in particular, often declares that its satellites are experimental, when Western analysts believe they are designed to support military activities.

That’s when US forces swing into action. Sometimes, military forces go on alert. Commanders develop plans to detect, track, and target the objects associated with a new launch, just in case they are “hostile,” Agrawal said.

We asked Agrawal to take us through the process his team uses to prepare for and respond to one of these unannounced, or “non-cooperative,” launches. This portion of our interview is published below, lightly edited for brevity and clarity.

Ars: Let’s say there’s a Russian or Chinese launch. How do you find out there’s a launch coming? Do you watch for NOTAMs (Notices to Airmen), like I do, and try to go from there?

Agrawal: I think the conversation starts the same way that it probably starts with you and any other technology-interested American. We begin with what’s available. We certainly have insight through intelligence means to be able to get ahead of some of that, but we’re using a lot of the same sources to refine our understanding of what may happen, and then we have access to other intel.

The good thing is that the Space Force is a part of the Intelligence Community. We’re plugged into an entire Intelligence Community focused on anything that might be of national security interest. So we’re able to get ahead. Maybe we can narrow down NOTAMs; maybe we can anticipate behavior. Maybe we have other activities going on in other domains or on the Internet, the cyber domain, and so on, that begin to tip off activity.

Certainly, we’ve begun to understand patterns of behavior. But no matter what, it’s not the same level of understanding as those who just cooperate and work together as allies and friends. And if there’s a launch that does occur, we’re not communicating with that launch control center. We’re certainly not communicating with the folks that are determining whether or not the launch will be safe, if it’ll be nominal, how many payloads are going to deploy, where they’re going to deploy to.

I certainly understand why a nation might feel that they want to protect that. But when you’re fielding into LEO [low-Earth orbit] in particular, you’re not really going to hide there. You’re really just creating uncertainty, and now we’re having to deal with that uncertainty. We eventually know where everything is, but in that meantime, you’re creating a lot of risk for all the other nations and organizations that have fielded capability in LEO as well.

Find, fix, track, target

Ars: Can you take me through what it’s like for you and your team during one of these launches? When one comes to your attention, through a NOTAM or something else, how do you prepare for it? What are you looking for as you get ready for it? How often are you surprised by something with one of these launches?

Agrawal: Those are good questions. Some of it, I’ll be more philosophical on, and others I can be specific on. But on a routine basis, our formation is briefed on all of the launches we’re aware of, to varying degrees, with the varying levels of confidence, and at what classifications have we derived that information.

In fact, we also have a weekly briefing where we go into depth on how we have planned against some of what we believe to be potentially higher threats. How many organizations are involved in that mission plan? Those mission plans are done at a very tactical level by captains and NCOs [non-commissioned officers] that are part of the combat squadrons that are most often presented to US Space Command…

That integrated mission planning involves not just Mission Delta 2 forces but also presented forces by our intelligence delta [Space Force units are called deltas], by our missile warning and missile tracking delta, by our SATCOM [satellite communications] delta, and so on—from what we think is on the launch pad, what we think might be deployed, what those capabilities are. But also what might be held at risk as a result of those deployments, not just in terms of maneuver but also what might these even experimental—advertised “experimental”—capabilities be capable of, and what harm might be caused, and how do we mission-plan against those potential unprofessional or hostile behaviors?

As you can imagine, that’s a very sophisticated mission plan for some of these launches based on what we know about them. Certainly, I can’t, in this environment, confirm or deny any of the specific launches… because I get access to more fidelity and more confidence on those launches, the timing and what’s on them, but the precursor for the vast majority of all these launches is that mission plan.

That happens at a very tactical level. That is now posturing the force. And it’s a joint force. It’s not just us, Space Force forces, but it’s other services’ capabilities as well that are posturing to respond to that. And the truth is that we even have partners, other nations, other agencies, intel agencies, that have capability that have now postured against some of these launches to now be committed to understanding, did we anticipate this properly? Did we not?

And then, what are our branch plans in case it behaves in a way that we didn’t anticipate? How do we react to it? What do we need to task, posture, notify, and so on to then get observations, find, fix, track, target? So we’re fulfilling the preponderance of what we call the kill chain, for what we consider to be a non-cooperative launch, with a hope that it behaves peacefully but anticipating that it’ll behave in a way that’s unprofessional or hostile… We have multiple chat rooms at multiple classifications that are communicating in terms of “All right, is it launching the way we expected it to, or did it deviate? If it deviated, whose forces are now at risk as a result of that?”

A spectator takes photos before the launch of the Long March 7A rocket carrying the ChinaSat 3B satellite from the Wenchang Space Launch Site in China on May 20, 2025. Credit: Meng Zhongde/VCG via Getty Images

Now, we even have down to the fidelity of what forces on the ground or on the ocean may not have capability… because of maneuvers or protective measures that the US Space Force has to take in order to deviate from its mission because of that behavior. The conversation, the way it was five years ago and the way it is today, is very, very different in terms of just a launch because now that launch, in many cases, is presenting a risk to the joint force.

We’re acting like a joint force. So that Marine, that sailor, that special operator on the ground who was expecting that capability now is notified in advance of losing that capability, and we have measures in place to mitigate those outages. And if not, then we let them know that “Hey, you’re not going to have the space capability for some period of time. We’ll let you know when we’re back. You have to go back to legacy operations for some period of time until we’re back into nominal configuration.”

I hope this blows your mind because it blows my mind in the way that we now do even just launch processing. It’s very different than what we used to do.

Ars: So you’re communicating as a team in advance of a launch and communicating down to the tactical level, saying that this launch is happening, this is what it may be doing, so watch out?

Agrawal: Yeah. It’s not as simple as a ballistic missile warning attack, where it’s duck and cover. Now, it’s “Hey, we’ve anticipated the things that could occur that could affect your ability to do your mission as a result of this particular launch with its expected payload, and what we believe it may do.” So it’s not just a general warning. It’s a very scoped warning.

As that launch continues, we’re able to then communicate more specifically on which forces may lose what, at what time, and for how long. And it’s getting better and better as the rest of the US Space Force, as they present capability trained to that level of understanding as well… We train this together. We operate together and we communicate together so that the tactical user—sometimes it’s us at US Space Force, but many times it’s somebody on the surface of the Earth that has to understand how their environment, their capability, has changed as a result of what’s happening in, to, and from space.

Ars: The types of launches where you don’t know exactly what’s coming are getting more common now. Is it normal for you to be on this alert posture for all of the launches out of China or Russia?

Agrawal: Yeah. You see it now. The launch manifest is just ridiculous, never mind the ones we know about. The ones that we have to reach out into the intelligence world and learn about, that’s getting ridiculous, too. We don’t have to have this whole machine postured this way for cooperative launches. So the amount of energy we’re expending for a non-cooperative launch is immense. We can do it. We can keep doing it, but you’re just putting us on alert… and you’re putting us in a position where we’re getting ready for bad behavior with the entire general force, as opposed to a cooperative launch, where we can anticipate. If there’s an anomaly, we can anticipate those and work through them. But we’re working through it with friends, and we’re communicating.

We’re not having to put tactical warfighters on alert every time … but for those payloads that we have more concern about. But still, it’s a very different approach, and that’s why we are actively working with as many nations as possible in Mission Delta 2 to get folks to sign on with Space Command’s space situational awareness sharing agreements, to go at space operations as friends, as allies, as partners, working together. So that way, we’re not posturing for something higher-end as a result of the launch, but we’re doing this together. So, with every nation we can, we’re getting out there—South America, Africa, every nation that will meet with us, we want to meet with them and help them get on the path with US Space Command to share data, to work as friends, and use space responsibly.”

A Long March 3B carrier rocket carrying the Shijian 21 satellite lifts off from the Xichang Satellite Launch Center on October 24, 2021. Credit: Li Jieyi/VCG via Getty Images

Ars: How long does it take you to sort out and get a track on all of the objects for an uncooperative launch?

Agrawal: That question is a tough one to answer. We can move very, very quickly, but there are times when we have made a determination of what we think something is, what it is and where it’s going, and intent; there might be some lag to get it into a public catalog due to a number of factors, to include decisions being made by combatant commanders, because, again, our primary objective is not the public-facing catalog. The primary objective is, do we have a risk or not?

If we have a risk, let’s understand, let’s figure out to what degree do we think we have to manage this within the Department of Defense. And to what degree do we believe, “Oh, no, this can go in the public catalog. This is a predictable elset (element set)”? What we focus on with (the public catalog) are things that help with predictability, with spaceflight safety, with security, spaceflight security. So you sometimes might see a lag there, but that’s because we’re wrestling with the security aspect of the degree to which we need to manage this internally before we believe it’s predictable. But once we believe it’s predictable, we put it in the catalog, and we put it on space-track.org. There’s some nuance in there that isn’t relative to technology or process but more on national security.

On the flip side, what used to take hours and days is now getting down to seconds and minutes. We’ve overhauled—not 100 percent, but to a large degree—and got high-speed satellite communications from sensors to the centers of SDA (Space Domain Awareness) processing. We’re getting higher-end processing. We’re now duplicating the ability to process, duplicating that capability across multiple units. So what used to just be human labor intensive, and also kind of dial-up speed of transmission, we’ve now gone to high-speed transport. You’re seeing a lot of innovation occur, and a lot of data fusion occur, that’s getting us to seconds and minutes.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

The military’s squad of satellite trackers is now routinely going on alert Read More »

rocket-report:-nasa-finally-working-on-depots,-air-force-tests-new-icbm

Rocket Report: NASA finally working on depots, Air Force tests new ICBM


“I didn’t expect that we would get to orbit.”

Gilmour Space’s Eris rocket lifts off from Bowen Orbital Spaceport in Austraia. Credit: Gilmour Space

Welcome to Edition 8.05 of the Rocket Report! One of the most eye-raising things I saw this week was an online update from NASA’s Marshall Space Flight Center touting its work on cryogenic propellant management in orbit. Why? Because until recently, this was a forbidden research topic at the space agency, as propellant depots would obviate the need for a large rocket like the Space Launch System. But now that Richard Shelby is retired…

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Australian launch goes sideways. Back-to-back engine failures doomed a privately developed Australian rocket moments after liftoff Tuesday, cutting short a long-shot attempt to reach orbit with the country’s first homegrown launch vehicle, Ars reports. The 82-foot-tall (25-meter) Eris rocket ignited its four main engines and took off from its launch pad in northeastern Australia, but the rocket quickly lost power from two of its engines and stalled just above the launch pad before coming down in a nearby field. The crash sent a plume of smoke thousands of feet over the launch site, which sits on a remote stretch of coastline on Australia’s northeastern frontier.

Setting expectations … Gilmour Space, the private company that developed the rocket, said in a statement that there were no injuries and “no adverse environmental impacts” in the aftermath of the accident. The launch pad also appeared to escape any significant damage. The company’s cofounder and CEO, Adam Gilmour, spoke with Ars a few hours after the launch. Gilmour said he wasn’t surprised by the outcome of the Eris rocket’s inaugural test flight, which lasted just 14 seconds. “I didn’t expect that we would get to orbit,” he said. “Never did. I thought best case was maybe 40 seconds of flight time, but I’ll take 14 as a win.” (submitted by zapman987 and Tfargo04)

Firefly seeks to go public. Firefly Aerospace seeks to raise more than $600 million through a public stock offering, an arrangement that would boost the company’s market valuation to nearly $5.5 billion, according to a document filed with the SEC on Monday, Ars reports. The launch of Firefly’s Initial Public Offering (IPO) comes as the company works to build on a historic success in March, when Firefly’s Blue Ghost lander touched down on the surface of the Moon. Firefly plans to sell 16.2 million shares of common stock at a price of between $35 and $39 per share. Under those terms, Firefly could raise up to $631.8 million on the public market.

A lot of financial needs … In a statement, Firefly said it will use the funds to pay off a “substantial” amount of debt and support dividend payments and “for general corporate purposes.” Firefly’s general corporate purposes include a spectrum of activities, and some are going better than others. Firefly is deep into the capital-intensive development of a new medium-class rocket named Eclipse in partnership with Northrop Grumman, which made a $50 million strategic investment into Firefly in May. And Firefly is developing a spacecraft line called Elytra, a platform that can host military sensors and other payloads and maneuver them into different orbits.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Air Force tests new ICBM. It’s been half a decade since the Air Force awarded Northrop Grumman a sole-source contract to develop a next-generation intercontinental ballistic missile, known as the LGM-35 Sentinel. The missiles will carry thermonuclear warheads and are intended to replace all 450 Minuteman III missiles starting in 2029. This week, the Air Force announced that testing of the rocket’s second stage motor in a vacuum chamber to simulate high-altitude conditions is going well. “This test reflects our disciplined digital engineering approach and the continued momentum behind the Sentinel program,” said Brig. Gen. William S. Rogers of the Air Force.

Real-world tests to validate models … The stage-two motor is one of three booster segments that make up the three-stage Sentinel missile. According to the Air Force, this test is part of a series intended to qualify the stage-two design and validate predictive performance models developed in a digital engineering environment. The data gathered from the test will be used to refine design elements and reduce technical risk as the program moves toward production. The milestone follows the stage-one rocket motor test conducted in March at Northrop Grumman’s facility in Promontory, Utah.

Starship debris clouds future of SpaceX Bahamas landings. In a new report, Reuters provides additional details about the deal between SpaceX and the Bahamas to land Falcon 9 first stages there and why it still may go sideways. The Bahamas rocket-landing deal, which unlocked a more efficient path to space for SpaceX’s reusable Falcon 9, was signed in February last year by Deputy Prime Minister Chester Cooper. Sources told the publication that the quick approval created tension within the Bahamian government, with some officials expressing misgivings about a lack of transparency in the negotiations.

Landing agreement on hold … SpaceX’s deal with the Bahamas, the government said, included a $1 million donation to the University of Bahamas, where the company pledged to conduct quarterly seminars on space and engineering topics. The company must also pay a $100,000 fee per landing. In April, the landing agreement was put on hold after the explosion of SpaceX’s Starship rocket, whose mid-flight failure sent hundreds of pieces of debris washing ashore on Bahamian islands. Local activists have increased criticism of the Falcon 9 landing agreement since then, which remains under review. (submitted by Tom Nelson)

A single cloud delays Crew 11 launch. The SpaceX Crew-11 mission was a little more than a minute away from the planned launch Thursday onboard the Crew Dragon Endeavour spacecraft when cumulus clouds popped up in just the right spot to trigger a scrub, Spaceflight Now reports. The four astronauts, led by NASA’s Zena Cardman, are bound for the International Space Station when they leave Earth.

Forecasters for the win? … On Wednesday, the 45th Weather Squadron forecast a 90 percent chance for favorable weather at launch. Meteorologists said there was a low probability for interference from cumulus clouds, but that proved to be enough to stymie a launch attempt. As a meteorologist, I feel like I should apologize for my colleagues. Another attempt is likely Friday, although weather conditions will deteriorate somewhat.

Mysterious rocket engine undergoes testing. The Exploration Company has successfully completed a six-week test campaign of the oxygen-rich preburner for its Typhoon rocket engine, European Spaceflight reports. With co-financing from the French space agency CNES, The Exploration Company began work on its Typhoon rocket engine in January 2024. The reusable engine uses a full-flow staged combustion cycle and is designed to produce 250 metric tons of thrust, which is comparable to a SpaceX Raptor. On Thursday, the company announced that it had completed a series of 16 hot-fire tests of the oxygen-rich preburner for the Typhoon engine.

What is the engine for? … At this point, the Typhoon engine does not have a confirmed application, as it is far too powerful for any of the company’s current in-space logistics projects. According to information provided to European Spaceflight by the company, The Exploration Company partnered with an industrial prime contractor to submit a proposal for the European Space Agency’s European Launcher Challenge. While unconfirmed, the company’s contribution to the bid likely included the Typhoon engine.

India’s GSLV delivers for NASA. A $1.5 billion synthetic aperture radar imaging satellite, a joint project between NASA and the Indian space agency ISRO, successfully launched into orbit on Wednesday aboard that nation’s Geosynchronous Satellite Launch Vehicle, Ars reports. The mission, named NISAR (NASA-ISRO Synthetic Aperture Radar), was subsequently deployed into its intended orbit 464 miles (747 km) above the Earth’s surface. From this Sun-synchronous orbit, it will collect data about the planet’s land and ice surfaces two times every 12 days.

A growing collaboration … After Wednesday’s launch, the spacecraft will undergo a three-month commissioning phase. The NISAR mission is notable both for its price tag—Earth observation missions typically cost less because they do not need to be hardened for long-duration flight in deep space—as well as the partnership with India. In terms of complexity and cost, this is the largest collaboration between NASA and ISRO to date and could set a template for further cooperation in space as part of the Artemis program or other initiatives.

You can now see a Merlin engine at the Smithsonian. The National Air and Space Museum welcomed the public into five more of its renovated galleries on Monday, including two showcasing spaceflight artifacts, Ars reports. The new exhibitions shine a modern light on returning displays and restore the museum’s almost 50-year-old legacy of adding objects that made history but have yet to become historical.

The mighty Merlin … Among the artifacts debuting in “Futures in Space” are a Merlin engine and grid fin that flew on a SpaceX Falcon 9 rocket, Sian Proctor’s pressure suit that she wore on the private Inspiration4 mission in 2021, and a mockup of a New Shepard crew module that Blue Origin has pledged to replace with its first flown capsule when it is retired from flying. It’s great to see elements of the Falcon 9 rocket in the museum. Although the booster is still active, it is by far the most-flown US rocket in history, and the Merlin engine is the most reliable rocket engine over that timeframe.

Reason Foundation calls for termination of SLS. A libertarian think tank, the Reason Foundation, has published a new report that is deeply critical of NASA’s Artemis program and its use of the Space Launch System Rocket and Orion spacecraft. “NASA needs to bite the bullet and end its use of obsolete, non-reusable launch vehicles and sole-source, cost-plus contracts,” the report states. “It should shift to state-of-the-art reusable spacecraft and public-private partnerships like those now transporting cargo and people between Earth and the International Space Station.”

How to get to the Moon … The report estimates that canceling the SLS rocket, its ground systems, Orion, and the Lunar Gateway would save NASA $5.25 billion a year. The authors posit several different architectures for a lunar lander that would be ready sooner and be compatible with existing rockets. This includes a novel plan to use Crew Dragon, with legs, as a lander. It is not clear how much impact the report will have, as Congress seems to want to fly the SLS indefinitely, and the Trump administration seeks to cancel the rocket after two more flights.

NASA is finally interested in propellant depots. This week NASA’s Marshall Space Flight Center posted an update noting its recent work on developing and testing technology to manage cryogenic propellants in space. Teams at the field center in Huntsville, Alabama tested an innovative approach to achieve zero boiloff storage of liquid hydrogen using two stages of active cooling, which could prevent the loss of valuable propellant. “Technologies for reducing propellant loss must be implemented for successful long-duration missions to deep space like the Moon and Mars,” said Kathy Henkel, acting manager of NASA’s Cryogenic Fluid Management Portfolio Project, based at NASA Marshall.

If only this had been done earlier … This is great, obviously, as long-term storage of liquid propellants such as oxygen, hydrogen, and methane are critical to the strategies of SpaceX, Blue Origin, and other companies working to develop reusable and more cost-effective space transportation vehicles. However, it is somewhat ironic to see NASA and Marshall promoting this work after it was suppressed for a decade by US Sen. Richard Shelby, the Alabama Republican. As Ars has previously reported, in order to protect the Space Launch System rocket, Shelby directed NASA to end its work on storage and transfer of cryogenic propellants, going so far as to say he would fire anyone who used the word ‘depot.’ Well, we will say it: Depot.

Next three launches

August 1: Falcon 9 | Crew-11 | Kennedy Space Center, Florida | 15: 43 UTC

August 2: Electron | JAKE 4 suborbital flight | Wallops Flight Facility, Virginia | 01: 45 UTC

August 4: Falcon 9 | Starlink 10-30 | Cape Canaveral Space Force Station, Florida | 04: 11 UTC

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Rocket Report: NASA finally working on depots, Air Force tests new ICBM Read More »

the-first-company-to-complete-a-fully-successful-lunar-landing-is-going-public

The first company to complete a fully successful lunar landing is going public

The financial services firm Charles Schwab reported last month that IPOs are on the comeback across multiple sectors of the market. “After a long dry spell, there are signs of life in the initial public offerings space,” Charles Schwab said in June. “An increase in offerings can sometimes suggest an improvement in overall market sentiment.”

Firefly Aerospace started as a propulsion company. This image released by Firefly earlier this year shows the company’s family of engines. From left to right: Miranda for the Eclipse rocket; Lightning and Reaver for the Alpha rocket; and Spectre for the Blue Ghost and Elytra spacecraft.

Firefly is eschewing a SPAC merger in favor of a traditional IPO. Another space company, Voyager Technologies, closed an Initial Public Offering on June 11, raising nearly $383 million with a valuation peaking at $3.8 billion despite reporting a loss of $66 million in 2024. Voyager’s stock price has been in a precipitous decline since then.

Financial information disclosed by Firefly in a regulatory filing with the Securities and Exchange Commission reveals the company registered $60.8 million in revenue in 2024, a 10 percent increase from the prior year. But Firefly’s net loss widened from $135 million to $231 million, largely due to higher spending on research and development for the Eclipse rocket and Elytra spacecraft.

Rocket Lab, too, reported a net loss of $190 million in 2024 and another $60.6 million in the first quarter of this year. Despite this, Rocket Lab’s stock price has soared for most of 2025, further confirming that near-term profits aren’t everything for investors.

Chad Anderson, the founder and managing partner of Space Capital, offered a “gut check” to investors listening to his quarterly podcast last week.

“90 percent of IPOs that double on day one deliver negative returns over three years,” Anderson said. “And a few breakout companies become long-term winners… Rocket Lab being chief among them. But many fall short of expectations, even with some collapsing into bankruptcy, again, as we’ve seen over the last few years.

“There’s a lot of excitement about the space economy, and rightly so,” Anderson said. “This is a once-in-a-generation opportunity for investors, but unfortunately, I think this is going to be another example of why specialist expertise is required and the ability to read financial statements and understand the underlying business fundamentals, because that’s what’s really going to take companies through in the long term.”

The first company to complete a fully successful lunar landing is going public Read More »