Science

research-roundup:-7-cool-science-stories-from-february

Research roundup: 7 cool science stories from February


Dancing sea turtles, the discovery of an Egyptian pharaoh’s tomb, perfectly boiled eggs, and more.

X-ray image of the PHerc.172 scroll Credit: Vesuvius Challenge

It’s a regrettable reality that there is never time to cover all the interesting scientific stories we come across each month. In the past, we’ve featured year-end roundups of cool science stories we (almost) missed. This year, we’re experimenting with a monthly collection. February’s list includes dancing sea turtles, the secret to a perfectly boiled egg, the latest breakthrough in deciphering the Herculaneum scrolls, the discovery of an Egyptian pharaoh’s tomb, and more.

Dancing sea turtles

There is growing evidence that certain migratory animal species (turtles, birds, some species of fish) are able to exploit the Earth’s magnetic field for navigation, using it both as a compass to determine direction and as a kind of “map” to track their geographical position while migrating. A paper published in the journal Nature offers evidence of a possible mechanism for this unusual ability, at least in loggerhead sea turtles, who perform an energetic “dance” when they follow magnetic fields to a tasty snack.

Sea turtles make impressive 8,000-mile migrations across oceans and tend to return to the same feeding and nesting sites. The authors believe they achieve this through their ability to remember the magnetic signature of those areas and store them in a mental map. To test that hypothesis, the scientists placed juvenile sea turtles into two large tanks of water outfitted with large coils to create magnetic signatures at specific locations within the tanks. One tank features such a location that had food; the other had a similar location without food.

They found that the sea turtles in the first tank performed distinctive “dancing” moves when they arrived at the area associated with food: tilting their bodies, dog-paddling, spinning in place, or raising their head near or above the surface of the water. When they ran a second experiment using different radio frequencies, they found that the change interfered with the turtles’ internal compass, and they could not orient themselves while swimming. The authors concluded that this is compelling evidence that the sea turtles can distinguish between magnetic fields, possibly relying on complex chemical reactions, i.e., “magnetoreception.” The map sense, however, likely relies on a different mechanism.

Nature, 2025. DOI: 10.1038/s41586-024-08554-y  (About DOIs).

Long-lost tomb of Thutmose II

Archaeologists found a simple tomb near Luxor and identified it as the 3,500-year-old burial site of King Thutmose II.

Archaeologists found a simple tomb near Luxor and identified it as the 3,500-year-old burial site of King Thutmose II. Credit: Egypt’s Ministry of Tourism and Antiquities

Thutmose II was the fourth pharaoh of the Tutankhamun (18th) dynasty. He reigned only about 13 years and married his half-sister Hatshepsut (who went on to become the sixth pharaoh in the dynasty). Archaeologists have now confirmed that a tomb built underneath a waterfall in the mountains in Luxor and discovered in 2022 is the final resting place of Thutmose II. It’s the last of the 18th dynasty royal tombs to be found, more than a century after Tutankhamun’s tomb was found in 1922.

When it was first found, archaeologists thought the tomb might be that of a king’s wife, given its close proximity to Hatshepsut’s tomb and those of the wives of Thutmose III. But they found fragments of alabaster vases inscribed with Thutmose II’s name, along with scraps of religious burial texts and plaster fragments on the partially intact ceiling with traces of blue paint and yellow stars—typically only found in kings’ tombs. Something crucial was missing, however: the actual mummy and grave goods of Thutmose II.

It’s long been assumed that the king’s mummy was discovered in the 19th century at another site called Deir el-Bahari. But archaeologist Piers Litherland, who headed the British team that discovered the tomb, thinks that identification was in error. An inscription stated that Hatshepsut had the tomb’s contents relocated due to flooding. Litherland believes the pharaoh’s actual mummy is buried in a second tomb. Confirmation (or not) of his hypothesis won’t come until after archaeologists finish excavating what he thinks is the site of that second tomb, which is currently buried under multiple layers of rock and plaster.

Hidden images in Pollock paintings

“Troubled Queen” reveals a “hidden” figure, possibly a soldier. Credit: D.A. Morrissette et al., CNS Spectrums 2025

Physicists have long been fascinated by the drip paintings of “splatter master” Jackson Pollock, pondering the presence of fractal patterns (or lack thereof), as well as the presence of curls and coils in his work and whether the artist deliberately exploited a well-known fluid dynamics effect to achieve them—or deliberately avoided them. Now psychiatrists are getting into the game, arguing in a paper published in CNS Spectrums that Pollock—known to incorporate images into his early pre-drip paintings—also used many of the same images repeatedly in his later abstract drip paintings.

People have long claimed to see images in those drip paintings, but the phenomenon is usually dismissed by art critics as a trick of human perception, much like the fractal edges of Rorschach ink blots can fool the eye and mind. The authors of this latest paper analyzed Pollock’s early painting “Troubled Queen” and found multiple images incorporated into the painting, which they believe establishes a basis for their argument that Pollock also incorporated such images into his later drip painting, albeit possibly subconsciously.

“Seeing an image once in a drip painting could be random,” said co-author Stephen M. Stahl of the University of California, San Diego. “Seeing the same image twice in different paintings could be a coincidence. Seeing it three or more times—as is the case for booze bottles, monkeys and gorillas, elephants, and many other subjects and objects in Pollock’s paintings—makes those images very unlikely to be randomly provoked perceptions without any basis in reality.”

CNS Spectrums, 2025. DOI: 10.1017/S1092852924001470

Solving a fluid dynamics mystery

Soap opera in the maze: Geometry matters in Marangoni flows.

Every fall, the American Physical Society exhibits a Gallery of Fluid Motion, which recognizes the innate artistry of images and videos derived from fluid dynamics research. Several years ago, physicists at the University of California, Santa Barbara (UCSB) submitted an entry featuring a pool of red dye, propelled by a few drops of soap acting as a surfactant, that seemed to “know” how to solve a maze whose corridors were filled with milk. This is unusual since one would expect the dye to diffuse more uniformly. The team has now solved that puzzle, according to a paper published in Physical Review Letters.

The key factor is surface tension, specifically a phenomenon known as the Marangoni effect, which also drives the “coffee ring effect” and the “tears of wine” phenomenon. If you spread a thin film of water on your kitchen counter and place a single drop of alcohol in the center, you’ll see the water flow outward, away from the alcohol. The difference in their alcohol concentrations creates a surface tension gradient, driving the flow.

In the case of the UCSB experiment, the soap reduces local surface tension around the red dye to set the dye in motion. There are also already surfactants in the milk that work in combination with the soapy surfactant to “solve” the maze. The milk surfactants create varying points of resistance as the dye makes its way through the maze. A dead end or a small space will have more resistance, redirecting the dye toward routes with less resistance—and ultimately to the maze’s exit. “That means the added surfactant instantly knows the layout of the maze,” said co-author Paolo Luzzatto-Fegiz.

Physical Review Letters, 2025. DOI: 10.1073/pnas.1802831115

How to cook a perfectly boiled egg

Credit: YouTube/Epicurious

There’s more than one way to boil an egg, whether one likes it hard-boiled, soft-boiled, or somewhere in between. The challenge is that eggs have what physicists call a “two-phase” structure: The yolk cooks at 65° Celsius, while the white (albumen) cooks at 85° Celsius. This often results in overcooked yolks or undercooked whites when conventional methods are used. Physicists at the Italian National Research Council think they’ve cracked the case: The perfectly cooked egg is best achieved via a painstaking process called “periodic cooking,” according to a paper in the journal Communications Engineering.

They started with a few fluid dynamics simulations to develop a method and then tested that method in the laboratory. The process involves transferring a cooking egg every two minutes—for 32 minutes—between a pot of boiling water (100° Celsius) and a bowl of cold water (30° Celsius). They compared their periodically cooked eggs with traditionally prepared hard-boiled and soft-boiled eggs, as well as eggs prepared using sous vide. The periodically cooked eggs ended up with soft yolks (typical of sous vide eggs) and a solidified egg white with a consistency between sous vide and soft-boiled eggs. Chemical analysis showed the periodically cooked eggs also contained more healthy polyphenols. “Periodic cooking clearly stood out as the most advantageous cooking method in terms of egg nutritional content,” the authors concluded.

Communications Engineering, 2025. DOI: 10.1038/s44172-024-00334-w

More progress on deciphering Herculaneum scrolls

X-ray scans and AI reveal the inside of ancient scroll

X-ray scans and AI reveal the inside of an ancient scroll. Credit: Vesuvius Challenge

The Vesuvius Challenge is an ongoing project that employs “digital unwrapping” and crowd-sourced machine learning to decipher the first letters from previously unreadable ancient scrolls found in an ancient Roman villa at Herculaneum. The 660-plus scrolls stayed buried under volcanic mud until they were excavated in the 1700s from a single room that archaeologists believe held the personal working library of an Epicurean philosopher named Philodemus. The badly singed, rolled-up scrolls were so fragile that it was long believed they would never be readable, as even touching them could cause them to crumble.

In 2023, the Vesuvius Challenge made its first award for deciphering the first letters, and last year, the project awarded the grand prize of $700,000 for producing the first readable text. The latest breakthrough is the successful generation of the first X-ray image of the inside of a scroll (PHerc. 172) housed in Oxford University’s Bodleian Libraries—a collaboration with the Vesuvius Challenge. The scroll’s ink has a unique chemical composition, possibly containing lead, which means it shows up more clearly in X-ray scans than other Herculaneum scrolls that have been scanned.

The machine learning aspect of this latest breakthrough focused primarily on detecting the presence of ink, not deciphering the characters or text. Oxford scholars are currently working to interpret the text. The first word to be translated was the Greek word for “disgust,” which appears twice in nearby columns of text. Meanwhile, the Vesuvius Challenge collaborators continue to work to further refine the image to make the characters even more legible and hope to digitally “unroll” the scroll all the way to the end, where the text likely indicates the title of the work.

What ancient Egyptian mummies smell like

mummified bodies in the exhibition area of the Egyptian museum in Cairo.

Mummified bodies in the exhibition area of the Egyptian Museum in Cairo. Credit: Emma Paolin

Much of what we know about ancient Egyptian embalming methods for mummification comes from ancient texts, but there are very few details about the specific spices, oils, resins, and other ingredients used. Science can help tease out the secret ingredients. For instance, a 2018 study analyzed organic residues from a mummy’s wrappings with gas chromatography-mass spectrometry and found that the wrappings were saturated with a mixture of plant oil, an aromatic plant extract, a gum or sugar, and heated conifer resin. Researchers at University College London have now identified the distinctive smells associated with Egyptian mummies—predominantly”woody,” “spicy,” and “sweet,” according to a paper published in the Journal of the American Chemical Society.

The team coupled gas chromatography with mass spectrometry to measure chemical molecules emitted by nine mummified bodies on display at the Egyptian Museum in Cairo and then asked a panel of trained human “sniffers” to describe the samples smells, rating them by quality, intensity, and pleasantness. This enabled them to identify whether a given odor molecule came from the mummy itself, conservation products, pesticides, or the body’s natural deterioration. The work offers additional clues into the materials used in mummification, as well as making it possible for the museum to create interactive “smellscapes” in future displays so visitors can experience the scents as well as the sights of ancient Egyptian mummies.

Journal of the American Chemical Society, 2025. DOI: 10.1021/jacs.4c15769

Photo of Jennifer Ouellette

Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban.

Research roundup: 7 cool science stories from February Read More »

astroscale-aced-the-world’s-first-rendezvous-with-a-piece-of-space-junk

Astroscale aced the world’s first rendezvous with a piece of space junk

Astroscale’s US subsidiary won a $25.5 million contract from the US Space Force in 2023 to build a satellite refueler that can hop around geostationary orbit. Like the ADRAS-J mission, this project is a public-private partnership, with Astroscale committing $12 million of its own money. In January, the Japanese government selected Astroscale for a contract worth up to $80 million to demonstrate chemical refueling in low-Earth orbit.

The latest win for Astroscale came Thursday, when the Japanese Ministry of Defense awarded the company a contract to develop a prototype satellite that could fly in geostationary orbit and collect information on other objects in the domain for Japan’s military and intelligence agencies.

“We are very bullish on the prospects for defense-related business,” said Nobu Matsuyama, Astroscale’s chief financial officer.

Astroscale’s other projects include a life extension mission for an unidentified customer in geostationary orbit, providing a similar service as Northrop Grumman’s Mission Extension Vehicle (MEV).

So, can Astroscale really do all of this? In an era of a militarized final frontier, it’s easy to see the usefulness of sidling up next to a “non-cooperative” satellite—whether it’s to refuel it, repair it, de-orbit it, inspect it, or (gasp!) disable it. Astroscale’s demonstration with ADRAS-J showed it can safely operate near another object in space without navigation aids, which is foundational to any of these applications.

So far, governments are driving demand for this kind of work.

Astroscale raised nearly $400 million in venture capital funding before going public on the Tokyo Stock Exchange last June. After quickly spiking to nearly $1 billion, the company’s market valuation has dropped to about $540 million as of Thursday. Astroscale has around 590 full-time employees across all its operating locations.

Matsuyama said Astroscale’s total backlog is valued at about 38.9 billion yen, or $260 million. The company is still in a ramp-up phase, reporting operating losses on its balance sheet and steep research and development spending that Matsuyama said should max out this year.

“We are the only company that has proved RPO technology for non-cooperative objects, like debris, in space,” Okada said last month.

“In simple terms, this means approach and capture of objects,” Okada continued. “This capability did not exist before us, but one’s mastering of this technology enables you to provide not only debris removal service, but also orbit correction, refueling, inspection, observation, and eventually repair and reuse services.”

Astroscale aced the world’s first rendezvous with a piece of space junk Read More »

single-fiber-computer-could-one-day-track-your-health

Single-fiber computer could one day track your health

Imagine heading out for a run on a cold winter day clad in athletic gear with sensors and microelectronics woven into the very fiber to constantly monitor your vital signs, even running the occasional app. MIT scientists have manufactured a single fiber computer embedded with all the components to do just that, according to a new paper published in the journal Nature.

“Our bodies broadcast gigabytes of data through the skin every second in the form of heat, sound, biochemicals, electrical potentials, and light, all of which carry information about our activities, emotions, and health,” said co-author Yoel Fink, a materials scientist and engineer at MIT. “Unfortunately, most if not all of it gets absorbed and then lost in the clothes we wear. Wouldn’t it be great if we could teach clothes to capture, analyze, store, and communicate this important information in the form of valuable health and activity insights?”

As previously reported, consumers scooped up more than 100 million units of such wearable devices as smartwatches, fitness trackers, augmented reality glasses, and similar tech in the first quarter of 2021 alone. Sales in the category increased 34.4 percent in the second quarter from Q2 2020, making it one of the fastest-growing categories of personal electronics. But while these devices do produce useful data, there are drawbacks. They can be heavy, uncomfortable when worn for long periods, and inaccurate since they usually only measure bodily signals from one spot (e.g., the wrist, chest, or finger).

A fiber computer woven into apparel, by contrast, could monitor sensors and collect data from many points distributed across the body, according to the authors. In 2021, Fink’s group successfully created the first fiber, sewn into a shirt, with the ability to digitally sense, store, and analyze a person’s activity. Until then, electronic fibers had been analog. Hundreds of square silicone microchips were embedded in a polymer preform to create the fiber, and by controlling the polymer flow during manufacture, the team was able to ensure continuous electrical connection among the microchips in a fiber tens of meters long.

The resulting fiber was thin, flexible, easily sewn into fabrics, and washable and could incorporate optical diodes, memory units, sensors, and other components. As proof of principle, Fink’s team stored a 767-kilobit short movie file and a 0.48 megabyte music file in the fiber, envisioning a day when one could store one’s wedding playlist in the bride’s gown (or groom’s tuxedo).

Single-fiber computer could one day track your health Read More »

amazon-uses-quantum-“cat-states”-with-error-correction

Amazon uses quantum “cat states” with error correction


The company shows off a mix of error-resistant hardware and error correction.

Following up on Microsoft’s announcement of a qubit based on completely new physics, Amazon is publishing a paper describing a very different take on quantum computing hardware. The system mixes two different types of qubit hardware to improve the stability of the quantum information they hold. The idea is that one type of qubit is resistant to errors, while the second can be used for implementing an error-correction code that catches the problems that do happen.

While there have been more effective demonstrations of error correction in the past, a number of companies are betting that Amazon’s general approach is the best route to getting logical qubits that are capable of complex algorithms. So, in that sense, it’s an important proof of principle.

Herding cats

The basic idea behind Amazon’s approach is to use one type of qubit to hold data and a second to enable error correction. The data qubit is extremely resistant to one type of error, but prone to a second. Those errors are where the second type of qubit comes in; it’s used to run an error-correction code that’s effective at picking up the problems the data qubits are prone to. Combined, the two are hoped to allow error correction to be handled by far fewer hardware qubits.

In a standard computer, there’s really only one type of error to worry about: a bit that no longer holds the value it was set to. This is called a bit flip, since the value goes from either zero to one, or one to zero. As with most things quantum computing, things are considerably more complicated with qubits. Since they don’t hold binary values, but rather probabilities, you can’t just flip the value of the qubit. Instead, bit flips in quantum land involve inverting the probabilities—going from 60: 40 to 40: 60 or similar.

But bit flips aren’t the only problems that can occur. Qubits can also suffer from what are called phase flip errors. These have no equivalent in classical computers, but they can also keep quantum computers from operating as expected.

In the past, Amazon demonstrated qubits that made it trivially easy to detect when a bit flip error occurred. For the new work, they moved on to something different: a qubit that greatly reduces the probability of bit flip errors.

They do this by using what are called “cat qubits,” after the famed Schrödinger’s cat, which existed in two states at once. While most qubits are based on a single quantum object being placed in this sort of superposition of states, a cat qubit has a collection of objects in a single superposition. (Put differently, the superposition state is distributed across the collection of objects.) In the case of the cat qubits demonstrated so far by companies like Alice and Bob, the objects are photons, which are all held in a single resonator, and Amazon is using similar tech.

Cat qubits have a distinctive feature compared to other options: bit flips are improbable, and get even less probable as you pump more photons into the resonator. But this has a drawback: more photons mean that phase flips become more probable.

Flipping cats

Those phase flips are why a second set of qubits, called transmons were brought in. (Transmons are a commonly used type of qubit based on a loop of superconducting wire linked to a microwave resonator and used by companies like IBM and Google.) These were used to create a chain of qubits, alternating between cat and transmon. This allowed the team to create a logical, error-corrected qubit using a simple error-correction code called a repetition code.

Image of a zig-zagging chain of alternating orange and blue circles.

The layout of Amazon’s hardware. Data-holding cat qubits (blue) alternate with transmons (orange), which can be measured to detect errors. Credit: Putterman et. al.

Here, each of the cat qubits starts off in the same state and is entangled with its neighboring transmons. This allowed the transmons to track what was going on in the cat qubits by performing what are called weak measurements. These don’t destroy the quantum state like a full measurement would but can allow the detection of changes in the neighboring cat qubits and provide the information needed to fix any errors.

So, the combination of the two means that almost all the errors that occur are phase flips, and the phase flips are detected and fixed.

In more typical error-correction schemes, you need enough qubits around to do measurements to identify both the location of an error and the nature of the error (phase or bit flip). Here, Amazon is assuming all errors are phase flips, and its team can identify the location of the flip based on which of the transmons detects an error, as shown by the red flags in the diagram above. It allows for a logical qubit that uses far fewer hardware qubits and measurements to get a given level of error correction.

The challenge of any error-correction setup is that each hardware qubit involved is error-prone. Adding too many into the error-correction system will mean that multiple errors are likely to occur simultaneously in a way that causes error correction to become impossible. Once the error rate of the hardware qubits gets low enough, however, adding additional qubits will bring the error rate down.

So, the key measurement done here is comparing a chain that has three cat qubits and two transmons to one that has five cat qubits and four transmons. These measurements showed that the five qubit chain had a lower error rate than the smaller one. This shows that the hardware is now at a state where error correction provides a benefit.

The characterization of the system indicated a couple of major limits, though. Cat qubits make bit flips extremely unlikely, but not impossible. By focusing error correction only on phase flips, any bit flips that do occur inescapably trigger the failure of the entire logical, error-corrected qubit. “Achieving long logical bit-flip times is challenging because any single cat qubit bit flip event in any part of the repetition code directly causes a logical bit flip error,” the authors note. The other issue is that the transmons used for error correction still suffer from both bit and phase flips, which can also mess up the entire error-corrected qubit.

Where does this leave us?

There are a number of companies like Amazon that are betting that using a somehow less error-prone hardware qubit will allow them to get effective error correction using fewer total hardware qubits. If they’re correct, they’ll be able to build error-corrected quantum computers using far fewer qubits, and so potentially perform useful computation sooner. For them, this paper is an important validation of the idea. You can do a sort of mixed-mode error correction, with a robust hardware qubit paired with a compact error-correction code.

But beyond that, the messages are pretty mixed. The hardware still had to rely on less robust hardware qubits (the transmons) to do error correction, and the very low error rate was still not low enough to avoid having occasional bit flips. And, ultimately, the error rate improvements gained by increasing the size of the logical qubit aren’t on a trajectory that would get you a useful level of error correction without needing an unrealistically large number of hardware qubits.

In short, the underlying hardware isn’t currently good enough to enable any sort of complex calculation, and it would need radical improvements before it can be. And there’s not an obvious alternate route to effective error correction. The potential of this approach is still there, but it’s not obvious how we’re going to build hardware that lives up to that potential.

As for Amazon, the picture is even less clear, given that this is the second qubit technology that it has talked about publicly. It’s unclear whether the company is going to go all-in on this approach, or is still looking for a technology that it’s willing to commit to.

Nature, 2025. DOI: 10.1038/s41586-025-08642-7  (About DOIs).

Photo of John Timmer

John is Ars Technica’s science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots.

Amazon uses quantum “cat states” with error correction Read More »

brewing-tea-removes-lead-from-water

Brewing tea removes lead from water

Testing the teas

Scanning electron microscope image of black tea leaves, magnified by 500 times. Black tea, which is wilted and fully oxidized, exhibits a wrinkled surface, potentially increasing the available surface area for adsorption. Credit: Vinayak P. Dravid Group/Northwestern University

To test their hypothesis, the authors purchased Lipton and Infusions commercial tea bags, as well as a variety of loose-leaf teas and herbal alternatives: black tea, green tea, white peony tea, oolong tea, rooibos tea, and chamomile tea. The tea bags were of different types (cotton, cellulose, and nylon). They brewed the tea the same way daily tea drinkers do, steeping the tea for various time intervals (mere seconds to 24 hours) in water spiked with elevated known levels of lead, chromium, copper zinc, and cadmium. Tea leaves were removed after steeping by pouring the tea through a cellulose filter into a separate tube. The team then measured how much of the toxic metals remained in the water and how much the leaves had adsorbed.

It turns out that the type of tea bag matters. The team found that cellulose tea bags work the best at adsorbing toxic metals from the water while cotton and nylon tea bags barely adsorbed any contaminants at all—and nylon bags also release contaminating microplastics to boot. Tea type and the grind level also played a part in adsorbing toxic metals, with finely ground black tea leaves performing the best on that score. This is because when those leaves are processed, they get wrinkled, which opens the pores, thereby adding more surface area. Grinding the tea further increases that surface area, with even more capacity for binding toxic metals.

But the most significant factor was steeping time: the longer the steeping time, the more toxic metals were adsorbed. Based on their experiments, the authors estimate that brewing tea—using a tea bag that steeps for three to five minutes in a mug—can remove about 15 percent of lead from drinking water, even water with concentrations as high as 10 parts per million.

Brewing tea removes lead from water Read More »

covid-shots-protect-kids-from-long-covid—and-don’t-cause-sudden-death

COVID shots protect kids from long COVID—and don’t cause sudden death

Benefits and a non-existent risk

Using an adjusted odds ratio, the researchers found that vaccination reduced the likelihood of developing long COVID with one or more symptoms by 57 percent, and reduced the likelihood of developing long COVID with two or more symptoms by 73 percent. Vaccination prior to infection was also linked to a 75 percent reduction in risk of developing long COVID that impacted day-to-day functioning. The authors note that the estimates of protection are likely underestimates because the calculations do not account for the fact that vaccination prevented some children from getting infected in the first place.

“Our findings suggest that children should stay up to date with current COVID-19 vaccination recommendations as vaccination not only protects against severe COVID-19 illness but also protects against [long Covid],” the authors conclude.

In a second short report in JAMA Network Open, researchers helped dispel concern that the vaccines could cause sudden cardiac arrest or sudden cardiac death in young athletes. This is an unproven claim that was fueled by anti-vaccine advocates amid the pandemic, including the new US Health Secretary and long-time anti-vaccine advocate Robert F. Kennedy Jr.

While previous analyses have failed to find a link between COVID-19 vaccines and sudden cardiac deaths, the new study took a broader approach. The study, led by researchers at the University of Washington, looked at whether the number of sudden cardiac arrests (SCA) and sudden cardiac deaths (SCD) among young athletes changed at all during the pandemic (2020–2022) compared with prior years (2017–2019). The researchers drew records from the National Center for Catastrophic Sports Injury Research. They also collected medical records and autopsy reports on cases among competitive athletes from the youth, middle school, high school, club, college, or professional levels who experienced sudden cardiac arrest or death at any time.

In all, there were 387 cases, with no statistically significant difference in the number of cases in the years prior to the pandemic (203) compared with those during the pandemic (184).

“This cohort study found no increase in SCA/SCD in young competitive athletes in the US during the COVID-19 pandemic, suggesting that reports asserting otherwise were overestimating the cardiovascular risk of COVID-19 infection, vaccination, and myocarditis,” the authors conclude.

COVID shots protect kids from long COVID—and don’t cause sudden death Read More »

in-war-against-dei-in-science,-researchers-see-collateral-damage

In war against DEI in science, researchers see collateral damage


Senate Republicans flagged thousands of grants as “woke DEI” research. What does that really mean?

Senate Commerce Committee Chairman Ted Cruz (R-Texas) at a hearing on Tuesday, January 28, 2025. Credit: Getty Images | Tom Williams

When he realized that Senate Republicans were characterizing his federally funded research project as one of many they considered ideological and of questionable scientific value, Darren Lipomi, chair of the chemical engineering department at the University of Rochester, was incensed. The work, he complained on social media, was aimed at helping “throat cancer patients recover from radiation therapy faster.” And yet, he noted on Bluesky, LinkedIn, and X, his project was among nearly 3,500 National Science Foundation grants recently described by the likes of Ted Cruz, the Texas Republican and chair of the powerful Senate Committee on Commerce, Science, and Transportation, as “woke DEI” research. These projects, Cruz argued, were driven by “Neo-Marxist class warfare propaganda,” and “far-left ideologies.”

“Needless to say,” Lipomi wrote of his research, “this project is not espousing class warfare.”

The list of grants was compiled by a group of Senate Republicans last fall and released to the public earlier this month, and while the NSF does not appear to have taken any action in response to the complaints, the list’s existence is adding to an atmosphere of confusion and worry among researchers in the early days of President Donald J. Trump’s second administration. Lipomi, for his part, described the situation as absurd. Others described it as chilling.

“Am I going to be somehow identified as an immigrant that’s exploiting federal funding streams and so I would just get deported? I have no idea,” said cell biologist Shumpei Maruyama, an early-career scientist and Japanese immigrant with permanent residency in the US, upon seeing his research on the government watch list. “That’s a fear.”

Just being on that list, he added, “is scary.”

The NSF, an independent government agency, accounts for around one-quarter of federal funding for science and engineering research at American colleges and universities. The 3,483 flagged projects total more than $2 billion and represent more than 10 percent of all NSF grants awarded between January 2021 and April 2024. The list encompasses research in all 50 states, including 257 grants totaling more than $150 million to institutions in Cruz’s home state of Texas.

The flagged grants, according to the committee report, “went to questionable projects that promoted diversity, equity, and inclusion (DEI) tenets or pushed onto science neo-Marxist perspectives about enduring class struggle.” The committee cast a wide net, using a programming tool to trawl more than 32,000 project descriptions for 699 keywords and phrases that they identified as linked to diversity, equity, and inclusion.

Cruz has characterized the list as a response to a scientific grantmaking process that had become mired in political considerations, rather than focused on core research goals. “The Biden administration politicized everything it touched,” Cruz told Undark and NOTUS. “Science research is important, but we should want researchers spending time trying to figure out how to cure cancer, how to cure deadly diseases, not bean counting to satisfy the political agenda of Washington Democrats.”

“The ubiquity of these DEI requirements that the Biden administration engrafted on virtually everything,” Cruz added, “pulls a lot of good research money away from needed research to satisfy the political pet projects of Democrats.”

Others described the list—and other moves against DEI initiatives in research—as reversing decades-old bipartisan policies intended to strengthen US science. For past Congresses and administrations, including the first Trump term, DEI concepts were not controversial, said Neal F. Lane, who served as NSF director in the 1990s and as a science adviser to former President Bill Clinton. “Budget after budget was appropriated funds specifically to address these issues, to make sure all Americans have an opportunity to contribute to advancement of science and technology in the country,” he said. “And that the country then, in turn, benefits from their participation.”

At the same time, he added: “Politics can be ugly.”

Efforts to promote diversity in research predate the Biden administration. A half a century ago, the NSF established a goal of increasing the number of women and underrepresented groups in science. The agency began targeting programs for minority-serving institutions as well as minority faculty and students.

In the 1990s, Lane, as NSF director, ushered in the requirement that, in addition to intellectual merit, reviewers should consider a grant proposal’s “broader impacts.” In general, he said, the aim was to encourage science that would benefit society.

The broader impacts requirement remains today. Among other options, researchers can fulfill it by including a project component that increases the participation of women, underrepresented minorities in STEM, and people with disabilities. They can also meet the requirement by promoting science education or educator development, or by demonstrating that a project will build a more diverse workforce.

The Senate committee turned up thousands of “DEI” grants because the broad search not only snagged projects with a primary goal of increasing diversity—such as a $1.2 million grant to the Colorado School of Mines for a center to train engineering students to promote equity among their peers—but also research that referenced diversity in describing its broader impact or in describing study populations. Lipomi’s project, for example, was likely flagged because it mentions recruiting a diverse group of participants, analyzing results according to socioeconomic status, and posits that patients with disabilities might benefit from wearable devices for rehabilitation.

According to the committee report, concepts related to race, gender, societal status, as well as social and environmental justice undermine hard science. They singled out projects that identified groups of people as underrepresented, underserved, socioeconomically disadvantaged, or excluded; recognized inequities; or referenced climate research.

Red flags also included words like “gender,” “ethnicity,” and “sexuality,” along with scores of associated terms — “female,” “women,” “interracial,” “heterosexual,” “LGBTQ,” as well as “Black,” “White,” “Hispanic,” or “Indigenous” when referring to groups of people. “Status” also made the list along with words such as “biased,” “disability,” “minority,” and “socioeconomic.”

In addition, the committee flagged “environmental justice” and terms that they placed in that category such as “climate change,” “climate research,” and “clean energy.”

The committee individually reviewed grants for more than $1 million, according to the report.

The largest grant on the list awarded more than $29 million to the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign, which contributes to the vast computing resources needed for artificial intelligence research. “I don’t know exactly why we were flagged, because we’re an AI resource for the nation,” said NCSA Director William Gropp.

One possible reason for the flag, Gropp theorized, is that one of the project’s aims is to provide computing power to states that have historically received less funding for research and development—including many Republican-leaning states—as well as minority-serving institutions. The proposal also states that a lack of diversity contributes to “embedded biases and other systemic inequalities found in AI systems today.”

The committee also flagged a grant with a total intended award amount of $26 million to a consortium of five institutions in North Carolina to establish an NSF Engineering Research Center to engineer microbial life in indoor spaces, promoting beneficial microbes while preventing the spread of pathogens. One example of such work would be thinking about how to minimize the risk that pathogens caught in a hospital sink would get aerosolized and spread to patients, said Joseph Graves, Jr., an evolutionary biologist and geneticist at North Carolina A&T State University and a leader of the project.

Graves was not surprised that his project made the committee’s list, as NSF policy has required research centers to include work on diversity and a culture of inclusion, he said.

The report, Graves said, seems intended to strip science of diversity, which he views as essential to the scientific endeavor. “We want to make the scientific community look more like the community of Americans,” said Graves. That’s not discriminating against White or Asian people, he said: “It’s a positive set of initiatives to give people who have been historically underrepresented and underserved in the scientific community and the products it produces to be at the table to participate in scientific research.”

“We argue that makes science better, not worse,” he added.

The political environment has seemingly left many scientists nervous to speak about their experiences. Three of the major science organizations Undark contacted—the Institute of Electrical and Electronics Engineers, the National Academy of Sciences, and the American Institute of Physics—either did not respond or were not willing to comment. Many researchers appearing on Cruz’s list expressed hesitation to speak, and only men agreed to interviews: Undark contacted eight women leading NSF-funded projects on the list. Most did not respond to requests for comment, while others declined to talk on the record.

Darren Lipomi, the chemical engineer, drew a parallel between the committee report and US Sen. Joseph McCarthy’s anti-communist campaign in the early 1950s. “It’s inescapable,” said Lipomi, whose project focused on developing a medical device that provides feedback on swallowing to patients undergoing radiation for head and neck cancer. “I know what Marxism is, and this was not that.”

According to Joanne Padrón Carney, chief government relations officer at the American Association for the Advancement of Science, Republican interest in scrutinizing purportedly ideological research dovetails with a sweeping executive order, issued immediately after Trump’s inauguration, aimed at purging the government of anything related to diversity, equity, and inclusion. Whether and how the Senate committee report will wind up affecting future funding, however, remains to be seen. “Between the executive order on DEI and now the list of terms that was used in the Cruz report, NSF is now in the process of reviewing their grants,” Carney said. One immediate impact is that scientists may become more cautious in preparing their proposals, said Carney.

Emails to the National Science Foundation went unanswered. In response to a question about grant proposals that, like Lipomi’s, only have a small component devoted to diversity, Cruz said their status should be determined by the executive branch.

“I would think it would be reasonable that if the DEI components can reasonably be severed from the project, and the remaining parts of the project are meritorious on their own, then the project should continue,” Cruz said. “It may be that nothing of value remains once DEI is removed. It would depend on the particular project.”

Physicist and former NSF head Neal F. Lane said he suspects that “DEI” has simply become a politically expedient target—as well as an excuse to slash spending. Threats to science funding are already causing huge uncertainty and distraction from what researchers and universities are supposed to be doing, he said. “But if there’s a follow-through on many of these efforts made by the administration, any damage would be enormous.”

That damage might well include discouraging young researchers from pursuing scientific careers at all, Carney said—particularly if the administration is perceived as being uninterested in a STEM workforce that is representative of the US population. “For us to be able to compete at the global arena in innovation,” she said, “we need to create as many pathways as we can for all young students—from urban and rural areas, of all races and genders—to see science and technology as a worthwhile career.”

These questions are not just academic for cell biologist and postdoctoral researcher Shumpei Maruyama, who is thinking about becoming a research professor. He’s now concerned that the Trump administration’s proposed cuts to funding from the National Institutes of Health, which supports research infrastructure at many institutions, will sour the academic job market as schools are forced to shutter whole sections or departments. He’s also worried that his research, which looks at the effects of climate change on coral reefs, won’t be fundable under the current administration—not least because his work, too, is on the committee’s list.

“Corals are important just for the inherent value of biodiversity,” Maruyama said.

Although he remains worried about what happens next, Maruyama said he is also “weirdly proud” to have his research flagged for its expressed connection to social and environmental justice. “That’s exactly what my research is focusing on,” he said, adding that the existence of coral has immeasurable environmental and social benefits. While coral reefs cover less than 1 percent of the world’s oceans in terms of surface area, they house nearly one-quarter of all marine species. They also protect coastal areas from surges and hurricanes, noted Maruyama, provide food and tourism for local communities, and are a potential source of new medications such as cancer drugs.

While he also studies corals because he finds them “breathtakingly beautiful,” Maruyama, suggested that everyone—regardless of ideology—has a stake in their survival. “I want them to be around,” he said.

This story was co-reported by Teresa Carr for Undark and Margaret Manto for NOTUS. This article was originally published on Undark. Read the original article.

In war against DEI in science, researchers see collateral damage Read More »

flashy-exotic-birds-can-actually-glow-in-the-dark

Flashy exotic birds can actually glow in the dark

Found in the forests of Papua New Guinea, Indonesia, and Eastern Australia, birds of paradise are famous for flashy feathers and unusually shaped ornaments, which set the standard for haute couture among birds. Many use these feathers for flamboyant mating displays in which they shape-shift into otherworldly forms.

As if this didn’t attract enough attention, we’ve now learned that they also glow in the dark.

Biofluorescent organisms are everywhere, from mushrooms to fish to reptiles and amphibians, but few birds have been identified as having glowing feathers. This is why biologist Rene Martin of the University of Nebraska-Lincoln wanted to investigate. She and her team studied a treasure trove of specimens at the American Museum of Natural History, which have been collected since the 1800s, and found that 37 of the 45 known species of birds of paradise have feathers that fluoresce.

The glow factor of birds of paradise is apparently important for mating displays. Despite biofluorescence being especially prominent in males, attracting a mate might not be all it is useful for, as these birds might also use it to signal to each other in other ways and sometimes even for camouflage among the light and shadows.

“The current very limited number of studies reporting fluorescence in birds suggests this phenomenon has not been thoroughly investigated,” the researchers said in a study that was recently published in Royal Society Open Science.

Glow-up

How do they get that glow? Biofluorescence is a phenomenon that happens when shorter, high-energy wavelengths of light, meaning UV, violet, and blue, are absorbed by an organism. The energy then gets re-emitted at longer, lower-energy wavelengths—greens, yellows, oranges, and reds. The feathers of birds of paradise contain fluorophores, molecules that undergo biofluorescence. Specialized filters in the light-sensitive cells of their eyes make their visual system more sensitive to biofluorescence.

Flashy exotic birds can actually glow in the dark Read More »

the-seemingly-indestructible-fists-of-the-mantis-shrimp-can-take-a-punch

The seemingly indestructible fists of the mantis shrimp can take a punch

To find out how much force a mantis shrimp’s dactyl clubs can possibly withstand, the researchers tested live shrimp by having them strike a piezoelectric sensor like they would smash a shell. They also fired ultrasonic and hypersonic lasers at pieces of dactyl clubs from their specimens so they could see how the clubs defended against sound waves.

By tracking how sound waves propagated on the surface of the dactyl club, the researchers could determine which regions of the club diffused the most waves. It was the second layer, the impact surface, that handled the highest levels of stress. The periodic surface was almost as effective. Together, they made the dactyl clubs nearly immune to the stresses they generate.

There are few other examples that the protective structures of the mantis shrimp can be compared to. On the prey side, evidence has been found that the scales on some moths’ wings absorb sound waves from predatory bats to keep them from echolocation to find them.

Understanding how mantis shrimp defend themselves from extreme force could inspire new technology. The structures in their dactyl clubs could influence the designs of military and athletic protective gear in the future.

“Shrimp impacts contain frequencies in the ultrasonic range, which has led to shrimp-inspired solutions that point to ultrasonic filtering as a key [protective] mechanism,” the team said in the same study.

Maybe someday, a new bike helmet model might have been inspired by a creature that is no more than seven inches long but literally doesn’t crack under pressure.

Science, 2025.  DOI:  10.1126/science.adq7100

The seemingly indestructible fists of the mantis shrimp can take a punch Read More »

german-startup-to-attempt-the-first-orbital-launch-from-western-europe

German startup to attempt the first orbital launch from Western Europe

The nine-engine first stage for Isar Aerospace’s Spectrum rocket lights up on the launch pad on February 14. Credit: Isar Aerospace

Isar builds almost all of its rockets in-house, including Spectrum’s Aquila engines.

“The flight will be the first integrated test of tens of thousands of components,” said Josef Fleischmann, Isar’s co-founder and chief technical officer. “Regardless of how far we get, this first test flight will hopefully generate an enormous amount of data and experience which we can apply to future missions.”

Isar is the first European startup to reach this point in development. “Reaching this milestone is a huge success in itself,” Meltzer said in a statement. “And while Spectrum is ready for its first test flight, launch vehicles for flights two and three are already in production.”

Another Bavarian company, Rocket Factory Augsburg, destroyed its first booster during a test-firing on its launch pad in Scotland last year, ceding the frontrunner mantle to Isar. RFA received its launch license from the UK government last month and aims to deliver its second booster to the launch site for hot-fire testing and a launch attempt later this year.

There’s an appetite within the European launch industry for new companies to compete with Arianespace, the continent’s sole operational launch services provider backed by substantial government support. Delays in developing the Ariane 6 rocket and several failures of Europe’s smaller Vega launcher forced European satellite operators to look abroad, primarily to SpaceX, to launch their payloads.

The European Space Agency is organizing the European Launcher Challenge, a competition that will set aside some of the agency’s satellites for launch opportunities with a new crop of startups. Isar is one of the top contenders in the competition to win money from ESA. The agency expects to award funding to multiple European launch providers after releasing a final solicitation later this year.

The first flight of the Spectrum rocket will attempt to reach a polar orbit, flying north from Andøya Spaceport. Located at approximately 69 degrees north latitude, the spaceport is poised to become the world’s northernmost orbital launch site.

Because the inaugural launch of the Spectrum rocket is a test flight, it won’t carry any customer payloads, an Isar spokesperson told Ars.

German startup to attempt the first orbital launch from Western Europe Read More »

researchers-figure-out-how-to-get-fresh-lithium-into-batteries

Researchers figure out how to get fresh lithium into batteries

In their testing, they use a couple of unusual electrode materials, such as a chromium oxide (Cr8O21) and an organic polymer (a sulfurized polyacrylonitrile). Both of these have significant weight advantages over the typical materials used in today’s batteries, although the resulting batteries typically lasted less than 500 cycles before dropping to 80 percent of their original capacity.

But the striking experiment came when they used LiSO2CF3 to rejuvenate a battery that had been manufactured as normal but had lost capacity due to heavy use. Treating a lithium-iron phosphate battery that had lost 15 percent of its original capacity restored almost all of what was lost, allowing it to hold over 99 percent of its original charge. They also ran a battery for repeated cycles with rejuvenation every few thousand cycles. At just short of 12,000 cycles, it still could be restored to 96 percent of its original capacity.

Before you get too excited, there are a couple of things worth noting about lithium-iron phosphate cells. The first is that, relative to their charge capacity, they’re a bit heavy, so they tend to be used in large, stationary batteries like the ones in grid-scale storage. They’re also long-lived on their own; with careful management, they can take over 8,000 cycles before they drop to 80 percent of their initial capacity. It’s not clear whether similar rejuvenation is possible in the battery chemistries typically used for the sorts of devices that most of us own.

The final caution is that the battery needs to be modified so that fresh electrolytes can be pumped in and the gases released by the breakdown of the LiSO2CF3 removed. It’s safest if this sort of access is built into the battery from the start, rather than provided by modifying it much later, as was done here. And the piping needed would put a small dent in the battery’s capacity per volume if so.

All that said, the treatment demonstrated here would replenish even a well-managed battery closer to its original capacity. And it would largely restore the capacity of something that hadn’t been carefully managed. And that would allow us to get far more out of the initial expense of battery manufacturing. Meaning it might make sense for batteries destined for a large storage facility, where lots of them could potentially be treated at the same time.

Nature, 2025. DOI: 10.1038/s41586-024-08465-y  (About DOIs).

Researchers figure out how to get fresh lithium into batteries Read More »

“bouncing”-winds-damaged-houston-skyscrapers-in-2024

“Bouncing” winds damaged Houston skyscrapers in 2024

“Bouncing” winds

Damage sustained by the Chevron Building Auditorium during the derecho: a) damaged side of the building, b) global damage view, c) & d) localized glass damage.

Damage sustained by the Chevron Building Auditorium during the derecho: a) damaged side of the building, b) global damage view, c) & d) localized glass damage.

Damage sustained by the Chevron Building Auditorium during the derecho: a) damaged side of the building, b) global damage view, c) & d) localized glass damage. Credit: Padgett et al., 2024

Elawady decided to investigate why the Houston derecho’s structural damage was so much more extensive than one might expect. He and his colleagues analyzed the impact of the derecho on five of the city’s most notable buildings: The Chevron Building Auditorium, the CenterPoint Energy Plaza, the El Paso Energy Building, the RRI Energy Plaza, and the Wedge International Tower.

The Chevron Building Auditorium, for instance, suffered significant damage to its cladding and shattered glass windows, mostly on the side facing another skyscraper: the Chevron Corporation Tower. The CenterPoint Energy Plaza’s damage to its double-skin facade was concentrated on one corner that had two tall buildings facing it, as was the damage to two corners of the El Paso Energy building. This suggested a wind-channeling effect might have played a role in that damage.

Next Elawady et al. conducted wind tunnel experiments at the FIU Natural Hazards Engineering Research Infrastructure’s “Wall of Wind” facility to determine how the winds may have specifically caused the observed damage. They placed a revolving miniature tall building in the tunnel and blasted it with wind speeds of up to 70 meters per second while placing an identical mini-model at increasing distances from the first to mimic possible interference from nearby buildings.

The results confirmed the team’s working hypothesis. “When strong winds move through a city, they can bounce due to interference between tall buildings. This increases pressure on walls and windows, making damage more severe than if the buildings were isolated,” said co-author Omar Metwally, a graduate student at FIU. For example, in the case of the Chevron Building Auditorium, the channeling effects intensified the damage, particularly at higher elevations.

“On top of this, downbursts create intense, localized forces which can exceed typical design values for hurricanes, especially on the lower floors of tall buildings,” Metwally added. The problem is only likely to worsen because of accelerating climate change. Glass facades seem to be particularly vulnerable to this kind of wind damage, and the authors suggest current design and construction guidelines for such elements should be re-evaluated as a result of their findings.

Frontiers in Built Environment, 2025. DOI: 10.3389/fbuil.2024.1514523  (About DOIs).

“Bouncing” winds damaged Houston skyscrapers in 2024 Read More »