Science

let’s-unpack-some-questions-about-russia’s-role-in-north-korea’s-rocket-program

Let’s unpack some questions about Russia’s role in North Korea’s rocket program

In this pool photo distributed by Sputnik agency, Russia's President Vladimir Putin and North Korea's leader Kim Jong Un visit the Vostochny Cosmodrome in Amur region in 2023. An RD-191 engine is visible in the background.

Enlarge / In this pool photo distributed by Sputnik agency, Russia’s President Vladimir Putin and North Korea’s leader Kim Jong Un visit the Vostochny Cosmodrome in Amur region in 2023. An RD-191 engine is visible in the background.

Vladimir Smirnov/Pool/AFP/Getty Images

Russian President Vladimir Putin will reportedly visit North Korea later this month, and you can bet collaboration on missiles and space programs will be on the agenda.

The bilateral summit in Pyongyang will follow a mysterious North Korean rocket launch on May 27, which ended in a fireball over the Yellow Sea. The fact that this launch fell short of orbit is not unusual—two of the country’s three previous satellite launch attempts failed. But North Korea’s official state news agency dropped some big news in the last paragraph of its report on the May 27 launch.

The Korean Central News Agency called the launch vehicle a “new-type satellite carrier rocket” and attributed the likely cause of the failure to “the reliability of operation of the newly developed liquid oxygen + petroleum engine” on the first stage booster. A small North Korean military spy satellite was destroyed. The fiery demise of the North Korean rocket was captured in a video recorded by the Japanese news broadcaster NHK.

Petroleum almost certainly means kerosene, a refined petroleum fuel used on a range of rockets, including SpaceX’s Falcon 9, United Launch Alliance’s Atlas V, and Russia’s Soyuz and Angara.

“The North Koreans are clearly toying with us,” said Jeffrey Lewis, a nonproliferation expert at the Middlebury Institute of International Studies. “They went out of their way to tell us what the propellant was, which is very deliberate because it’s a short statement and they don’t normally do that. They made a point of doing that, so I suspect they want us to be wondering what’s going on.”

Surprise from Sohae

Veteran observers of North Korea’s rocket program anticipated the country’s next satellite launch would use the same Chollima-1 rocket it used on three flights last year. But North Korea’s official statement suggests this was something different, and entirely unexpected, at least by anyone without access to classified information.

Ahead of the launch, North Korea released warning notices outlining the drop zones downrange where sections of the rocket would fall into the sea after lifting off from Sohae Satellite Launching Station on the country’s northwestern coast.

A day before the May 27 launch, South Korea’s Yonhap news agency reported a “large number of Russian experts” entered North Korea to support the launch effort. A senior South Korean defense official told Yonhap that North Korea staged more rocket engine tests than expected during the run-up to the May 27 flight.

Then, North Korea announced that this wasn’t just another flight of the Chollima-1 rocket but something new. The Chollima 1 used the same mix of hydrazine and nitrogen tetroxide propellants as North Korea’s ballistic missiles. This combination of toxic propellants has the benefit of simplicity—these liquids are hypergolic, meaning they combust upon contact with one another. No ignition source is needed.

A television monitor at a train station in South Korea shows an image of the launch of North Korea's Chollima-1 rocket last year.

Enlarge / A television monitor at a train station in South Korea shows an image of the launch of North Korea’s Chollima-1 rocket last year.

Kim Jae-Hwan/SOPA Images/LightRocket via Getty Images

Kerosene and liquid oxygen are nontoxic and more fuel-efficient. But liquid oxygen has to be kept at super-cold temperatures, requiring special handling and insulation to prevent boil-off as it is loaded into the rocket.

Let’s unpack some questions about Russia’s role in North Korea’s rocket program Read More »

polarized-light-yields-fresh-insight-into-mysterious-fast-radio-bursts

Polarized light yields fresh insight into mysterious fast radio bursts

CHIME-ing in —

Scientists looked at how polarization changed direction to learn more about origins

Artist’s rendition of how the angle of polarized light from an FRB changes as it journeys through space.

Enlarge / Artist’s rendition of how the angle of polarized light from a fast radio burst changes as it journeys through space.

CHIME/Dunlap Institute

Astronomers have been puzzling over the origins of mysterious fast radio bursts (FRBs) since the first one was spotted in 2007. Researchers now have their first look at non-repeating FRBs, i.e., those that have only produced a single burst of light to date. The authors of a new paper published in The Astrophysical Journal looked specifically at the properties of polarized light emitting from these FRBs, yielding further insight into the origins of the phenomenon. The analysis supports the hypothesis that there are different origins for repeating and non-repeating FRBs.

“This is a new way to analyze the data we have on FRBs. Instead of just looking at how bright something is, we’re also looking at the angle of the light’s vibrating electromagnetic waves,” said co-author Ayush Pandhi, a graduate student at the University of Toronto’s Dunlap Institute for Astronomy and Astrophysics. “It gives you additional information about how and where that light is produced and what it has passed through on its journey to us over many millions of light years.”

As we’ve reported previously, FRBs involve a sudden blast of radio-frequency radiation that lasts just a few microseconds. Astronomers have over a thousand of them to date; some come from sources that repeatedly emit FRBs, while others seem to burst once and go silent. You can produce this sort of sudden surge of energy by destroying something. But the existence of repeating sources suggests that at least some of them are produced by an object that survives the event. That has led to a focus on compact objects, like neutron stars and black holes—especially a class of neutron stars called magnetars—as likely sources.

There have also been many detected FRBs that don’t seem to repeat at all, suggesting that the conditions that produced them may destroy their source. That’s consistent with a blitzar—a bizarre astronomical event caused by the sudden collapse of an overly massive neutron star. The event is driven by an earlier merger of two neutron stars; this creates an unstable intermediate neutron star, which is kept from collapsing immediately by its rapid spin.

In a blitzar, the strong magnetic fields of the neutron star slow down its spin, causing it to collapse into a black hole several hours after the merger. That collapse suddenly deletes the dynamo powering the magnetic fields, releasing their energy in the form of a fast radio burst.

So the events we’ve been lumping together as FRBs could actually be the product of two different events. The repeating events occur in the environment around a magnetar. The one-shot events are triggered by the death of a highly magnetized neutron star within a few hours of its formation. Astronomers announced the detection of a possible blitzar potentially associated with an FRB last year.

Only about 3 percent of FRBs are of the repeating variety. Per Pandhi, this is the first analysis of the other 97 percent of non-repeating FRBs, using data from Canada’s CHIME instrument (Canadian Hydrogen Intensity Mapping Experiment). CHIME was built for other observations but is sensitive to many of the wavelengths that make up an FRB. Unlike most radio telescopes, which focus on small points in the sky, CHIME scans a huge area, allowing it to pick out FRBs even though they almost never happen in the same place twice.

Pandhi et al. decided to investigate how the direction of the light polarization from 128 non-repeating FRBs changes to learn more about the environments in which they originated. The team found that the polarized light from non-repeating FRBs changes both with time and with different colors of light. They concluded that this particular sample of non-repeating FRBs is either a separate population or more evolved versions of these kinds of FRBs that are part of a population that originated in less extreme environments with lower burst rates. That’s in keeping with the notion that non-repeating FRBs are quite different from their rarer repeating FRBs.

The Astrophysical Journal, 2024. DOI: 10.3847/1538-4357/ad40aa  (About DOIs).

Polarized light yields fresh insight into mysterious fast radio bursts Read More »

as-nasa-watches-starship-closely,-here’s-what-the-agency-wants-to-see-next

As NASA watches Starship closely, here’s what the agency wants to see next

Target and Chaser —

“What happens if I don’t have a Human Landing System available to execute a mission?”

The rocket for SpaceX's fourth full-scale Starship test flight awaits liftoff from Starbase, the company's private launch base in South Texas.

Enlarge / The rocket for SpaceX’s fourth full-scale Starship test flight awaits liftoff from Starbase, the company’s private launch base in South Texas.

SpaceX

Few people were happier with the successful outcome of last week’s test flight of SpaceX’s Starship launch system than a NASA engineer named Catherine Koerner.

In remarks after the spaceflight, Koerner praised the “incredible” video of the Starship rocket and its Super Heavy booster returning to Earth, with each making a soft landing. “That was very promising, and a very, very successful engineering test,” she added, speaking at a meeting of the Space Studies Board.

A former flight director, Koerner now manages development of the “exploration systems” that will support the Artemis missions for NASA—a hugely influential position within the space agency. This includes the Space Launch System rocket, NASA’s Orion spacecraft, spacesuits, and the Starship vehicle that will land on the Moon.

In recent months, NASA officials like Koerner have been grappling with the reality that not all of this hardware is likely to be ready for the planned September 2026 launch date for the Artemis III mission. In particular, the agency is concerned about Starship’s readiness as a “Human Landing System.” While SpaceX is pressing forward rapidly with a test campaign, there is still a lot of work to be done to get the vehicle down to the lunar surface and safely back into lunar orbit.

A spare tire

For these reasons, as Ars previously reported, NASA and SpaceX are planning for the possibility of modifying the Artemis III mission. Instead of landing on the Moon, a crew would launch in the Orion spacecraft and rendezvous with Starship in low-Earth orbit. This would essentially be a repeat of the Apollo 9 mission, buying down risk and providing a meaningful stepping stone between Artemis missions.

Officially, NASA maintains that the agency will fly a crewed lunar landing, the Artemis III mission, in September 2026. But almost no one in the space community regards that launch date as more than aspirational. Some of my best sources have put the most likely range of dates for such a mission from 2028 to 2032. A modified Artemis III mission, in low-Earth orbit, would therefore bridge a gap between Artemis II and an eventual landing.

Koerner has declined interview requests from Ars to discuss this, but during the Space Studies Board, she acknowledged seeing these reports on modifying Artemis III. She was then asked directly whether there was any validity to them. Here is her response in full:

So here’s what I’ll tell you, if you’ll permit me an analogy. I have in my car a spare tire, right? I don’t have a spare steering wheel. I don’t have spare windshield wipers. I have a spare tire. And why? Why do we carry a spare tire? That someone, at some point, did an assessment and said in order for this vehicle to accomplish its mission, there is a certain likelihood that some things may fail and a certain likelihood that other things may not fail, and it’s probably prudent to have a spare tire. I don’t necessarily need to have a spare steering wheel, right?

We at NASA do a lot of those kinds of assessments. Like, what happens if this isn’t available? What happens if that isn’t available? Do we have backup plans for that? We’re always doing those kinds of backup plans. Do we have backup plans? It’s imperative for me to look at what happens if an Orion spacecraft is not ready to do a mission. What happens if I don’t have an SLS ready to do a mission? What happens if I don’t have a Human Landing System available to execute a mission? What happens if I don’t have Gateway that I was planning on to do a mission?

So we look at backup plans all the time. There are lots of different opportunities for that. We have not made any changes to the current plan as I outlined it here today and talked about that. But we have lots of people who are looking at lots of different backup plans so that we are doing due diligence and making sure that we have the spare tire if we need the spare tire. It’s the reason we have, for example, two systems now that we’re developing for the Human Landing System, the one for SpaceX and the other one from Blue Origin. It’s the reason we have two providers that are building spacesuit hardware. Collins as well as Axiom, right? So we always are doing that kind of thing.

That is a long way of saying that if SpaceX’s Starship is not ready in 2026, NASA is actively considering alternative plans. (The most likely of these would be an Orion-Starship docking in low-Earth orbit.) NASA has not made any final plans and is waiting to see how Artemis II progresses and what happens with Starship and spacesuit development.

What SpaceX needs to demonstrate

During her remarks, Koerner was also asked what SpaceX’s next major milestone is and when it would need to be completed for NASA to remain on track for a lunar landing in 2026. “Their next big milestone test, from a contract perspective, is the cryogenic transfer test,” she said. “That is going to be early next year.”

Some details about the Starship propellant transfer test.

Enlarge / Some details about the Starship propellant transfer test.

NASA

This timeline is consistent with what NASA’s Human Landing System program manager, Lisa Watson-Morgan recently told Ars. It provides a useful benchmark to evaluate Starship’s progress in NASA’s eyes. The “prop transfer demo” is a fairly complex mission that involves the launch of a “Starship target” from the Starbase facility in South Texas. Then a second vehicle, the “Starship chaser,” will launch and meet the target in orbit and rendezvous. The chaser will then transfer a quantity of propellant to the target spaceship.

The test will entail a lot of technology, including docking mechanisms, navigation sensors, quick disconnects, and more. If SpaceX completes this test during the first quarter of 2025, NASA will at least theoretically have a path forward to a crewed lunar landing in 2026.

As NASA watches Starship closely, here’s what the agency wants to see next Read More »

stoke-space-ignites-its-ambitious-main-engine-for-the-first-time

Stoke Space ignites its ambitious main engine for the first time

Get stoked! —

“This industry is going toward full reusability. To me, that is the inevitable end state.”

A drone camera captures the hotfire test of Stoke Space's full-flow staged combustion engine at the company's testing facility in early June.

Enlarge / A drone camera captures the hotfire test of Stoke Space’s full-flow staged combustion engine at the company’s testing facility in early June.

Stoke Space

On Tuesday, Stoke Space announced the firing of its first stage rocket engine for the first time earlier this month, briefly igniting it for about two seconds. The company declared the June 5 test a success because the engine performed nominally and will be fired up again soon.

“Data point one is that the engine is still there,” said Andy Lapsa, chief executive of the Washington-based launch company, in an interview with Ars.

The test took place at the company’s facilities in Moses Lake, Washington. Seven of these methane-fueled engines, each intended to have a thrust of 100,000 pounds of force, will power the company’s Nova rocket. This launch vehicle will have a lift capacity of about 5 metric tons to orbit. Lapsa declined to declare a target launch date, but based on historical developmental programs, if Stoke continues to move fast, it could fly Nova for the first time in 2026.

Big ambitions for a small company

Although it remains relatively new in the field of emerging launch companies, Stoke has gathered a lot of attention because of its bold ambitions. The company intends for the two-stage Nova rocket to be fully reusable, with both stages returning to Earth. To achieve a vertical landing, the second stage has a novel design. This oxygen-hydrogen engine is based on a ring of 30 thrusters and a regeneratively cooled heat shield.

Lapsa and Stoke, which now has 125 employees, have also gone for an ambitious design in the first-stage engine tested earlier this month. The engine, with a placeholder name of S1E, is based on full-flow, stage-combustion technology in which the liquid propellants are burned in the engine’s pre-burners. Because of this, they arrive in the engine’s combustion chamber in fully gaseous form, leading to a more efficient mixing.

Such an engine—this technology has only previously been demonstrated in flight by SpaceX’s Raptor engine, on the Starship rocket—is more efficient and should theoretically extend turbine life. But it is also technically demanding to develop, and among the most complex engine designs for a rocket company to begin with. This is not rocket science. It’s exceptionally hard rocket science.

It may seem like Stoke is biting off a lot more than it can chew with Nova’s design. Getting to space is difficult enough for a launch startup, but this company is seeking to build a fully reusable rocket with a brand new second stage design and a first stage engine based on full-flow, staged combustion. I asked Lapsa if he was nuts for taking all of this on.

Are these guys nuts?

“I’ve been around long enough to know that any rocket development program is hard, even if you make it as simple as possible,” he responded. “But this industry is going toward full reusability. To me, that is the inevitable end state. When you start with that north star, any other direction you take is a diversion. If you start designing anything else, it’s not something where you can back into full reusability at any point. It means you’ll have to stop and start over to climb the mountain.”

This may sound like happy talk, but Stoke appears to be delivering on its ambitions. Last September, the company completed a successful “hop” test of its second stage at Moses Lake. This validated its design, thrust vector control, and avionics.

This engine is designed to power the Nova rocket.

Enlarge / This engine is designed to power the Nova rocket.

Stoke Space

After this test, the company turned its focus to developing the S1E engine and put it on the test stand for the first time in April before the first test firing in June. Going from zero to 350,000 horsepower in half a second for the first time had a “pretty high pucker factor,” Lapsa said of the first fully integrated engine test.

Now that this initial test is complete, Stoke will spend the rest of the year maturing the design of the engine, conducting longer test firings, and starting to develop flight stages. After that will come stage tests before the complete Nova vehicle is assembled. At the same time, Stoke is also working with the US Space Force on the regulatory process of refurbishing and modernizing Launch Complex 14 at Cape Canaveral Space Force Station in Florida.

Stoke Space ignites its ambitious main engine for the first time Read More »

neutrinos:-the-inscrutable-“ghost-particles”-driving-scientists-crazy

Neutrinos: The inscrutable “ghost particles” driving scientists crazy

ghostly experiments —

They hold the keys to new physics. If only we could understand them.

The Super-Kamiokande neutrino detector at the Kamioka Observatory in Japan.

Enlarge / The Super-Kamiokande neutrino detector at the Kamioka Observatory in Japan.

Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), the University of Tokyo

Somehow, neutrinos went from just another random particle to becoming tiny monsters that require multi-billion-dollar facilities to understand. And there’s just enough mystery surrounding them that we feel compelled to build those facilities since neutrinos might just tear apart the entire particle physics community at the seams.

It started out innocently enough. Nobody asked for or predicted the existence of neutrinos, but there they were in our early particle experiments. Occasionally, heavy atomic nuclei spontaneously—and for no good reason—transform themselves, with either a neutron converting into a proton or vice-versa. As a result of this process, known as beta decay, the nucleus also emits an electron or its antimatter partner, the positron.

There was just one small problem: Nothing added up. The electrons never came out of the nucleus with the same energy; it was a little different every time. Some physicists argued that our conceptions of the conservation of energy only held on average, but that didn’t feel so good to say out loud, so others argued that perhaps there was another, hidden particle participating in the transformations. Something, they argued, had to sap energy away from the electron in a random way to explain this.

Eventually, that little particle got a name, the neutrino, an Italian-ish word meaning “little neutral one.” Whatever the neutrino was, it didn’t carry any electric charge and only participated in the weak nuclear force, so we only saw neutrinos at work in radioactive decay processes. But even with the multitude of decays with energies great and small happening all across the Universe every single second, the elusive nature of neutrinos meant we could only occasionally, rarely, weakly see them.

But see them we did (although it took 25 years), and for a while, we could just pretend that nothing was wrong. The neutrino was just another particle the Universe didn’t strictly need to give us but somehow stubbornly insisted on giving us anyway.

And then we discovered there wasn’t just one neutrino but three of them. For reasons the cosmos has yet to divulge to us, it likes to organize its particles into groups of three, known as generations. Take a nice, stable, regular fundamental particle, like an electron or an up or down quark—those particles represent the first generation. The other two generations share the same properties (like spin and electric charge) but have a heavier mass.

For the electron, we have its generational sibling, the muon, which is just like the electron but 200 times heavier, and the tau, which is also just like the electron but 3,500 times heavier (that’s heavier than a proton). For the down quark, we have its siblings, the “strange” and “bottom” quarks. And we call the heavier versions of the up quark the “charm” and “top” quarks. Why does the Universe do this? Why three generations with these masses? As I said, the cosmos has chosen not to reveal that to us (yet).

So there are three generations of neutrinos, named for the kinds of interactions they participate in. Some nuclear reactions involve only the first generation of particles (which are the most common by far), the up and down quarks, and the electrons. Here, electron-neutrinos are involved. When muons play around, muon-neutrinos come out, too. And no points will be awarded for guessing the name of the neutrinos associated with tau particle interactions.

All this is… fine. Aside from the burning mystery of the existence of particle generations in the first place, it would be a bit greedy for one neutrino to participate in all possible reactions. So it has to share the job with two other generations. It seemed odd, but it all worked.

And then we discovered that neutrinos had mass, and the whole thing blew up.

Neutrinos: The inscrutable “ghost particles” driving scientists crazy Read More »

planned-nuclear-fuel-has-higher-proliferation-risks-than-thought

Planned nuclear fuel has higher proliferation risks than thought

A lump of rock, next to the periodic table entry for uranium, all against a black background.

High-assay low-enriched uranium (HALEU) has been touted as the go-to fuel for powering next-gen nuclear reactors, which include the sodium-cooled TerraPower or the space-borne system powering Demonstration Rocket for Agile Cislunar Operations (DRACO). That’s because it was supposed to offer higher efficiency while keeping uranium enrichment “well below the threshold needed for weapons-grade material,” according to the US Department of Energy.

This justified huge government investments in HALEU production in the US and UK, as well as relaxed security requirements for facilities using it as fuel. But now, a team of scientists has published an article in Science that argues that you can make a nuclear bomb using HALEU.

“I looked it up and DRACO space reactor will use around 300 kg of HALEU. This is marginal, but I would say you could make one a weapon with that much,” says Edwin Lyman, the director of Nuclear Power Safety at the Union of Concerned Scientists and co-author of the paper.

Forgotten threats

“When uranium is mined out of the ground, it’s mostly a mixture of two isotopes: uranium-238 and uranium-235. Uranium 235 concentrations are below one percent,” says Lyman. This is sent through an enrichment process, usually in gas centrifuges, where it is turned into gaseous form and centrifuged till the two isotopes are separated from each other due to their slight difference in their atomic weights. This can produce uranium with various levels of enrichment. Material that’s under 10 percent uranium-235 is called low-enriched uranium (LEU) and is used in power reactors working today. Moving the enrichment level up to between 10 and 20 percent, we get HALEU; above 20 percent, we start talking about highly enriched uranium, which can reach over 90 percent enrichment for uses like nuclear weapons.

“Historically, 20 percent has been considered a threshold between highly enriched uranium and low enriched uranium and, over time, that’s been associated with the limit of what is usable in nuclear weapons and what isn’t. But the truth is that threshold is not really a limit of weapons usability,” says Lyman. And we knew that since long time ago.

A study assessing the weaponization potential of uranium with different enrichment levels was done by the Los Alamos National Laboratory back in 1954. The findings were clear: Uranium enriched up to 10 percent was no good for weapons, regardless of how much of it you had. HALEU, though, was found to be of “weapons significance,” provided a sufficient amount was available. “My sense is that once they established 20 percent is somewhat acceptable, and given the material is weapons-usable only when you have enough of it, they just thought we’d need to limit the quantities and we’d be okay. That sort of got baked into the international security framework for uranium because there was not that much HALEU,” says Lyman. The Los Alamos study recommended releasing 100 kg of uranium enriched to up to 20 percent for research purposes in other countries, as they didn’t think 100 kg could lead to any nuclear threats.

The question that wasn’t answered at the time was how much was too much.

Planned nuclear fuel has higher proliferation risks than thought Read More »

bird-flu-virus-from-texas-human-case-kills-100%-of-ferrets-in-cdc-study

Bird flu virus from Texas human case kills 100% of ferrets in CDC study

Animal study —

H5N1 bird flu viruses have shown to be lethal in ferret model before.

Bird flu virus from Texas human case kills 100% of ferrets in CDC study

The strain of H5N1 bird flu isolated from a dairy worker in Texas was 100 percent fatal in ferrets used to model influenza illnesses in humans. However, the virus appeared inefficient at spreading via respiratory droplets, according to newly released study results from the Centers for Disease Control and Prevention.

The data confirms that H5N1 infections are significantly different from seasonal influenza viruses that circulate in humans. Those annual viruses make ferrets sick but are not deadly. They have also shown to be highly efficient at spreading via respiratory droplets, with 100 percent transmission rates in laboratory settings. In contrast, the strain from the Texas man (A/Texas/37/2024) appeared to have only a 33 percent transmission rate via respiratory droplets among ferrets.

“This suggests that A/Texas/37/2024-like viruses would need to undergo changes to spread efficiently by droplets through the air, such as from coughs and sneezes,” the CDC said in its data summary. The agency went on to note that “efficient respiratory droplet spread, like what is seen with seasonal influenza viruses, is needed for sustained person-to-person spread to happen.”

In the CDC’s study, researchers infected six ferrets with A/Texas/37/2024. The CDC’s data summary did not specify how the ferrets were infected in this study, but in other recent ferret H5N1 studies, the animals were infected by putting the virus in their noses. Ars has reached out to the agency for clarity on the inoculation route in the latest study and will update the story with any additional information provided.

All six of the infected ferrets developed severe disease and died. To test how well the virus could spread among the ferrets, the CDC scientists set up experiments to test transmission through direct contact and respiratory droplets. For the direct transmission test, three healthy ferrets were placed in the same enclosures with three experimentally infected ferrets. All three healthy ferrets became infected.

For the respiratory transmission test, three healthy ferrets were placed in enclosures next to enclosures containing the experimentally infected animals. The infected and uninfected ferrets shared air, but did not have direct contact with each other. Of the three healthy ferrets, only one contracted the H5N1 virus (33 percent). Additionally, that one respiratory transmission event seemed to have a one- to two-day delay compared with what’s seen in the same test with seasonal influenza viruses. This suggests further that the virus is inefficient at respiratory transmission.

The CDC called the overall results “not surprising.” Previous ferret experiments with H5N1 isolates—collected prior to the current bird flu outbreak among US dairy cows—have also found that H5N1 is often lethal to ferrets. Likewise, H5N1 isolates collected from Spain and Chile during the current global outbreak also found that the virus was inefficient at spreading via respiratory droplets among ferrets—with rates ranging from 0 percent to 37.5 percent.

For now, the findings don’t affect the CDC’s overall risk assessment for the general public, which is low. However, it does reinforce the risk to those who have contact with infected animals, particularly dairy and poultry farm workers.

To date, there have been four human cases of H5N1 in the US since the current global bird flu outbreak began in 2022—one in a poultry farm worker in 2022 and three in dairy farm workers, all reported between the beginning of April and the end of May this year. So far, the cases have been mild, the CDC noted, but given the results in ferrets, “it is possible that there will be serious illnesses among people,” the agency concluded.

As of June 9, the US Department of Agriculture has confirmed H5N1 in 85 dairy herds and one alpaca farm across 10 states.

Bird flu virus from Texas human case kills 100% of ferrets in CDC study Read More »

the-world’s-largest-fungus-collection-may-unlock-the-mysteries-of-carbon-capture

The world’s largest fungus collection may unlock the mysteries of carbon capture

Fungus samples are seen on display inside the Fungarium at the Royal Botanic Gardens in Kew, west London in 2023. The Fungarium was founded in 1879 and holds an estimated 380,000 specimens from the UK.

Enlarge / Fungus samples are seen on display inside the Fungarium at the Royal Botanic Gardens in Kew, west London in 2023. The Fungarium was founded in 1879 and holds an estimated 380,000 specimens from the UK.

It’s hard to miss the headliners at Kew Gardens. The botanical collection in London is home to towering redwoods and giant Amazonian water lilies capable of holding up a small child. Each spring, its huge greenhouses pop with the Technicolor displays of multiple orchid species.

But for the really good stuff at Kew, you have to look below the ground. Tucked underneath a laboratory at the garden’s eastern edge is the fungarium: the largest collection of fungi anywhere in the world. Nestled inside a series of green cardboard boxes are some 1.3 million specimens of fruiting bodies—the parts of the fungi that appear above ground and release spores.

“This is basically a library of fungi,” says Lee Davies, curator of the Kew fungarium. “What this allows us to do is to come up with a reference of fungal biodiversity—what fungi are out there in the world, where you can find them.” Archivists—wearing mushroom hats for some reason—float between the shelves, busily digitizing the vast archive, which includes around half of all the species known to science.

Fungarium Collections Manager Lee Davies inspects a fungus sample stored within the Fungarium at the Royal Botanic Gardens in Kew, west London in 2023.

Enlarge / Fungarium Collections Manager Lee Davies inspects a fungus sample stored within the Fungarium at the Royal Botanic Gardens in Kew, west London in 2023.

In the hierarchy of environmental causes, fungi have traditionally ranked somewhere close to the bottom, Davies says. He himself was brought to the fungarium against his will. Davies was working with tropical plants when a staffing reshuffle brought him to the temperature-controlled environs of the fungarium. “They moved me here in 2014, and it’s amazing. Best thing ever, I love it. It’s been a total conversion.”

Davies’ own epiphany echoes a wider awakening of appreciation for these overlooked organisms. In 2020, mycologist Merlin Sheldrake’s book Entangled Life: How Fungi Make Our Worlds, Change Our Minds, and Shape Our Futures was a surprise bestseller. In the video game and HBO series The Last of Us, it’s a fictional brain-eating fungus from the genus Cordyceps that sends the world into an apocalyptic spiral. (The Kew collection includes a tarantula infected with Cordyceps—fungal tendrils reach out from the soft gaps between the dead insect’s limbs.)

While the wider world is waking up to these fascinating organisms, scientists are getting to grips with the crucial role they play in ecosystems. In a laboratory just above the Kew fungarium, mycologist Laura Martinez-Suz studies how fungi help sequester carbon in the soil, and why some places seem much better at storing soil carbon than others.

Soil is a huge reservoir of carbon. There are around 1.5 trillion tons of organic carbon stored in soils across the world—about twice the amount of carbon in the atmosphere. Scientists used to think that most of this carbon entered the soil when dead leaves and plant matter decomposed, but it’s now becoming clear that plant roots and fungi networks are a critical part of this process. One study of forested islands in Sweden found that the majority of carbon in the forest soil actually came from root-fungi networks, not plant matter fallen from above the ground.

The world’s largest fungus collection may unlock the mysteries of carbon capture Read More »

nasa-is-commissioning-10-studies-on-mars-sample-return—most-are-commercial

NASA is commissioning 10 studies on Mars Sample Return—most are commercial

Alternatives —

SpaceX will show NASA how Starship could one day return rock samples from Mars.

An artist's concept of a Mars Ascent Vehicle orbiting the red planet.

Enlarge / An artist’s concept of a Mars Ascent Vehicle orbiting the red planet.

NASA announced Friday that it will award contracts to seven companies, including SpaceX and Blue Origin, to study how to transport rock samples from Mars more cheaply back to Earth.

The space agency put out a call to industry in April to propose ideas on how to return the Mars rocks to Earth for less than $11 billion and before 2040, the cost and schedule for NASA’s existing plan for Mars Sample Return (MSR). A NASA spokesperson told Ars the agency received 48 responses to the solicitation and selected seven companies to conduct more detailed studies.

Each company will receive up to $1.5 million for their 90-day studies. Five of the companies chosen by NASA are among the agency’s roster of large contractors, and their inclusion in the study contracts is no surprise. Two other winners are smaller businesses.

Mars Sample Return is the highest priority for NASA’s planetary science division. The Perseverance rover currently on Mars is gathering several dozen specimens of rock powder, soil, and Martian air in cigar-shaped titanium tubes for eventual return to Earth.

“Mars Sample Return will be one of the most complex missions NASA has undertaken, and it is critical that we carry it out more quickly, with less risk, and at a lower cost,” said Bill Nelson, NASA’s administrator. “I’m excited to see the vision that these companies, centers and partners present as we look for fresh, exciting, and innovative ideas to uncover great cosmic secrets from the red planet.”

Who’s in?

Lockheed Martin, the only company that has built a spacecraft to successfully land on Mars, will perform “rapid mission design studies for Mars Sample Return,” according to NASA. Northrop Grumman also won a contract for its proposal: “High TRL (Technology Readiness Level) MAV (Mars Ascent Vehicle) Propulsion Trades and Concept Design for MSR Rapid Mission Design.”

These two companies were partners in developing the solid-fueled Mars Ascent Vehicle for NASA’s existing Mars Sample Return mission. The MAV is the rocket that will propel the capsule containing the rock specimens from the surface of Mars back into space to begin the months-long journey back to Earth. The involvement of Lockheed Martin and Northrop Grumman in NASA’s Mars program, along with the study scope suggested in Northrop’s proposal, suggest they will propose applying existing capabilities to solve the program of Mars Sample Return.

Aerojet Rocketdyne, best known as a rocket propulsion supplier, will study a high-performance liquid-fueled Mars Ascent Vehicle using what it says are “highly reliable and mature propulsion technologies, to improve program affordability and schedule.”

SpaceX, a company with a long-term vision for Mars, also won NASA funding for a study contract. Its study proposal was titled “Enabling Mars Sample Return with Starship.” SpaceX is already designing the privately funded Starship rocket with Mars missions in mind, and Elon Musk, the company’s founder, has predicted Starship will land on Mars by the end of the decade.

Musk has famously missed schedule predictions before with Starship, and a landing on the red planet before the end of the 2020s still seems unlikely. However, the giant rocket could enable delivery to Mars and the eventual return of dozens of tons of cargo. A successful test flight of Starship this week proved SpaceX is making progress toward this goal. Still, there’s a long way to go.

Blue Origin, Jeff Bezos’ space company, will also receive funding for a study it calls “Leveraging Artemis for Mars Sample Return.”

SpaceX and Blue Origin each have multibillion-dollar contracts with NASA to develop Starship and the Blue Moon lander as human-rated spacecraft to ferry astronauts to and from the lunar surface as part of the Artemis program.

Two other small businesses, Quantum Space and Whittinghill Aerospace, will also conduct studies for NASA.

Quantum, which describes itself as a space infrastructure company, was founded in 2021 by entrepreneur Kam Ghaffarian, who also founded Intuitive Machines and Axiom Space. No details are known about the scope of its study, known as the “Quantum Anchor Leg Mars Sample Return Study.” Perhaps the “anchor leg” refers to the final stage of returning samples to Earth, like the anchor in a relay race.

Whittinghill Aerospace, based in California, has just a handful of employees. It will perform a rapid design study for a single-stage Mars Ascent Vehicle, NASA said.

Missing from the list of contract winners was Boeing, which has pushed the use of NASA’s super-expensive Space Launch System to do the Mars Sample Return mission with a single launch. Boeing, of course, builds most of the SLS rocket. Most other sample return concepts require multiple launches.

Alongside the seven industry contracts, NASA centers, the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL) at Johns Hopkins University will also produce studies on how to complete the Mars Sample Return mission more affordablely.

JPL is the lead center in charge of managing NASA’s existing concept for Mars Sample Return in partnership with the European Space Agency. However, cost growth and delays prompted NASA officials to decide in April to take a different approach.

Nicola Fox, head of NASA’s science directorate, said in April that she hopes “out of the box” concepts will allow the agency to get the samples back to Earth in the 2030s rather than in 2040 or later. “This is definitely a very ambitious goal,” she said. “We’re going to need to go after some very innovative new possibilities for a design and certainly leave no stone unturned.”

NASA will use the results of these 10 studies to craft a new approach for Mars Sample Return later this year. Most likely, the architecture NASA ultimately chooses will mix and match various elements from industry, NASA centers, and the European Space Agency, which remains a committed partner on Mars Sample Return with the Earth Return Orbiter.

NASA is commissioning 10 studies on Mars Sample Return—most are commercial Read More »

people-are-seizing,-being-intubated-after-eating-microdose-chocolates

People are seizing, being intubated after eating microdose chocolates

Yikes —

“Extreme caution” urged as at least 8 people in 4 states sickened, 6 hospitalized.

A Diamond Shruumz chocolate bar, which come in a variety of flavors.

Enlarge / A Diamond Shruumz chocolate bar, which come in a variety of flavors.

Various federal and state health officials are sounding the alarm on Diamond Shruumz-brand Microdosing Chocolate Bars. The candy, said to be infused with mushrooms, has been linked to severe illnesses, including seizures, loss of consciousness, confusion, sleepiness, agitation, abnormal heart rates, hyper/hypotension, nausea, and vomiting, according to an outbreak alert released by the Food and Drug Administration on Friday.

So far, eight people across four states have been sickened—four in Arizona, two in Indiana, one in Nevada, and one in Pennsylvania, the FDA reported. Of the eight, six have been hospitalized.

“We are urging the public to use extreme caution due to the very serious effects of these products,” Maureen Roland, director of the Banner Poison and Drug Information Center in Phoenix, said in a press release earlier this week.

Steve Dudley, director of the Arizona Poison and Drug Information Center, added that there’s “clearly something toxic occurring” with the chocolates. “We’ve seen the same phenomenon of people eating the chocolate bar then seizing, losing consciousness, and having to be intubated.” Dudley noted that the state is aware of additional cases beyond the eight reported Friday by the FDA. Those cases were reported from Nebraska and Utah.

It’s not entirely clear what is in the chocolates or what could be causing the illnesses. The FDA said it was working with the Centers for Disease Control and Prevention as well as America’s Poison Centers to “determine the cause of these illnesses and is considering the appropriate next steps.”

On its website, Diamond Shruumz says that its chocolate bars contain a “primo proprietary blend of nootropic and functional mushrooms.” The website also contains reports of laboratory analyses on their products, some of which indicate the absence of select known fungal toxins and compounds such as the hallucinogen psilocybin and cannabinoids.

Diamond Shruumz did not immediately respond to Ars’ request for comment.

The chocolate bars are still available for sale online but the FDA said that consumers should not eat, sell, or serve them. Any bars already purchased should be discarded. Likewise, retailers should not sell or distribute them. The FDA noted that, in addition to being available online, the bars are also sold in various retail locations nationwide, including smoke/vape shops and retailers that sell hemp-derived products.

People are seizing, being intubated after eating microdose chocolates Read More »

ars-chats-with-precision,-the-brain-chip-maker-taking-the-road-less-invasive

Ars chats with Precision, the brain-chip maker taking the road less invasive

Brain-chip buzz —

Precision tested its BCI on 14 people so far. Two more are scheduled this month.

Precision’s Layer 7 Cortical Interface array.

Enlarge / Precision’s Layer 7 Cortical Interface array.

Work toward brain-computer interfaces has never been more charged. Though neuroscientists have toiled for decades to tap directly into human thoughts, recent advances have the field buzzing with anticipation—and the involvement of one polarizing billionaire has drawn a new level of attention.

With competition amping up in this space, Ars spoke with Ben Rapoport, who is a neurosurgeon, electrical engineer, and co-founder of the brain-computer interface (BCI) company Precision Neuroscience. Precision is at the forefront of the field, having placed its BCI on the brains of 14 human patients so far, with two more scheduled this month. Rapoport says he hopes to at least double that number of human participants by the end of this year. In fact, the 3-year-old company expects to have its first BCI on the market next year.

In addition to the swift progress, Precision is notable for its divergence from its competitor’s strategies, namely Neuralink, the most high-profile BCI company and headed by Elon Musk. In 2016, Rapoport co-founded Neuralink alongside Musk and other scientists. But he didn’t stay long and went on to co-found Precision in 2021. In previous interviews, Rapoport suggested his split from Neuralink related to the issues of safety and invasiveness of the BCI design. While Neuralink’s device is going deeper into the brain—trying to eavesdrop on neuron signals with electrodes at close range to decode thoughts and intended motions and speech—Precision is staying at the surface, where there is little to no risk of damaging brain tissue.

Shallow signals

“It used to be thought that you needed to put needle-like electrodes into the brain surface in order to listen to signals of adequate quality,” Rapoport told Ars. Early BCIs developed decades ago used electrode arrays with tiny needles that sink up to 1.5 millimeters into brain tissue. Competitors such as Blackrock Neurotech and Paradromics are still developing such designs. (Another competitor, Synchron, is developing a stent-like device threaded into a major blood vessel in the brain.) Meanwhile, Neuralink is going deeper, using a robot to surgically implant electrodes into brain tissue, reportedly between 3 mm and 8 mm deep.

However, Rapoport eschews this approach. Anytime something essentially cuts into the brain, there’s damage, he notes. Scar tissue and fibrous tissue can form—which is bad for the patient and the BCI’s functioning. “So, there’s not infinite scalability [to such designs],” Rapoport notes, “because when you try to scale that up to making lots of little penetrations into the brain, at some point you can run into a limitation to how many times you can penetrate the brain without causing irreversible and undetectable damage.”

Further, he says, penetrating the brain is just unnecessary. Rapoport says there is no fundamental data that suggests that penetration is necessary for BCIs advances. Rather, the idea was based on the state of knowledge and technology from decades ago. “It was just that it was an accident that that’s how the field got started,” he said. But, since the 1970s, when centimeter-scale electrodes were first being used to capture brain activity, the technology has advanced from the macroscopic to microscopic range, creating more powerful devices.

“All of conscious thought—movement, sensation, intention, vision, etc.—all of that is coordinated at the level of the neocortex, which is the outermost two millimeters of the brain,” Rapoport said. “So, everything, all of the signals of interest—the cognitive processing signals that are interesting to the brain-computer interface world—that’s all happening within millimeters of the brain surface … we’re talking about very small spatial scales.” With the more potent technology of today, Precision thinks it can collect the data it needs without physically traversing those tiny distances.

Ars chats with Precision, the brain-chip maker taking the road less invasive Read More »

new-camera-design-can-id-threats-faster,-using-less-memory

New camera design can ID threats faster, using less memory

Image out the windshield of a car, with other vehicles highlighted by computer-generated brackets.

Elon Musk, back in October 2021, tweeted that “humans drive with eyes and biological neural nets, so cameras and silicon neural nets are only way to achieve generalized solution to self-driving.” The problem with his logic has been that human eyes are way better than RGB cameras at detecting fast-moving objects and estimating distances. Our brains have also surpassed all artificial neural nets by a wide margin at general processing of visual inputs.

To bridge this gap, a team of scientists at the University of Zurich developed a new automotive object-detection system that brings digital camera performance that’s much closer to human eyes. “Unofficial sources say Tesla uses multiple Sony IMX490 cameras with 5.4-megapixel resolution that [capture] up to 45 frames per second, which translates to perceptual latency of 22 milliseconds. Comparing [these] cameras alone to our solution, we already see a 100-fold reduction in perceptual latency,” says Daniel Gehrig, a researcher at the University of Zurich and lead author of the study.

Replicating human vision

When a pedestrian suddenly jumps in front of your car, multiple things have to happen before a driver-assistance system initiates emergency braking. First, the pedestrian must be captured in images taken by a camera. The time this takes is called perceptual latency—it’s a delay between the existence of a visual stimuli and its appearance in the readout from a sensor. Then, the readout needs to get to a processing unit, which adds a network latency of around 4 milliseconds.

The processing to classify the image of a pedestrian takes further precious milliseconds. Once that is done, the detection goes to a decision-making algorithm, which takes some time to decide to hit the brakes—all this processing is known as computational latency. Overall, the reaction time is anywhere between 0.1 to half a second. If the pedestrian runs at 12 km/h they would travel between 0.3 and 1.7 meters in this time. Your car, if you’re driving 50 km/h, would cover 1.4 to 6.9 meters. In a close-range encounter, this means you’d most likely hit them.

Gehrig and Davide Scaramuzza, a professor at the University of Zurich and a co-author on the study, aimed to shorten those reaction times by bringing the perceptual and computational latencies down.

The most straightforward way to lower the former was using standard high-speed cameras that simply register more frames per second. But even with a 30-45 fps camera, a self-driving car would generate nearly 40 terabytes of data per hour. Fitting something that would significantly cut the perceptual latency, like a 5,000 fps camera, would overwhelm a car’s onboard computer in an instant—the computational latency would go through the roof.

So, the Swiss team used something called an “event camera,” which mimics the way biological eyes work. “Compared to a frame-based video camera, which records dense images at a fixed frequency—frames per second—event cameras contain independent smart pixels that only measure brightness changes,” explains Gehrig. Each of these pixels starts with a set brightness level. When the change in brightness exceeds a certain threshold, the pixel registers an event and sets a new baseline brightness level. All the pixels in the event camera are doing that continuously, with each registered event manifesting as a point in an image.

This makes event cameras particularly good at detecting high-speed movement and allows them to do so using far less data. The problem with putting them in cars has been that they had trouble detecting things that moved slowly or didn’t move at all relative to the camera. To solve that, Gehrig and Scaramuzza went for a hybrid system, where an event camera was combined with a traditional one.

New camera design can ID threats faster, using less memory Read More »