Science

brewing-tea-removes-lead-from-water

Brewing tea removes lead from water

Testing the teas

Scanning electron microscope image of black tea leaves, magnified by 500 times. Black tea, which is wilted and fully oxidized, exhibits a wrinkled surface, potentially increasing the available surface area for adsorption. Credit: Vinayak P. Dravid Group/Northwestern University

To test their hypothesis, the authors purchased Lipton and Infusions commercial tea bags, as well as a variety of loose-leaf teas and herbal alternatives: black tea, green tea, white peony tea, oolong tea, rooibos tea, and chamomile tea. The tea bags were of different types (cotton, cellulose, and nylon). They brewed the tea the same way daily tea drinkers do, steeping the tea for various time intervals (mere seconds to 24 hours) in water spiked with elevated known levels of lead, chromium, copper zinc, and cadmium. Tea leaves were removed after steeping by pouring the tea through a cellulose filter into a separate tube. The team then measured how much of the toxic metals remained in the water and how much the leaves had adsorbed.

It turns out that the type of tea bag matters. The team found that cellulose tea bags work the best at adsorbing toxic metals from the water while cotton and nylon tea bags barely adsorbed any contaminants at all—and nylon bags also release contaminating microplastics to boot. Tea type and the grind level also played a part in adsorbing toxic metals, with finely ground black tea leaves performing the best on that score. This is because when those leaves are processed, they get wrinkled, which opens the pores, thereby adding more surface area. Grinding the tea further increases that surface area, with even more capacity for binding toxic metals.

But the most significant factor was steeping time: the longer the steeping time, the more toxic metals were adsorbed. Based on their experiments, the authors estimate that brewing tea—using a tea bag that steeps for three to five minutes in a mug—can remove about 15 percent of lead from drinking water, even water with concentrations as high as 10 parts per million.

Brewing tea removes lead from water Read More »

covid-shots-protect-kids-from-long-covid—and-don’t-cause-sudden-death

COVID shots protect kids from long COVID—and don’t cause sudden death

Benefits and a non-existent risk

Using an adjusted odds ratio, the researchers found that vaccination reduced the likelihood of developing long COVID with one or more symptoms by 57 percent, and reduced the likelihood of developing long COVID with two or more symptoms by 73 percent. Vaccination prior to infection was also linked to a 75 percent reduction in risk of developing long COVID that impacted day-to-day functioning. The authors note that the estimates of protection are likely underestimates because the calculations do not account for the fact that vaccination prevented some children from getting infected in the first place.

“Our findings suggest that children should stay up to date with current COVID-19 vaccination recommendations as vaccination not only protects against severe COVID-19 illness but also protects against [long Covid],” the authors conclude.

In a second short report in JAMA Network Open, researchers helped dispel concern that the vaccines could cause sudden cardiac arrest or sudden cardiac death in young athletes. This is an unproven claim that was fueled by anti-vaccine advocates amid the pandemic, including the new US Health Secretary and long-time anti-vaccine advocate Robert F. Kennedy Jr.

While previous analyses have failed to find a link between COVID-19 vaccines and sudden cardiac deaths, the new study took a broader approach. The study, led by researchers at the University of Washington, looked at whether the number of sudden cardiac arrests (SCA) and sudden cardiac deaths (SCD) among young athletes changed at all during the pandemic (2020–2022) compared with prior years (2017–2019). The researchers drew records from the National Center for Catastrophic Sports Injury Research. They also collected medical records and autopsy reports on cases among competitive athletes from the youth, middle school, high school, club, college, or professional levels who experienced sudden cardiac arrest or death at any time.

In all, there were 387 cases, with no statistically significant difference in the number of cases in the years prior to the pandemic (203) compared with those during the pandemic (184).

“This cohort study found no increase in SCA/SCD in young competitive athletes in the US during the COVID-19 pandemic, suggesting that reports asserting otherwise were overestimating the cardiovascular risk of COVID-19 infection, vaccination, and myocarditis,” the authors conclude.

COVID shots protect kids from long COVID—and don’t cause sudden death Read More »

in-war-against-dei-in-science,-researchers-see-collateral-damage

In war against DEI in science, researchers see collateral damage


Senate Republicans flagged thousands of grants as “woke DEI” research. What does that really mean?

Senate Commerce Committee Chairman Ted Cruz (R-Texas) at a hearing on Tuesday, January 28, 2025. Credit: Getty Images | Tom Williams

When he realized that Senate Republicans were characterizing his federally funded research project as one of many they considered ideological and of questionable scientific value, Darren Lipomi, chair of the chemical engineering department at the University of Rochester, was incensed. The work, he complained on social media, was aimed at helping “throat cancer patients recover from radiation therapy faster.” And yet, he noted on Bluesky, LinkedIn, and X, his project was among nearly 3,500 National Science Foundation grants recently described by the likes of Ted Cruz, the Texas Republican and chair of the powerful Senate Committee on Commerce, Science, and Transportation, as “woke DEI” research. These projects, Cruz argued, were driven by “Neo-Marxist class warfare propaganda,” and “far-left ideologies.”

“Needless to say,” Lipomi wrote of his research, “this project is not espousing class warfare.”

The list of grants was compiled by a group of Senate Republicans last fall and released to the public earlier this month, and while the NSF does not appear to have taken any action in response to the complaints, the list’s existence is adding to an atmosphere of confusion and worry among researchers in the early days of President Donald J. Trump’s second administration. Lipomi, for his part, described the situation as absurd. Others described it as chilling.

“Am I going to be somehow identified as an immigrant that’s exploiting federal funding streams and so I would just get deported? I have no idea,” said cell biologist Shumpei Maruyama, an early-career scientist and Japanese immigrant with permanent residency in the US, upon seeing his research on the government watch list. “That’s a fear.”

Just being on that list, he added, “is scary.”

The NSF, an independent government agency, accounts for around one-quarter of federal funding for science and engineering research at American colleges and universities. The 3,483 flagged projects total more than $2 billion and represent more than 10 percent of all NSF grants awarded between January 2021 and April 2024. The list encompasses research in all 50 states, including 257 grants totaling more than $150 million to institutions in Cruz’s home state of Texas.

The flagged grants, according to the committee report, “went to questionable projects that promoted diversity, equity, and inclusion (DEI) tenets or pushed onto science neo-Marxist perspectives about enduring class struggle.” The committee cast a wide net, using a programming tool to trawl more than 32,000 project descriptions for 699 keywords and phrases that they identified as linked to diversity, equity, and inclusion.

Cruz has characterized the list as a response to a scientific grantmaking process that had become mired in political considerations, rather than focused on core research goals. “The Biden administration politicized everything it touched,” Cruz told Undark and NOTUS. “Science research is important, but we should want researchers spending time trying to figure out how to cure cancer, how to cure deadly diseases, not bean counting to satisfy the political agenda of Washington Democrats.”

“The ubiquity of these DEI requirements that the Biden administration engrafted on virtually everything,” Cruz added, “pulls a lot of good research money away from needed research to satisfy the political pet projects of Democrats.”

Others described the list—and other moves against DEI initiatives in research—as reversing decades-old bipartisan policies intended to strengthen US science. For past Congresses and administrations, including the first Trump term, DEI concepts were not controversial, said Neal F. Lane, who served as NSF director in the 1990s and as a science adviser to former President Bill Clinton. “Budget after budget was appropriated funds specifically to address these issues, to make sure all Americans have an opportunity to contribute to advancement of science and technology in the country,” he said. “And that the country then, in turn, benefits from their participation.”

At the same time, he added: “Politics can be ugly.”

Efforts to promote diversity in research predate the Biden administration. A half a century ago, the NSF established a goal of increasing the number of women and underrepresented groups in science. The agency began targeting programs for minority-serving institutions as well as minority faculty and students.

In the 1990s, Lane, as NSF director, ushered in the requirement that, in addition to intellectual merit, reviewers should consider a grant proposal’s “broader impacts.” In general, he said, the aim was to encourage science that would benefit society.

The broader impacts requirement remains today. Among other options, researchers can fulfill it by including a project component that increases the participation of women, underrepresented minorities in STEM, and people with disabilities. They can also meet the requirement by promoting science education or educator development, or by demonstrating that a project will build a more diverse workforce.

The Senate committee turned up thousands of “DEI” grants because the broad search not only snagged projects with a primary goal of increasing diversity—such as a $1.2 million grant to the Colorado School of Mines for a center to train engineering students to promote equity among their peers—but also research that referenced diversity in describing its broader impact or in describing study populations. Lipomi’s project, for example, was likely flagged because it mentions recruiting a diverse group of participants, analyzing results according to socioeconomic status, and posits that patients with disabilities might benefit from wearable devices for rehabilitation.

According to the committee report, concepts related to race, gender, societal status, as well as social and environmental justice undermine hard science. They singled out projects that identified groups of people as underrepresented, underserved, socioeconomically disadvantaged, or excluded; recognized inequities; or referenced climate research.

Red flags also included words like “gender,” “ethnicity,” and “sexuality,” along with scores of associated terms — “female,” “women,” “interracial,” “heterosexual,” “LGBTQ,” as well as “Black,” “White,” “Hispanic,” or “Indigenous” when referring to groups of people. “Status” also made the list along with words such as “biased,” “disability,” “minority,” and “socioeconomic.”

In addition, the committee flagged “environmental justice” and terms that they placed in that category such as “climate change,” “climate research,” and “clean energy.”

The committee individually reviewed grants for more than $1 million, according to the report.

The largest grant on the list awarded more than $29 million to the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign, which contributes to the vast computing resources needed for artificial intelligence research. “I don’t know exactly why we were flagged, because we’re an AI resource for the nation,” said NCSA Director William Gropp.

One possible reason for the flag, Gropp theorized, is that one of the project’s aims is to provide computing power to states that have historically received less funding for research and development—including many Republican-leaning states—as well as minority-serving institutions. The proposal also states that a lack of diversity contributes to “embedded biases and other systemic inequalities found in AI systems today.”

The committee also flagged a grant with a total intended award amount of $26 million to a consortium of five institutions in North Carolina to establish an NSF Engineering Research Center to engineer microbial life in indoor spaces, promoting beneficial microbes while preventing the spread of pathogens. One example of such work would be thinking about how to minimize the risk that pathogens caught in a hospital sink would get aerosolized and spread to patients, said Joseph Graves, Jr., an evolutionary biologist and geneticist at North Carolina A&T State University and a leader of the project.

Graves was not surprised that his project made the committee’s list, as NSF policy has required research centers to include work on diversity and a culture of inclusion, he said.

The report, Graves said, seems intended to strip science of diversity, which he views as essential to the scientific endeavor. “We want to make the scientific community look more like the community of Americans,” said Graves. That’s not discriminating against White or Asian people, he said: “It’s a positive set of initiatives to give people who have been historically underrepresented and underserved in the scientific community and the products it produces to be at the table to participate in scientific research.”

“We argue that makes science better, not worse,” he added.

The political environment has seemingly left many scientists nervous to speak about their experiences. Three of the major science organizations Undark contacted—the Institute of Electrical and Electronics Engineers, the National Academy of Sciences, and the American Institute of Physics—either did not respond or were not willing to comment. Many researchers appearing on Cruz’s list expressed hesitation to speak, and only men agreed to interviews: Undark contacted eight women leading NSF-funded projects on the list. Most did not respond to requests for comment, while others declined to talk on the record.

Darren Lipomi, the chemical engineer, drew a parallel between the committee report and US Sen. Joseph McCarthy’s anti-communist campaign in the early 1950s. “It’s inescapable,” said Lipomi, whose project focused on developing a medical device that provides feedback on swallowing to patients undergoing radiation for head and neck cancer. “I know what Marxism is, and this was not that.”

According to Joanne Padrón Carney, chief government relations officer at the American Association for the Advancement of Science, Republican interest in scrutinizing purportedly ideological research dovetails with a sweeping executive order, issued immediately after Trump’s inauguration, aimed at purging the government of anything related to diversity, equity, and inclusion. Whether and how the Senate committee report will wind up affecting future funding, however, remains to be seen. “Between the executive order on DEI and now the list of terms that was used in the Cruz report, NSF is now in the process of reviewing their grants,” Carney said. One immediate impact is that scientists may become more cautious in preparing their proposals, said Carney.

Emails to the National Science Foundation went unanswered. In response to a question about grant proposals that, like Lipomi’s, only have a small component devoted to diversity, Cruz said their status should be determined by the executive branch.

“I would think it would be reasonable that if the DEI components can reasonably be severed from the project, and the remaining parts of the project are meritorious on their own, then the project should continue,” Cruz said. “It may be that nothing of value remains once DEI is removed. It would depend on the particular project.”

Physicist and former NSF head Neal F. Lane said he suspects that “DEI” has simply become a politically expedient target—as well as an excuse to slash spending. Threats to science funding are already causing huge uncertainty and distraction from what researchers and universities are supposed to be doing, he said. “But if there’s a follow-through on many of these efforts made by the administration, any damage would be enormous.”

That damage might well include discouraging young researchers from pursuing scientific careers at all, Carney said—particularly if the administration is perceived as being uninterested in a STEM workforce that is representative of the US population. “For us to be able to compete at the global arena in innovation,” she said, “we need to create as many pathways as we can for all young students—from urban and rural areas, of all races and genders—to see science and technology as a worthwhile career.”

These questions are not just academic for cell biologist and postdoctoral researcher Shumpei Maruyama, who is thinking about becoming a research professor. He’s now concerned that the Trump administration’s proposed cuts to funding from the National Institutes of Health, which supports research infrastructure at many institutions, will sour the academic job market as schools are forced to shutter whole sections or departments. He’s also worried that his research, which looks at the effects of climate change on coral reefs, won’t be fundable under the current administration—not least because his work, too, is on the committee’s list.

“Corals are important just for the inherent value of biodiversity,” Maruyama said.

Although he remains worried about what happens next, Maruyama said he is also “weirdly proud” to have his research flagged for its expressed connection to social and environmental justice. “That’s exactly what my research is focusing on,” he said, adding that the existence of coral has immeasurable environmental and social benefits. While coral reefs cover less than 1 percent of the world’s oceans in terms of surface area, they house nearly one-quarter of all marine species. They also protect coastal areas from surges and hurricanes, noted Maruyama, provide food and tourism for local communities, and are a potential source of new medications such as cancer drugs.

While he also studies corals because he finds them “breathtakingly beautiful,” Maruyama, suggested that everyone—regardless of ideology—has a stake in their survival. “I want them to be around,” he said.

This story was co-reported by Teresa Carr for Undark and Margaret Manto for NOTUS. This article was originally published on Undark. Read the original article.

In war against DEI in science, researchers see collateral damage Read More »

flashy-exotic-birds-can-actually-glow-in-the-dark

Flashy exotic birds can actually glow in the dark

Found in the forests of Papua New Guinea, Indonesia, and Eastern Australia, birds of paradise are famous for flashy feathers and unusually shaped ornaments, which set the standard for haute couture among birds. Many use these feathers for flamboyant mating displays in which they shape-shift into otherworldly forms.

As if this didn’t attract enough attention, we’ve now learned that they also glow in the dark.

Biofluorescent organisms are everywhere, from mushrooms to fish to reptiles and amphibians, but few birds have been identified as having glowing feathers. This is why biologist Rene Martin of the University of Nebraska-Lincoln wanted to investigate. She and her team studied a treasure trove of specimens at the American Museum of Natural History, which have been collected since the 1800s, and found that 37 of the 45 known species of birds of paradise have feathers that fluoresce.

The glow factor of birds of paradise is apparently important for mating displays. Despite biofluorescence being especially prominent in males, attracting a mate might not be all it is useful for, as these birds might also use it to signal to each other in other ways and sometimes even for camouflage among the light and shadows.

“The current very limited number of studies reporting fluorescence in birds suggests this phenomenon has not been thoroughly investigated,” the researchers said in a study that was recently published in Royal Society Open Science.

Glow-up

How do they get that glow? Biofluorescence is a phenomenon that happens when shorter, high-energy wavelengths of light, meaning UV, violet, and blue, are absorbed by an organism. The energy then gets re-emitted at longer, lower-energy wavelengths—greens, yellows, oranges, and reds. The feathers of birds of paradise contain fluorophores, molecules that undergo biofluorescence. Specialized filters in the light-sensitive cells of their eyes make their visual system more sensitive to biofluorescence.

Flashy exotic birds can actually glow in the dark Read More »

the-seemingly-indestructible-fists-of-the-mantis-shrimp-can-take-a-punch

The seemingly indestructible fists of the mantis shrimp can take a punch

To find out how much force a mantis shrimp’s dactyl clubs can possibly withstand, the researchers tested live shrimp by having them strike a piezoelectric sensor like they would smash a shell. They also fired ultrasonic and hypersonic lasers at pieces of dactyl clubs from their specimens so they could see how the clubs defended against sound waves.

By tracking how sound waves propagated on the surface of the dactyl club, the researchers could determine which regions of the club diffused the most waves. It was the second layer, the impact surface, that handled the highest levels of stress. The periodic surface was almost as effective. Together, they made the dactyl clubs nearly immune to the stresses they generate.

There are few other examples that the protective structures of the mantis shrimp can be compared to. On the prey side, evidence has been found that the scales on some moths’ wings absorb sound waves from predatory bats to keep them from echolocation to find them.

Understanding how mantis shrimp defend themselves from extreme force could inspire new technology. The structures in their dactyl clubs could influence the designs of military and athletic protective gear in the future.

“Shrimp impacts contain frequencies in the ultrasonic range, which has led to shrimp-inspired solutions that point to ultrasonic filtering as a key [protective] mechanism,” the team said in the same study.

Maybe someday, a new bike helmet model might have been inspired by a creature that is no more than seven inches long but literally doesn’t crack under pressure.

Science, 2025.  DOI:  10.1126/science.adq7100

The seemingly indestructible fists of the mantis shrimp can take a punch Read More »

german-startup-to-attempt-the-first-orbital-launch-from-western-europe

German startup to attempt the first orbital launch from Western Europe

The nine-engine first stage for Isar Aerospace’s Spectrum rocket lights up on the launch pad on February 14. Credit: Isar Aerospace

Isar builds almost all of its rockets in-house, including Spectrum’s Aquila engines.

“The flight will be the first integrated test of tens of thousands of components,” said Josef Fleischmann, Isar’s co-founder and chief technical officer. “Regardless of how far we get, this first test flight will hopefully generate an enormous amount of data and experience which we can apply to future missions.”

Isar is the first European startup to reach this point in development. “Reaching this milestone is a huge success in itself,” Meltzer said in a statement. “And while Spectrum is ready for its first test flight, launch vehicles for flights two and three are already in production.”

Another Bavarian company, Rocket Factory Augsburg, destroyed its first booster during a test-firing on its launch pad in Scotland last year, ceding the frontrunner mantle to Isar. RFA received its launch license from the UK government last month and aims to deliver its second booster to the launch site for hot-fire testing and a launch attempt later this year.

There’s an appetite within the European launch industry for new companies to compete with Arianespace, the continent’s sole operational launch services provider backed by substantial government support. Delays in developing the Ariane 6 rocket and several failures of Europe’s smaller Vega launcher forced European satellite operators to look abroad, primarily to SpaceX, to launch their payloads.

The European Space Agency is organizing the European Launcher Challenge, a competition that will set aside some of the agency’s satellites for launch opportunities with a new crop of startups. Isar is one of the top contenders in the competition to win money from ESA. The agency expects to award funding to multiple European launch providers after releasing a final solicitation later this year.

The first flight of the Spectrum rocket will attempt to reach a polar orbit, flying north from Andøya Spaceport. Located at approximately 69 degrees north latitude, the spaceport is poised to become the world’s northernmost orbital launch site.

Because the inaugural launch of the Spectrum rocket is a test flight, it won’t carry any customer payloads, an Isar spokesperson told Ars.

German startup to attempt the first orbital launch from Western Europe Read More »

researchers-figure-out-how-to-get-fresh-lithium-into-batteries

Researchers figure out how to get fresh lithium into batteries

In their testing, they use a couple of unusual electrode materials, such as a chromium oxide (Cr8O21) and an organic polymer (a sulfurized polyacrylonitrile). Both of these have significant weight advantages over the typical materials used in today’s batteries, although the resulting batteries typically lasted less than 500 cycles before dropping to 80 percent of their original capacity.

But the striking experiment came when they used LiSO2CF3 to rejuvenate a battery that had been manufactured as normal but had lost capacity due to heavy use. Treating a lithium-iron phosphate battery that had lost 15 percent of its original capacity restored almost all of what was lost, allowing it to hold over 99 percent of its original charge. They also ran a battery for repeated cycles with rejuvenation every few thousand cycles. At just short of 12,000 cycles, it still could be restored to 96 percent of its original capacity.

Before you get too excited, there are a couple of things worth noting about lithium-iron phosphate cells. The first is that, relative to their charge capacity, they’re a bit heavy, so they tend to be used in large, stationary batteries like the ones in grid-scale storage. They’re also long-lived on their own; with careful management, they can take over 8,000 cycles before they drop to 80 percent of their initial capacity. It’s not clear whether similar rejuvenation is possible in the battery chemistries typically used for the sorts of devices that most of us own.

The final caution is that the battery needs to be modified so that fresh electrolytes can be pumped in and the gases released by the breakdown of the LiSO2CF3 removed. It’s safest if this sort of access is built into the battery from the start, rather than provided by modifying it much later, as was done here. And the piping needed would put a small dent in the battery’s capacity per volume if so.

All that said, the treatment demonstrated here would replenish even a well-managed battery closer to its original capacity. And it would largely restore the capacity of something that hadn’t been carefully managed. And that would allow us to get far more out of the initial expense of battery manufacturing. Meaning it might make sense for batteries destined for a large storage facility, where lots of them could potentially be treated at the same time.

Nature, 2025. DOI: 10.1038/s41586-024-08465-y  (About DOIs).

Researchers figure out how to get fresh lithium into batteries Read More »

“bouncing”-winds-damaged-houston-skyscrapers-in-2024

“Bouncing” winds damaged Houston skyscrapers in 2024

“Bouncing” winds

Damage sustained by the Chevron Building Auditorium during the derecho: a) damaged side of the building, b) global damage view, c) & d) localized glass damage.

Damage sustained by the Chevron Building Auditorium during the derecho: a) damaged side of the building, b) global damage view, c) & d) localized glass damage.

Damage sustained by the Chevron Building Auditorium during the derecho: a) damaged side of the building, b) global damage view, c) & d) localized glass damage. Credit: Padgett et al., 2024

Elawady decided to investigate why the Houston derecho’s structural damage was so much more extensive than one might expect. He and his colleagues analyzed the impact of the derecho on five of the city’s most notable buildings: The Chevron Building Auditorium, the CenterPoint Energy Plaza, the El Paso Energy Building, the RRI Energy Plaza, and the Wedge International Tower.

The Chevron Building Auditorium, for instance, suffered significant damage to its cladding and shattered glass windows, mostly on the side facing another skyscraper: the Chevron Corporation Tower. The CenterPoint Energy Plaza’s damage to its double-skin facade was concentrated on one corner that had two tall buildings facing it, as was the damage to two corners of the El Paso Energy building. This suggested a wind-channeling effect might have played a role in that damage.

Next Elawady et al. conducted wind tunnel experiments at the FIU Natural Hazards Engineering Research Infrastructure’s “Wall of Wind” facility to determine how the winds may have specifically caused the observed damage. They placed a revolving miniature tall building in the tunnel and blasted it with wind speeds of up to 70 meters per second while placing an identical mini-model at increasing distances from the first to mimic possible interference from nearby buildings.

The results confirmed the team’s working hypothesis. “When strong winds move through a city, they can bounce due to interference between tall buildings. This increases pressure on walls and windows, making damage more severe than if the buildings were isolated,” said co-author Omar Metwally, a graduate student at FIU. For example, in the case of the Chevron Building Auditorium, the channeling effects intensified the damage, particularly at higher elevations.

“On top of this, downbursts create intense, localized forces which can exceed typical design values for hurricanes, especially on the lower floors of tall buildings,” Metwally added. The problem is only likely to worsen because of accelerating climate change. Glass facades seem to be particularly vulnerable to this kind of wind damage, and the authors suggest current design and construction guidelines for such elements should be re-evaluated as a result of their findings.

Frontiers in Built Environment, 2025. DOI: 10.3389/fbuil.2024.1514523  (About DOIs).

“Bouncing” winds damaged Houston skyscrapers in 2024 Read More »

study:-cuttlefish-adapt-camouflage-displays-when-hunting-prey

Study: Cuttlefish adapt camouflage displays when hunting prey

Crafty cuttlefish employ several different camouflaging displays while hunting their prey, according to a new paper published in the journal Ecology, including mimicking benign ocean objects like a leaf or coral, or flashing dark stripes down their bodies. And individual cuttlefish seem to choose different preferred hunting displays for different environments.

It’s well-known that cuttlefish and several other cephalopods can rapidly shift the colors in their skin thanks to that skin’s unique structure. As previously reported, squid skin is translucent and features an outer layer of pigment cells called chromatophores that control light absorption. Each chromatophore is attached to muscle fibers that line the skin’s surface, and those fibers, in turn, are connected to a nerve fiber. It’s a simple matter to stimulate those nerves with electrical pulses, causing the muscles to contract. And because the muscles are pulling in different directions, the cell expands, along with the pigmented areas, changing the color. When the cell shrinks, so do the pigmented areas.

Underneath the chromatophores, there is a separate layer of iridophores. Unlike the chromatophores, the iridophores aren’t pigment-based but are an example of structural color, similar to the crystals in the wings of a butterfly, except a squid’s iridophores are dynamic rather than static. They can be tuned to reflect different wavelengths of light. A 2012 paper suggested that this dynamically tunable structural color of the iridophores is linked to a neurotransmitter called acetylcholine. The two layers work together to generate the unique optical properties of squid skin.

And then there are leucophores, which are similar to the iridophores, except they scatter the full spectrum of light, so they appear white. They contain reflectin proteins that typically clump together into nanoparticles so that light scatters instead of being absorbed or directly transmitted. Leucophores are mostly found in cuttlefish and octopuses, but there are some female squid of the genus Sepioteuthis that have leucophores that they can “tune” to only scatter certain wavelengths of light. If the cells allow light through with little scattering, they’ll seem more transparent, while the cells become opaque and more apparent by scattering a lot more light.

Scientists learned in 2023 that the process by which cuttlefish generate their camouflage patterns is significantly more complex than scientists previously thought. Specifically, cuttlefish readily adapted their skin patterns to match different backgrounds, whether natural or artificial. And the creatures didn’t follow the same transitional pathway every time, often pausing in between. That means that contrary to prior assumptions, feedback seems to be critical to the process, and the cuttlefish were correcting their patterns to match the backgrounds better.

Study: Cuttlefish adapt camouflage displays when hunting prey Read More »

trump-admin.-fires-usda-staff-working-on-bird-flu,-immediately-backpedals

Trump admin. fires USDA staff working on bird flu, immediately backpedals

Over the weekend, the Trump administration fired several frontline responders to the ongoing H5N1 bird flu outbreak—then quickly backpedaled, rescinding those terminations and attempting to reinstate the critical staff.

The termination letters went out to employees at the US Department of Agriculture, one of the agencies leading the federal response to the outbreak that continues to plague US dairy farms and ravage poultry operations, affecting over 160 million birds and sending egg prices soaring. As the virus continues to spread, infectious disease experts fear it could evolve to spread among humans and cause more severe disease. So far, the Centers for Disease Control and Prevention has documented 68 cases in humans, one of which was fatal.

Prior to Trump taking office, health experts had criticized the country’s response to H5N1 for lack of transparency at times, sluggishness, inadequate testing, and its inability to halt transmission among dairy farms, which was once considered containable. To date, 972 herds across 17 states have been infected since last March, including 36 herds in the last 30 days.

In a statement to Ars Technica, a USDA spokesperson said that the agency views the response to the outbreak of H5N1—a highly pathogenic avian influenza (HPAI)—as a priority. As such, the agency had protected some positions from staff cuts by granting exemptions, which went to veterinarians, animal health technicians, and others. But not all were exempted, and some were fired.

“Although several positions supporting HPAI were notified of their terminations over the weekend, we are working to swiftly rectify the situation and rescind those letters,” the spokesperson said.

The USDA did not respond to Ars Technica’s questions regarding how many employees working on the outbreak were fired, how many of those terminations were rescinded, or how many employees have been reinstated since the weekend.

The cuts are part of a larger, brutal effort by the Trump administration to slash federal agencies, and the cuts have imperiled other critical government and public services. In recent days, several agencies, including the National Institutes of Health, the CDC, the National Science Foundation, and the Department of Energy, among others, have been gutted. At CDC, cuts devastated the agency’s premier disease detectives program—the Epidemic Intelligence Service—members of which are critical to responding to outbreaks and other health emergencies.

Trump admin. fires USDA staff working on bird flu, immediately backpedals Read More »

scientists-unlock-vital-clue-to-strange-quirk-of-static-electricity

Scientists unlock vital clue to strange quirk of static electricity

Scientists can now explain the prevailing unpredictability of contact electrification, unveiling order from what has long been considered chaos.

Static electricity—specifically the triboelectric effect, aka contact electrification—is ubiquitous in our daily lives, found in such things as a balloon rubbed against one’s hair or styrofoam packing peanuts sticking to a cat’s fur (as well as human skin, glass tabletops, and just about anywhere you don’t want packing peanuts to be). The most basic physics is well understood, but long-standing mysteries remain, most notably how different materials exchange positive and negative charges—sometimes ordering themselves into a predictable series, but sometimes appearing completely random.

Now scientists at the Institute of Science and Technology Austria (ISTA) have identified a critical factor explaining that inherent unpredictability: It’s the contact history of given materials that controls how they exchange charges in contact electrification. They described their findings in a new paper published in the journal Nature.

Johan Carl Wilcke published the first so-called “triboelectric series” in 1757 to describe the tendency of different materials to self-order based on how they develop a positive or negative charge. A material toward the bottom of the list, like hair, will acquire a more negative charge when it comes into contact with a material near the top of the list, like a rubber balloon.

The issue with all these lists is that they are inconsistent and unpredictable—sometimes the same scientists don’t get the same ordering results twice when repeating experiments—largely because there are so many confounding factors that can come into play. “Understanding how insulating materials exchanged charge seemed like a total mess for a very long time,” said co-author Scott Waitukaitis of ISTA. “The experiments are wildly unpredictable and can sometimes seem completely random.”

A cellulose material’s charge sign, for instance, can depend on whether its curvature is concave or convex. Two materials can exchange charge from positive (A) to negative (B), but that exchange can reverse over time, with B being positive and A being negative. And then there are “triangles”: Sometimes one material (A) gains a positive charge when rubbed up against another material (B), but B will gain a positive charge when rubbed against a third material (C), and C, in turn, will gain positive charge when in contact with A. Even identical materials can sometimes exchange charge upon contact.

Scientists unlock vital clue to strange quirk of static electricity Read More »

microsoft-demonstrates-working-qubits-based-on-exotic-physics

Microsoft demonstrates working qubits based on exotic physics

Microsoft’s first entry into quantum hardware comes in the form of Majorana 1, a processor with eight of these qubits.

Given that some of its competitors have hardware that supports over 1,000 qubits, why does the company feel it can still be competitive? Nayak described three key features of the hardware that he feels will eventually give Microsoft an advantage.

The first has to do with the fundamental physics that governs the energy needed to break apart one of the Cooper pairs in the topological superconductor, which could destroy the information held in the qubit. There are a number of ways to potentially increase this energy, from lowering the temperature to making the indium arsenide wire longer. As things currently stand, Nayak said that small changes in any of these can lead to a large boost in the energy gap, making it relatively easy to boost the system’s stability.

Another key feature, he argued, is that the hardware is relatively small. He estimated that it should be possible to place a million qubits on a single chip. “Even if you put in margin for control structures and wiring and fan out, it’s still a few centimeters by a few centimeters,” Nayak said. “That was one of the guiding principles of our qubits.” So unlike some other technologies, the topological qubits won’t require anyone to figure out how to link separate processors into a single quantum system.

Finally, all the measurements that control the system run through the quantum dot, and controlling that is relatively simple. “Our qubits are voltage-controlled,” Nayak told Ars. “What we’re doing is just turning on and off coupling of quantum dots to qubits to topological nano wires. That’s a digital signal that we’re sending, and we can generate those digital signals with a cryogenic controller. So we actually put classical control down in the cold.”

Microsoft demonstrates working qubits based on exotic physics Read More »