Science

model-mixes-ai-and-physics-to-do-global-forecasts

Model mixes AI and physics to do global forecasts

Cloudy with a chance of accuracy —

Google/academic project is great with weather, has some limits for climate.

Image of a dark blue flattened projection of the Earth, with lighter blue areas showing the circulation of the atmosphere.

Enlarge / Image of some of the atmospheric circulation seen during NeuralGCM runs.

Google

Right now, the world’s best weather forecast model is a General Circulation Model, or GCM, put together by the European Center for Medium-Range Weather Forecasts. A GCM is in part based on code that calculates the physics of various atmospheric processes that we understand well. For a lot of the rest, GCMs rely on what’s termed “parameterization,” which attempts to use empirically determined relationships to approximate what’s going on with processes where we don’t fully understand the physics.

Lately, GCMs have faced some competition from machine-learning techniques, which train AI systems to recognize patterns in meteorological data and use those to predict the conditions that will result over the next few days. Their forecasts, however, tend to get a bit vague after more than a few days and can’t deal with the sort of long-term factors that need to be considered when GCMs are used to study climate change.

On Monday, a team from Google’s AI group and the European Centre for Medium-Range Weather Forecasts are announcing NeuralGCM, a system that mixes physics-based atmospheric circulation with AI parameterization of other meteorological influences. Neural GCM is computationally efficient and performs very well in weather forecast benchmarks. Strikingly, it can also produce reasonable-looking output for runs that cover decades, potentially allowing it to address some climate-relevant questions. While it can’t handle a lot of what we use climate models for, there are some obvious routes for potential improvements.

Meet NeuralGCM

NeuralGCM is a two-part system. There’s what the researchers term a “dynamical core,” which handles the physics of large-scale atmospheric convection and takes into account basic physics like gravity and thermodynamics. Everything else is handled by the AI portion. “It’s everything that’s not in the equations of fluid dynamics,” said Google’s Stephan Hoyer. “So that means clouds, rainfall, solar radiation, drag across the surface of the Earth—also all the residual terms in the equations that happen below the grid scale of about roughly 100 kilometers or so.” It’s what you might call a monolithic AI. Rather than training individual modules that handle a single process, such as cloud formation, the AI portion is trained to deal with everything at once.

Critically, the whole system is trained concurrently rather than training the AI separately from the physics core. Initially, performance evaluations and updates to the neural network were performed at six-hour intervals since the system isn’t very stable until at least partially trained. Over time, those are stretched out to five days.

The result is a system that’s competitive with the best available for forecasts running out to 10 days, often exceeding the competition depending on the precise measure used (in addition to weather forecasting benchmarks, the researchers looked at features like tropical cyclones, atmospheric rivers, and the Intertropical Convergence Zone). On the longer forecasts, it tended to produce features that were less blurry than those made by pure AI forecasters, even though it was operating at a lower resolution than they were. This lower resolution means larger grid squares—the surface of the Earth is divided up into individual squares for computational purposes—than most other models, which cuts down significantly on its computing requirements.

Despite its success with weather, there were a couple of major caveats. One is that NeuralGCM tended to underestimate extreme events occurring in the tropics. The second is that it doesn’t actually model precipitation; instead, it calculates the balance between evaporation and precipitation.

But it also comes with some specific advantages over some other short-term forecast models, key among them being that it isn’t actually limited to running over the short term. The researchers let it run for up to two years, and it successfully reproduced a reasonable-looking seasonal cycle, including large-scale features of the atmospheric circulation. Other long-duration runs show that it can produce appropriate counts of tropical cyclones, which go on to follow trajectories that reflect patterns seen in the real world.

Model mixes AI and physics to do global forecasts Read More »

the-falcon-9-rocket-may-return-to-flight-as-soon-as-tuesday-night

The Falcon 9 rocket may return to flight as soon as Tuesday night

That’s pretty fast —

SpaceX is waiting for a determination from the FAA.

File photo of a Falcon 9 launch on May 6 from Cape Canaveral Space Force Station, Florida.

Enlarge / File photo of a Falcon 9 launch on May 6 from Cape Canaveral Space Force Station, Florida.

SpaceX

It was only about 10 days ago that the Falcon 9 rocket’s upper stage failed in flight, preventing the rocket from delivering its 20 Starlink satellites into a proper orbit. Because they were released lower than expected—about 135 km above the Earth’s surface and subject to atmospheric drag—these satellites ultimately reentered the planet’s atmosphere and burnt up.

Typically, after a launch failure, a rocket will be sidelined for months while engineers and technicians comb over the available data and debris to identify a cause, perform tests, and institute a fix.

However, according to multiple sources, SpaceX was ready to launch the Falcon 9 rocket as soon as late last week. Currently, the company has a launch opportunity for no earlier than 12: 14 am ET (04: 14 UTC) on Wednesday for its Starlink 10-4 mission.

A quick fix?

In a summary of the anomaly posted shortly afterward, SpaceX did not identify the cause of the failure beyond saying, “The Merlin Vacuum engine experienced an anomaly and was unable to complete its second burn.”

Officially, the company has provided no additional information since then. However, the company’s engineers were able to identify the cause of the failure almost immediately and, according to sources, the fix was straightforward.

SpaceX was confident enough in this determination to resume launches of the Falcon 9 rocket one week after the failure. However, it is precluded from doing so while the US Federal Aviation Administration conducts a mishap investigation.

To that end, a week ago on July 15, SpaceX submitted a request to the FAA to resume launching its Falcon 9 rocket while this investigation into the anomaly continues. “The FAA is reviewing the request and will be guided by data and safety at every step of the process,” the FAA said in a statement at the time.

Crewed missions on deck

So, as of today, SpaceX is waiting for a determination from the FAA as to whether it will be allowed to resume Falcon 9 launches less than two weeks after the failure occurred.

The company plans to launch at least three Starlink missions in rapid succession from its two launch pads in Florida and one in California to determine the effectiveness of the fix. It would like to demonstrate the reliability of the Falcon 9 rocket, which had recorded more than 300 successful missions since its last failure during a pad accident in September 2016, before two upcoming crewed missions.

There is still a slight possibility that the Polaris Dawn mission, led by commercial astronaut Jared Isaacman, could launch in early August. This would be followed by the Crew-9 mission for NASA, which will carry four astronauts to the International Space Station.

Notably, neither of these crewed missions requires a second burn of the Merlin engine, which is where the failure occurred earlier this month during the Starlink mission.

The Falcon 9 rocket may return to flight as soon as Tuesday night Read More »

we’re-building-nuclear-spaceships-again—this-time-for-real 

We’re building nuclear spaceships again—this time for real 

Artist concept of the Demonstration for Rocket to Agile Cislunar Operations (DRACO) spacecraft.

Enlarge / Artist concept of the Demonstration for Rocket to Agile Cislunar Operations (DRACO) spacecraft.

DARPA

Phoebus 2A, the most powerful space nuclear reactor ever made, was fired up at Nevada Test Site on June 26, 1968. The test lasted 750 seconds and confirmed it could carry first humans to Mars. But Phoebus 2A did not take anyone to Mars. It was too large, it cost too much, and it didn’t mesh with Nixon’s idea that we had no business going anywhere further than low-Earth orbit.

But it wasn’t NASA that first called for rockets with nuclear engines. It was the military that wanted to use them for intercontinental ballistic missiles. And now, the military wants them again.

Nuclear-powered ICBMs

The work on nuclear thermal rockets (NTRs) started with the Rover program initiated by the US Air Force in the mid-1950s. The concept was simple on paper. Take tanks of liquid hydrogen and use turbopumps to feed this hydrogen through a nuclear reactor core to heat it up to very high temperatures and expel it through the nozzle to generate thrust. Instead of causing the gas to heat and expand by burning it in a combustion chamber, the gas was heated by coming into contact with a nuclear reactor.

Tokino, vectorized by CommiM at en.wikipedia

The key advantage was fuel efficiency. “Specific impulse,” a measurement that’s something like the gas mileage of a rocket, could be calculated from the square root of the exhaust gas temperature divided by the molecular weight of the propellant. This meant the most efficient propellant for rockets was hydrogen because it had the lowest molecular weight.

In chemical rockets, hydrogen had to be mixed with an oxidizer, which increased the total molecular weight of the propellant but was necessary for combustion to happen. Nuclear rockets didn’t need combustion and could work with pure hydrogen, which made them at least twice as efficient. The Air Force wanted to efficiently deliver nuclear warheads to targets around the world.

The problem was that running stationary reactors on Earth was one thing; making them fly was quite another.

Space reactor challenge

Fuel rods made with uranium 235 oxide distributed in a metal or ceramic matrix comprise the core of a standard fission reactor. Fission happens when a slow-moving neutron is absorbed by a uranium 235 nucleus and splits it into two lighter nuclei, releasing huge amounts of energy and excess, very fast neutrons. These excess neutrons normally don’t trigger further fissions, as they move too fast to get absorbed by other uranium nuclei.

Starting a chain reaction that keeps the reactor going depends on slowing them down with a moderator, like water, that “moderates” their speed. This reaction is kept at moderate levels using control rods made of neutron-absorbing materials, usually boron or cadmium, that limit the number of neutrons that can trigger fission. Reactors are dialed up or down by moving the control rods in and out of the core.

Translating any of this to a flying reactor is a challenge. The first problem is the fuel. The hotter you make the exhaust gas, the more you increase specific impulse, so NTRs needed the core to operate at temperatures reaching 3,000 K—nearly 1,800 K higher than ground-based reactors. Manufacturing fuel rods that could survive such temperatures proved extremely difficult.

Then there was the hydrogen itself, which is extremely corrosive at these temperatures, especially when interacting with those few materials that are stable at 3,000 K. Finally, standard control rods had to go, too, because on the ground, they were gravitationally dropped into the core, and that wouldn’t work in flight.

Los Alamos Scientific Laboratory proposed a few promising NTR designs that addressed all these issues in 1955 and 1956, but the program really picked up pace after it was transferred to NASA and Atomic Energy Commission (AEC) in 1958, There, the idea was rebranded as NERVA, Nuclear Engine for Rocket Vehicle Applications. NASA and AEC, blessed with nearly unlimited budget, got busy building space reactors—lots of them.

We’re building nuclear spaceships again—this time for real  Read More »

will-burying-biomass-underground-curb-climate-change?

Will burying biomass underground curb climate change?

stacking bricks —

Though carbon removal startups may limit global warming, significant questions remain.

Will burying biomass underground curb climate change?

On April 11, a small company called Graphyte began pumping out beige bricks, somewhat the consistency of particle board, from its new plant in Pine Bluff, Arkansas. The bricks don’t look like much, but they come with a lofty goal: to help stop climate change.

Graphyte, a startup backed by billionaire Bill Gates’ Breakthrough Energy Ventures, will bury its bricks deep underground, trapping carbon there. The company bills it as the largest carbon dioxide removal project in the world.

Scientists have long warned of the dire threat posed by global warming. It’s gotten so bad though that the long-sought mitigation, cutting carbon dioxide emissions from every sector of the economy, might not be enough of a fix. To stave off the worst—including large swaths of the Earth exposed to severe heat waves, water scarcity, and crop failures—some experts say there is a deep need to remove previously emitted carbon, too. And that can be done anywhere on Earth—even in places not known for climate-friendly policies, like Arkansas.

Graphyte aims to store carbon that would otherwise be released from plant material as it burns or decomposes at a competitive sub-$100 per metric ton, and it wants to open new operations as soon as possible, single-handedly removing tens of thousands of tons of carbon annually, said Barclay Rogers, the company’s founder and CEO. Nevertheless, that’s nowhere near the amount of carbon that will have to be removed to register as a blip in global carbon emissions. “I’m worried about our scale of deployment,” he said. “I think we need to get serious fast.”

Hundreds of carbon removal startups have popped up over the past few years, but the fledgling industry has made little progress so far. That leads to the inevitable question: Could Graphyte and companies like it actually play a major role in combating climate change? And will a popular business model among these companies, inviting other companies to voluntarily buy “carbon credits” for those buried bricks, actually work?

Whether carbon emissions are cut to begin with, or pulled out of the atmosphere after they’ve already been let loose, climate scientists stress that there is no time to waste. The clock began ticking years ago, with the arrival of unprecedented fires and floods, superstorms, and intense droughts around the world. But carbon removal, as it’s currently envisioned, also poses additional sociological, economic, and ethical questions. Skeptics, for instance, say it could discourage more pressing efforts on cutting carbon emissions, leaving some experts wondering whether it will even work at all.

Still, the Intergovernmental Panel on Climate Change, the world’s forefront group of climate experts, is counting on carbon removal technology to dramatically scale up. If the industry is to make a difference, experimentation and research and development should be done quickly, within the next few years, said Gregory Nemet, professor of public affairs who studies low-carbon innovation at the University of Wisconsin-Madison. “Then after that is the time to really start going big and scaling up so that it becomes climate-relevant,” he added. “Scale-up is a big challenge.”

Will burying biomass underground curb climate change? Read More »

mini-neptune-turned-out-to-be-a-frozen-super-earth

Mini-Neptune turned out to be a frozen super-Earth

Like Earth, but super —

The density makes it look like a water world, but its dim host star keeps it cool.

Image of three planets on a black background, with the two on the left being mostly white, indicating an icy composition. The one on the right is much smaller, and represents Earth.

Enlarge / Renditions of a possible composition of LHS 1140 b, with a patch of ocean on the side facing its host star. Earth is included at right for scale.

Of all the potential super-Earths—terrestrial exoplanets more massive than Earth—out there, an exoplanet orbiting a star only 40 light-years away from us in the constellation Cetus might be the most similar to have been found so far.

Exoplanet LHS 1140 b was assumed to be a mini-Neptune when it was first discovered by NASA’s James Webb Space Telescope toward the end of 2023. After analyzing data from those observations, a team of researchers, led by astronomer Charles Cadieux, of Université de Montréal, suggest that LHS 1140 b is more likely to be a super-Earth.

If this planet is an alternate version of our own, its relative proximity to its cool red dwarf star means it would most likely be a gargantuan snowball or a mostly frozen body with a substellar (region closest to its star) ocean that makes it look like a cosmic eyeball. It is now thought to be the exoplanet with the best chance for liquid water on its surface, and so might even be habitable.

Cadieux and his team say they have found “tantalizing evidence for a [nitrogen]-dominated atmosphere on a habitable zone super-Earth” in a study recently published in The Astrophysical Journal Letters.

Sorry, Neptune…

In December 2023, two transits of LHS 1140 b were observed with the NIRISS (Near-Infrared Imager and Slitless Spectrograph) instrument aboard Webb. NIRISS specializes in detecting exoplanets and revealing more about them through transit spectroscopy, which picks up the light of an orbiting planet’s host star as it passes through the atmosphere of that planet and travels toward Earth. Analysis of the different spectral bands in that light can then tell scientists about the specific atoms and molecules that exist in the planet’s atmosphere.

To test the previous hypothesis that LHS 1140 b is a mini-Neptune, the researchers created a 3D global climate model, or GCM. This used complex math to explore different combinations of factors that make up the climate system of a planet, such as land, oceans, ice, and atmosphere. Several different GCMs of a mini-Neptune were compared with the light spectrum observed via transit spectroscopy. The model for a mini-Neptune typically involves a gas giant with a thick, cloudless or nearly cloudless atmosphere dominated by hydrogen, but the spectral bands of this model did not match NIRISS observations.

With the possibility of a mini-Neptune being mostly ruled out (though further observations and analysis will be needed to confirm this), Cadieux’s team turned to another possibility: a super-Earth.

An Earth away from Earth?

The spectra observed with NIRISS were more in line with GCMs of a super-Earth. This type of planet would typically have a thick nitrogen or CO2-rich atmosphere enveloping a rocky surface on which there was some form of water, whether in frozen or liquid form.

The models also suggested a secondary atmosphere, which is an atmosphere formed after the original atmosphere of light elements, (hydrogen and helium) escaped during early phases of a planet’s formation. Secondary atmospheres are formed from heavier elements released from the crust, such as water vapor, carbon dioxide, and methane. They’re usually found on warm, terrestrial planets (Earth has a secondary atmosphere).

The most significant Webb/NIRISS data that did not match the GCMs was that the planet has a lower density (based on measurements of its size and mass) than expected for a rocky world. This is consistent with a water world with a mass that’s about 10 to 20 percent water. Based on this estimate, the researchers think that LHS 1140 b might even be a hycean planet—an ocean planet that has most of the attributes of a super-Earth, but an atmosphere dominated by hydrogen instead of nitrogen.

Since it orbits a dim star closely enough to be tidally locked, some models suggest a mostly icy planet with a substellar liquid ocean on its dayside.

While LHS 1140 b may be a super-Earth, the hycean planet hypothesis might end up being ruled out. Hycean planets are prone to the runaway greenhouse effect, which occurs when enough greenhouse gases accumulate in a planet’s atmosphere and prevent heat from escaping. Liquid water will eventually evaporate on a planet that cannot cool itself off.

Though we are getting closer to finding out what kind of planet LHS 1140 b is, and whether it could be habitable, further observations are needed. Cadieux wants to continue this research by comparing NIRISS data with data on other super-Earths that had previously been collected by Webb’s Near-Infrared Spectrograph, or NIRSpec, instrument. At least three transit observations of the planet with Webb’s MIRI, or Mid-Infrared instrument, are also needed to make sure stellar radiation is not interfering with observations of the planet itself.

“Given the limited visibility of LHS 1140b, several years’ worth of observations may be required to detect its potential secondary atmosphere,” the researchers said in the same study.

So could this planet really be a frozen exo-earth? The suspense is going to last a few years.

The Astrophysical Journal Letters, 2024.  DOI:  10.3847/2041-8213/ad5afa

Mini-Neptune turned out to be a frozen super-Earth Read More »

armada-to-apophis—scientists-recycle-old-ideas-for-rare-asteroid-encounter

Armada to Apophis—scientists recycle old ideas for rare asteroid encounter

Tick-tock —

“It will miss the Earth. It will miss the Earth. It will miss the Earth.”

This artist's concept shows the possible appearance of ESA's RAMSES spacecraft, which will release two small CubeSats for additional observations at Apophis.

Enlarge / This artist’s concept shows the possible appearance of ESA’s RAMSES spacecraft, which will release two small CubeSats for additional observations at Apophis.

For nearly 20 years, scientists have known an asteroid named Apophis will pass unusually close to Earth on Friday, April 13, 2029. But most officials at the world’s space agencies stopped paying much attention when updated measurements ruled out the chance Apophis will impact Earth anytime soon.

Now, Apophis is again on the agenda, but this time as a science opportunity, not as a threat. The problem is there’s not much time to design, build and launch a spacecraft to get into position near Apophis in less than five years. The good news is there are designs, and in some cases, existing spacecraft, that governments can repurpose for missions to Apophis, a rocky asteroid about the size of three football fields.

Scientists discovered Apophis in 2004, and the first measurements of its orbit indicated there was a small chance it could strike Earth in 2029 or in 2036. Using more detailed radar observations of Apophis, scientists in 2021 ruled out any danger to Earth for at least the next 100 years.

“The three most important things about Apophis are: It will miss the Earth. It will miss the Earth. It will miss the Earth,” said Richard Binzel, a professor of planetary science at MIT. Binzel has co-chaired several conferences since 2020 aimed at drumming up support for space missions to take advantage of the Apophis opportunity in 2029.

“An asteroid this large comes this close only once per 1,000 years, or less frequently,” Binzel told Ars. “This is an experiment that nature is doing for us, bringing a large asteroid this close, such that Earth’s gravitational forces and tidal forces are going to tug and possibly shake this asteroid. The asteroid’s response is insightful to its interior.”

It’s important, Binzel argues, to get a glimpse of Apophis before and after its closest approach in 2029, when it will pass less than 20,000 miles (32,000 kilometers) from Earth’s surface, closer than the orbits of geostationary satellites.

“This is a natural experiment that will reveal how hazardous asteroids are put together, and there is no other way to get this information without vastly complicated spacecraft experiments,” Binzel said. “So this is a once-per-many-thousands-of-years experiment that nature is doing for us. We have to figure out how to watch.”

This week, the European Space Agency announced preliminary approval for a mission named RAMSES, which would launch in April 2028, a year ahead of the Apophis flyby, to rendezvous with the asteroid in early 2029. If ESA member states grant full approval for development next year, the RAMSES spacecraft will accompany Apophis throughout its flyby with Earth, collecting imagery and other scientific measurements before, during, and after closest approach.

The challenge of building and launching RAMSES in less than four years will serve as good practice for a potential future real-world scenario. If astronomers find an asteroid that’s really on a collision course with Earth, it might be necessary to respond quickly. Given enough time, space agencies could mount a reconnaissance mission, and if necessary, a mission to deflect or redirect the asteroid, likely using a technique similar to the one demonstrated by NASA’s DART mission in 2022.

“RAMSES will demonstrate that humankind can deploy a reconnaissance mission to rendezvous with an incoming asteroid in just a few years,” said Richard Moissl, head of ESA’s planetary defense office. “This type of mission is a cornerstone of humankind’s response to a hazardous asteroid. A reconnaissance mission would be launched first to analyze the incoming asteroid’s orbit and structure. The results would be used to determine how best to redirect the asteroid or to rule out non-impacts before an expensive deflector mission is developed.”

Shaking off the cobwebs

In order to make a 2028 launch feasible for RAMSES, ESA will reuse the design of a roughly half-ton spacecraft named Hera, which is scheduled for launch in October on a mission to survey the binary asteroid system targeted by the DART impact experiment in 2022. Copying the design of Hera will reduce the time needed to get RAMSES to the launch pad, ESA officials said.

“Hera demonstrated how ESA and European industry can meet strict deadlines and RAMSES will follow its example,” said Paolo Martino, who leads ESA’s development of Ramses, which stands for the Rapid Apophis Mission for Space Safety.

ESA’s space safety board recently authorized preparatory work on the RAMSES mission using funds already in the agency’s budget. OHB, the German spacecraft manufacturer that is building Hera, will also lead the industrial team working on RAMSES. The cost of RAMSES will be “significantly lower” than the 300-million-euro ($380 million) cost of the Hera mission, Martino wrote in an email to Ars.

“There is still so much we have yet to learn about asteroids but, until now, we have had to travel deep into the Solar System to study them and perform experiments ourselves to interact with their surface,” said Patrick Michel, a planetary scientist at the French National Center for Scientific Research, and principal investigator on the Hera mission.

“For the first time ever, nature is bringing one to us and conducting the experiment itself,” Michel said in a press release. “All we need to do is watch as Apophis is stretched and squeezed by strong tidal forces that may trigger landslides and other disturbances and reveal new material from beneath the surface.”

Assuming it gets the final go-ahead next year, RAMSES will join NASA’s OSIRIS-APEX mission in exploring Apophis. NASA is steering the spacecraft, already in space after its use on the OSIRIS-REx asteroid sample return mission, toward a rendezvous with Apophis in 2029, but it won’t arrive at its new target until a few weeks after its close flyby of Earth. The intricacies of orbital mechanics prevent a rendezvous with Apophis any earlier.

Observations from OSIRIS-APEX, a larger spacecraft than RAMSES with a sophisticated suite of instruments, “will deliver a detailed look of what Apophis is like after the Earth encounter,” Binzel said. “But until we establish the state of Apophis before the Earth encounter, we have only one side of the picture.”

At its closest approach, asteroid Apophis will closer to Earth than the ring of geostationary satellites over the equator.

Enlarge / At its closest approach, asteroid Apophis will closer to Earth than the ring of geostationary satellites over the equator.

Scientists are also urging NASA to consider launching a pair of mothballed science probes on a trajectory to fly by Apophis some time before its April 2029 encounter with Earth. These two spacecraft were built for NASA’s Janus mission, which the agency canceled last year after the mission fell victim to launch delays with NASA’s larger Psyche asteroid explorer. The Janus probes were supposed to launch on the same rocket as Psyche, but problems with the Psyche mission forced a delay in the launch of more than one year.

Despite the delay, Psyche could still reach its destination in the asteroid belt, but the new launch trajectory meant Janus would be unable to visit the two binary asteroids scientists originally wanted to explore with the probes. After spending nearly $50 million on the mission, NASA put the twin Janus spacecraft, each about the size of a suitcase, into long-term storage.

At the most recent workshop on Apophis missions in April, scientists heard presentations on more than 20 concepts for spacecraft and instrument measurements at Apophis.

They included an idea from Blue Origin, Jeff Bezos’s space company, to use its Blue Ring space tug as a host platform for multiple instruments and landers that could descend to the surface of Apophis, assuming research institutions have enough time and money to develop their payloads. A startup named Exploration Laboratories has proposed partnering with NASA’s Jet Propulsion Laboratory on a small spacecraft mission to Apophis.

“At the conclusion of the workshop, it was my job to try to bring forward some consensus, because if we don’t have some consensus on our top priority, we may end up with nothing,” Binzel said. “The consensus recommendation for ESA was to more forward with RAMSES.”

Workshop participants also gently nudged NASA to use the Janus probes for a mission to Apophis. “Apophis is a mission in search of a spacecraft, and Janus is a spacecraft in search of a mission,” Binzel said. “As a matter of efficiency and basic logic, Janus to Apophis is the highest priority.”

A matter of money

But NASA’s science budget, and especially funding for its planetary science vision, is under stress. Earlier this week, NASA canceled an already-built lunar rover named VIPER after spending $450 million on the mission. The mission had exceeded its original development cost by greater than 30 percent, prompting an automatic cancellation review.

The funding level for NASA’s science mission directorate this year is nearly $500 million less than last year’s budget, and $900 million below the White House’s budget request for fiscal year 2024. Because of the tight budget, NASA officials have said, for now, they are not starting development of any new planetary science missions as they focus on finishing projects already in the pipeline, like the Europa Clipper mission, the Dragonfly quadcopter to visit Saturn’s moon Titan, and the Near-Earth Object (NEO) Surveyor telescope to search for potentially hazardous asteroids.

These grainy radar views of asteroid Apophis were captured using radars at NASA's Goldstone Deep Space Communications Complex in California and Green Bank Telescope in West Virginia.

Enlarge / These grainy radar views of asteroid Apophis were captured using radars at NASA’s Goldstone Deep Space Communications Complex in California and Green Bank Telescope in West Virginia.

NASA has asked the Janus team to look at the feasibility of launching on the same rocket as NEO Surveyor in 2027, according to Dan Scheeres, the Janus principal investigator at the University of Colorado. With such a launch in 2027, Janus could capture the first up-close images of Apophis before RAMSES and OSIRIS-APEX get there.

“This is something that we’re currently presenting in some discussions with NASA, just to make sure that they understand what the possibilities are there,” Scheeres said in a meeting last week of the Small Bodies Advisory Group, which represents the asteroid science community.

“These spacecraft are capable of performing future scientific flyby missions to near-Earth asteroids,” Scheeres said. “Each spacecraft has a high-quality Malin visible imager and a thermal infrared imager. Each spacecraft has the ability to track and image an asteroid system through a close, fast flyby.”

“The scientific return from an Apophis flyby by Janus could be one of the best opportunities out there,” said Daniella DellaGiustina, lead scientist on the OSIRIS-APEX mission from the University of Arizona.

Binzel, who has led the charge for Apophis missions, said there is also some symbolic value to having a spacecraft escort the asteroid by Earth. Apophis will be visible in the skies over Europe and Africa when it is closest to our planet.

“When 2 billion people are watching this, they are going to ask, ‘What are our space agencies doing?’ And if the answer is, ‘Oh, we’ll be there. We’re getting there,’ which is OSIRIS-APEX, I don’t think that’s a very satisfying answer,” Binzel said.

“As the international space community, we want to demonstrate on April 13, 2029, that we are there and we are watching, and we are watching because we want to gain the most knowledge and the most understanding about these objects that is possible, because someday it could matter,” Binzel said. “Someday, our detailed knowledge of hazardous asteroids would be among the most important knowledge bases for the future of humanity.”

Armada to Apophis—scientists recycle old ideas for rare asteroid encounter Read More »

rocket-report:-firefly’s-ceo-steps-down;-artemis-ii-core-stage-leaves-factory

Rocket Report: Firefly’s CEO steps down; Artemis II core stage leaves factory

Vaya con dios —

Rocket Factory Augsburg completed qualification of its upper stage for a first launch this year.

The core stage for NASA's second Space Launch System rocket rolls aboard a barge that will take it from New Orleans to Kennedy Space Center in Florida.

Enlarge / The core stage for NASA’s second Space Launch System rocket rolls aboard a barge that will take it from New Orleans to Kennedy Space Center in Florida.

Welcome to Edition 7.03 of the Rocket Report! One week ago, SpaceX suffered a rare failure of its workhorse Falcon 9 rocket. In fact, it was the first time the latest version of the Falcon 9, known as the Block 5, has ever failed on its prime mission after nearly 300 launches. The world’s launch pads have been silent since the grounding of the Falcon 9 fleet after last week’s failure. This isn’t surprising, but it’s noteworthy. After all, the Falcon 9 has flown more this year than all of the world’s other rockets combined and is fundamental to much of what the world does in space.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Astra finally goes private, again. A long-simmering deal for Astra’s founders to take the company private has been finalized, the company announced Thursday, capping the rocket launch company’s descent from blank-check darling to delisting in three years, Bloomberg reports. The launch company’s valuation peaked at $3.9 billion in 2021, the year it went public, and was worth about $12.2 million at the end of March, according to data compiled by Bloomberg. Astra’s chief executive officer, Chris Kemp, and chief technology officer, Adam London, founded the company in 2016 with the goal of essentially commoditizing launch services for small satellites. But Astra’s rockets failed to deliver and fell short of orbit five times in seven tries.

Spiraling … Astra’s stock price tanked after the spate of launch failures, drying up its funding spigot as Kemp tried to pivot toward a slightly larger, more reliable rocket. Astra acquired a company named Apollo Fusion in 2021, entering a new business segment to produce electric thrusters for small satellites. But Astra’s launch business faltered, and last November Kemp and London submitted an offer to retake ownership of the company. Astra announced the closure of the take-private deal Thursday, with Kemp and London acquiring the company’s outstanding shares for 50 cents per share in cash, below the stock’s final listing price of 53 cents. “We will now focus all of our attention on a successful launch of Rocket 4, delivering satellite engines to our customers, and building a company of consequence,” Kemp said. (submitted by EllPeaTea and Ken the Bin)

Firefly chief leaves company. Launch startup Firefly Aerospace parted ways with CEO Bill Weber, Payload reports. The announcement of Weber’s departure late Wednesday came two days after Payload reported Firefly was investigating claims of an alleged inappropriate relationship between him and a female employee. “Firefly Aerospace’s Board of Directors announced that Bill Weber is no longer serving as CEO of the company, effective immediately,” the company said in a statement Wednesday night. Peter Schumacher takes over as interim CEO while Firefly searches for a new permanent chief executive. Schumacher was an interim CEO at Firefly before Weber’s hiring in 2022.

Two days and gone … Payload published the first report of Weber’s alleged improper relationship with a female employee Monday. Two days later, Weber was gone. Payload reported an executive brought his concerns about the alleged relationship to Firefly’s board and resigned because he lost confidence in leadership at the company. Citing four current and former employees, Payload reported Firefly’s culture became “chaotic” since Weber took the helm in 2022 after its acquisition by AE Industrial Partners. The Texas-based company achieved some success during Weber’s tenure, with four orbital launches of its Alpha rocket, although two of the flights ended up in lower-than-planned orbits. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Themis hop tests delayed to next year. The initial hop tests of the European Themis reusable booster, developed by ArianeGroup and funded by ESA, won’t start until next year, European Spaceflight reports. The Swedish Space Corporation, which operates the space center in Sweden where Themis will initially fly, confirmed the schedule change. Once ArianeGroup moves on to higher altitude flights, the testing will be moved to the Guiana Space Center. ESA awarded the first development contract for the Themis booster in 2019, and the first hop tests were then scheduled for 2022. Themis’ hops will be similar to SpaceX’s Grasshopper rocket, which performed a series of up-and-down atmospheric test flights before SpaceX started recovering and reusing Falcon 9 boosters.

Fate of Themis … The Themis booster is powered by the methane-fueled Prometheus engine, also funded by ESA. A large European reusable rocket is unlikely to fly until the 2030s, but a subsidiary of ArianeGroup named MaiaSpace is developing a smaller partially reusable two-stage rocket slated to debut as soon as next year. The Maia rocket will use a modified Themis booster as its first stage. “As a result, for MaiaSpace, the continued and rapid development of the Themis program is essential to ensure it can hit its projected target of an inaugural flight of Maia in 2025,” European Spaceflight reports. (submitted by Ken the Bin)

Rocket Report: Firefly’s CEO steps down; Artemis II core stage leaves factory Read More »

long-covid-rates-have-declined,-especially-among-the-vaccinated,-study-finds

Long COVID rates have declined, especially among the vaccinated, study finds

Good news —

In large study, rates of long COVID fell from 10% to 3.5% for the vaccinated.

Long covid activists attend the Senate Appropriations Subcommittee on Labor, Health and Human Services, Education, and Related Agencies hearing on the

Enlarge / Long covid activists attend the Senate Appropriations Subcommittee on Labor, Health and Human Services, Education, and Related Agencies hearing on the “Fiscal Year 2025 Budget Request for the National Institutes of Health,” in Dirksen building on May 23, 2024.

As a summer wave of COVID-19 infections swells once again, a study published this week in the New England Journal of Medicine offers some positive news about the pandemic disease: Rates of long COVID have declined since the beginning of the health crisis, with rates falling from a high of 10.4 percent before vaccines were available to a low of 3.5 percent for those vaccinated during the omicron era, according to the new analysis.

The study, led by Ziyad Al-Aly, chief of research at the VA Saint Louis Health Care System, used data from a wealth of health records in the Department of Veterans Affairs. The researchers ultimately included data from over 440,000 veterans who contracted COVID-19 sometime between March 1, 2020, and January 31, 2022, as well as over 4.7 million uninfected veterans who acted as controls.

Al-Aly and colleagues divided the population into eight groups. People who were infected during the study period were divided into five groupings by the dates of their first infection and their vaccination status. The first group included those infected in the pre-delta era before vaccines were available (March 1, 2020, to June 18, 2021). Then there were vaccinated and unvaccinated groups who were infected in the delta era (June 19, 2021, to December 18, 2021) and the omicron era (December 19, 2021, and January 31, 2022). The uninfected controls made up the final three of eight groups, with the controls assigned to one of the three eras.

On the decline

In the pre-delta/pre-vaccine era, 10.42 out of 100 unvaccinated people infected developed long COVID in the year after their infection, which the researchers referred to as PASC, or postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the delta era, the rate of long COVID among the unvaccinated fell slightly to 9.51 out of 100. But for the vaccinated, the rate fell much further, to 5.35 out of 100. A similar pattern was seen in the omicron era. For the unvaccinated, the rate of long COVID again fell slightly to 7.76 per 100 people, while the vaccinated saw their rate fall to 3.5 per 100.

In a secondary statistical analysis, called a decomposition analysis, the researchers found that vaccines could explain about 72 percent of the cumulative decline in long COVID rates across the eras, while era-related factors explained about 28 percent. Those era-related factors could include differences in the virus, improved treatments, and use of anti-viral medications.

Further, looking at data on the disease categories related to long COVID cases, the researchers also did an analysis finding a shift in symptoms over the eras. The researchers looked at over 10 disease categories: cardiovascular, coagulation and hematologic, fatigue, gastrointestinal, kidney, mental health, metabolic, musculoskeletal, neurologic, and pulmonary. Compared to the two earlier eras, the researchers noted an increase in gastrointestinal, metabolic, and musculoskeletal diseases involved in long COVID cases in the omicron era.

Overall, the study points to a welcomed decline in the rates of long COVID among the infected, particularly for those who are vaccinated. But, it also makes clear that long COVID isn’t a thing of the past: “a substantial residual risk of PASC remains among vaccinated persons who had SARS-CoV-2 infection during the omicron era,” Al-Aly and his colleagues conclude.

The study also has some limitations, leaving lingering questions for further study. One is whether the type or number of vaccines affect the risk of long COVID—that was not included in the study. The study also didn’t allow researchers to assess whether repeat infections increase the burden of long COVID.

Long COVID rates have declined, especially among the vaccinated, study finds Read More »

illegal-drug-found-in-diamond-shruumz-candies-linked-to-severe-illnesses

Illegal drug found in Diamond Shruumz candies linked to severe illnesses

More drugs —

New testing finds psilocin, related to psilocybin, in gummies purchased in 2023.

Illegal drug found in Diamond Shruumz candies linked to severe illnesses

Newly released testing data of Diamond Shruumz-brand gummies purchased in 2023 identified the presence of psilocin, a hallucinogenic drug closely related to the magic-mushroom drug psilocybin that is classified as a Schedule I drug, alongside psilocybin, heroin, and LSD.

The finding comes as Diamond Shruumz’s current line of gummies, chocolates, and candy cones is being recalled and are under active investigation in connection to a nationwide rash of severe illnesses, which have involved seizures, intubation, and intensive care. As of the latest update on July 15, 69 people in 28 states have been sickened after eating a Diamond Shruumz product. Sixty of the 69 sought medical care, 36 were hospitalized, and there is one potentially associated death under investigation.

The new finding of psilocin in the products, published by researchers at the University of Virginia, adds to growing concern about psychedelic mushroom candies generally. Although the candies are marketed as being legal, they have often been found to contain various undisclosed illegal drugs, gray market synthetic versions of drugs, as well as dangerous adulterants and contaminants.

In the ongoing investigation of Diamond Shruumz candies—led by the Food and Drug Administration and the Centers for Disease Control and Prevention, with the help of America’s Poison Centers and state and local partners—researchers have not identified psilocin in products linked to the illnesses. Instead, they have found a closely related synthetic hallucinogenic compound called 4-acetoxy-N,N-dimethyltryptamine, also known as psilacetin or 4-AcO-DMT. Psilacetin is thought to be metabolized into psilocin in the body and is said to have similar effects as taking magic mushrooms or psilocybin. The different testing results between the FDA-led investigation and the new UVA study may be due to possible formulation changes between 2023 and 2024 or simply differences in the products or batches of candies tested so far.

The UVA researchers, who published their findings in the CDC’s Morbidity and Mortality Weekly Report, looked into the mushroom candies after four adults reported illnesses to a local poison control center between September and November 2023. The people went to the emergency department with tachycardia, confusion, anxiety or somnolence, and nausea after eating gummy candies labeled as containing Amanita muscaria mushrooms. Amid their investigation into those cases, a 3-year-old also fell ill in June 2024 after accidentally eating two gummies sold as containing A. muscaria. All of the adults and the toddler recovered from their illnesses quickly, though the toddler was hospitalized for a day for observation.

Not legal or safe

A. muscaria is a legal hallucinogenic mushroom that contains psychoactive compounds ibotenic acid and muscimol. These resemble neurotransmitters in the brain and can cause gastrointestinal symptoms, agitation, and seizures.

The UVA researchers couldn’t track down the specific brands or products the sickened adults took, but they collected six similar products from nearby gas stations and smoke shops. Those six products included two Diamond Shruumz products, which were not sold as containing A. muscaria. Using liquid chromatography-mass spectrometry, the researchers found that the two Diamond Shruumz gummy products (Sour Peach Apple and Rainbow flavors) contained psilocin. The Rainbow flavor also contained caffeine.

In addition, a product labeled as “Wonderland Legal Psychedelics Cherry Nirvana” contained psilocin, the synthetic hallucinogen N,N-dimethyltryptamine, a compound found in kratom called mitragynine, and caffeine.  A product labeled as “Urb Magic Amanita Mushroom Watermelon” contained psilocybin, psilocin, and the stimulant 2-phenethylamine. A product called “Psilly’s Legal Psychedelic Mushrooms Fruit Punch” contained the stimulant ephedrine, and the product “Tryp mushroom gummies” wasn’t found to contain any concerning compounds.

The UVA study was not able to test for ibotenic acid or muscimol. In Diamond Shruumz’s recall notice, the company said it had found higher than normal levels of muscimol in its products. FDA testing has not identified muscimol in product testing, according to results released so far.

“People tend to equate ‘legal’ with ‘safe,’ which is not necessarily the case. These products are not regulated and can contain any number of unlabeled substances which, when consumed, can cause undesired symptoms,” lead author of the UVA study Avery Michienzi said in a statement. “Some packages will have QR codes showing that the products were tested in a lab and contain only what they are labeled to contain. These have been found to be inaccurate.”

The FDA this week warned that even though all of Diamond Shruumz’s products have been recalled, they remain on the shelves of stores nationwide. The agency said it is reaching out to industry partners to raise awareness of the recall and monitoring the effectiveness of Diamond Shruumz’s recall efforts.

Illegal drug found in Diamond Shruumz candies linked to severe illnesses Read More »

coal-filled-trains-are-likely-sending-people-to-the-hospital

Coal-filled trains are likely sending people to the hospital

Training for black lung —

Coal-filled trains trail a cloud of particulates shaken free from their cargo.

a long line of open-top rail cars filled with coal against a parched, scrub filled hill.

Although US coal consumption has fallen dramatically since 2005, the country still consumes millions of tons a year, and exports tons more—much of it transported by train. Now, new research shows that these trains can affect the health of people living near where they pass.

The study found that residents living near railroad tracks likely have higher premature mortality rates due to air pollutants released during the passage of uncovered coal trains. The analysis of the San Francisco Bay Area cities of Oakland, Richmond, and Berkeley shows that increases in air pollutants such as small particulate matter (PM 2.5) are also associated with increases in asthma-related episodes and hospital admissions.

“This has never been studied in the world. There’s been a couple studies trying to measure just the air pollution, usually in rural areas, but this was the first to both measure air pollution and trains in an urban setting,” said Bart Ostro, author of the study and an epidemiologist at the University of California, Davis.

Persistent coal pollution

Trains carry nearly 70 percent of coal shipments in the United States, leaving a trail of pollution in their wake. And coal exports will have a similar impact during transit. Ostro explained that when uncovered coal trains travel, the coal particles disperse around the railroad tracks. Levels of PM 2.5 “[spread] almost a mile away,” he added.

As a result, the mere passage of coal trains could affect the health of surrounding communities. Ostro was particularly concerned about how these pollutants could harm vulnerable populations living near the coal export terminal in Richmond. Previous census data had already shown that those in Richmond who live around the rail line have mortality rates 10 to 50 percent higher than the county average. Communities in Oakland could be at risk, too, since discussions are underway to build a new coal export terminal in the region.

But before researchers could study the health effects of these air pollutants, they first had to understand how much was spread by passing trains. This was a challenge in itself because coal trains aren’t scheduled like regular passenger trains.

To ensure that researchers could measure all trains and pollutants, Ostro and his team developed a monitoring system with three main components: a weather station to provide meteorological parameters, an air quality sensor to track air pollution levels, and an AI-trained camera to recognize coal trains. The trained cameras were critical to the entire project, identifying different types of trains: full coal trains, empty coal trains, freight trains, and passenger trains.

With the system in place, Ostro’s team measured pollution levels and was able to attribute them directly to coal trains. Their results, published last year, showed that coal trains and terminal operations added a significant amount of PM 2.5 pollution to urban areas, more than other freight or passenger trains. Passing coal trains added an average of eight μg/m3 to ambient pollution. This is two to three micrograms more than freight trains contribute. Even empty coal cars contribute to increased pollution levels due to traces of coal dust.

Particulate problems

This year, in a follow-up study, researchers combined these findings with US Census data and health studies to understand how this increase might affect local communities. They estimated that more than 260,000 people would be exposed to some increase in annual PM 2.5, and that such exposure was associated with significant mortality and morbidity.

Health effects were quantified for three different scenarios based on different wind conditions. In the worst-case scenario, where there’s an increase of about two μg/m3 near the railway line, modeling suggests that premature mortality would increase by 1.3 percent. Hospital admissions for conditions such as chronic lung disease, pneumonia, and cardiovascular disease would also increase by 4.7 percent, 6.2 percent, and 2.2 percent, respectively. Although these are relatively small numbers in a small population, Ostro points out that they could be extrapolated to larger populations in other countries.

“The way I see it, this is a microcosm of what could be happening globally,” he added. While coal use—and the transportation of that coal—is declining in the US and the European Union, the same isn’t happening everywhere. In countries like China and India, for example, coal use is increasing, and populations living near the railroads that transport that coal could be at risk.

“These findings have major implications beyond San Francisco and the US,” said Michel Abramson from Monash University in Australia, who wasn’t involved in the study. The researcher thinks Ostro’s assessment “fills an important gap” by looking at the health effects of transporting coal in uncovered rail cars but doesn’t think there are any solutions to mitigate the problem other than stopping the use of coal.

“Covering the coal cars might not solve the problem, because it could increase the risk of fires,” he added. “Ultimately the world needs to phase out the mining, transport, and combustion of coal, not only to reduce the risks of climate change, but also to improve the health of the population.”

Environmental Research, 2024.  DOI: 10.1016/j.envres.2024.118787

Bárbara Pinho is a science journalist specializing in climate, health, and agriculture, based in Porto, Portugal. Learn more about her work at barbarapinho.com or follow her on X (formerly Twitter) @BarbPinho

Coal-filled trains are likely sending people to the hospital Read More »

nasa-built-a-moon-rover-but-can’t-afford-to-get-it-to-the-launch-pad

NASA built a Moon rover but can’t afford to get it to the launch pad

NASA completed assembling the VIPER rover last month at the Johnson Space Center in Houston.

Enlarge / NASA completed assembling the VIPER rover last month at the Johnson Space Center in Houston.

NASA has spent $450 million designing and building a first-of-its-kind robot to drive into eternally dark craters at the Moon’s south pole, but the agency announced Wednesday it will cancel the rover due to delays and cost overruns.

“NASA intends to discontinue the VIPER mission,” said Nicky Fox, head of the agency’s science mission directorate. “Decisions like this are never easy, and we haven’t made this one, in any way, lightly. In this case, the projected remaining expenses for VIPER would have resulted in either having to cancel or disrupt many other missions in our Commercial Lunar Payload Services (CLPS) line.”

NASA has terminated science missions after development delays and cost overruns before, but it’s rare to cancel a mission with a spacecraft that is already built.

The Volatiles Investigating Polar Exploration Rover (VIPER) mission was supposed to be a robotic scout for NASA’s Artemis program, which aims to return astronauts to the lunar surface in the next few years. VIPER was originally planned to launch in late 2023 and was slated to fly to the Moon aboard a commercial lander provided by Pittsburgh-based Astrobotic, which won a contract from NASA in 2020 to deliver the VIPER rover to the lunar surface. Astrobotic is one of 14 companies in the pool of contractors for NASA’s CLPS program, with the goal of transporting government-sponsored science payloads to the Moon.

But VIPER has been delayed at least two years—the most recent schedule projected a launch in September 2025—causing its cost to grow from $433 million to more than $609 million. The ballooning costs automatically triggered a NASA review to determine whether to proceed with the mission or cancel it. Ultimately, officials said they determined NASA couldn’t pay the extra costs for VIPER without affecting other Moon missions.

“Therefore, we’ve made the decision to forego this particular mission, the VIPER mission, in order to be able to sustain the entire program,” Fox said.

“We’re disappointed,” said John Thornton, CEO of Astrobotic. “It’s certainly difficult news… VIPER has been a great team to work with, and we’re disappointed we won’t get the chance to fly them to the Moon.”

NASA said it will consider “expressions of interest” submitted by US industry and international partners by August 1 for use of the existing VIPER rover at no cost to the government. If NASA can’t find anyone to take over VIPER who can pay to get it to the Moon, the agency plans to disassemble the rover and harvest instruments and components for future lunar missions.

Scientists were dismayed by VIPER’s cancellation.

“It’s absurd, to be honest with you,” said Clive Neal, a planetary geologist at the University of Notre Dame. “It made no sense to me in terms of the economics. You’re canceling a mission that is complete, built, ready to go. It’s in the middle of testing.”

“This is a bad mistake,” wrote Phil Metzger, a planetary physicist at the University of Central Florida, in a post on X. “This was the premier mission to measure lateral and vertical variations of lunar ice in the soil. It would have been revolutionary. Other missions don’t replace what is lost here.”

Built with nowhere to go

Engineers at NASA’s Johnson Space Center in Houston finished assembling the VIPER rover last month, and managers gave approval to put the craft through environmental testing to make sure VIPER could withstand the acoustics and vibrations of launch and the extreme temperature swings it would encounter in space.

Instead, NASA has canceled the mission after spending $450 million to get it to this point. “This is a very tough decision, but it is a decision based on budgetary concerns in a very constrained budget environment,” Fox told reporters Wednesday.

VIPER is about the size of a golf cart, with four wheels, headlights, a drill, and three science instruments to search for water ice in depressions near the Moon’s south pole that have been shaded from sunlight for billions of years. This has allowed these so-called permanently shadowed regions to become cold traps, allowing water ice to accumulate at or near the surface, where it could be accessible for future astronauts to use as drinking water or an oxygen source or to convert into electricity and rocket fuel.

But first, scientists need to know exactly where the water is located and how easy it is to reach. VIPER was supposed to be the next step in mapping resources on the Moon, providing ground truth measurements to corroborate remote sensing data from satellites in lunar orbit.

But late parts deliveries delayed construction of the VIPER rover, and in 2022, NASA ordered additional testing of Astrobotic’s Griffin lunar lander to improve the chances of a successful landing with VIPER. This delayed VIPER’s launch from late 2023 until late 2024, and at the beginning of this year, more supply chain issues with the VIPER rover and the Griffin lander pushed back the launch until September 2025.

This most recent delay raised the projected cost of VIPER more than 30 percent over the original cost of the mission, prompting a NASA termination review. While the rover is now fully assembled, NASA still needed to put it through a lengthy series of tests, complete development of the ground systems to control VIPER on the Moon, and deliver the craft to Astrobotic for integration onto the Griffin lander.

The remaining work to complete VIPER and operate it for 100 days on the lunar surface would have cost around $84 million, according to Kearns.

NASA built a Moon rover but can’t afford to get it to the launch pad Read More »

researchers-track-individual-neurons-as-they-respond-to-words

Researchers track individual neurons as they respond to words

Pondering phrasing —

When processing language, individual neurons respond to words with similar meanings.

Human Neuron, Digital Light Microscope. (Photo By BSIP/Universal Images Group via Getty Images)

Enlarge / Human Neuron, Digital Light Microscope. (Photo By BSIP/Universal Images Group via Getty Images)

BSIP/Universal Images Group via Getty Images

“Language is a huge field, and we are novices in this. We know a lot about how different areas of the brain are involved in linguistic tasks, but the details are not very clear,” says Mohsen Jamali, a computational neuroscience researcher at Harvard Medical School who led a recent study into the mechanism of human language comprehension.

“What was unique in our work was that we were looking at single neurons. There is a lot of studies like that on animals—studies in electrophysiology, but they are very limited in humans. We had a unique opportunity to access neurons in humans,” Jamali adds.

Probing the brain

Jamali’s experiment involved playing recorded sets of words to patients who, for clinical reasons, had implants that monitored the activity of neurons located in their left prefrontal cortex—the area that’s largely responsible for processing language. “We had data from two types of electrodes: the old-fashioned tungsten microarrays that can pick the activity of a few neurons; and the Neuropixel probes which are the latest development in electrophysiology,” Jamali says. The Neuropixels were first inserted in human patients in 2022 and could record the activity of over a hundred neurons.

“So we were in the operation room and asked the patient to participate. We had a mixture of sentences and words, including gibberish sounds that weren’t actual words but sounded like words. We also had a short story about Elvis,” Jamali explains. He said the goal was to figure out if there was some structure to the neuronal response to language. Gibberish words were used as a control to see if the neurons responded to them in a different way.

“The electrodes we used in the study registered voltage—it was a continuous signal at 30 kHz sampling rate—and the critical part was to dissociate how many neurons we had in each recording channel. We used statistical analysis to separate individual neurons in the signal,” Jamali says. Then, his team synchronized the neuronal activity signals with the recordings played to the patients down to a millisecond and started analyzing the data they gathered.

Putting words in drawers

“First, we translated words in our sets to vectors,” Jamali says. Specifically, his team used the Word2Vec, a technique used in computer science to find relationships between words contained in a large corpus of text. What Word2Vec can do is tell if certain words have something in common—if they are synonyms, for example. “Each word was represented by a vector in a 300-dimensional space. Then we just looked at the distance between those vectors and if the distance was close, we concluded the words belonged in the same category,” Jamali explains.

Then the team used these vectors to identify words that clustered together, which suggested they had something in common (something they later confirmed by examining which words were in a cluster together). They then determined whether specific neurons responded differently to different clusters of words. It turned out they did.

“We ended up with nine clusters. We looked at which words were in those clusters and labeled them,” Jamali says. It turned out that each cluster corresponded to a neat semantic domain. Specialized neurons responded to words referring to animals, while other groups responded to words referring to feelings, activities, names, weather, and so on. “Most of the neurons we registered had one preferred domain. Some had more, like two or three,” Jamali explained.

The mechanics of comprehension

The team also tested if the neurons were triggered by the mere sound of a word or by its meaning. “Apart from the gibberish words, another control we used in the study was homophones,” Jamali says. The idea was to test if the neurons responded differently to the word “sun” and the word “son,” for example.

It turned out that the response changed based on context. When the sentence made it clear the word referred to a star, the sound triggered neurons triggered by weather phenomena. When it was clear that the same sound referred to a person, it triggered neurons responsible for relatives. “We also presented the same words at random without any context and found that it didn’t elicit as strong a response as when the context was available,” Jamali claims.

But the language processing in our brains will need to involve more than just different semantic categories being processed by different groups of neurons.

“There are many unanswered questions in linguistic processing. One of them is how much a structure matters, the syntax. Is it represented by a distributed network, or can we find a subset of neurons that encode structure rather than meaning?” Jamali asked. Another thing his team wants to study is what the neural processing looks like during speech production, in addition to comprehension. “How are those two processes related in terms of brain areas and the way the information is processed,” Jamali adds.

The last thing—and according to Jamali the most challenging thing—is using the Neuropixel probes to see how information is processed across different layers of the brain. “The Neuropixel probe travels through the depths of the cortex, and we can look at the neurons along the electrode and say like, ‘OK, the information from this layer, which is responsible for semantics, goes to this layer, which is responsible for something else.’ We want to learn how much information is processed by each layer. This should be challenging, but it would be interesting to see how different areas of the brain are involved at the same time when presented with linguistic stimuli,” Jamali concludes.

Nature, 2024.  DOI: 10.1038/s41586-024-07643-2

Researchers track individual neurons as they respond to words Read More »