psychology

the-nature-of-consciousness,-and-how-to-enjoy-it-while-you-can

The nature of consciousness, and how to enjoy it while you can

Remaining aware —

In his new book, Christof Koch views consciousness as a theorist and an aficionado.

A black background with multicolored swirls filling the shape of a human brain.

Unraveling how consciousness arises out of particular configurations of organic matter is a quest that has absorbed scientists and philosophers for ages. Now, with AI systems behaving in strikingly conscious-looking ways, it is more important than ever to get a handle on who and what is capable of experiencing life on a conscious level. As Christof Koch writes in Then I Am Myself the World, “That you are intimately acquainted with the way life feels is a brute fact about the world that cries out for an explanation.” His explanation—bounded by the limits of current research and framed through Koch’s preferred theory of consciousness—is what he eloquently attempts to deliver.

Koch, a physicist, neuroscientist, and former president of the Allen Institute for Brain Science, has spent his career hunting for the seat of consciousness, scouring the brain for physical footprints of subjective experience. It turns out that the posterior hot zone, a region in the back of the neocortex, is intricately connected to self-awareness and experiences of sound, sight, and touch. Dense networks of neocortical neurons in this area connect in a looped configuration; output signals feedback into input neurons, allowing the posterior hot zone to influence its own behavior. And herein, Koch claims, lies the key to consciousness.

In the hot zone

According to integrated information theory (IIT)—which Koch strongly favors over a multitude of contending theories of consciousness—the Rosetta Stone of subjective experience is the ability of a system to influence itself: to use its past state to affect its present state and its present state to influence its future state.

Billions of neurons exist in the cerebellum, but they are wired “with nonoverlapping inputs and outputs … in a feed-forward manner,” writes Koch. He argues that a structure designed in this way, with limited influence over its own future, is not likely to produce consciousness. Similarly, the prefrontal cortex might allow us to perform complex calculations and exhibit advanced reasoning skills, but such traits do not equate to a capacity to experience life. It is the “reverberatory, self-sustaining excitatory loops prevalent in the neocortex,” Koch tells us, that set the stage for subjective experience to arise.

This declaration matches the experimental evidence Koch presents in Chapter 6: Injuries to the cerebellum do not eliminate a person’s awareness of themselves in relation to the outside world. Consciousness remains, even in a person who can no longer move their body with ease. Yet injuries to the posterior hot zone within the neocortex significantly change a person’s perception of auditory, visual, and tactile information, altering what they subjectively experience and how they describe these experiences to themselves and others.

Does this mean that artificial computer systems, wired appropriately, can be conscious? Not necessarily, Koch says. This might one day be possible with the advent of new technology, but we are not there yet. He writes. “The high connectivity [in a human brain] is very different from that found in the central processing unit of any digital computer, where one transistor typically connects to a handful of other transistors.” For the foreseeable future, AI systems will remain unconscious despite appearances to the contrary.

Koch’s eloquent overview of IIT and the melodic ease of his neuroscientific explanations are undeniably compelling, even for die-hard physicalists who flinch at terms like “self-influence.” His impeccably written descriptions are peppered with references to philosophers, writers, musicians, and psychologists—Albert Camus, Viktor Frankl, Richard Wagner, and Lewis Carroll all make appearances, adding richness and relatability to the narrative. For example, as an introduction to phenomenology—the way an experience feels or appears—he aptly quotes Eminem: “I can’t tell you what it really is, I can only tell you what it feels like.”

The nature of consciousness, and how to enjoy it while you can Read More »

lawsuit-opens-research-misconduct-report-that-may-get-a-harvard-prof-fired

Lawsuit opens research misconduct report that may get a Harvard prof fired

Image of a campus of red brick buildings with copper roofs.

Enlarge / Harvard’s got a lawsuit on its hands.

Glowimages

Accusations of research misconduct often trigger extensive investigations, typically performed by the institution where the misconduct allegedly took place. These investigations are internal employment matters, and false accusations have the potential to needlessly wreck someone’s career. As a result, most of these investigations are kept completely confidential, even after their completion.

But all the details of a misconduct investigation performed by Harvard University became public this week through an unusual route. The professor who had been accused of misconduct, Francesca Gino, had filed a multi-million dollar lawsuit, targeting both Harvard and a team of external researchers who had accused her of misconduct. Harvard submitted its investigator’s report as part of its attempt to have part of the suit dismissed, and the judge overseeing the case made it public.

We covered one of the studies at issue at the time of its publication. It has since been retracted, and we’ll be updating our original coverage accordingly.

Misconduct allegations lead to lawsuit

Gino, currently on administrative leave, had been faculty at Harvard Business School, where she did research on human behavior. One of her more prominent studies (the one we covered) suggested that signing a form before completing it caused people to fill in its contents more accurately than if they filled out the form first and then signed it.

Oddly, for a paper about honesty, it had a number of issues. Some of its original authors had attempted to go back and expand on the paper but found they were unable to replicate the results. That seems to have prompted a group of behavioral researchers who write at the blog Data Colada to look more carefully at the results that didn’t replicate, at which point they found indications that the data was fabricated. That got the paper retracted.

Gino was not implicated in the fabrication of the data. But the attention of the Data Colada team (Uri Simonsohn, Leif Nelson, and Joe Simmons) had been drawn to the paper. They found additional indications of completely independent problems in other data from the paper that did come from her work, which caused them to examine additional papers from Gino, coming up with evidence for potential research fraud in four of them.

Before posting it on their blog, however, the Data Colada team had provided their evidence to Harvard, which launched its own investigation. Their posts came out after Harvard’s investigation concluded that Gino’s research had serious issues, and she was placed on administrative leave as the university looked into revoking her tenure. It also alerted the journals that had published the three yet-to-be-retracted papers about the issues.

Things might have ended there, except that Gino filed a defamation lawsuit against Harvard and the Data Colada team, claiming they “worked together to destroy my career and reputation despite admitting they have no evidence proving their allegations.” As part of the $25 million suit, she also accused Harvard of mishandling its investigation and not following proper procedures.

Lawsuit opens research misconduct report that may get a Harvard prof fired Read More »

how-to-avoid-the-cognitive-hooks-and-habits-that-make-us-vulnerable-to-cons

How to avoid the cognitive hooks and habits that make us vulnerable to cons

Daniel Simons and Christopher Chabris are the authors of <em> Nobody’s Fool: Why We Get Taken In and What We Can Do About It.</em>” src=”https://cdn.arstechnica.net/wp-content/uploads/2024/01/fool1-800×531.jpg”></img><figcaption>
<p><a data-height=Enlarge / Daniel Simons and Christopher Chabris are the authors of Nobody’s Fool: Why We Get Taken In and What We Can Do About It.

Basic Books

There’s rarely time to write about every cool science-y story that comes our way. So this year, we’re once again running a special Twelve Days of Christmas series of posts, highlighting one science story that fell through the cracks in 2023, each day from December 25 through January 5. Today: A conversation with psychologists Daniel Simons and Christopher Chabris on the key habits of thinking and reasoning that may serve us well most of the time, but can make us vulnerable to being fooled.

It’s one of the most famous experiments in psychology. Back in 1999, Daniel Simons and Christopher Chabris conducted an experiment on inattentional blindness. They asked test subjects to watch a short video in which six people—half in white T-shirts, half in black ones—passed basketballs around. The subjects were asked to count the number of passes made by the people in white shirts. Halfway through the video, a person in a gorilla suit walked into the midst of the players and thumped their chest at the camera before strolling off-screen. What surprised the researchers was that fully half the test subjects were so busy counting the number of basketball passes that they never saw the gorilla.

The experiment became a viral sensation—helped by the amusing paper title, “Gorillas in Our Midst“—and snagged Simons and Chabris the 2004 Ig Nobel Psychology Prize. It also became the basis of their bestselling 2010 book, The Invisible Gorilla: How Our Intuitions Deceive Us. Thirteen years later, the two psychologists are back with their latest book, published last July, called Nobody’s Fool: Why We Get Taken In and What We Can Do About It.  Simons and Chabris have penned an entertaining examination of key habits of thinking that usually serve us well but also make us vulnerable to cons and scams. They also offer some practical tools based on cognitive science to help us spot deceptions before being taken in.

“People love reading about cons, yet they keep happening,” Simons told Ars. “Why do they keep happening? What is it those cons are tapping into? Why do we not learn from reading about Theranos? We realized there was a set of cognitive principles that seemed to apply across all of the domains, from cheating in sports and chess to cheating in finance and biotech. That became our organizing theme.”

Ars spoke with Simons and Chabris to learn more.

Ars Technica: I was surprised to learn that people still fall for basic scams like the Nigerian Prince scam. It reminds me of Fox Mulder’s poster on The X-Files: “I want to believe.

Daniel Simons: The Nigerian Prince scam is an interesting one because it’s been around forever. Its original form was in letters. Most people don’t get fooled by that one. The vast majority of people look at it and say, this thing is written in terrible grammar. It’s a mess. And why would anybody believe that they’re the one to recover this vast fortune? So there are some people who fall for it, but it’s a tiny percentage of people. I think it’s still illustrative because that one is obviously too good to be true for most people, but there’s some small subset of people for whom it’s just good enough. It’s just appealing enough to say, “Oh yeah, maybe I could become rich.”

There was a profile in the New Yorker of a clinical psychologist who fell for it. There are people who, for whatever reason, are either desperate or have the idea that they deserve to inherit a lot of money. But there are a lot of scams that are much less obvious than that one, selecting for the people who are most naive about it. I think the key insight there is that we tend to assume that only gullible people fall for this stuff. That is fundamentally wrong. We all fall for this stuff if it’s framed in the right way.

Christopher Chabris: I don’t think they’re necessarily people who always want to believe. I think it really depends on the situation. Some people might want to believe that they can strike it rich in crypto, but they would never fall for a Nigerian email or, for that matter, they might not fall for a traditional Ponzi scheme because they don’t believe in fiat money or the stock market. Going back to the Invisible Gorilla, one thing we noticed was a lot of people would ask us, “What’s the difference between the people who noticed the gorilla and the people who didn’t notice the gorilla?” The answer is, well, some of them happened to notice it and some of them didn’t. It’s not an IQ or personality test. So in the case of the Nigerian email, there might’ve been something going on in that guy’s life at that moment when he got that email that maybe led him to initially accept the premise as true, even though he knew it seemed kind of weird. Then, he got committed to the idea once he started interacting with these people.

Christopher Chabris

So one of our principles is commitment: the idea that if you accept something as true and you don’t question it anymore, then all kinds of bad decisions and bad outcomes can flow from that. So, if you somehow actually get convinced that these guys in Nigeria are real, that can explain the bad decisions you make after that. I think there’s a lot of unpredictableness about it. We all need to understand how these things work. We might think it sounds crazy and we would never fall for it, but we might if it was a different scam at a different time.

How to avoid the cognitive hooks and habits that make us vulnerable to cons Read More »

forget-the-proverbial-wisdom:-opposites-don’t-really-attract,-study-finds

Forget the proverbial wisdom: Opposites don’t really attract, study finds

On the tenth day of Christmas —

Educational attainment, substance use were most common shared traits among couples.

What draws us to choose romantic partners? A sweeping new meta-analysis suggests we gravitate toward certain shared traits.

What draws us to choose romantic partners? A sweeping new meta-analysis suggests we gravitate toward certain shared traits.

There’s rarely time to write about every cool science-y story that comes our way. So this year, we’re once again running a special Twelve Days of Christmas series of posts, highlighting one science story that fell through the cracks in 2023, each day from December 25 through January 5. Today: a broad meta-analysis spanning over a century of studies finds that opposites don’t really attract when it comes to choosing a mate.

We’ve all heard the common folk wisdom that when it comes to forming romantic partnerships, opposites attract. Researchers at the University of Colorado, Boulder, contend that this proverbial wisdom is largely false, based on the findings of their sweeping September study, published in the journal Nature Human Behavior. The saying, “birds of a feather flock together,” is a more apt summation of how we choose our partners.

“These findings suggest that even in situations where we feel like we have a choice about our relationships, there may be mechanisms happening behind the scenes of which we aren’t fully aware,” said co-author Tanya Horwitz, a psychology and neuroscience graduate student at UCB. “We’re hoping people can use this data to do their own analyses and learn more about how and why people end up in the relationships they do.”

Horwitz et al. conducted a systematic review of peer-reviewed studies in the English language involving comparisons of the same or similar complex traits in partners, all published before August 17, 2022, with the oldest dated 1903. They excluded same-sex/gender partners, maintaining that these partnerships warranted a separate analysis since the patterns could differ significantly. The meta-analysis focused on 22 distinct traits. The team also conducted a raw data analysis of an additional 133 traits, drawing from the UK’s Biobank dataset, one of the largest and most detailed in the world for health-related information on more than 500,000 people. All told, the study encompassed millions of couples spanning over a century: co-parents, engaged pairs, married pairs, and cohabitating pairs.

The personality traits included were based on the so-called Big Five basic personality traits: neuroticism, extraversion, openness, agreeableness, and conscientiousness. (The Big Five is currently the professional standard for social psychologists who study personality. Here’s a good summary of what those traits mean to psychologists.) The other traits studied included such things as educational attainment, IQ score, political values, religiosity, problematic alcohol use, drinking, quitting smoking, starting smoking, quantity of smoking, smoker status, substance use disorder, BMI, height, waist-to-hip ratio, depression, diabetes, generalized anxiety, whether they were breastfed as a child, and age of first intercourse, among others.

The meta-analysis and Biobank analysis revealed that the strongest correlations for couples were for birth year and traits like political and religious attitudes, educational attainment, and certain IQ measures. Couples tend to be similar when it comes to their substance use, too: heavy drinkers tend to be with other heavy drinkers, and teetotalers tend to pair with fellow teetotalers. There were a handful of traits among the Biobank couples where opposites did seem to attract, most notably whether one is a morning person or a night owl, tendency to worry, and hearing difficulty.

The weakest correlations were for traits like height, weight, medical conditions, and personality traits, although these were still mostly positive, apart from extroversion, which somewhat surprisingly showed almost no correlation. “People have all these theories that extroverts like introverts or extroverts like other extroverts, but the fact of the matter is that it’s about like flipping a coin,” said Horwitz. “Extroverts are similarly likely to end up with extroverts as with introverts.”

Horwitz et al. cautioned that even the strongest correlations they found were still fairly modest. As for why couples show such striking similarities, the authors write that there could be many reasons. Some people might just be attracted to similar sorts, or couples might become more similar over time. (The study also found that the strength of the correlations changed over time.) Perhaps two people who grow up in the same geographical area or a similar home environment might naturally find themselves drawn to each other.

The authors were careful to note several limitations to their meta-analysis. Most notably, most of those partners sampled came from Europe and the United States, with only a handful coming from East and South Asia, Africa, Latin America, and the Caribbean. Furthermore, all participants in the UK Biobank dataset were between the ages of 40 and 69 when they were originally recruited, all of whom were less likely to smoke, be socioeconomically deprived, or drink daily. The studies included in the meta-analysis also varied widely regarding sample sizes used to draw correlations across traits. For these reasons, the authors caution that their findings “are unlikely to be generalizable to all human populations and time periods.”

Nature Human Behavior, 2023. DOI: 10.1038/s41562-023-01672-z  (About DOIs).

Forget the proverbial wisdom: Opposites don’t really attract, study finds Read More »

people-can-tell-what-you-want-to-know-when-you-shake-wrapped-christmas-gifts

People can tell what you want to know when you shake wrapped Christmas gifts

On the first day of Christmas —

We can tell if it’s about how many objects are inside, or the shape of those objects.

adorable curly red haired toddler in onesie grinning while holding a wrapped christmas present

Enlarge / Shake, shake, shake: this adorable young child would love to guess what he’s getting for Christmas this year.

Johns Hopkins University

There’s rarely time to write about every cool science-y story that comes our way. So this year, we’re once again running a special Twelve Days of Christmas series of posts, highlighting one science story that fell through the cracks in 2023, each day from December 25 through January 5. Today: New research shows it’s incredibly easy for people watching others shake boxes to tell what they’re up to.

Christmas Day is a time for opening presents and finally ending the suspense of what one is receiving this year, but chances are some of us may have already guessed what’s under the wrapping—perhaps by strategically shaking the boxes for clues about its contents. According to a November paper published in the Proceedings of the National Academy of Sciences, if someone happened to see you shaking a wrapped gift, they would be able to tell from those motions what you were trying to learn by doing so.

“There are few things more delightful than seeing a child’s eyes light up as they pick up a present and wonder what might be inside,” said co-author Chaz Firestone of Johns Hopkins University, who studies how vision and thought interact. “What our work shows is that your mind is able to track the information they are seeking. Just as they might be able to tell what’s inside the box by shaking it around, you can tell what they are trying to figure out when they shake it.” Christmas presents are “the perfect real-life example of our experiment.”

According to Firestone et al., there is a large scientific literature devoted to studying how people represent and interpret basic actions like walking, reaching, lifting, eating, chasing, or following. It’s a vital ability that helps us anticipate the behavior of others. These are all examples of pragmatic actions with a specific aim, whether it be retrieving an object or moving from one place to the next.  Other kinds of actions might be communication-oriented, such as waving, pointing, or assuming an aggressive (or friendly) posture.

The JHU study focused on so-called “epistemic” actions, in which one is seeking information: dipping a toe into the bathtub to see how hot is, for example, testing a door to see if it is locked, or shaking a wrapped box to glean information about what might be inside—like a child trying to guess whether a wrapped Christmas present contains Lego blocks or a teddy bear. “Epistemic actions pervade our lives, and recognizing them does, too,” the authors wrote, citing the ability to tell that a “meandering” campus visitor needs directions, or that someone rifling through shallow drawers is probably looking for keys or similar small objects.

People watched other people shake wrapped boxes for science.

For the first experiment, 16 players were asked to shake opaque boxes. In the first round, they tried to guess the number of objects inside the box (in this case, whether there were five or 15 US nickels). In the second, they tried to guess the shape of a geometric solid inside the box (either a sphere or a cube). All the players scored perfectly in both rounds—an expected outcome, given the simplicity of the task. The videos of those rounds were then placed online and 100 different study participants (“observers”) were asked to watch two videos of the same player and determine which video was from the first “guess the number” round and which was from the second “guess the shape” round.  Almost all the observers guessed correctly.

This was intriguing evidence that the observers could indeed infer the goal of the shaking (what the game players were trying to learn) simply by interpreting their motions. But the researchers wondered to what extent the success of the observers relied on the game players’ success at guessing either the number or shape of objects. So they tweaked the box-shaking game to produce more player error. This time, the videotaped players were asked to determine first whether the box held 9, 12, or 16 nickels, and second, whether the box contained a sphere, cylinder, or cube. Only four out of 18 players guessed correctly. But the success rate of 100 new observers who watched the videos remained the same.

Firestone et al. ran three more variations on the basic experiment to refine their results. With each iteration, most of the players performed shaking motions that were different depending on whether the round involved numbers or shapes, and most of the observers (500 in total) successfully inferred what the players were trying to learn by watching those shaking motions. “When you think about all the mental calculations someone must make to understand what someone else is trying to learn, it’s a remarkably complicated process,” said Firestone. “But our findings show it’s something people do easily.”

DOI: PNAS, 2023. 10.1073/pnas.2303162120  (About DOIs).

People can tell what you want to know when you shake wrapped Christmas gifts Read More »