NVIDIA

after-nearly-30-years,-crucial-will-stop-selling-ram-to-consumers

After nearly 30 years, Crucial will stop selling RAM to consumers

DRAM contract prices have increased 171 percent year over year, according to industry data. Gerry Chen, general manager of memory manufacturer TeamGroup, warned that the situation will worsen in the first half of 2026 once distributors exhaust their remaining inventory. He expects supply constraints to persist through late 2027 or beyond.

The fault lies squarely at the feet of AI mania in the tech industry. The construction of new AI infrastructure has created unprecedented demand for high-bandwidth memory (HBM), the specialized DRAM used in AI accelerators from Nvidia and AMD. Memory manufacturers have been reallocating production capacity away from consumer products toward these more profitable enterprise components, and Micron has presold its entire HBM output through 2026.

A photo of the

A photo of the “Stargate I” site in Abilene, Texas. AI data center sites like this are eating up the RAM supply. Credit: OpenAI

At the moment, the structural imbalance between AI demand and consumer supply shows no signs of easing. OpenAI’s Stargate project has reportedly signed agreements for up to 900,000 wafers of DRAM per month, which could account for nearly 40 percent of global production.

The shortage has already forced companies to adapt. As Ars’ Andrew Cunningham reported, laptop maker Framework stopped selling standalone RAM kits in late November to prevent scalping and said it will likely be forced to raise prices soon.

For Micron, the calculus is clear: Enterprise customers pay more and buy in bulk. But for the DIY PC community, the decision will leave PC builders with one fewer option when reaching for the RAM sticks. In his statement, Sadana reflected on the brand’s 29-year run.

“Thanks to a passionate community of consumers, the Crucial brand has become synonymous with technical leadership, quality and reliability of leading-edge memory and storage products,” Sadana said. “We would like to thank our millions of customers, hundreds of partners and all of the Micron team members who have supported the Crucial journey for the last 29 years.”

After nearly 30 years, Crucial will stop selling RAM to consumers Read More »

testing-shows-why-the-steam-machine’s-8gb-of-graphics-ram-could-be-a-problem

Testing shows why the Steam Machine’s 8GB of graphics RAM could be a problem

By Valve’s admission, its upcoming Steam Machine desktop isn’t swinging for the fences with its graphical performance. The specs promise decent 1080p-to-1440p performance in most games, with 4K occasionally reachable with assistance from FSR upscaling—about what you’d expect from a box with a modern midrange graphics card in it.

But there’s one spec that has caused some concern among Ars staffers and others with their eyes on the Steam Machine: The GPU comes with just 8GB of dedicated graphics RAM, an amount that is steadily becoming more of a bottleneck for midrange GPUs like AMD’s Radeon RX 7060 and 9060, or Nvidia’s GeForce RTX 4060 or 5060.

In our reviews of these GPUs, we’ve already run into some games where the RAM ceiling limits performance in Windows, especially at 1440p. But we’ve been doing more extensive testing of various GPUs with SteamOS, and we can confirm that in current betas, 8GB GPUs struggle even more on SteamOS than they do running the same games at the same settings in Windows 11.

The good news is that Valve is working on solutions, and having a stable platform like the Steam Machine to aim for should help improve things for other hardware with similar configurations. The bad news is there’s plenty of work left to do.

The numbers

We’ve tested an array of dedicated and integrated Radeon GPUs under SteamOS and Windows, and we’ll share more extensive results in another article soon (along with broader SteamOS-vs-Windows observations). But for our purposes here, the two GPUs that highlight the issues most effectively are the 8GB Radeon RX 7600 and the 16GB Radeon RX 7600 XT.

These dedicated GPUs have the benefit of being nearly identical to what Valve plans to ship in the Steam Machine—32 compute units (CUs) instead of Valve’s 28, but the same RDNA3 architecture. They’re also, most importantly for our purposes, pretty similar to each other—the same physical GPU die, just with slightly higher clock speeds and more RAM for the 7600 XT than for the regular 7600.

Testing shows why the Steam Machine’s 8GB of graphics RAM could be a problem Read More »

gpu-prices-are-coming-to-earth-just-as-ram-costs-shoot-into-the-stratosphere

GPU prices are coming to earth just as RAM costs shoot into the stratosphere

It’s not just PC builders

PC and phone manufacturers—and makers of components that use memory chips, like GPUs—mostly haven’t hiked prices yet. These companies buy components in large quantities, and they typically do so ahead of time, dulling the impact of the increases in the short-term. The kinds of price increases we see, and what costs are passed on to consumers, will vary from company to company.

Bloomberg reports that Lenovo is “stockpiling memory and other critical components” to get it through 2026 without issues and that the company “will aim to avoid passing on rising costs to its customers in the current quarter.” Apple may also be in a good position to weather the shortage; analysts at Morgan Stanley and Bernstein Research believe that Apple has already laid claim to the RAM that it needs and that its healthy profit margins will allow it to absorb the increases better than most.

Framework on the other hand, a smaller company known best for its repairable and upgradeable laptop designs, says “it is likely we will need to increase memory pricing soon” to reflect price increases from its suppliers. The company has also stopped selling standalone RAM kits in its online store in an effort to fight scalpers who are trying to capitalize on the shortages.

Tom’s Hardware reports that AMD has told its partners that it expects to raise GPU prices by about 10 percent starting next year and that Nvidia may have canceled a planned RTX 50-series Super launch entirely because of shortages and price increases (the main draw of this Super refresh, according to the rumor mill, would have a bump from 2GB GDDR7 chips to 3GB chips, boosting memory capacities across the lineup by 50 percent).

GPU prices are coming to earth just as RAM costs shoot into the stratosphere Read More »

tech-company-cto-and-others-indicted-for-exporting-nvidia-chips-to-china

Tech company CTO and others indicted for exporting Nvidia chips to China

Citing export controls that took effect in 2022, the indictment said the US is trying to disrupt China’s plan to build exascale supercomputers for military and surveillance use. “These capabilities are being used by the PRC for its military modernization efforts and in connection with the PRC’s weapons design and testing, including for weapons of mass destruction, as well as in connection with the PRC’s development and deployment of advanced AI surveillance tools,” the indictment said.

The Justice Department said the conspirators used Janford Realtor, LLC, a Florida-based company that was not involved in real estate despite its name, “as a front to purchase and then illegally export controlled GPUs to the PRC.” Ho and Li owned and controlled Janford Realtor, while Raymond operated an Alabama-based electronics company that “supplied Nvidia GPUs to Ho and others for illegal export to the PRC,” the Justice Department said.

Kickbacks, money laundering

The conspirators paid each other “kickbacks” or commissions on the sale and export of the Nvidia chips, the indictment said. The money laundering charges involve a variety of transfers from two Chinese companies to Janford Realtor and the Alabama electronics company, the indictment said. The indictment lists nine wire transfers in amounts ranging from $237,248 to $1,150,000.

Raymond was reportedly released on bond, while the other three alleged conspirators are being detained. “This is an extremely serious offense. At the time these were being exported, these were Nvidia’s most advanced chips,” US prosecutor Noah Stern told a magistrate judge in Oakland yesterday, according to Wired.

Stein also said in court that “text messages obtained by authorities show Li boasting about how his father ‘had engaged in similar business on behalf of the Chinese Communist Party,’” Wired reported. Stern said that in the messages, Li “explained that his father had ways to import” the Nvidia chips despite US export controls.

Tech company CTO and others indicted for exporting Nvidia chips to China Read More »

google’s-latest-swing-at-chromebook-gaming-is-a-free-year-of-geforce-now

Google’s latest swing at Chromebook gaming is a free year of GeForce Now

Earlier this year, Google announced the end of its efforts to get Steam running on Chromebooks, but it’s not done trying to make these low-power laptops into gaming machines. Google has teamed up with Nvidia to offer a version of GeForce Now cloud streaming that is perplexingly limited in some ways and generous in others. Starting today, anyone who buys a Chromebook will get a free year of a new service called GeForce Now Fast Pass. There are no ads and less waiting for server slots, but you don’t get to play very long.

Back before Google killed its Stadia game streaming service, it would often throw in a few months of the Pro subscription with Chromebook purchases. In the absence of its own gaming platform, Google has turned to Nvidia to level up Chromebook gaming. GeForce Now (GFN), which has been around in one form or another for more than a decade, allows you to render games on a remote server and stream the video output to the device of your choice. It works on computers, phones, TVs, and yes, Chromebooks.

The new Chromebook feature is not the same GeForce Now subscription you can get from Nvidia. Fast Pass, which is exclusive to Chromebooks, includes a mishmash of limits and bonuses that make it a pretty strange offering. Fast Pass is based on the free tier of GeForce Now, but users will get priority access to server slots. So no queuing for five or 10 minutes to start playing. It also lacks the ads that Nvidia’s standard free tier includes. Fast Pass also uses the more powerful RTX servers, which are otherwise limited to the $10-per-month ($100 yearly) Performance tier.

Google’s latest swing at Chromebook gaming is a free year of GeForce Now Read More »

tech-giants-pour-billions-into-anthropic-as-circular-ai-investments-roll-on

Tech giants pour billions into Anthropic as circular AI investments roll on

On Tuesday, Microsoft and Nvidia announced plans to invest in Anthropic under a new partnership that includes a $30 billion commitment by the Claude maker to use Microsoft’s cloud services. Nvidia will commit up to $10 billion to Anthropic and Microsoft up to $5 billion, with both companies investing in Anthropic’s next funding round.

The deal brings together two companies that have backed OpenAI and connects them more closely to one of the ChatGPT maker’s main competitors. Microsoft CEO Satya Nadella said in a video that OpenAI “remains a critical partner,” while adding that the companies will increasingly be customers of each other.

“We will use Anthropic models, they will use our infrastructure, and we’ll go to market together,” Nadella said.

Anthropic, Microsoft, and NVIDIA announce partnerships.

The move follows OpenAI’s recent restructuring that gave the company greater distance from its non-profit origins. OpenAI has since announced a $38 billion deal to buy cloud services from Amazon.com as the company becomes less dependent on Microsoft. OpenAI CEO Sam Altman has said the company plans to spend $1.4 trillion to develop 30 gigawatts of computing resources.

Tech giants pour billions into Anthropic as circular AI investments roll on Read More »

google-ceo:-if-an-ai-bubble-pops,-no-one-is-getting-out-clean

Google CEO: If an AI bubble pops, no one is getting out clean

Market concerns and Google’s position

Alphabet’s recent market performance has been driven by investor confidence in the company’s ability to compete with OpenAI’s ChatGPT, as well as its development of specialized chips for AI that can compete with Nvidia’s. Nvidia recently reached a world-first $5 trillion valuation due to making GPUs that can accelerate the matrix math at the heart of AI computations.

Despite acknowledging that no company would be immune to a potential AI bubble burst, Pichai argued that Google’s unique position gives it an advantage. He told the BBC that the company owns what he called a “full stack” of technologies, from chips to YouTube data to models and frontier science research. This integrated approach, he suggested, would help the company weather any market turbulence better than competitors.

Pichai also told the BBC that people should not “blindly trust” everything AI tools output. The company currently faces repeated accuracy concerns about some of its AI models. Pichai said that while AI tools are helpful “if you want to creatively write something,” people “have to learn to use these tools for what they’re good at and not blindly trust everything they say.”

In the BBC interview, the Google boss also addressed the “immense” energy needs of AI, acknowledging that the intensive energy requirements of expanding AI ventures have caused slippage on Alphabet’s climate targets. However, Pichai insisted that the company still wants to achieve net zero by 2030 through investments in new energy technologies. “The rate at which we were hoping to make progress will be impacted,” Pichai said, warning that constraining an economy based on energy “will have consequences.”

Even with the warnings about a potential AI bubble, Pichai did not miss his chance to promote the technology, albeit with a hint of danger regarding its widespread impact. Pichai described AI as “the most profound technology” humankind has worked on.

“We will have to work through societal disruptions,” he said, adding that the technology would “create new opportunities” and “evolve and transition certain jobs.” He said people who adapt to AI tools “will do better” in their professions, whatever field they work in.

Google CEO: If an AI bubble pops, no one is getting out clean Read More »

openai-signs-massive-ai-compute-deal-with-amazon

OpenAI signs massive AI compute deal with Amazon

On Monday, OpenAI announced it has signed a seven-year, $38 billion deal to buy cloud services from Amazon Web Services to power products like ChatGPT and Sora. It’s the company’s first big computing deal after a fundamental restructuring last week that gave OpenAI more operational and financial freedom from Microsoft.

The agreement gives OpenAI access to hundreds of thousands of Nvidia graphics processors to train and run its AI models. “Scaling frontier AI requires massive, reliable compute,” OpenAI CEO Sam Altman said in a statement. “Our partnership with AWS strengthens the broad compute ecosystem that will power this next era and bring advanced AI to everyone.”

OpenAI will reportedly use Amazon Web Services immediately, with all planned capacity set to come online by the end of 2026 and room to expand further in 2027 and beyond. Amazon plans to roll out hundreds of thousands of chips, including Nvidia’s GB200 and GB300 AI accelerators, in data clusters built to power ChatGPT’s responses, generate AI videos, and train OpenAI’s next wave of models.

Wall Street apparently liked the deal, because Amazon shares hit an all-time high on Monday morning. Meanwhile, shares for long-time OpenAI investor and partner Microsoft briefly dipped following the announcement.

Massive AI compute requirements

It’s no secret that running generative AI models for hundreds of millions of people currently requires a lot of computing power. Amid chip shortages over the past few years, finding sources of that computing muscle has been tricky. OpenAI is reportedly working on its own GPU hardware to help alleviate the strain.

But for now, the company needs to find new sources of Nvidia chips, which accelerate AI computations. Altman has previously said that the company plans to spend $1.4 trillion to develop 30 gigawatts of computing resources, an amount that is enough to roughly power 25 million US homes, according to Reuters.

OpenAI signs massive AI compute deal with Amazon Read More »

chatgpt-maker-reportedly-eyes-$1-trillion-ipo-despite-major-quarterly-losses

ChatGPT maker reportedly eyes $1 trillion IPO despite major quarterly losses

An OpenAI spokesperson told Reuters that “an IPO is not our focus, so we could not possibly have set a date,” adding that the company is “building a durable business and advancing our mission so everyone benefits from AGI.”

Revenue grows as losses mount

The IPO preparations follow a restructuring of OpenAI completed on October 28 that reduced the company’s reliance on Microsoft, which has committed to investments of $13 billion and now owns about 27 percent of the company. OpenAI was most recently valued around $500 billion in private markets.

OpenAI started as a nonprofit in 2015, then added a for-profit arm a few years later with nonprofit oversight. Under the new structure, OpenAI is still controlled by a nonprofit, now called the OpenAI Foundation, but it gives the nonprofit a 26 percent stake in OpenAI Group and a warrant for additional shares if the company hits certain milestones.

A successful OpenAI IPO could represent a substantial gain for investors, including Microsoft, SoftBank, Thrive Capital, and Abu Dhabi’s MGX. But even so, OpenAI faces an uphill financial battle ahead. The ChatGPT maker expects to reach about $20 billion in revenue by year-end, according to people familiar with the company’s finances who spoke with Reuters, but its quarterly losses are significant.

Microsoft’s earnings filing on Wednesday offered a glimpse at the scale of those losses. The company reported that its share of OpenAI losses reduced Microsoft’s net income by $3.1 billion in the quarter that ended September 30. Since Microsoft owns 27 percent of OpenAI under the new structure, that suggests OpenAI lost about $11.5 billion during the quarter, as noted by The Register. That quarterly loss figure exceeds half of OpenAI’s expected revenue for the entire year.

ChatGPT maker reportedly eyes $1 trillion IPO despite major quarterly losses Read More »

nvidia-hits-record-$5-trillion-mark-as-ceo-dismisses-ai-bubble-concerns

Nvidia hits record $5 trillion mark as CEO dismisses AI bubble concerns

Partnerships and government contracts fuel optimism

At the GTC conference on Tuesday, Nvidia’s CEO went out of his way to repeatedly praise Donald Trump and his policies for accelerating domestic tech investment while warning that excluding China from Nvidia’s ecosystem could limit US access to half the world’s AI developers. The overall event stressed Nvidia’s role as an American company, with Huang even nodding to Trump’s signature slogan in his sign-off by thanking the audience for “making America great again.”

Trump’s cooperation is paramount for Nvidia because US export controls have effectively blocked Nvidia’s AI chips from China, costing the company billions of dollars in revenue. Bob O’Donnell of TECHnalysis Research told Reuters that “Nvidia clearly brought their story to DC to both educate and gain favor with the US government. They managed to hit most of the hottest and most influential topics in tech.”

Beyond the political messaging, Huang announced a series of partnerships and deals that apparently helped ease investor concerns about Nvidia’s future. The company announced collaborations with Uber Technologies, Palantir Technologies, and CrowdStrike Holdings, among others. Nvidia also revealed a $1 billion investment in Nokia to support the telecommunications company’s shift toward AI and 6G networking.

The agreement with Uber will power a fleet of 100,000 self-driving vehicles with Nvidia technology, with automaker Stellantis among the first to deliver the robotaxis. Palantir will pair Nvidia’s technology with its Ontology platform to use AI techniques for logistics insights, with Lowe’s as an early adopter. Eli Lilly plans to build what Nvidia described as the most powerful supercomputer owned and operated by a pharmaceutical company, relying on more than 1,000 Blackwell AI accelerator chips.

The $5 trillion valuation surpasses the total cryptocurrency market value and equals roughly half the size of the pan European Stoxx 600 equities index, Reuters notes. At current prices, Huang’s stake in Nvidia would be worth about $179.2 billion, making him the world’s eighth-richest person.

Nvidia hits record $5 trillion mark as CEO dismisses AI bubble concerns Read More »

an-autonomous-car-for-consumers?-lucid-says-it’s-happening.

An autonomous car for consumers? Lucid says it’s happening.

Good news if you sell GPUs

First, Lucid will roll out a more advanced version of its partially automated driving assist for the Gravity SUV, which it says has been “turbocharged by Nvidia Drive AV.” But after that, the plan is for a so-called “level 4” autonomous system, capable of driving itself from point to point without human intervention, at least within a geofence or other limited operational design domain.

In scope, this is more limited and more achievable than the “level 5,” go-anywhere dream of Tesla’s FSD system. It is similar to the level 4 autonomous vehicles being developed by companies like Waymo and Zoox, but those are also designed to be operated by fleets with regular maintenance.

Lucid will use Nvidia’s platform to reach level 4, building a pair of Drive AGX Thor computers into the new midsize EV platform. And leaning on Nvidia’s software means Lucid doesn’t have the hard ongoing job of keeping everything up to date.

“As vehicles evolve into software-defined supercomputers on wheels, a new opportunity emerges—to reimagine mobility with intelligence at every turn. Together with Lucid, we’re accelerating the future of autonomous, AI-powered transportation, built on [the] Nvidia full-stack automotive platform,” said Jensen Huang, founder and CEO of Nvidia.

Car buyers are starting to cotton on to driver assists like General Motors’ Super Cruise, which about 40 percent of customers choose to pay for after the three-year free trial ends, and Lucid must be hoping that offering a far more advanced system, which won’t require the human to pay any attention while it is engaged, will help it earn plenty of money.

The other part of the Lucid/Nvidia announcement may have the potential for even more impact on the profit and loss statements. Nvidia’s industrial platform will let Lucid create its production lines digitally first before committing them to actual hardware. “By modeling autonomous systems, Lucid can optimize robot path planning, improve safety, and shorten commissioning time,” Lucid said.

An autonomous car for consumers? Lucid says it’s happening. Read More »

ars-live-recap:-is-the-ai-bubble-about-to-pop?-ed-zitron-weighs-in.

Ars Live recap: Is the AI bubble about to pop? Ed Zitron weighs in.


Despite connection hiccups, we covered OpenAI’s finances, nuclear power, and Sam Altman.

On Tuesday of last week, Ars Technica hosted a live conversation with Ed Zitron, host of the Better Offline podcast and one of tech’s most vocal AI critics, to discuss whether the generative AI industry is experiencing a bubble and when it might burst. My Internet connection had other plans, though, dropping out multiple times and forcing Ars Technica’s Lee Hutchinson to jump in as an excellent emergency backup host.

During the times my connection cooperated, Zitron and I covered OpenAI’s financial issues, lofty infrastructure promises, and why the AI hype machine keeps rolling despite some arguably shaky economics underneath. Lee’s probing questions about per-user costs revealed a potential flaw in AI subscription models: Companies can’t predict whether a user will cost them $2 or $10,000 per month.

You can watch a recording of the event on YouTube or in the window below.

Our discussion with Ed Zitron. Click here for transcript.

“A 50 billion-dollar industry pretending to be a trillion-dollar one”

I started by asking Zitron the most direct question I could: “Why are you so mad about AI?” His answer got right to the heart of his critique: the disconnect between AI’s actual capabilities and how it’s being sold. “Because everybody’s acting like it’s something it isn’t,” Zitron said. “They’re acting like it’s this panacea that will be the future of software growth, the future of hardware growth, the future of compute.”

In one of his newsletters, Zitron describes the generative AI market as “a 50 billion dollar revenue industry masquerading as a one trillion-dollar one.” He pointed to OpenAI’s financial burn rate (losing an estimated $9.7 billion in the first half of 2025 alone) as evidence that the economics don’t work, coupled with a heavy dose of pessimism about AI in general.

Donald Trump listens as Nvidia CEO Jensen Huang speaks at the White House during an event on “Investing in America” on April 30, 2025, in Washington, DC. Credit: Andrew Harnik / Staff | Getty Images News

“The models just do not have the efficacy,” Zitron said during our conversation. “AI agents is one of the most egregious lies the tech industry has ever told. Autonomous agents don’t exist.”

He contrasted the relatively small revenue generated by AI companies with the massive capital expenditures flowing into the sector. Even major cloud providers and chip makers are showing strain. Oracle reportedly lost $100 million in three months after installing Nvidia’s new Blackwell GPUs, which Zitron noted are “extremely power-hungry and expensive to run.”

Finding utility despite the hype

I pushed back against some of Zitron’s broader dismissals of AI by sharing my own experience. I use AI chatbots frequently for brainstorming useful ideas and helping me see them from different angles. “I find I use AI models as sort of knowledge translators and framework translators,” I explained.

After experiencing brain fog from repeated bouts of COVID over the years, I’ve also found tools like ChatGPT and Claude especially helpful for memory augmentation that pierces through brain fog: describing something in a roundabout, fuzzy way and quickly getting an answer I can then verify. Along these lines, I’ve previously written about how people in a UK study found AI assistants useful accessibility tools.

Zitron acknowledged this could be useful for me personally but declined to draw any larger conclusions from my one data point. “I understand how that might be helpful; that’s cool,” he said. “I’m glad that that helps you in that way; it’s not a trillion-dollar use case.”

He also shared his own attempts at using AI tools, including experimenting with Claude Code despite not being a coder himself.

“If I liked [AI] somehow, it would be actually a more interesting story because I’d be talking about something I liked that was also onerously expensive,” Zitron explained. “But it doesn’t even do that, and it’s actually one of my core frustrations, it’s like this massive over-promise thing. I’m an early adopter guy. I will buy early crap all the time. I bought an Apple Vision Pro, like, what more do you say there? I’m ready to accept issues, but AI is all issues, it’s all filler, no killer; it’s very strange.”

Zitron and I agree that current AI assistants are being marketed beyond their actual capabilities. As I often say, AI models are not people, and they are not good factual references. As such, they cannot replace human decision-making and cannot wholesale replace human intellectual labor (at the moment). Instead, I see AI models as augmentations of human capability: as tools rather than autonomous entities.

Computing costs: History versus reality

Even though Zitron and I found some common ground about AI hype, I expressed a belief that criticism over the cost and power requirements of operating AI models will eventually not become an issue.

I attempted to make that case by noting that computing costs historically trend downward over time, referencing the Air Force’s SAGE computer system from the 1950s: a four-story building that performed 75,000 operations per second while consuming two megawatts of power. Today, pocket-sized phones deliver millions of times more computing power in a way that would be impossible, power consumption-wise, in the 1950s.

The blockhouse for the Semi-Automatic Ground Environment at Stewart Air Force Base, Newburgh, New York. Credit: Denver Post via Getty Images

“I think it will eventually work that way,” I said, suggesting that AI inference costs might follow similar patterns of improvement over years and that AI tools will eventually become commodity components of computer operating systems. Basically, even if AI models stay inefficient, AI models of a certain baseline usefulness and capability will still be cheaper to train and run in the future because the computing systems they run on will be faster, cheaper, and less power-hungry as well.

Zitron pushed back on this optimism, saying that AI costs are currently moving in the wrong direction. “The costs are going up, unilaterally across the board,” he said. Even newer systems like Cerebras and Grok can generate results faster but not cheaper. He also questioned whether integrating AI into operating systems would prove useful even if the technology became profitable, since AI models struggle with deterministic commands and consistent behavior.

The power problem and circular investments

One of Zitron’s most pointed criticisms during the discussion centered on OpenAI’s infrastructure promises. The company has pledged to build data centers requiring 10 gigawatts of power capacity (equivalent to 10 nuclear power plants, I once pointed out) for its Stargate project in Abilene, Texas. According to Zitron’s research, the town currently has only 350 megawatts of generating capacity and a 200-megawatt substation.

“A gigawatt of power is a lot, and it’s not like Red Alert 2,” Zitron said, referencing the real-time strategy game. “You don’t just build a power station and it happens. There are months of actual physics to make sure that it doesn’t kill everyone.”

He believes many announced data centers will never be completed, calling the infrastructure promises “castles on sand” that nobody in the financial press seems willing to question directly.

An orange, cloudy sky backlights a set of electrical wires on large pylons, leading away from the cooling towers of a nuclear power plant.

After another technical blackout on my end, I came back online and asked Zitron to define the scope of the AI bubble. He says it has evolved from one bubble (foundation models) into two or three, now including AI compute companies like CoreWeave and the market’s obsession with Nvidia.

Zitron highlighted what he sees as essentially circular investment schemes propping up the industry. He pointed to OpenAI’s $300 billion deal with Oracle and Nvidia’s relationship with CoreWeave as examples. “CoreWeave, they literally… They funded CoreWeave, became their biggest customer, then CoreWeave took that contract and those GPUs and used them as collateral to raise debt to buy more GPUs,” Zitron explained.

When will the bubble pop?

Zitron predicted the bubble would burst within the next year and a half, though he acknowledged it could happen sooner. He expects a cascade of events rather than a single dramatic collapse: An AI startup will run out of money, triggering panic among other startups and their venture capital backers, creating a fire-sale environment that makes future fundraising impossible.

“It’s not gonna be one Bear Stearns moment,” Zitron explained. “It’s gonna be a succession of events until the markets freak out.”

The crux of the problem, according to Zitron, is Nvidia. The chip maker’s stock represents 7 to 8 percent of the S&P 500’s value, and the broader market has become dependent on Nvidia’s continued hyper growth. When Nvidia posted “only” 55 percent year-over-year growth in January, the market wobbled.

“Nvidia’s growth is why the bubble is inflated,” Zitron said. “If their growth goes down, the bubble will burst.”

He also warned of broader consequences: “I think there’s a depression coming. I think once the markets work out that tech doesn’t grow forever, they’re gonna flush the toilet aggressively on Silicon Valley.” This connects to his larger thesis: that the tech industry has run out of genuine hyper-growth opportunities and is trying to manufacture one with AI.

“Is there anything that would falsify your premise of this bubble and crash happening?” I asked. “What if you’re wrong?”

“I’ve been answering ‘What if you’re wrong?’ for a year-and-a-half to two years, so I’m not bothered by that question, so the thing that would have to prove me right would’ve already needed to happen,” he said. Amid a longer exposition about Sam Altman, Zitron said, “The thing that would’ve had to happen with inference would’ve had to be… it would have to be hundredths of a cent per million tokens, they would have to be printing money, and then, it would have to be way more useful. It would have to have efficacy that it does not have, the hallucination problems… would have to be fixable, and on top of this, someone would have to fix agents.”

A positivity challenge

Near the end of our conversation, I wondered if I could flip the script, so to speak, and see if he could say something positive or optimistic, although I chose the most challenging subject possible for him. “What’s the best thing about Sam Altman,” I asked. “Can you say anything nice about him at all?”

“I understand why you’re asking this,” Zitron started, “but I wanna be clear: Sam Altman is going to be the reason the markets take a crap. Sam Altman has lied to everyone. Sam Altman has been lying forever.” He continued, “Like the Pied Piper, he’s led the markets into an abyss, and yes, people should have known better, but I hope at the end of this, Sam Altman is seen for what he is, which is a con artist and a very successful one.”

Then he added, “You know what? I’ll say something nice about him, he’s really good at making people say, ‘Yes.’”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Ars Live recap: Is the AI bubble about to pop? Ed Zitron weighs in. Read More »