Spread across NASA’s headquarters and 10 field centers, which dot the United States from sea to sea, the space agency has had a workforce of nearly 18,000 civil servants.
However, by the end of today, that number will have shrunk by about 10 percent since the beginning of the second Trump administration four weeks ago. And the world’s preeminent space agency may still face significant additional cuts.
According to sources, about 750 employees at NASA accepted the “fork in the road” offer to take deferred resignation from the space agency later this year. This sounds like a lot of people, but generally about 1,000 people leave the agency every year, so effectively, many of these people might just be getting paid to leave jobs they were already planning to exit from.
The culling of “probationary” employees will be more impactful. As it has done at other federal agencies, the Trump administration is generally firing federal employees who are in the “probationary” period of their employment, which includes new hires within the last one or two years or long-time employees who have moved into or been promoted into a new position. About 1,000 or slightly more employees at NASA were impacted by these cuts.
Adding up the deferred resignations and probationary cuts, the Trump White House has now trimmed about 10 percent of the agency’s workforce.
However, the cuts may not stop there. Two sources told Ars that directors at the agency’s field centers have been told to prepare options for a “significant” reduction in force in the coming months. The scope of these cuts has not been defined, and it’s possible they may not even happen, given that the White House must negotiate budgets for NASA and other agencies with the US Congress. But this directive for further reductions in force casts more uncertainty on an already demoralized workforce and signals that the Trump administration would like to make further cuts.
“When I see a picture like this, it is impossible not to feel energized about the future,” he wrote. “I think it is so important for people to understand the profound implications of sending humans to another planet.”
Among these, Isaacman cited the benefits of advancing state-of-the-art technologies including propulsion, habitability, power generation, in-situ resource utilization, and manufacturing.
“We will create systems, countermeasures, and pharmaceuticals to sustain human life in extreme conditions, addressing challenges like radiation and microgravity over extended durations,” he said. “These advancements will form the foundation for lower-cost, more frequent crewed and robotic missions across the solar system, creating a flywheel effect to accelerate world-changing discoveries.”
Additionally, Isaacman said taking the first steps toward humanity living beyond Earth was critical to the long-term survival of the species, and that such an achievement would inspire a new generation of scientific and technological leaders.
“Achieving such an outrageous endeavor—like landing American astronauts on another planet—will inspire generations of dreamers to build upon these accomplishments, set even bolder goals, and drive humankind’s greatest adventure forward,” he wrote.
Upon being asked about his thoughts about sending humans to Mars during the launch window in late 2028 or early 2029, Isaacman said he remains on the outside of NASA’s planning process for now. But he did say the United States should start to put serious effort toward sending humans to Mars.
“We should invest a reasonable amount of resources coupled with extreme work intensity and then make them a reality,” he wrote. “Even getting 90% there in the near term would set humankind on an incredible trajectory for the long term.”
The primary contractor for the Space Launch System rocket, Boeing, is preparing for the possibility that NASA cancels the long-running program.
On Friday, with less than an hour’s notice, David Dutcher, Boeing’s vice president and program manager for the SLS rocket, scheduled an all-hands meeting for the approximately 800 employees working on the program. The apparently scripted meeting lasted just six minutes, and Dutcher didn’t take questions.
During his remarks, Dutcher said Boeing’s contracts for the rocket could end in March and that the company was preparing for layoffs in case the contracts with the space agency were not renewed. “Cold and scripted” is how one person described Dutcher’s demeanor.
Giving a 60-day notice
The aerospace company, which is the primary contractor for the rocket’s large core stage, issued the notifications as part of the Worker Adjustment and Retraining Notification (or WARN) Act, which requires US employers with 100 or more full-time employees to provide a 60-day notice in advance of mass layoffs or plant closings.
“To align with revisions to the Artemis program and cost expectations, today we informed our Space Launch Systems team of the potential for approximately 400 fewer positions by April 2025,” a Boeing spokesperson told Ars. “This will require 60-day notices of involuntary layoff be issued to impacted employees in coming weeks, in accordance with the Worker Adjustment and Retraining Notification Act. We are working with our customer and seeking opportunities to redeploy employees across our company to minimize job losses and retain our talented teammates.”
The timing of Friday’s hastily called meeting aligns with the anticipated release of President Trump’s budget proposal for fiscal year 2026. This may not be an entire plan but rather a “skinny” budget that lays out a wish list of spending requests for Congress and some basic economic projections. Congress does not have to act on Trump’s budget priorities.
More data will likely reduce the chance of an impact to zero. If not, we have options.
Discovery images of asteroid 2024 YR4. Credit: ATLAS
Something in the sky captured the attention of astronomers in the final days of 2024. A telescope in Chile scanning the night sky detected a faint point of light, and it didn’t correspond to any of the thousands of known stars, comets, and asteroids in astronomers’ all-sky catalog.
The detection on December 27 came from one of a network of telescopes managed by the Asteroid Terrestrial-impact Last Alert System (ATLAS), a NASA-funded project to provide warning of asteroids on a collision course with Earth.
Within a few days, scientists gathered enough information on the asteroid—officially designated 2024 YR4—to determine that its orbit will bring it quite close to Earth in 2028, and then again in 2032. Astronomers ruled out any chance of an impact with Earth in 2028, but there’s a small chance the asteroid might hit our planet on December 22, 2032.
How small? The probability has fluctuated in recent days, but as of Thursday, NASA’s Center for Near Earth Object Studies estimated a 1.9 percent chance of an impact with Earth in 2032. The European Space Agency (ESA) put the probability at 1.8 percent. So as of now, NASA believes there’s a 1-in-53 chance of 2024 YR4 striking Earth. That’s about twice as likely as the lifetime risk of dying in a motor vehicle crash, according to the National Safety Council.
These numbers are slightly higher than the probabilities published last month, when ESA estimated a 1.2 percent chance of an impact. In a matter of weeks or months, the number will likely drop to zero.
No surprise here, according to ESA.
“It is important to remember that an asteroid’s impact probability often rises at first before quickly dropping to zero after additional observations,” ESA said in a press release. The agency released a short explainer video, embedded below, showing how an asteroid’s cone of uncertainty shrinks as scientists get a better idea of its trajectory.
Refining the risk
Scientists estimate that 2024 YR4 is between 130 to 300 feet (40 and 90 meters) wide, large enough to cause localized devastation near the impact site. The asteroid responsible for the Tunguska event of 1908, which leveled some 500 square miles (1,287 square kilometers) of forest in remote Siberia, was probably about the same size. The meteor that broke apart in the sky over Chelyabinsk, Russia, in 2013 was about 20 meters wide.
Astronomers use the Torino scale for measuring the risk of potential asteroid impacts. Asteroid 2024 YR4 is now rated at Level 3 on this scale, meaning it merits close attention from astronomers, the public, and government officials. This is the second time an asteroid has reached this level since the scale’s adoption in 1999. The other case happened in 2004, when asteroid Apophis briefly reached a Level 4 rating until further observations of the asteroid eliminated any chance of an impact with the Earth in 2029.
In the unlikely event that it impacts the Earth, an asteroid the size of 2024 YR4 could cause blast damage as far as 30 miles (50 kilometers) from the location of the impact or airburst if the object breaks apart in the atmosphere, according to the International Asteroid Warning Network (IAWN), established in the aftermath of the Chelyabinsk event.
The asteroid warning network is affiliated with the United Nations. Officials activate the IAWN when an asteroid bigger than 10 meters has a greater than 1 percent chance of striking Earth within the next 20 years. The risk of 2024 YR4 meets this threshold.
The red points on this image show the possible locations of asteroid 2024 YR4 on December 22, 2032, as projected by a Monte Carlo simulation. As this image shows, most of the simulations project the asteroid missing the Earth. Credit: ESA/Planetary Defense Office
Determining the asteroid’s exact size will be difficult. Scientists would need deep space radar observations, thermal infrared observations, or imagery from a spacecraft that could closely approach the asteroid, according to the IAWN. The asteroid won’t come close enough to Earth for deep space radar observations until shortly before its closest approach in 2032.
Astronomers need numerous observations to precisely plot an asteroid’s motion through the Solar System. Over time, these observations will reduce uncertainty and narrow the corridor the asteroid will follow as it comes near Earth.
Scientists already know a little about asteroid 2024 YR4’s orbit, which follows an elliptical path around the Sun. The orbit brings the asteroid inside of Earth’s orbit at its closest point to the Sun and then into the outer part of the asteroid belt when it is farthest from the Sun.
But there’s a complication in astronomers’ attempts to nail down the asteroid’s path. The object is currently moving away from Earth in almost a straight line. This makes it difficult to accurately determine its orbit by studying how its trajectory curves over time, according to ESA.
It also means observers will need to use larger telescopes to see the asteroid before it becomes too distant to see it from Earth in April. By the end of this year’s observing window, the asteroid warning network says the impact probability could increase to a couple tens of percent, or it could more likely drop back below the notification threshold (1 percent impact probability).
“It is possible that asteroid 2024 YR4 will fade from view before we are able to entirely rule out any chance of impact in 2032,” ESA said. “In this case, the asteroid will likely remain on ESA’s risk list until it becomes observable again in 2028.”
Planetary defenders
This means that public officials might need to start planning what to do later this year.
For the first time, an international board called the Space Mission Planning Advisory Group met this week to discuss what we can do to respond to the risk of an asteroid impact. This group, known as SMPAG, coordinates planning among representatives from the world’s space agencies, including NASA, ESA, China, and Russia.
The group decided on Monday to give astronomers a few more months to refine their estimates of the asteroid’s orbit before taking action. They will meet again in late April or early May or earlier if the impact risk increases significantly. If there’s still a greater than 1 percent probability of 2024 YR4 hitting the Earth, the group will issue a recommendation for further action to the United Nations Office for Outer Space Affairs.
So what are the options? If the data in a few months still shows that the asteroid poses a hazard to Earth, it will be time for the world’s space agencies to consider a deflection mission. NASA demonstrated its ability to alter the orbit of an asteroid in 2022 with a first-of-its-kind experiment in space. The mission, called DART, put a small spacecraft on a collision course with an asteroid two to four times larger than 2024 YR4.
The kinetic energy from the spacecraft’s death dive into the asteroid was enough to slightly nudge the object off its natural orbit around a nearby larger asteroid. This proved that an asteroid deflection mission could work if scientists have enough time to design and build it, an undertaking that took about five years for DART.
Italy’s LICIACube spacecraft snapped this image of asteroids Didymos (lower left) and Dimorphos (upper right) a few minutes after the impact of DART on September 26, 2022. Credit: ASI/NASA
A deflection mission is most effective well ahead of an asteroid’s potential encounter with the Earth, so it’s important not to wait until the last minute.
Fans of Hollywood movies know there’s a nuclear option for dealing with an asteroid coming toward us. The drawback of using a nuclear warhead is that it could shatter one large asteroid into many smaller objects, although recent research suggests a more distant nuclear explosion could produce enough X-ray radiation to push an asteroid off a collision course.
Waiting for additional observations in 2028 would leave little time to develop a deflection mission. Therefore, in the unlikely event that the risk of an impact rises over the next few months, it will be time for officials to start seriously considering the possibility of an intervention.
Even without a deflection, there’s plenty of time for government officials to do something here on Earth. It should be possible for authorities to evacuate any populations that might be affected by the asteroid.
The asteroid could devastate an area the size of a large city, but any impact is most likely to happen in a remote region or in the ocean. The risk corridor for 2024 YR4 extends from the eastern Pacific Ocean to northern South America, the Atlantic Ocean, Africa, the Arabian Sea, and South Asia.
There’s an old joke that dinosaurs went extinct because they didn’t have a space program. Whatever happens in 2032, we’re not at risk of extinction. However, occasions like this are exactly why most Americans think we should have a space program. A 2019 poll showed that 68 percent of Americans considered it very or extremely important for the space program to monitor asteroids, comets, or other objects from space that could strike the planet.
In contrast, about a quarter of those polled placed such importance on returning astronauts to the Moon or sending people to Mars. The cost of monitoring and deflecting asteroids is modest compared to the expensive undertakings of human missions to the Moon and Mars.
From taxpayers’ point of view, it seems this part of NASA offers the greatest bang for their buck.
Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.
The US space agency said Wednesday it will host a live Twitch stream from the International Space Station on February 12.
NASA, which has 1.3 million followers on the live-streaming video service, has previously broadcast events on its Twitch channel. However, this will be the first time the agency has created an event specifically for Twitch.
During the live event, beginning at 11: 45 am ET (16: 45 UTC), viewers will hear from NASA astronaut Don Pettit, who is currently on board the space station, as well as Matt Dominick, who recently returned to Earth after the agency’s Crew-8 mission. Viewers will have the opportunity to ask questions about living in space.
Twitch is owned by Amazon, and it has become especially popular in the online gaming community for the ability to stream video games and chat with viewers.
Meeting people where they are
“We spoke with digital creators at TwitchCon about their desire for streams designed with their communities in mind, and we listened,” said Brittany Brown, director of the Office of Communications Digital and Technology Division. “In addition to our spacewalks, launches, and landings, we’ll host more Twitch-exclusive streams like this one. Twitch is one of the many digital platforms we use to reach new audiences and get them excited about all things space.”
Like a lot of the rest of the federal government right now, NASA is reeling during the first turbulent days of the Trump administration.
The last two weeks have brought a change in leadership in the form of interim administrator Janet Petro, whose ascension was a surprise. Her first act was to tell agency employees to remove diversity, equity, inclusion, and accessibility contracts and to “report” on anyone who did not carry out this order. Soon, civil servants began receiving emails from the US Office of Personnel Management that some perceived as an effort to push them to resign.
Then there are the actions of SpaceX founder Elon Musk. Last week he sowed doubt by claiming NASA had “stranded” astronauts on the space station. (The astronauts are perfectly safe and have a ride home.) Perhaps more importantly, he owns the space agency’s most important contractor and, in recent weeks, has become deeply enmeshed in operating the US government through his Department of Government Efficiency. For some NASA employees, whether or not it is true, there is now an uncomfortable sense that they are working for Musk and to dole out contracts to SpaceX.
This concern was heightened late Friday when Petro announced that a longtime SpaceX employee named Michael Altenhofen had joined the agency “as a senior advisor to the NASA Administrator.” Altenhofen is an accomplished engineer who interned at NASA in 2005 but has spent the last 15 years at SpaceX, most recently as a leader of human spaceflight programs. He certainly brings expertise, but his hiring also raises concerns about SpaceX’s influence over NASA operations. Petro did not respond to a request for comment on Monday about potential conflicts of interest and the scope of Altenhofen’s involvement.
I spent this weekend talking and texting with NASA sources at various centers around the country, and the overriding message is that morale at the agency is “absurdly low.” Meetings between civil servants and their leadership, such as an all-hands gathering at NASA’s Langley Research Center in Virginia recently, have been fraught with tension. No one knows what will happen next.
Racing has always been used to improve the breed, but now mostly with software.
Credit: Aurich Lawson | Getty Images | NASA
Credit: Aurich Lawson | Getty Images | NASA
DAYTONA BEACH—Last week, ahead of the annual Rolex 24 at Daytona and the start of the North American road racing season, IMSA (the sport’s organizers) held a tech symposium across the road from the vast speedway at Embry-Riddle University. Last year, panelists, including Crowdstrike’s CSO, explained the draw of racing to their employers; this time, organizations represented included NASA, Michelin, AMD, and Microsoft. And while they were all there to talk about racing, it seems everyone was also there to talk about simulation and AI.
I’ve long maintained that endurance racing, where grids of prototypes and road car-based racers compete over long durations—24 hours, for example—is the most relevant form of motorsport, the one that makes road cars better. Formula 1 has budgets and an audience to dwarf all others, and there’s no doubt about the level of talent and commitment required to triumph in that arena. The Indy 500 might have more history. And rallying looks like the hardest challenge for both humans and machines.
But your car owes its disc brakes to endurance racing, plus its dual-clutch transmission, if it’s one of the increasing number of cars fitted with such. But let’s not overblow it. Over the years, budgets have had to be reined in for the health of the sport. That—plus a desire for parity among the teams so that no one clever idea runs away with the series—means there are plenty of spec or controlled components on a current endurance racer. Direct technology transfer, then, happens less and less often—at least in terms of new mechanical bits or bobs you might find inside your next car.
Software has become a new competitive advantage for the teams that race hybrid sports prototypes from Acura, BMW, Cadillac, Porsche, and Lamborghini, just as it is between teams in Formula E.
But this year’s symposium shone a light on a different area of tech transfer, where Microsoft or NASA can use the vast streams of data that pour out of a 60-car, 24-hour race to build more accurate simulations and AI tools—maybe even ones that will babysit a crewed mission to Mars.
Sorry, did you say Mars?
“Critically, it takes light 20 minutes to make that trip, which has some really unfortunate operational impacts,” said Ian Maddox of NASA’s Marshall Space Flight Center’s Habitation office. A 40-minute delay between asking a question and getting an answer wouldn’t work for a team trying to win the Rolex 24, and “it certainly isn’t going to work for us,” he said.
“And so we’re placed in—I’ll be frank—the really uncomfortable position of having to figure out how to build AI tools to help the crew on board a Mars ship diagnose and respond to their own problems. So to be their own crew, to be their own engineering teams, at least for the subset of problems that can get really bad in the course of 45 minutes to an hour,” Maddox said.
Building those kinds of tools will require a “giant bucket of really good data,” Maddox said, “and that’s why we’ve come to IMSA.”
Individually, the hybrid prototypes and GT cars in an IMSA race are obviously far less complicated than a Mars-bound spacecraft. But when you get that data from all the cars in the race together, the size starts to become comparable.
“And fundamentally, you guys have things that roll and we have things that rotate, and you have things that get hot and cold, and so do we,” Maddox said. “When you get down to the actual measurement level, there are a lot of similarities between the stuff that you guys use to understand vehicle performance and the stuff we use to understand vehicle performance.”
Not just Mars
Other speakers pointed to areas of technology development—like tire development—that you may have read about recently here on Ars Technica. “[A tire is] a composite material made with more than 200 components with very non-linear behavior. It’s pressure-sensitive, it’s temperature-sensitive. It changes with wear… and actually, the ground interaction is also one of the worst mechanisms to try to anticipate and to understand,” said Phillippe Tramond, head of research of motorsport at Michelin.
For the past four years, Michelin has been crunching data gathered from cars racing on its rubber (and the other 199 components). “And eventually, we are able to build and develop a thermomechanical tire model able to mimic and simulate tire behavior, tire performance, whatever the specification is,” Tramond said.
That tool has been quite valuable to the teams racing in the GTP class of hybrid prototypes, as it means that their driver-in-the-loop simulators are now even more faithful to real life. But Michelin has also started using the tire model when developing road tires for specific cars with individual OEMs.
For Sid Siddhartha, a principal researcher at Microsoft Research, the data is again the draw. Siddhartha has been using AI to study human behavior, including in the game Rocket League. “We were able to actually show that we can really understand and home in on individual human behavior in a very granular way, to the point where if I just observe you for two or three seconds, or if I look at some of your games, I can tell you who played it,” Siddhartha said.
That led to a new approach by the Alpine F1 team, which wanted to use Siddhartha’s AI to improve its simulation tools. F1 teams will run entirely virtual simulations on upgraded cars long before they fire those changes up in the big simulator and let their human drivers have a go (as described above). In Alpine’s case, they wanted something more realistic than a lap time simulator that just assumed perfect behavior.
The dreaded BoP
“Eventually, we are connected to IMSA, and IMSA is interested in a whole host of questions that are very interesting to us at Microsoft Research,” Siddhartha said. “They’re interested in what are the limits of driver and car? How do you balance that performance across different classes? How do you anticipate what might happen when people make different strategic decisions during the race? And how do you communicate all of this to a fan base, which has really blown me away, as John was saying, who are interested in following the sport and understanding what’s going on.”
“Sports car racing is inherently complex,” said Matt Kurdock, IMSA’s managing director of engineering. “We’ve got four different classes. We have, in each car, four different drivers. And IMSA’s challenge is to extract from this race data that’s being collected and figure out how to get an appropriate balance so that manufacturers stay engaged in the sport,” Kurdock said.
IMSA has the cars put through wind tunnels and runs CFD simulations on them as well. “We then plug all this information into one of Michelin’s tools, which is their canopy vehicle dynamic simulation, which runs in the cloud, and from this, we start generating a picture of where we believe the optimized performance of each platform is,” Kurdock said.
Jonathan is the Automotive Editor at Ars Technica. He has a BSc and PhD in Pharmacology. In 2014 he decided to indulge his lifelong passion for the car by leaving the National Human Genome Research Institute and launching Ars Technica’s automotive coverage. He lives in Washington, DC.
NASA’s acting administrator is moving swiftly to remove diversity, equity, inclusion, and accessibility—or DEIA—programs from the space agency.
In an email sent to agency employees on Wednesday afternoon, acting administrator Janet Petro wrote, “We are taking steps to close all agency DEIA offices and end all DEIA-related contracts in accordance with President Trump’s executive orders titled Ending Radical and Wasteful Government DEI Programs and Preferencing and Initial Rescissions of Harmful Executive Orders and Actions.”
During his run for a second term as president, Trump campaigned on ending programs in the federal government that promote diversity, equity, and inclusion. He signed executive orders to that effect shortly after his inauguration on Monday.
Programs seen as divisive
These programs had their roots in affirmative action but exploded in popularity half a decade ago amid Trump’s first presidency and the #MeToo and Black Lives Matter movements. DEI programs and officers became commonplace in academia and major US corporations. However, even before the election of Trump, the DEI movement appeared to have crested. For example, last year the Massachusetts Institute of Technology ended the use of diversity statements for faculty hiring.
In explaining NASA’s position, Petro said of the agency’s existing DEIA activities, “These programs divided Americans by race, wasted taxpayer dollars, and resulted in shameful discrimination.”
Petro’s email is notable for its suggestion that some civil servants at NASA may have sought to shroud DEIA programs from the Trump administration since the presidential election in early November.
“We are aware of efforts by some in government to disguise these programs by using coded or imprecise language,” she wrote. “If you are aware of a change in any contract description or personnel position description since November 5, 2024 to obscure the connection between the contract and DEIA or similar ideologies, please report all facts and circumstances.”
This launch debuted a more advanced, slightly taller version of Starship, known as Version 2 or Block 2, with larger propellant tanks, a new avionics system, and redesigned feed lines flowing methane and liquid oxygen propellants to the ship’s six Raptor engines. SpaceX officials did not say whether any of these changes might have caused the problem on Thursday’s launch.
SpaceX officials have repeatedly and carefully set expectations for each Starship test flight. They routinely refer to the rocket as experimental, and the primary focus of the rocket’s early demo missions is to gather data on the performance of the vehicle. What works, and what doesn’t work?
Still, the outcome of Thursday’s test flight is a clear disappointment for SpaceX. This was the seventh test flight of SpaceX’s enormous rocket and the first time Starship failed to complete its launch sequence since the second flight in November 2023. Until now, SpaceX has made steady progress, and each Starship flight has achieved more milestones than the one before.
On the first flight in April 2023, the rocket lost control a little more than two minutes after liftoff, and the ground-shaking power of the booster’s 33 engines shattered the concrete foundation beneath the launch pad. Seven months later, on Flight 2, the rocket made it eight minutes before failing. On that mission, Starship failed at roughly the same point of its ascent, just before the cutoff of the vehicle’s six methane-fueled Raptor engines.
Back then, a handful of photos and images from the Florida Keys and Puerto Rico showed debris in the sky after Starship activated its self-destruct mechanism due to an onboard fire caused by a dump of liquid oxygen propellant. But that flight occurred in the morning, with bright sunlight along the ship’s flight path.
This time, the ship disintegrated and reentered the atmosphere at dusk, with impeccable lighting conditions accentuating the debris cloud’s appearance. These twilight conditions likely contributed to the plethora of videos posted to social media on Thursday.
Starship and Super Heavy head downrange from SpaceX’s launch site near Brownsville, Texas. Credit: SpaceX
The third Starship test flight last March saw the spacecraft reach its planned trajectory and fly halfway around the world before succumbing to the scorching heat of atmospheric reentry. In June, the fourth test flight ended with controlled splashdowns of the rocket’s Super Heavy booster in the Gulf of Mexico and of Starship in the Indian Ocean.
In October, SpaceX caught the Super Heavy booster with mechanical arms at the launch pad for the first time, proving out the company’s audacious approach to recovering and reusing the rocket. On this fifth test flight, SpaceX modified the ship’s heat shield to better handle the hot temperatures of reentry, and the vehicle again made it to an on-target splashdown in the Indian Ocean.
Most recently, Flight 6 on November 19 demonstrated the ship’s ability to reignite its Raptor engines in space for the first time and again concluded with a bullseye splashdown. But SpaceX aborted an attempt to again catch the booster back at Starbase due to a problem with sensors on the launch pad’s tower.
With Flight 7, SpaceX hoped to test more changes to the heat shield protecting Starship from reentry temperatures up to 2,600° Fahrenheit (1,430° Celsius). Musk has identified the heat shield as one of the most difficult challenges still facing the program. In order for SpaceX to reach its ambition for the ship to become rapidly reusable, with minimal or no refurbishment between flights, the heat shield must be resilient and durable.
The seventh test flight of Starship is scheduled for launch Thursday afternoon.
SpaceX’s upgraded Starship rocket stands on its launch pad at Starbase, Texas. Credit: SpaceX
SpaceX plans to launch the seventh full-scale test flight of its massive Super Heavy booster and Starship rocket Thursday afternoon. It’s the first of what might be a dozen or more demonstration flights this year as SpaceX tries new things with the most powerful rocket ever built.
There are many things on SpaceX’s Starship to-do list in 2025. They include debuting an upgraded, larger Starship, known as Version 2 or Block 2, on the test flight preparing to launch Thursday. The one-hour launch window opens at 5 pm EST (4 pm CST; 22: 00 UTC) at SpaceX’s launch base in South Texas. You can watch SpaceX’s live webcast of the flight here.
SpaceX will again attempt to catch the rocket’s Super Heavy booster—more than 20 stories tall and wider than a jumbo jet—back at the launch pad using mechanical arms, or “chopsticks,” mounted to the launch tower. Read more about the Starship Block 2 upgrades in our story from last week.
You might think of next week’s Starship test flight as an apéritif before the entrées to come. Ars recently spoke with Lisa Watson-Morgan, the NASA engineer overseeing the agency’s contract with SpaceX to develop a modified version of Starship to land astronauts on the Moon. NASA has contracts with SpaceX worth more than $4 billion to develop and fly two Starship human landing missions under the umbrella of the agency’s Artemis program to return humans to the Moon.
We are publishing the entire interview with Watson-Morgan below, but first, let’s assess what SpaceX might accomplish with Starship this year.
There are many things to watch for on this test flight, including the deployment of 10 satellite simulators to test the ship’s payload accommodations and the performance of a beefed-up heat shield as the vehicle blazes through the atmosphere for reentry and splashdown in the Indian Ocean.
If this all works, SpaceX may try to launch a ship into low-Earth orbit on the eighth flight, expected to launch in the next couple of months. All of the Starship test flights to date have intentionally flown on suborbital trajectories, bringing the ship back toward reentry over the sea northwest of Australia after traveling halfway around the world.
Then, there’s an even bigger version of Starship called Block 3 that could begin flying before the end of the year. This version of the ship is the one that SpaceX will use to start experimenting with in-orbit refueling, according to Watson-Morgan.
In order to test refueling, two Starships will dock together in orbit, allowing one vehicle to transfer super-cold methane and liquid oxygen into the other. Nothing like this on this scale has ever been attempted before. Future Starship missions to the Moon and Mars may require 10 or more tanker missions to gas up in low-Earth orbit. All of these missions will use different versions of the same basic Starship design: a human-rated lunar lander, a propellant depot, and a refueling tanker.
Artist’s illustration of Starship on the surface of the Moon. Credit: SpaceX
Questions for 2025
Catching Starship back at its launch tower and demonstrating orbital propellant transfer are the two most significant milestones on SpaceX’s roadmap for 2025.
SpaceX officials have said they aim to fly as many as 25 Starship missions this year, allowing engineers to more rapidly iterate on the vehicle’s design. SpaceX is constructing a second launch pad at its Starbase facility near Brownsville, Texas, to help speed up the launch cadence.
Can SpaceX achieve this flight rate in 2025? Will faster Starship manufacturing and reusability help the company fly more often? Will SpaceX fly its first ship-to-ship propellant transfer demonstration this year? When will Starship begin launching large batches of new-generation Starlink Internet satellites?
Licensing delays at the Federal Aviation Administration have been a thorn in SpaceX’s side for the last couple of years. Will those go away under the incoming administration of President-elect Donald Trump, who counts SpaceX founder Elon Musk as a key adviser?
And will SpaceX gain a larger role in NASA’s Artemis lunar program? The Artemis program’s architecture is sure to be reviewed by the Trump administration and the nominee for the agency’s next administrator, billionaire businessman and astronaut Jared Isaacman.
The very expensive Space Launch System rocket, developed by NASA with Boeing and other traditional aerospace contractors, might be canceled. NASA currently envisions the SLS rocket and Orion spacecraft as the transportation system to ferry astronauts between Earth and the vicinity of the Moon, where crews would meet up with a landing vehicle provided by commercial partners SpaceX and Blue Origin.
Watson-Morgan didn’t have answers to all of these questions. Many of them are well outside of her purview as Human Landing System program manager, so Ars didn’t ask. Instead, Ars discussed technical and schedule concerns with her during the half-hour interview. Here is one part of the discussion, lightly edited for clarity.
Ars: What do you hope to see from Flight 7 of Starship?
Lisa Watson-Morgan: One of the exciting parts of working with SpaceX are these test flights. They have a really fast turnaround, where they put in different lessons learned. I think you saw many of the flight objectives that they discussed from Flight 6, which was a great success. I think they mentioned different thermal testing experiments that they put on the ship in order to understand the different heating, the different loads on certain areas of the system. All that was really good with each one of those, in addition to how they configure the tiles. Then, from that, there’ll be additional tests that they will put on Flight 7, so you kind of get this iterative improvement and learning that we’ll get to see in Flight 7. So Flight 7 is the first Version 2 of their ship set. When I say that, I mean the ship, the booster, all the systems associated with it. So, from that, it’s really more just understanding how the system, how the flaps, how all of that interacts and works as they’re coming back in. Hopefully we’ll get to see some catches, that’s always exciting.
Ars: How did the in-space Raptor engine relight go on Flight 6 (on November 19)?
Lisa Watson-Morgan: Beautifully. And that’s something that’s really important to us because when we’re sitting on the Moon… well, actually, the whole path to the Moon as we are getting ready to land on the Moon, we’ll perform a series of maneuvers, and the Raptors will have an environment that is very, very cold. To that, it’s going to be important that they’re able to relight for landing purposes. So that was a great first step towards that. In addition, after we land, clearly the Raptors will be off, and it will get very cold, and they will have to relight in a cold environment (to get off the Moon). So that’s why that step was critical for the Human Landing System and NASA’s return to the Moon.
A recent artist’s illustration of two Starships docked together in low-Earth orbit. Credit: SpaceX
Ars: Which version of the ship is required for the propellant transfer demonstration, and what new features are on that version to enable this test?
Lisa Watson-Morgan: We’re looking forward to the Version 3, which is what’s coming up later on, sometime in ’25, in the near term, because that’s what we need for propellant transfer and the cryo fluid work that is also important to us… There are different systems in the V3 set that will help us with cryo fluid management. Obviously, with those, we have to have the couplers and the quick-disconnects in order for the two systems to have the right guidance, navigation, trajectory, all the control systems needed to hold their station-keeping in order to dock with each other, and then perform the fluid transfer. So all the fluid lines and all that’s associated with that, those systems, which we have seen in tests and held pieces of when we’ve been working with them at their site, we’ll get to see those actually in action on orbit.
Ars: Have there been any ground tests of these systems, whether it’s fluid couplers or docking systems? Can you talk about some of the ground tests that have gone into this development?
Lisa Watson-Morgan: Oh, absolutely. We’ve been working with them on ground tests for this past year. We’ve seen the ground testing and reviewed the data. Our team works with them on what we deem necessary for the various milestones. While the milestone contains proprietary (information), we work closely with them to ensure that it’s going to meet the intent, safety-wise as well as technically, of what we’re going to need to see. So they’ve done that.
Even more exciting, they have recently shipped some of their docking systems to the Johnson Space Center for testing with the Orion Lockheed Martin docking system, and that’s for Artemis III. Clearly, that’s how we’re going to receive the crew. So those are some exciting tests that we’ve been doing this past year as well that’s not just focused on, say, the booster and the ship. There are a lot of crew systems that are being developed now. We’re in work with them on how we’re going to effectuate the crew manual control requirements that we have, so it’s been a great balance to see what the crew needs, given the size of the ship. That’s been a great set of work. We have crew office hours where the crew travels to Hawthorne [SpaceX headquarters in California] and works one-on-one with the different responsible engineers in the different technical disciplines to make sure that they understand not just little words on the paper from a requirement, but actually what this means, and then how systems can be operated.
Ars: For the docking system, Orion uses the NASA Docking System, and SpaceX brings its own design to bear on Starship?
Lisa Watson-Morgan: This is something that I think the Human Landing System has done exceptionally well. When we wrote our high-level set of requirements, we also wrote it with a bigger picture in mind—looked into the overall standards of how things are typically done, and we just said it has to be compliant with it. So it’s a docking standard compliance, and SpaceX clearly meets that. They certainly do have the Dragon heritage, of course, with the International Space Station. So, because of that, we have high confidence that they’re all going to work very well. Still, it’s important to go ahead and perform the ground testing and get as much of that out of the way as we can.
Lisa Watson-Morgan, NASA’s HLS program manager, is based at Marshall Space Flight Center in Huntsville, Alabama. Credit: ASA/Aubrey Gemignani
Ars: How far along is the development and design of the layout of the crew compartment at the top of Starship? Is it far along, or is it still in the conceptual phase? What can you say about that?
Lisa Watson-Morgan: It’s much further along there. We’ve had our environmental control and life support systems, whether it’s carbon dioxide monitoring fans to make sure the air is circulating properly. We’ve been in a lot of work with SpaceX on the temperature. It’s… a large area (for the crew). The seats, making sure that the crew seats and the loads on that are appropriate. For all of that work, as the analysis work has been performed, the NASA team is reviewing it. They had a mock-up, actually, of some of their life support systems even as far back as eight-plus months ago. So there’s been a lot of progress on that.
Ars: Is SpaceX planning to use a touchscreen design for crew displays and controls, like they do with the Dragon spacecraft?
Lisa Watson-Morgan: We’re in talks about that, about what would be the best approach for the crew for the dynamic environment of landing.
Ars: I can imagine it is a pretty dynamic environment with those Raptor engines firing. It’s almost like a launch in reverse.
Lisa Watson-Morgan: Right. Those are some of the topics that get discussed in the crew office hours. That’s why it’s good to have the crew interacting directly, in addition to the different discipline leads, whether it’s structural, mechanical, propulsion, to have all those folks talking guidance and having control to say, “OK, well, when the system does this, here’s the mode we expect to see. Here’s the impact on the crew. And is this condition, or is the option space that we have on the table, appropriate for the next step, with respect to the displays.”
Ars: One of the big things SpaceX needs to prove out before going to the Moon with Starship is in-orbit propellant transfer. When do you see the ship-to-ship demonstration occurring?
Lisa Watson-Morgan: I see it occurring in ’25.
Ars: Anything more specific about the schedule for that?
Lisa Watson-Morgan: That’d be a question for SpaceX because they do have a number of flights that they’re performing commercially, for their maturity. We get the benefit of that. It’s actually a great partnership. I’ll tell you, it’s really good working with them on this, but they’d have to answer that question. I do foresee it happening in ’25.
Ars: What things do you need to see SpaceX accomplish before they’re ready for the refueling demo? I’m thinking of things like the second launch tower, potentially. Do they need to demonstrate a ship catch or anything like that before going for orbital refueling?
Lisa Watson-Morgan: I would say none of that’s required. You just kind of get down to, what are the basics? What are the basics that you need? So you need to be able to launch rapidly off the same pad, even. They’ve shown they can launch and catch within a matter of minutes. So that is good confidence there. The catching is part of their reuse strategy, which is more of their commercial approach, and not a NASA requirement. NASA reaps the benefit of it by good pricing as a result of their commercial model, but it is not a requirement that we have. So they could theoretically use the same pad to perform the propellant transfer and the long-duration flight, because all it requires is two launches, really, within a specified time period to where the two systems can meet in a planned trajectory or orbit to do the propellant transfer. So they could launch the first one, and then within a week or two or three, depending on what the concept of operations was that we thought we could achieve at that time, and then have the propellant transfer demo occur that way. So you don’t necessarily need two pads, but you do need more thermal characterization of the ship. I would say that is one of the areas (we need to see data on), and that is one of the reasons, I think, why they’re working so diligently on that.
Ars: You mentioned the long-duration flight demonstration. What does that entail?
Lisa Watson-Morgan: The simple objectives are to launch two different tankers or Starships. The Starship will eventually be a crewed system. Clearly, the ones that we’re talking about for the propellant transfer are not. It’s just to have the booster and Starship system launch, and within a few weeks, have another one launch, and have them rendezvous. They need to be able to find each other with their sensors. They need to be able to come close, very, very close, and they need to be able to dock together, connect, do the quick connect, and make sure they are able, then, to flow propellant and LOX (liquid oxygen) to another system. Then, we need to be able to measure the quantity of how much has gone over. And from that, then they need to safely undock and dispose.
Ars: So the long-duration flight demonstration is just part of what SpaceX needs to do in order to be ready for the propellant transfer demonstration?
Lisa Watson-Morgan: We call it long duration just because it’s not a 45-minute or an hour flight. Long duration, obviously, that’s a relative statement, but it’s a system that can stay up long enough to be able to find another Starship and perform those maneuvers and flow of fuel and LOX.
Ars: How much propellant will you transfer with this demonstration, and do you think you’ll get all the data you need in one demonstration, or will SpaceX need to try this several times?
Lisa Watson-Morgan: That’s something you can ask SpaceX (about how much propellant will be transferred). Clearly, I know, but there’s some sensitivity there. You’ve seen our requirements in our initial solicitation. We have thresholds and goals, meaning we want you to at least do this, but more is better, and that’s typically how we work almost everything. Working with commercial industry in these fixed-price contracts has worked exceptionally well, because when you have providers that are also wanting to explore commercially or trying to make a commercial system, they are interested in pushing more than what we would typically ask for, and so often we get that for an incredibly fair price.
Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.
Julianna Scheiman, director of NASA science missions for SpaceX, said it made sense to pair the Firefly and ispace missions on the same Falcon 9 rocket.
“When we have two missions that can each go to the Moon on the same launch, that is something that we obviously want to take advantage of,” Scheiman said. “So when we found a solution for the Firefly and ispace missions to fly together on the same Falcon 9, it was a no-brainer to put them together.”
SpaceX stacked the two landers, one on top of the other, inside the Falcon 9’s payload fairing. Firefly’s lander, the larger of the two spacecraft, rode on top of the stack and deployed from the rocket first. The Resilience lander from ispace launched in the lower position, cocooned inside a specially designed canister. Once Firefly’s lander separated from the Falcon 9, the rocket jettisoned the canister, performed a brief engine firing to maneuver into a slightly different orbit, then released ispace’s lander.
This dual launch arrangement resulted in a lower launch price for Firefly and ispace, according to Scheiman.
“At SpaceX, we are really interested in and invested in lowering the cost of launch for everybody,” she said. “So that’s something we’re really proud of.”
The Resilience lunar lander is pictured at ispace’s facility in Japan last year. The company’s small Tenacious rover is visible on the upper left part of the spacecraft. credit: ispace Credit: ispace
The Blue Ghost and Resilience landers will take different paths toward the Moon.
Firefly’s Blue Ghost will spend about 25 days in Earth orbit, then four days in transit to the Moon. After Blue Ghost enters lunar orbit, Firefly’s ground team will verify the readiness of the lander’s propulsion and navigation systems and execute several thruster burns to set up for landing.
Blue Ghost’s final descent to the Moon is tentatively scheduled for March 2. The target landing site is in Mare Crisium, an ancient 350-mile-wide (560-kilometer) impact basin in the northeast part of the near side of the Moon.
After touchdown, Blue Ghost will operate for about 14 days (one entire lunar day). The instruments aboard Firefly’s lander include a subsurface drill, an X-ray imager, and an experimental electrodynamic dust shield to test methods of repelling troublesome lunar dust from accumulating on sensitive spacecraft components.
The Resilience lander from ispace will take four to five months to reach the Moon. It carries several intriguing tech demo experiments, including a water electrolyzer provided by a Japanese company named Takasago Thermal Engineering. This demonstration will test equipment that future lunar missions could use to convert the Moon’s water ice resources into electricity and rocket fuel.
The lander will also deploy a “micro-rover” named Tenacious, developed by an ispace subsidiary in Luxembourg. The Tenacious rover will attempt to scoop up lunar soil and capture high-definition imagery of the Moon.
Ron Garan, CEO of ispace’s US-based subsidiary, told Ars that this mission is “pivotal” for the company.
“We were not fully successful on our first mission,” Garan said in an interview. “It was an amazing accomplishment, even though we didn’t have a soft landing… Although the hardware worked flawlessly, exactly as it was supposed to, we did have some lessons learned in the software department. The fixes to prevent what happened on the first mission from happening on the second mission were fairly straightforward, so that boosts our confidence.”
The ispace subsidiary led by Garan, a former NASA astronaut, is based in Colorado. While the Resilience lander launched Wednesday is not part of the CLPS program, the company will build an upgraded lander for a future CLPS mission for NASA, led by Draper Laboratory.
“I think the fact that we have two lunar landers on the same rocket for the first time in history is pretty substantial,” Garan said. I think we all are rooting for each other.”
Investors need to see more successes with commercial lunar landers to fully realize the market’s potential, Garan said.
“That market, right now, is very nascent. It’s very, very immature. And one of the reasons for that is that it’s very difficult for companies that are contemplating making investments on equipment, experiments, etc., to put on the lunar surface and lunar orbit,” Garan said. “It’s very difficult to make those investments, especially if they’re long-term investments, because there really hasn’t been a proof of concept yet.”
“So every time we have a success, that makes it more likely that these companies that will serve as the foundation of a commercial lunar market movement will be able to make those investments,” Garan said. “Conversely, every time we have a failure, the opposite happens.”
We’re just a few days away from getting a double-dose of heavy-lift rocket action.
Stratolaunch’s Talon-A hypersonic rocket plane will be used for military tests involving hypersonic missile technology. Credit: Stratolaunch
Welcome to Edition 7.26 of the Rocket Report! Let’s pause and reflect on how far the rocket business has come in the last 10 years. On this date in 2015, SpaceX made the first attempt to land a Falcon 9 booster on a drone ship positioned in the Atlantic Ocean. Not surprisingly, the rocket crash-landed. In less than a year and a half, though, SpaceX successfully landed reusable Falcon 9 boosters onshore and offshore, and now has done it nearly 400 times. That was remarkable enough, but we’re in a new era now. Within a few days, we could see SpaceX catch its second Super Heavy booster and Blue Origin land its first New Glenn rocket on an offshore platform. Extraordinary.
As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.
Our annual ranking of the top 10 US launch companies. You can easily guess who made the top of the list: the company that launched Falcon rockets 134 times in 2024 and launched the most powerful and largest rocket ever built on four test flights, each accomplishing more than the last. The combined 138 launches is more than NASA flew the Space Shuttle over three decades. SpaceX will aim to launch even more often in 2025. These missions have far-reaching impacts, supporting Internet coverage for consumers worldwide, launching payloads for NASA and the US military, and testing technology that will take humans back to the Moon and, someday, Mars.
Are there really 10? … It might also be fairly easy to rattle off a few more launch companies that accomplished big things in 2024. There’s United Launch Alliance, which finally debuted its long-delayed Vulcan rocket and flew two Atlas V missions and the final Delta IV mission, and Rocket Lab, which launched 16 missions with its small Electron rocket this year. Blue Origin flew its suborbital New Shepard vehicle on three human missions and one cargo-only mission and nearly launched its first orbital-class New Glenn rocket in 2024. That leaves just Firefly Aerospace as the only other US company to reach orbit last year.
DoD announces lucrative hypersonics deal. Defense technology firm Kratos has inked a deal worth up to $1.45 billion with the Pentagon to help develop a low-cost testbed for hypersonic technologies, Breaking Defense reports. The award is part of the military’s Multi-Service Advanced Capability Hypersonic Test Bed (MACH-TB) 2.0 program. The MACH-TB program, which began as a US Navy effort, includes multiple “Task Areas.” For its part, Kratos will be tasked with “systems engineering, integration, and testing, to include integrated subscale, full-scale, and air launch services to address the need to affordably increase hypersonic flight test cadence,” according to the company’s release.
Multiple players … The team led by Kratos, which specializes in developing airborne drones and military weapons systems, includes several players such as Leidos, Rocket Lab, Stratolaunch, and others. Kratos last year revealed that its Erinyes hypersonic test vehicle successfully flew for a Missile Defense Agency experiment. Rocket Lab has launched multiple suborbital hypersonic experiments for the military using a modified version of its Electron rocket, and Stratolaunch reportedly flew a high-speed test vehicle and recovered it last month, according to Aviation Week & Space Technology. The Pentagon is interested in developing hypersonic weapons that can evade conventional air and missile defenses. (submitted by EllPeaTea)
The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.
ESA will modify some of its geo-return policies. An upcoming European launch competition will be an early test of efforts by the European Space Agency to modify its approach to policies that link contracts to member state contributions, Space News reports. ESA has long used a policy known as geo-return, where member states are guaranteed contracts with companies based in their countries in proportion to the contribution those member states make to ESA programs.
The third rail of European space … Advocates of geo-return argue that it provides an incentive for countries to fund those programs. This incentivizes ESA to lure financial contributions from its member states, which will win guaranteed business and jobs from the agency’s programs. However, critics of geo-return, primarily European companies, claim that it creates inefficiencies that make them less competitive. One approach to revising geo-return is known as “fair contribution,” where ESA first holds competitions for projects, and member states then make contributions based on how companies in their countries fared in the competition. ESA will try the fair contribution approach for the upcoming launch competition to award contracts to European rocket startups. (submitted by EllPeaTea)
RFA is building a new rocket. German launch services provider Rocket Factory Augsburg (RFA) is currently focused on building a new first stage for the inaugural flight of its RFA One rocket, European Spaceflight reports. The stage that was initially earmarked for the flight was destroyed during a static fire test last year on a launch pad in Scotland. In a statement given to European Spaceflight, RFA confirmed that it expects to attempt an inaugural flight of RFA One in 2025.
Waiting on a booster … RFA says it is “fully focused on building a new first stage and qualifying it.” The rocket’s second stage and Redshift OTV third stage are already qualified for flight and are being stored until a new first stage is ready. The RFA One rocket will stand 98 feet (30 meters) tall and will be capable of delivering payloads of up to 1.3 metric tons (nearly 2,900 pounds) into polar orbits. RFA is one of several European startups developing commercial small satellite launchers and was widely considered the frontrunner before last year’s setback. (submitted by EllPeaTea)
Pentagon provides a boost for defense startup. Defense technology contractor Anduril Industries has secured a $14.3 million Pentagon contract to expand solid-fueled rocket motor production, as the US Department of Defense moves to strengthen domestic manufacturing capabilities amid growing supply chain concerns, Space News reports. The contract, awarded under the Defense Production Act, will support facility modernization and manufacturing improvements at Anduril’s Mississippi plant, the Pentagon said Tuesday.
Doing a solid … The Pentagon is keen to incentivize new entrants into the solid rocket manufacturing industry, which provides propulsion for missiles, interceptors, and other weapons systems. Two traditional defense contractors, Northrop Grumman and L3Harris, control almost all US solid rocket production. Companies like Anduril, Ursa Major, and X-Bow are developing solid rocket motor production capability. The Navy previously awarded Anduril a $19 million contract last year to develop solid rocket motors for the Standard Missile 6 program. (submitted by EllPeaTea)
Relativity’s value seems to be plummeting. For several years, an innovative, California-based launch company named Relativity Space has been the darling of investors and media. But the honeymoon appears to be over, Ars reports. A little more than a year ago, Relativity reached a valuation of $4.5 billion following its latest Series F fundraising round. This was despite only launching one rocket and then abandoning that program and pivoting to the development of a significantly larger reusable launch vehicle. The decision meant Relativity would not realize any significant revenue for several years, and Ars reported in September on some of the challenges the company has encountered developing the much larger Terran R rocket.
Gravity always wins … Relativity is a privately held company, so its financial statements aren’t public. However, we can glean some clues from the published quarterly report from Fidelity Investments, which owns Relativity shares. As of March 2024, Fidelity valued its 1.67 million shares at an estimated $31.8 million. However, in a report ending November 29 of last year, which was only recently published, Fidelity’s valuation of Relativity plummeted. Its stake in Relativity was then thought to be worth just $866,735—a per-share value of 52 cents. Shares in the other fundraising rounds are also valued at less than $1 each.
SpaceX has already launched four times this year. The space company is off to a fast start in 2025, with four missions in the first nine days of the year. Two of these missions launched Starlink internet satellites, and the other two deployed an Emirati-owned geostationary communications satellite and a batch of Starshield surveillance satellites for the National Reconnaissance Office. In its new year projections, SpaceX estimates it will launch more than 170 Falcon rockets, between Falcon 9 and Falcon Heavy, Spaceflight Now reports. This is in addition to SpaceX’s plans for up to 25 flights of the Starship rocket from Texas.
What’s in store this year?… Highlights of SpaceX’s launch manifest this year will likely include an attempt to catch and recover Starship after returning from orbit, a first in-orbit cryogenic propellant transfer demonstration with Starship, and perhaps the debut of a second launch pad at Starbase in South Texas. For the Falcon rocket fleet, notable missions this year will include launches of commercial robotic lunar landers for NASA’s CLPS program and several crew flights, including the first human spaceflight mission to fly in polar orbit. According to public schedules, a Falcon 9 rocket could launch a commercial mini-space station for Vast, a privately held startup, before the end of the year. That would be a significant accomplishment, but we won’t be surprised if this schedule moves to the right.
China is dipping its toes into satellite refueling. China kicked off its 2025 launch activities with the successful launch of the Shijian-25 satellite Monday, aiming to advance key technologies for on-orbit refueling and extending satellite lifespans, Space News reports. The satellite launched on a Long March 3B into a geostationary transfer orbit, suggesting the unspecified target spacecraft for the refueling demo test might be in geostationary orbit more than 22,000 miles (nearly 36,000 kilometers) over the equator.
Under a watchful eye … China has tested mission extension and satellite servicing capabilities in space before. In 2021, China launched a satellite named Shijian-21, which docked a defunct Beidou navigation satellite and towed it to a graveyard orbit above the geostationary belt. Reportedly, Shijian-21 satellite may have carried robotic arms to capture and manipulate other objects in space. These kinds of technologies are dual-use, meaning they have civilian and military applications. The US Space Force is also interested in satellite life extension and refueling tech, so US officials will closely monitor Shijian-25’s actions in orbit.
SpaceX set to debut upgraded Starship. An upsized version of SpaceX’s Starship mega-rocket rolled to the launch pad early Thursday in preparation for liftoff on a test flight next week, Ars reports. The rocket could lift off as soon as Monday from SpaceX’s Starbase test facility in South Texas. This flight is the seventh full-scale demonstration launch for Starship. The rocket will test numerous upgrades, including a new flap design, larger propellant tanks, redesigned propellant feed lines, a new avionics system, and an improved antenna for communications and navigation.
The new largest rocket … Put together, all of these changes to the ship raise the rocket’s total height by nearly 6 feet (1.8 meters), so it now towers 404 feet (123.1 meters) tall. With this change, SpaceX will break its own record for the largest rocket ever launched. SpaceX plans to catch the rocket’s Super Heavy booster back at the launch site in Texas and will target a controlled splashdown of the ship in the Indian Ocean.
Blue Origin targets weekend launch of New Glenn. Blue Origin is set to launch its New Glenn rocket in a long-delayed, uncrewed test mission that would help pave the way for the space venture founded by Jeff Bezos to compete against Elon Musk’s SpaceX, The Washington Post reports. Blue Origin has confirmed it plans to launch the 320-foot-tall rocket during a three-hour launch window opening at 1 am EDT (06: 00 UTC) Sunday in the company’s first attempt to reach orbit.
Finally … This is a much-anticipated milestone for Blue Origin and for the company’s likely customers, which include the Pentagon and NASA. Data from this test flight will help the Space Force certify New Glenn to loft national security satellites, providing a new competitor for SpaceX and United Launch Alliance in the heavy-lift segment of the market. Blue Origin isn’t quite shooting for the Moon on this inaugural launch, but the company will attempt to reach orbit and try to land the New Glenn’s first stage booster on a barge in the Atlantic Ocean. (submitted by EllPeaTea)
Next three launches
Jan. 10: Falcon 9 | Starlink 12-12 | Cape Canaveral Space Force Station, Florida | 18: 11 UTC
Jan. 12: New Glenn | NG-1 Blue Ring Pathfinder | Cape Canaveral Space Force Station, Florida | 06: 00 UTC
Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.