NASA

after-another-boeing-letdown,-nasa-isn’t-ready-to-buy-more-starliner-missions

After another Boeing letdown, NASA isn’t ready to buy more Starliner missions

Boeing's Starliner spacecraft sits atop a United Launch Alliance Atlas V rocket before liftoff in June to begin the Crew Flight Test.

Enlarge / Boeing’s Starliner spacecraft sits atop a United Launch Alliance Atlas V rocket before liftoff in June to begin the Crew Flight Test.

NASA is ready for Boeing’s Starliner spacecraft, stricken with thruster problems and helium leaks, to leave the International Space Station as soon as Friday, wrapping up a disappointing test flight that has clouded the long-term future of the Starliner program.

Astronauts Butch Wilmore and Suni Williams, who launched aboard Starliner on June 5, closed the spacecraft’s hatch Thursday in preparation for departure Friday. But it wasn’t what they envisioned when they left Earth on Starliner three months ago. Instead of closing the hatch from a position in Starliner’s cockpit, they latched the front door to the spacecraft from the space station’s side of the docking port.

The Starliner spacecraft is set to undock from the International Space Station at 6: 04 pm EDT (22: 04 UTC) Friday. If all goes according to plan, Starliner will ignite its braking rockets at 11: 17 pm EDT (03: 17 UTC) for a minute-long burn to target a parachute-assisted, airbag-cushioned landing at White Sands Space Harbor, New Mexico, at 12: 03 am EDT (04: 03 UTC) Saturday.

The Starliner mission set to conclude this weekend was the spacecraft’s first test flight with astronauts, running seven years behind Boeing’s original schedule. But due to technical problems with the spacecraft, it won’t come home with the two astronauts who flew it into orbit back in June, leaving some of the test flight’s objectives incomplete.

This outcome is, without question, a setback for NASA and Boeing, which must resolve two major problems in Starliner’s propulsion system—supplied by Aerojet Rocketdyne—before the capsule can fly with people again. NASA officials haven’t said whether they will require Boeing to launch another Starliner test flight before certifying the spacecraft for the first of up to six operational crew missions on Boeing’s contract.

A noncommittal from NASA

For over a decade, the space agency has worked with Boeing and SpaceX to develop two independent vehicles to ferry astronauts to and from the International Space Station (ISS). SpaceX launched its first Dragon spacecraft with astronauts in May 2020, and six months later, NASA cleared SpaceX to begin flying regular six-month space station crew rotation missions.

Officially, NASA has penciled in Starliner’s first operational mission for August 2025. But the agency set that schedule before realizing Boeing and Aerojet Rocketdyne would need to redesign seals and perhaps other elements in Starliner’s propulsion system.

No one knows how long that will take, and NASA hasn’t decided if it will require Boeing to launch another test flight before formally certifying Starliner for operational missions. If Starliner performs flawlessly after undocking and successfully lands this weekend, perhaps NASA engineers can convince themselves Starliner is good to go for crew rotation flights once Boeing resolves the thruster problems and helium leaks.

In any event, the schedule for launching an operational Starliner crew flight in less than a year seems improbable. Aside from the decision on another test flight, the agency also must decide whether it will order any more operational Starliner missions from Boeing. These “post-certification missions” will transport crews of four astronauts between Earth and the ISS, orbiting roughly 260 miles (420 kilometers) above the planet.

NASA has only given Boeing the “Authority To Proceed” for three of its six potential operational Starliner missions. This milestone, known as ATP, is a decision point in contracting lingo where the customer—in this case, NASA—places a firm order for a deliverable. NASA has previously said it awards these task orders about two to three years prior to a mission’s launch.

Josh Finch, a NASA spokesperson, told Ars that the agency hasn’t made any decisions on whether to commit to any more operational Starliner missions from Boeing beyond the three already on the books.

“NASA’s goal remains to certify the Starliner system for crew transportation to the International Space Station,” Finch said in a written response to questions from Ars. “NASA looks forward to its continued work with Boeing to complete certification efforts after Starliner’s uncrewed return. Decisions and timing on issuing future authorizations are on the work ahead.”

This means NASA’s near-term focus is on certifying Starliner so that Boeing can start executing its commercial crew contract. The space agency hasn’t determined when or if it will authorize Boeing to prepare for any Starliner missions beyond the three already on the books.

When it awarded commercial crew contracts to SpaceX and Boeing in 2014, NASA pledged to buy at least two operational crew flights from each company. The initial contracts from a decade ago had options for as many as six crew rotation flights to the ISS after certification.

Since then, NASA has extended SpaceX’s commercial crew contract to cover as many as 14 Dragon missions with astronauts, and SpaceX has already launched eight of them. The main reason for this contract extension was to cover NASA’s needs for crew transportation after delays with Boeing’s Starliner, which was originally supposed to alternate with SpaceX’s Dragon for human flights every six months.

After another Boeing letdown, NASA isn’t ready to buy more Starliner missions Read More »

nasa-wants-starliner-to-make-a-quick-getaway-from-the-space-station

NASA wants Starliner to make a quick getaway from the space station

WSSHing for success —

Starliner is set to land at White Sands Space Harbor in New Mexico shortly after midnight.

Boeing's Starliner spacecraft is set to undock from the International Space Station on Friday evening.

Enlarge / Boeing’s Starliner spacecraft is set to undock from the International Space Station on Friday evening.

NASA

Boeing’s Starliner spacecraft will gently back away from the International Space Station Friday evening, then fire its balky thrusters to rapidly depart the vicinity of the orbiting lab and its nine-person crew.

NASA asked Boeing to adjust Starliner’s departure sequence to get away from the space station faster and reduce the workload on the thrusters to reduce the risk of overheating, which caused some of the control jets to drop offline as the spacecraft approached the outpost for docking in June.

The action begins at 6: 04 pm EDT (22: 04 UTC) on Friday, when hooks in the docking mechanism connecting Starliner with the International Space Station (ISS) will open, and springs will nudge the spacecraft away its mooring on the forward end of the massive research complex.

Around 90 seconds later, a set of forward-facing thrusters on Starliner’s service module will fire in a series of 12 pulses over a few minutes to drive the spacecraft farther away from the space station. These maneuvers will send Starliner on a trajectory over the top of the ISS, then behind it until it is time for the spacecraft to perform a deorbit burn at 11: 17 pm EDT (03: 17 UTC) to target landing at White Sands Space Harbor, New Mexico, shortly after midnight EDT (10 pm local time at White Sands).

How to watch, and what to watch for

The two videos embedded below will show NASA TV’s live coverage of the undocking and landing of Starliner.

Starliner is leaving its two-person crew behind on the space station after NASA officials decided last month they did not have enough confidence in the spacecraft’s reaction control system (RCS) thrusters, used to make exact changes to the capsule’s trajectory and orientation in orbit. Five of the 28 RCS thrusters on Starliner’s service module failed during the craft’s rendezvous with the space station three months ago. Subsequent investigations showed overheating could cause Teflon seals in a poppet valve to swell, restricting the flow of propellant to the thrusters.

Engineers recovered four of the five thrusters after they temporarily stopped working, but NASA officials couldn’t be sure the thrusters would not overheat again on the trip home. NASA decided it was too risky for Starliner to come home with astronauts Butch Wilmore and Suni Williams, who launched on Boeing’s crew test flight on June 5, becoming the first people to fly on the commercial capsule. They will remain aboard the station until February, when they will return to Earth on a SpaceX Dragon spacecraft.

The original flight plan, had Wilmore and Williams been aboard Starliner for the trip home, called for the spacecraft to make a gentler departure from the ISS, allowing engineers to fully check out the performance of its navigation sensors and test the craft’s ability to loiter in the vicinity of the station for photographic surveys of its exterior.

“In this case, what we’re doing is the break-out burn, which will be a series of 12 burns, each not very large, about 0.1 meters per second (0.2 mph) and that’s just to take the Starliner away from the station, and then immediately start going up and away, and eventually it’ll curve around to the top and deorbit from above the station a few orbits later,” said Anthony Vareha, NASA’s flight director overseeing ISS operations during Starliner’s undocking sequence.

Astronauts won’t be inside Starliner’s cockpit to take manual control in the event of a major problem, so NASA managers want the spacecraft to get away from the space station as quickly as possible.

On this path, Starliner will exit the so-called approach ellipsoid, a 2.5-by-1.25-by-1.25-mile (4-by-2-by-2-kilometer) invisible boundary around the orbiting laboratory, about 20 to 25 minutes after undocking, NASA officials said. That’s less than half the time Starliner would normally take to leave the vicinity of the ISS.

“It’s a quicker way to get away from the station, with less stress on the thrusters,” said Steve Stich, NASA’s commercial crew program manager. “Essentially, once we open the hooks, the springs will push Starliner away and then we’ll do some really short thruster firings to put us on a trajectory that will take us above the station and behind, we’ll be opening to a nice range to where we can execute the deorbit burn.”

In the unlikely event of a more significant series of thruster failures, the springs that push Starliner away from the station should be enough to ensure there’s no risk of collision, according to Vareha.

“Then, after that, we really are going to just stay in some very benign attitudes and not fire the the thrusters very much at all,” Stich said.

Starliner will need to use the RCS thrusters again to point itself in the proper direction to fire four larger rocket engines for the deorbit burn. Once this burn is complete, the RCS thrusters will reorient the spacecraft to jettison the service module to burn up in the atmosphere. The reusable crew module relies on a separate set of thrusters during reentry.

Finally, the capsule will approach the landing zone in New Mexico from the southwest, flying over the Pacific Ocean and Mexico before deploying three main parachutes and airbags to cushion its landing at White Sands. Boeing and NASA teams there will meet the spacecraft and secure it for a road voyage back to Kennedy Space Center in Florida for refurbishment.

Meanwhile, engineers must resolve the causes of the thruster problems and helium leaks that plagued the Starliner test flight before it can fly astronauts again.

NASA wants Starliner to make a quick getaway from the space station Read More »

with-nasa’s-plan-faltering,-china-knows-it-can-be-first-with-mars-sample-return

With NASA’s plan faltering, China knows it can be first with Mars sample return

Questions to heaven —

“China is likely to become the first country to return samples from Mars.”

A

Enlarge / A “selfie” photo of China’s Zhurong rover and the Tianwen-1 landing platform on Mars in 2021.

China plans to launch two heavy-lift Long March 5 rockets with elements of the Tianwen-3 Mars sample return mission in 2028, the mission’s chief designer said Thursday.

In a presentation at a Chinese space exploration conference, the chief designer of China’s robotic Mars sample return project described the mission’s high-level design and outlined how the mission will collect samples from the Martian surface. Reports from the talk published on Chinese social media and by state-run news agencies were short on technical details and did not discuss any of the preparations for the mission.

Public pronouncements by Chinese officials on future space missions typically come true, but China is embarking on challenging efforts to explore the Moon and Mars. China aims to land astronauts on the lunar surface by 2030 in a step toward eventually building a Moon base called the International Lunar Research Station.

Liu Jizhong, chief designer of the Tianwen-3 mission, did not say when China could have Mars samples back on Earth. In past updates on the Tianwen-3 mission, the launch date has alternated between 2028 and 2030, and officials previously suggested the round-trip mission would take about three years. This would suggest Mars rocks could return to Earth around 2031, assuming an on-time launch in 2028.

NASA, meanwhile, is in the middle of revamping its architecture for a Mars sample return mission in cooperation with the European Space Agency. In June, NASA tapped seven companies, including SpaceX and Blue Origin, to study ways to return Mars rocks to Earth for less than $11 billion and before 2040, the cost and schedule for NASA’s existing plan for Mars sample return.

That is too expensive and too long to wait for Mars sample return, NASA Administrator Bill Nelson said in April. Mars sample return is the highest priority for NASA’s planetary science division and has been the subject of planning for decades. The Perseverance rover currently on Mars is gathering several dozen specimens of rock powder, soil, and Martian air in cigar-shaped titanium tubes for eventual return to Earth.

This means China has a shot at becoming the first country to bring pristine samples from Mars back to Earth, and China doesn’t intend to stop there.

“If all the missions go as planned, China is likely to become the first country to return samples from Mars,” said Wu Weiren, chief designer of China’s lunar exploration program, in a July interview with Chinese state television. “And we will explore giant planets, such as Jupiter. We will also explore some of the asteroids, including sample return missions from an asteroid, and build an asteroid defense system.”

The asteroid sample return mission is known as Tianwen-2, and is scheduled for launch next year. Tianwen means “questions to heaven.”

China doesn’t have a mission currently on Mars gathering material for its Tianwen-3 sample return mission. The country’s first Mars mission, Tianwen-1, landed on the red planet in May 2021 and deployed a rover named Zhurong. China’s space agency hasn’t released any update on the rover since 2022, suggesting it may have succumbed to the harsh Martian winter.

So, the Tianwen-3 mission must carry everything it needs to land on Mars, collect samples, package them for return to Earth, and then launch them from the Martian surface back into space. Then, the sample carrier will rendezvous with a return vehicle in orbit around Mars. Once the return spacecraft has the samples, it will break out of Mars orbit, fly across the Solar System, and release a reentry capsule to bring the Mars specimens to the Earth.

All of the kit for the Tianwen-3 mission will launch on two Long March 5 rockets, the most powerful operational launcher in China’s fleet. One Long March 5 will launch the lander and ascent vehicle, and another will propel the return spacecraft and Earth reentry capsule toward Mars.

Liu, Tianwen-3’s chief designer, said an attempt to retrieve samples from Mars is the most technically challenging space exploration mission since the Apollo program, according to China’s state-run Xinhua news agency. Liu said China will adhere to international agreements on planetary protection to safeguard Mars, Earth, and the samples themselves from contamination. The top scientific goal of the Tianwen-3 mission is to search for signs of life, he said.

Tianwen-3 will collect samples with a robotic arm and a subsurface drill, and Chinese officials previously said the mission may carry a helicopter and a mobile robot to capture more diverse Martian materials farther away from the stationary lander.

Liu said China is open to putting international payloads on Tianwen-3 and will collaborate with international scientists to analyze the Martian samples the mission returns to Earth. China is making lunar samples returned by the Chang’e 5 mission available for analysis by international researchers, and Chinese officials have said they anticipate a similar process to loan out samples from the far side of the Moon brought home by the Chang’e 6 mission earlier this year.

With NASA’s plan faltering, China knows it can be first with Mars sample return Read More »

boeing-will-try-to-fly-its-troubled-starliner-capsule-back-to-earth-next-week

Boeing will try to fly its troubled Starliner capsule back to Earth next week

Destination desert —

The two astronauts who launched on Starliner will stay behind on the International Space Station.

Boeing's Starliner spacecraft undocks from the International Space Station at the conclusion of an unpiloted test flight in May 2022.

Enlarge / Boeing’s Starliner spacecraft undocks from the International Space Station at the conclusion of an unpiloted test flight in May 2022.

NASA

NASA and Boeing are proceeding with final preparations to undock the Starliner spacecraft from the International Space Station next Friday, September 6, to head for landing at White Sands Space Harbor in southern New Mexico.

Astronauts Butch Wilmore and Suni Williams, who were supposed to return to Earth inside Starliner, will remain behind on the space station after NASA decided last week to conclude the Boeing test flight without its crew on board. NASA officials decided it was too risky to put the astronauts on Starliner after the spacecraft suffered thruster failures during its flight to the space station in early June.

Instead, Wilmore and Williams will come home on a SpaceX Dragon capsule no earlier than February, extending their planned stay on the space station from eight days to eight months. Flying on autopilot, the Starliner spacecraft is scheduled to depart the station at approximately 6: 04 pm EDT (22: 04 UTC) on September 6. The capsule will fire its engines to drop out of orbit and target a parachute-assisted landing in New Mexico at 12: 03 am EDT (04: 03 UTC) on September 7, NASA said in a statement Thursday.

NASA officials completed the second part of a two-day Flight Readiness Review on Thursday to clear the Starliner spacecraft for undocking and landing. However, there are strict weather rules for landing a Starliner spacecraft, so NASA and Boeing managers will decide next week whether to proceed with the return next Friday night or wait for better conditions at the White Sands landing zone.

Over the last few days, flight controllers updated parameters in Starliner’s software to handle a fully autonomous return to Earth without inputs from astronauts flying in the cockpit, NASA said. Boeing has flown two unpiloted Starliner test flights using the same type of autonomous reentry and landing operations. This mission, called the Crew Flight Test (CFT), was the first time astronauts launched into orbit inside a Starliner spacecraft, and was expected to pave the way for future operational missions to rotate four-person crews to and from the space station.

With the Starliner spacecraft unable to complete its test flight as intended, there are fundamental questions about the future of Boeing’s commercial crew program. NASA Administrator Bill Nelson said last week that Boeing’s new CEO, Kelly Ortberg, told him the aerospace company remained committed to Starliner. However, Boeing will be on the hook to pay for the cost of resolving problems with overheating thrusters and helium leaks that hamstrung the CFT mission. Boeing hasn’t made any public statements about the long-term future of the Starliner program since NASA decided to pull its astronauts off the spacecraft for its return to Earth.

Preparing for a contingency

NASA is clearly more comfortable with returning Wilmore and Williams to Earth inside SpaceX’s Dragon capsule, but the change disrupts crew operations at the space station. This week, astronauts have been reconfiguring the interior of a Dragon spacecraft currently docked at the outpost to support six crew members in the event of an emergency evacuation.

With Starliner leaving the space station next week, Dragon will become the lifeboat for Wilmore and Williams. If a fire, a collision with space junk, a medical emergency, or something else forces the crew to leave the complex, the Starliner astronauts will ride home on makeshift seats positioned under the four regular seats inside Dragon, where crews typically put cargo during launch and landing.

At least one of the Starliner astronauts would have to come home without a spacesuit to protect them if the cabin of the Dragon spacecraft depressurized on the descent. This has never happened on a Dragon mission before, but astronauts wear SpaceX-made pressure suits to mitigate the risk. The four astronauts who launched on Dragon have their suits, and NASA officials said a spare SpaceX suit already on the space station fit one of the Starliner astronauts, but they didn’t identify which one.

A pressure suit for the other Starliner crew member will launch on the next Dragon spacecraft—on the Crew-9 mission—set for liftoff on a SpaceX Falcon 9 rocket no earlier than September 24. Starliner’s troubles have also disrupted plans for the Crew-9 mission.

On Friday, NASA announced it would remove two astronauts from the Crew-9 mission, including its commander, Zena Cardman, who is a spaceflight rookie. Veteran astronaut Nick Hague will move from the pilot’s seat to take over as Crew-9 commander. Russian cosmonaut Aleksandr Gorbunov will join him.

NASA and Russia’s space agency, Roscosmos, have an agreement to launch Russian cosmonauts on Dragon missions and US astronauts on Russian Soyuz flights to the station. In exchange for NASA providing a ride for Gorbunov, NASA astronaut Don Pettit will fly to the space station on a Soyuz spacecraft next month.

The so-called “seat swap” arrangement ensures that, even if Dragon or Soyuz were grounded, there is always at least one US astronaut and one Russian cosmonaut on the station overseeing each partner’s segment of the outpost, maintaining propulsion, power generating, pointing control, thermal control, and other critical capabilities to keep the lab operational.

Boeing will try to fly its troubled Starliner capsule back to Earth next week Read More »

nasa-makes-a-very-tough-decision-in-setting-final-crew-9-assignments

NASA makes a very tough decision in setting final Crew-9 assignments

From four to two —

“I am deeply proud of our entire crew.”

Nick Hague, left, and Zena Cardman train inside a Crew Dragon spacecraft mock-up in November 2023.

Enlarge / Nick Hague, left, and Zena Cardman train inside a Crew Dragon spacecraft mock-up in November 2023.

NASA

On Friday NASA publicly announced a decision that has roiled the top levels of the agency’s human spaceflight program for several weeks. The space agency named the two crew members who will launch on a Crew Dragon mission set to lift off no earlier than September 24 to the International Space Station.

NASA astronaut Nick Hague will serve as the mission’s commander, and Roscosmos cosmonaut Aleksandr Gorbunov will serve as mission specialist. Instead of a usual complement of four astronauts, a two-person crew was necessitated by the need to use the Crew 9 spacecraft, Freedom, as a rescue vehicle for astronauts Butch Wilmore and Suni Williams. They flew to the station in June aboard Boeing’s Starliner vehicle, which has been deemed unsafe for them to return in.

Wilmore and Williams will join the Crew-9 increment on board the space station and fly back to Earth with Hague and Gorbunov next February.

The story behind the story

This represents a significant change from the original makeup of the Crew-9 manifest. NASA publicly named the original members of Crew-9 last January, which included three NASA astronauts and Gorbunov. It was to be commanded by Zena Cardman, piloted by Hague, with Stephanie Wilson and Gorbunov as mission specialists.

At the time, the naming of Cardman was significant—she would have been the first rookie astronaut without test pilot experience to command a NASA spaceflight. A 36-year-old geobiologist, Cardman joined NASA in 2017 and is well-regarded by her peers. The assignment of a rookie, non-test pilot to command the Crew-9 mission reflected NASA’s confidence in the self-flying capabilities of Dragon, which is intended to reach the station autonomously. The assignment was made by then-chief astronaut Reid Wiseman in 2022, and the Astronaut Office was confident that Cardman, with an experienced hand in Hague at her side, could command the mission.

The need to rescue Wilmore and Williams changed the equation. It fell upon Joe Acaba, a veteran astronaut who became chief of the Astronaut Office in February 2023, to down-select to a new crew manifest. To maintain its ongoing rotation with the Russian space program, one of the crew members needed to be Gorbunov. So Acaba had to pick from Cardman, Hague, and Wilson.

Initially, Acaba stuck with Cardman. She was the original commander of the mission, after all. But this prompted considerable dissent within the Astronaut Office, sources said. While Cardman is respected, and Dragon designed to be fully autonomous, it was asking a lot of her to be the sole NASA representative on board the vehicle. (Russian astronauts, generally, are not trained in depth on piloting US vehicles.) A non-trivial percentage of professional astronauts succumb to space sickness during the initial hours of their spaceflights.

Some members of the astronaut office argued that Hague was the safer choice. An Air Force test pilot, Hague survived a harrowing Soyuz spacecraft abort in 2018, and subsequently flew to space for more than six months in 2019. Hague, these astronauts said, was the safer choice for NASA if the agency truly sought to maximize chances of mission success.

Eventually these dissenters, with some support from the upper echelons of NASA management, prevailed, and Acaba swapped Hague for Cardman. A decision was reached before a Flight Readiness Review meeting on August 24, but it was not publicly announced until this Friday.

NASA’s official comment

“While we’ve changed crew before for a variety of reasons, downsizing crew for this flight was another tough decision to adjust to given that the crew has trained as a crew of four,” Acaba said in a news release issued Friday. “I have the utmost confidence in all our crew, who have been excellent throughout training for the mission. Zena and Stephanie will continue to assist their crewmates ahead of launch, and they exemplify what it means to be a professional astronaut.”

There was also a classy quote in the news release from Cardman, who revealed Friday that her father, Larry Cardman, passed away three weeks ago. “I am deeply proud of our entire crew,” she said. “And I am confident Nick and Alex will step into their roles with excellence. All four of us remain dedicated to the success of this mission, and Stephanie and I look forward to flying when the time is right.”

Here’s hoping her time comes very, very soon.

NASA makes a very tough decision in setting final Crew-9 assignments Read More »

nasa’s-starliner-decision-was-the-right-one,-but-it’s-a-crushing-blow-for-boeing

NASA’s Starliner decision was the right one, but it’s a crushing blow for Boeing

Falling short —

It’s unlikely Boeing can fly all six of its Starliner missions before retirement of the ISS in 2030.

A Starliner spacecraft mounted on top of an Atlas V rocket before an unpiloted test flight in 2022.

Enlarge / A Starliner spacecraft mounted on top of an Atlas V rocket before an unpiloted test flight in 2022.

Ten years ago next month NASA announced that Boeing, one of the agency’s most experienced contractors, won the lion’s share of government money available to end the agency’s sole reliance on Russia to ferry its astronauts to and from low-Earth orbit.

At the time, Boeing won $4.2 billion from NASA to complete development of the Starliner spacecraft and fly a minimum of two, and potentially up to six, operational crew flights to rotate crews between Earth and the International Space Station (ISS). SpaceX won a $2.6 billion contract for essentially the same scope of work.

A decade later the Starliner program finds itself at a crossroads after Boeing learned it will not complete the spacecraft’s first Crew Flight Test with astronauts onboard. NASA formally decided Saturday that Butch Wilmore and Suni Williams, who launched on the Starliner capsule June 5, will instead return to Earth inside a SpaceX Crew Dragon spacecraft. Put simply, NASA isn’t confident enough in Boeing’s spacecraft after it suffered multiple thrusters failures and helium leaks on the way to the ISS.

So where does this leave Boeing with its multibillion contract? Can the company fulfill the breadth of its commercial crew contract with NASA before the space station’s scheduled retirement in 2030? It now seems that there is little chance of Boeing flying six more Starliner missions without a life extension for the ISS. Tellingly, perhaps, NASA has only placed firm orders with Boeing for three Starliner flights once the agency certifies the spacecraft for operational use.

Boeing’s bottom line

Although Boeing did not make an official statement Saturday on its long-term plans for Starliner, NASA Administrator Bill Nelson told reporters he received assurances from Boeing’s new CEO, Kelly Ortberg, that the company remains committed to the commercial crew program. And it will take a significant commitment from Boeing to see it through. Under the terms of its fixed price contract with NASA, the company is on the hook to pay for any expenses to fix the thruster and helium leak problems and get Starliner flying again.

Boeing has already reported $1.6 billion in charges on its financial statements to pay for delays and cost overruns on the Starliner program. That figure will grow as the company will likely need to redesign some elements in the spacecraft’s propulsion system to remedy the problems encountered on the Crew Flight Test (CFT) mission. NASA has committed $5.1 billion to Boeing for the Starliner program, and the agency has already paid out most of that funding.

Boeing's Starliner spacecraft, seen docked at the International Space Station through the window of a SpaceX Dragon spacecraft.

Enlarge / Boeing’s Starliner spacecraft, seen docked at the International Space Station through the window of a SpaceX Dragon spacecraft.

The next step for Starliner remains unclear, and we’ll assess that in more detail later in the story. Had the Starliner test flight ended as expected, with its crew inside, NASA targeted no earlier than August 2025 for Boeing to launch the first of its six operational crew rotation missions to the space station. In light of Saturday’s decision, there’s a high probability Starliner won’t fly with astronauts again until at least 2026.

Starliner safely delivered astronauts Butch Wilmore and Suni Williams to the space station on June 6, a day after their launch from Cape Canaveral Space Force Station, Florida. But five of the craft’s 28 reaction control system thrusters overheated and failed as it approached the outpost. After the failures on the way to the space station, NASA’s engineers were concerned Starliner might suffer similar problems, or worse, when the control jets fired to guide Starliner on the trip back to Earth.

On Saturday, senior NASA leaders decided it wasn’t worth the risk. The two astronauts, who originally planned for an eight-day stay at the station, will now spend eight months on the orbiting research lab until they come back to Earth with SpaceX.

If it’s not a trust problem, is it a judgement issue?

Boeing managers had previously declared Starliner was safe enough to bring Wilmore and Williams home. Mark Nappi, Boeing’s Starliner program manager, regularly appeared to downplay the seriousness of the thruster issues during press conferences throughout Starliner’s nearly three-month mission.

So why did NASA and Boeing engineers reach different conclusions? “I think we’re looking at the data and we view the data and the uncertainty that’s there differently than Boeing does,” said Jim Free, NASA’s associate administrator, and the agency’s most senior civil servant. “It’s not a matter of trust. It’s our technical expertise and our experience that we have to balance. We balance risk across everything, not just Starliner.”

The people at the top of NASA’s decision-making tree have either flown in space before, or had front-row seats to the calamitous decision NASA made in 2003 to not seek more data on the condition of space shuttle Columbia’s left wing after the impact of a block of foam from the shuttle’s fuel tank during launch. This led to the deaths of seven astronauts, and the destruction of Columbia during reentry over East Texas. A similar normalization of technical problems, and a culture of stifling dissent, led to the loss of space shuttle Challenger in 1986.

“We lost two space shuttles as a result there not being a culture in which information could come forward,” Nelson said Saturday. “We have been very solicitous of all of our employees that if you have some objection, you come forward. Spaceflight is risky, even at its safest, and even at its most routine. And a test flight by nature is neither safe nor routine. So the decision to keep Butch and Suni aboard the International Space Station and bring the Starliner home uncrewed is the result of a commitment to safety.”

Now, it seems that culture may truly have changed. With SpaceX’s Dragon spacecraft available to give Wilmore and Williams a ride home, this ended up being a relatively straightforward decision. Ken Bowersox, head of NASA’s space operations mission directorate, said the managers polled for their opinion all supported bringing the Starliner spacecraft back to Earth without anyone onboard.

However, NASA and Boeing need to answer for how the Starliner program got to this point. The space agency approved the launch of the Starliner CFT mission in June despite knowing the spacecraft had a helium leak in its propulsion system. Those leaks multiplied once Starliner arrived in orbit, and are a serious issue on their own that will require corrective actions before the next flight. Ultimately, the thruster problems superseded the seriousness of the helium leaks, and this is where NASA and Boeing are likely to face the most difficult questions moving forward.

NASA astronauts Butch Wilmore and Suni Williams aboard the International Space Station.

Enlarge / NASA astronauts Butch Wilmore and Suni Williams aboard the International Space Station.

Boeing’s previous Starliner mission, known as Orbital Flight Test-2 (OFT-2), successfully launched in 2022 and docked with the space station, later coming back to Earth for a parachute-assisted landing in New Mexico. The test flight achieved all of its major objectives, setting the stage for the Crew Flight Test mission this year. But the spacecraft suffered thruster problems on that flight, too.

Several of the reaction control system thrusters stopped working as Starliner approached the space station on the OFT-2 mission, and another one failed on the return leg of the mission. Engineers thought they fixed the problem by introducing what was essentially a software fix to adjust timing and tolerance settings on sensors in the propulsion system, supplied by Aerojet Rocketdyne.

That didn’t work. The problem lay elsewhere, as engineers discovered during testing this summer, when Starliner was already in orbit. Thruster firings at White Stands, New Mexico, revealed a small Teflon seal in a valve can bulge when overheated, restricting the flow of oxidizer propellant to the thruster. NASA officials concluded there is a chance, however small, that the thrusters could overheat again as Starliner departs the station and flies back to Earth—or perhaps get worse.

“We are clearly operating this thruster at a higher temperature, at times, than it was designed for,” said Steve Stich, NASA’s commercial crew program manager. “I think that was a factor, that as we started to look at the data a little bit more carefully, we’re operating the thruster outside of where it should be operated at.”

NASA’s Starliner decision was the right one, but it’s a crushing blow for Boeing Read More »

cards-on-the-table:-are-butch-and-suni-coming-home-on-starliner-or-crew-dragon?

Cards on the table: Are Butch and Suni coming home on Starliner or Crew Dragon?

NASA astronauts Suni Williams and Butch Wilmore, seen in their Boeing flight suits.

Enlarge / NASA astronauts Suni Williams and Butch Wilmore, seen in their Boeing flight suits.

After months of consideration, NASA said Thursday that it will finally decide the fate of two astronauts on board the International Space Station, Butch Wilmore and Suni Williams, by this weekend. As soon as Saturday, the two crew members will learn whether they’ll return on a Starliner spacecraft in early September or a Crew Dragon vehicle next February.

On the eve of this fateful decision, the most consequential human spaceflight safety determination NASA has had to make in more than two decades, Ars has put together a summary of what we know, what we believe to be true, and what remains yet unknown.

Why has NASA taken so long?

Wilmore and Williams arrived at the International Space Station 11 weeks ago. Their mission was supposed to last eight days, but there was some expectation that they might stay a little longer. However, no one envisioned the crew remaining this long. That changed when, during Starliner’s flight to the space station, five of the 28 small thrusters that guide Starliner failed. After some touch-and-go operations, the astronauts and flight controllers at Johnson Space Center coaxed the spacecraft to a safe docking at the station.

This failure in space led to months of testing, both on board the vehicle in space and with similar thrusters on the ground in New Mexico. This has been followed by extensive data reviews and modeling by engineers to try to understand the root cause of the thruster problems. On Friday, lower-level managers will meet in a Program Control Board to discuss their findings and make recommendations to senior managers. Those officials, with NASA Administrator Bill Nelson presiding, will make a final decision at a Flight Readiness Review on Saturday in Houston.

What are the two options?

NASA managers will decide whether to send the astronauts home on Starliner, possibly as early as September 2, or to fly back to Earth on a Crew Dragon vehicle scheduled to be launched on September 24. To make room for Butch Wilmore and Suni Williams, this so-called “Crew-9” mission would launch with two astronauts instead of a full complement of four. Wilmore and Williams would then join this mission for their six-month increment on board the space station—their eight-day stay becoming eight months.

How are Butch and Suni feeling about this?

We don’t know, as they have not spoken to the media since it became apparent they could be in space for a long time. However, based on various sources, both of the crew members are taking it more or less in stride. They understand this is a test flight, and their training included the possibility of staying in space for an extended period of time if there were problems with Starliner.

That’s not to say it’s convenient. Both Wilmore and Williams have families back on Earth who expected them home by now, and the station was not set up for an extended stay. Wilmore, for example, has been having to sleep in a science laboratory rather than a designated sleeping area, so he has to pack up his personal things every morning.

What does seem clear is that Wilmore and Williams will accept NASA’s decision this weekend. In other words, they’re not going to stage a revolt in space. They trust NASA officials to make the right safety decision, whatever it ends up being. (So, for that matter, does Ars.)

Why is this a difficult decision?

First and foremost, NASA is concerned with getting its astronauts home safely. However, there are myriad other secondary decision factors, and bringing Butch and Suni home on Dragon instead of Starliner raises a host of new issues. Significantly among these is that it would be devastating for Boeing. Their public optics, should long-time rival SpaceX have to step in and “rescue” the crew from an “unsafe” Boeing vehicle, would be terrible. Moreover, the company has already lost $1.6 billion on the Starliner program, and there is the possibility that Boeing will shut it down. NASA does not want to lose a second provider of crew transport services to the space station.

Cards on the table: Are Butch and Suni coming home on Starliner or Crew Dragon? Read More »

after-months-of-mulling,-nasa-will-decide-on-starliner-return-this-weekend

After months of mulling, NASA will decide on Starliner return this weekend

Standby for news —

“The agency flight readiness review is where any formal dissents are presented and reconciled.”

A high-resolution commercial Earth-imaging satellite owned by Maxar captured this view of the International Space Station on June 7 with Boeing's Starliner capsule docked at the lab's forward port (lower right).

Enlarge / A high-resolution commercial Earth-imaging satellite owned by Maxar captured this view of the International Space Station on June 7 with Boeing’s Starliner capsule docked at the lab’s forward port (lower right).

Senior NASA leaders, including the agency’s administrator, Bill Nelson, will meet Saturday in Houston to decide whether Boeing’s Starliner spacecraft is safe enough to ferry astronauts Butch Wilmore and Suni Williams back to Earth from the International Space Station.

The Flight Readiness Review (FRR) is expected to conclude with NASA’s most consequential safety decision in nearly a generation. One option is to clear the Starliner spacecraft to undock from the space station in early September with Wilmore and Williams onboard, as their flight plan initially laid out, or to bring the capsule home without its crew.

As of Thursday, the two veteran astronauts have been on the space station for 77 days, nearly 10 times longer than their planned stay of eight days. Wilmore and Williams were the first people to launch and dock at the space station aboard a Starliner spacecraft, but multiple thrusters failed and the capsule leaked helium from its propulsion system as it approached the orbiting complex on June 6.

That led to months of testing—in space and on the ground—data reviews, and modeling for engineers to try to understand the root cause of the thruster problems. Engineers believe the thrusters overheated, causing Teflon seals to bulge and block the flow of propellant to the small control jets, resulting in losing thrust. The condition of the thrusters improved once Starliner docked at the station when they weren’t repeatedly firing, as they need to do when the spacecraft is flying alone.

However, engineers and managers have not yet reached a consensus about whether the same problem could recur, or get worse, during the capsule’s journey back to Earth. In a worst-case scenario, if too many thrusters fail, the spacecraft would be unable to point in the proper direction for a critical braking burn to guide the capsule back into the atmosphere toward landing.

The suspect thrusters are located on Starliner’s service module, which will perform the deorbit burn and then separate from the astronaut-carrying crew module before reentry. A separate set of small engines will fine-tune Starliner’s trajectory during descent.

If NASA managers decide it’s not worth the risk, Wilmore and Williams would extend their stay on the space station until at least February of next year, when they would return to Earth inside a Dragon spacecraft provided by SpaceX, Boeing’s rival in NASA’s commercial crew program. This would eliminate the threat that thruster problems on the Starliner spacecraft might pose to the crew’s safety during the trip to Earth, but it comes with myriad side effects.

These effects include disrupting crew activities on the space station by bumping two astronauts off the next SpaceX flight, exposing Wilmore and Williams to additional radiation during their time in space, and dealing a debilitating blow to Boeing’s Starliner program.

If Boeing’s capsule cannot return to Earth with its two astronauts, NASA may not certify Starliner for operational crew missions without an additional test flight. In that case, Boeing probably wouldn’t be able to complete all six of its planned operational crew missions under a $4.2 billion NASA contract before the International Space Station is due for retirement in 2030.

FRR-eedom to speak

The Flight Readiness Review at NASA’s Johnson Space Center in Houston will begin Saturday morning. Ken Bowersox, a former astronaut and head of NASA’s Space Operations Mission Directorate, will chair the meeting. NASA Administrator Bill Nelson will participate, too. If there’s no unanimous agreement around the table at the FRR, a final decision on what to do could be elevated above Bowersox to NASA’s associate administrator, Jim Free or to Nelson.

“The agency flight readiness review is where any formal dissents are presented and reconciled,” NASA said in a statement Thursday. “Other agency leaders who routinely participate in launch and return readiness reviews for crewed missions include NASA’s administrator, deputy administrator, associate administrator, various agency center directors, the Flight Operations Directorate, and agency technical authorities.”

NASA has scheduled a press conference for no earlier than 1 pm ET (17: 00 UTC) Saturday to announce the agency’s decision and next steps, the agency said.

Lower-level managers will meet Friday in a so-called Program Control Board to discuss their findings and views before the FRR. At a previous Program Control Board meeting, managers disagreed on whether the agency was ready to sign off that the Starliner spacecraft was safe enough to return its astronauts to Earth.

There’s one new piece of information that engineers will brief to the Program Control Board on Friday:

“Engineering teams have been working to evaluate a new model that represents the thruster mechanics and is designed to more accurately predict performance during the return phase of flight,” NASA said. “This data could help teams better understand system redundancy from undock to service module separation. Ongoing efforts to complete the new modeling, characterize spacecraft performance data, refine integrated risk assessments, and determine community recommendations will fold into the agency-level review.”

After months of mulling, NASA will decide on Starliner return this weekend Read More »

rocket-report:-ula-is-losing-engineers;-spacex-is-launching-every-two-days

Rocket Report: ULA is losing engineers; SpaceX is launching every two days

Every other day —

The first missions of Stoke Space’s reusable Nova rocket will fly in expendable mode.

A Falcon 9 booster returns to landing at Cape Canaveral Space Force Station following a launch Thursday with two WorldView Earth observation satellites for Maxar.

Enlarge / A Falcon 9 booster returns to landing at Cape Canaveral Space Force Station following a launch Thursday with two WorldView Earth observation satellites for Maxar.

Welcome to Edition 7.07 of the Rocket Report! SpaceX has not missed a beat since the Federal Aviation Administration gave the company a green light to resume Falcon 9 launches after a failure last month. In 19 days, SpaceX has launched 10 flights of the Falcon 9 rocket, taking advantage of all three of its Falcon 9 launch pads. This is a remarkable cadence in its own right, but even though it’s a small sample size, it is especially impressive right out of the gate after the rocket’s grounding.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

A quick turnaround for Rocket Lab. Rocket Lab launched its 52nd Electron rocket on August 11 from its private spaceport on Mahia Peninsula in New Zealand, Space News reports. The company’s light-class Electron rocket deployed a small radar imaging satellite into a mid-inclination orbit for Capella Space. This was the shortest turnaround between two Rocket Lab missions from its primary launch base in New Zealand, coming less than nine days after an Electron rocket took off from the same pad with a radar imaging satellite for the Japanese company Synspective. Capella’s Acadia 3 satellite was originally supposed to launch in July, but Capella requested a delay to perform more testing of its spacecraft. Rocket Lab swapped its place in the Electron launch sequence and launched the Synspective mission first.

Now, silence at the launch pad … Rocket Lab hailed the swap as an example of the flexibility provided by Electron, as well as the ability to deliver payloads to specific orbits that are not feasible with rideshare missions, according to Space News. For this tailored launch service, Rocket Lab charges a premium launch price over the price of launching a small payload on a SpaceX rideshare mission. However, SpaceX’s rideshare launches gobble up the lion’s share of small satellites within Rocket Lab’s addressable market. On Friday, a Falcon 9 rocket is slated to launch 116 small payloads into polar orbit. Rocket Lab, meanwhile, projects just one more launch before the end of September and expects to perform 15 to 18 Electron launches this year, a record for the company but well short of the 22 it forecasted earlier in the year. Rocket Lab says customer readiness is the reason it will be far short of projections.

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Defense contractors teaming up on solid rockets. Lockheed Martin and General Dynamics are joining forces to kickstart solid rocket motor production, announcing a strategic teaming agreement today that could see new motors roll off the line as early as 2025, Breaking Defense reports. The new agreement could position a third vendor to enter into the ailing solid rocket motor industrial base, which currently only includes L3Harris subsidiary Aerojet Rocketdyne and Northrop Grumman in the United States. Both companies have struggled to meet demands from weapons makers like Lockheed and RTX, which are in desperate need of solid rocket motors for products such as Javelin or the PAC-3 missiles used by the Patriot missile defense system.

Pressure from startups … Demand for solid rocket motors has skyrocketed since Russia’s invasion of Ukraine as the United States and its partners sought to backfill stocks of weapons like Javelin and Stinger, as well as provide motors to meet growing needs in the space domain. Although General Dynamics has kept its interest in the solid rocket motor market quiet until now, several defense tech startups, such as Ursa Major Technologies, Anduril, and X-Bow Systems, have announced plans to enter the market. (submitted by Ken the Bin)

Going polar with crew. SpaceX will fly the first human spaceflight over the Earth’s poles, possibly before the end of this year, Ars reports. The private Crew Dragon mission will be led by a Chinese-born cryptocurrency entrepreneur named Chun Wang, and he will be joined by a polar explorer, a roboticist, and a filmmaker whom he has befriended in recent years. The “Fram2” mission, named after the Norwegian research ship Fram, will launch into a polar corridor from SpaceX’s launch facilities in Florida and fly directly over the north and south poles. The three- to five-day mission is being timed to fly over Antarctica near the summer solstice in the Southern Hemisphere, to afford maximum lighting.

Wang’s inclination is Wang’s prerogative … Wang told Ars he wanted to try something new, and flying a polar mission aligned with his interests in cold places on Earth. He’s paying the way on a commercial basis, and SpaceX in recent years has demonstrated it can launch satellites into polar orbit from Cape Canaveral, Florida, something no one had done in more than 50 years. The highest-inclination flight ever by a human spacecraft was the Soviet Vostok 6 mission in 1963 when Valentina Tereshkova’s spacecraft reached 65.1 degrees. Now, Fram2 will fly repeatedly and directly over the poles.

Rocket Report: ULA is losing engineers; SpaceX is launching every two days Read More »

nasa-shuts-down-asteroid-hunting-telescope,-but-a-better-one-is-on-the-way

NASA shuts down asteroid-hunting telescope, but a better one is on the way

Prolific —

The NEOWISE spacecraft is on a course to fall out of orbit in the next few months.

Artist's illustration of NASA's Wide-field Infrared Survey Explorer spacecraft.

Enlarge / Artist’s illustration of NASA’s Wide-field Infrared Survey Explorer spacecraft.

Last week, NASA decommissioned a nearly 15-year-old spacecraft that discovered 400 near-Earth asteroids and comets, closing an important chapter in the agency’s planetary defense program.

From its position in low-Earth orbit, the spacecraft’s infrared telescope scanned the entire sky 23 times and captured millions of images, initially searching for infrared emissions from galaxies, stars, and asteroids before focusing solely on objects within the Solar System.

Wising up to NEOs

The Wide-field Infrared Survey Explorer, or WISE, spacecraft launched in December 2009 on a mission originally designed to last seven months. After WISE completed checkouts and ended its primary all-sky astronomical survey, NASA put the spacecraft into hibernation in 2011 after its supply of frozen hydrogen coolant ran out, reducing the sensitivity of its infrared detectors. But astronomers saw that the telescope could still detect objects closer to Earth, and NASA reactivated the mission in 2013 for another decade of observations.

The reborn mission was known as NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer). Its purpose was to use the spacecraft’s infrared vision to detect faint asteroids and comets on trajectories that bring them close to Earth.

“We never thought it would last this long,” said Amy Mainzer, NEOWISE’s principal investigator from the University of Arizona and UCLA.

Ground controllers at NASA’s Jet Propulsion Laboratory in California sent the final command to the NEOWISE spacecraft on August 8. The spacecraft, currently at an altitude of about 217 miles (350 kilometers), is falling out of orbit as atmospheric drag slows it down. NASA expects the spacecraft will reenter the atmosphere and burn up before the end of this year, a few months earlier than expected, due to higher levels of solar activity, which causes expansion in the upper atmosphere. The satellite doesn’t have its own propulsion to boost itself into a higher orbit.

“The Sun’s just been incredibly quiet for many years now, but it’s picking back up, and it was the right time to let it go,” Mainzer told Ars.

Astronomers have used ground-based telescopes to discover most of the near-Earth objects detected so far. But there’s an advantage to using a space-based telescope, because Earth’s atmosphere absorbs most of the infrared energy coming from faint objects like asteroids.

With ground-based telescopes, astronomers are “predominantly seeing sunlight reflecting off the surfaces of the objects,” Mainzer said. NEOWISE measures thermal emissions from the asteroids, giving scientists information about their sizes. “We can actually get pretty good measurements of size with relatively few infrared measurements,” she said.

The telescope on NEOWISE was relatively modest in size, with a 16-inch (40-centimeter) primary mirror, more than 16 times smaller than the mirror on the James Webb Space Telescope. But its wide field of view allowed NEOWISE to scour the sky for infrared light sources, making it well-suited for studying large populations of objects. One of the mission’s most famous discoveries was a comet officially named C/2020 F3, more commonly known as Comet NEOWISE, which became visible to the naked eye in 2020. As the comet moved closer to Earth, large telescopes like Hubble were able to take a closer look.

“The NEOWISE mission has been an extraordinary success story as it helped us better understand our place in the universe by tracking asteroids and comets that could be hazardous for us on Earth,” said Nicola Fox, associate administrator of NASA’s science mission directorate.

What’s out there?

The original mission of WISE and the extended survey of NEOWISE combined to discover 366 near-Earth asteroids and 34 comets, according to the Center for Near-Earth Object Studies. Of these, 64 were classified as potentially hazardous asteroids, meaning they come within 4.65 million miles (7.48 million kilometers) of Earth and are at least 500 feet (140 meters) in diameter. These are the objects astronomers want to find and track in order to predict if they pose a risk of colliding with Earth.

There are roughly 2,400 known potentially hazardous asteroids, but there are more lurking out there. Another advantage of using space-based telescopes to search for these asteroids is that they can observe 24 hours a day, while telescopes on the ground are limited to nighttime surveys. Some hazardous asteroids, such as the house-sized object that exploded in the atmosphere over Chelyabinsk, Russia, in 2013, approach Earth from the direction of the Sun. A space telescope has a better chance of finding these kinds of asteroids.

WISE, and then the extended mission of NEOWISE, helped scientists estimate there are approximately 25,000 near-Earth objects.

“The objects (NEOWISE) did discover tended to be overwhelmingly just dark, [and] these are the objects that are much more likely to be missed by the ground-based telescopes,” Mainzer said. “So that, in turn, gives us a much better idea of how many are really out there.”

NASA shuts down asteroid-hunting telescope, but a better one is on the way Read More »

nasa-chief-to-scientists-on-budget-cuts:-“i-feel-your-pain”

NASA chief to scientists on budget cuts: “I feel your pain”

Nelson as Senator Administrator —

“I can’t go and print the dollars.”

Photo of Bill Nelson.

Enlarge / Administrator Bill Nelson delivering remarks and answering questions from the media at the OFT-2 prelaunch press conference.

Trevor Mahlmann

Ars Technica recently had the opportunity to speak with NASA Administrator Bill Nelson, who has now led the US space agency for more than three years. We spoke about budget issues, Artemis Program timelines, and NASA’s role as a soft power in global diplomacy. What follows is a very lightly edited transcript of the conversation between Senior Space Editor Eric Berger and Nelson.

Ars Technica: I wanted to start with NASA’s budget for next year. We’ve now seen the numbers from the House of Senate, and NASA is once again facing some cuts. And I’m just wondering, what are your big concerns as we get into the final budgeting process this fall?

Administrator Bill Nelson: Well, the big concern is that you can’t put 10 pounds of potatoes in a five-pound sack. When you get cut $4.7 billion over two years, and when $2 billion of that over two years is just in science, then you have to start making some hard choices. Now, I understand the reasons for the cuts. Had I still been a member of the Senate I would’ve voted for it simply because they were held hostage by a small group in the House to get what they wanted. Which was reduced appropriations in order to raise the artificial, statutory budget debt ceiling in order for the government not to go into default. That’s part of the legislative process. It’s part of the compromises that go on. It happened over a year ago, and it was called the Fiscal Responsibility Act. The price for doing that wasn’t cuts across the entire budget. Remember, two-thirds of the budget is entitlement programs like Social Security and Medicare, and it certainly wasn’t in defense. So, all the cuts came out of everything left over, including NASA. I’m hoping that we’re going to get a reprieve come fiscal year ’26 when we will not be in the budgetary constraints of the Fiscal Responsibility Act. But who knows? Because lo and behold, they’ve got another artificial debt ceiling they’re going to have to raise next January.

ArsWhat would you say to scientists who are concerned about Chandra, the cancellation of Viper, and Mars Sample Return, who see the budget for Artemis Program holding steady or even going up? It seems to me those of us who lived through Constellation saw this unfolding 15 to 20 years ago. Is the same thing happening with Artemis, is science being cannibalized to pay for human exploration?

Nelson: My response to the scientists is, I feel your pain. But, when I am faced with $2 billion of cuts over two years just in Science, I can’t go and print the dollars. And so, we have to make hard choices. Now, let’s go through those ones that you mentioned. Mars Sample Return. This was getting way out of control. It was going up to $11 billion, and we weren’t even going to get a sample return until 2040. And that’s the decade that when we’re going to land astronauts on Mars. So, something had to be done.

I convinced the budget director, Shalanda Young (director of the US Office of Management and Budget), and she was a partner in this, that we need to get those samples back. And so we pulled the plug on it. We said, “We’re going to start over, and we’re going to go out to all the NASA centers and to private industry, and we’re going to solicit and give some incentive money for their studies. And those studies will come back in, and by the end of the year, we will make a decision.” I’m hopeful that we are going to find such creativity and fiscal discipline that we’re going to end up with a much cheaper Mars sample return that will come back in the mid-30s, instead of all the way to 2040. So, if that’s what happens, and every indication I get is we’re getting some really creative proposals, if that’s what happens, then it’s a win-win. It’s a win for the taxpayer clearly. It’s a win for NASA because we didn’t have the money to spend $11 billion on it.

So, that’s one example. Another one that you used is Viper. Viper was running 40 percent over budget. Now, there comes a limit, and when you have to take a $2 billion hit just to science, you have to make tough choices. And so, that decision was made. We’re still getting (to the Moon) with Intuitive Machines at the end of the year. We are getting a lander that is going to drill to see if there is water underneath the surface. Understand that Viper was a much bigger rover, and it was going to rove around, but it was also 40 percent over budget. And so, these are the choices that you have to make.

You mentioned Chandra. By the way, I think we’ve worked Chandra out. Although it’s not going to have the funding way up there at the top funding. What we have worked out is, we are going to from what we requested, which was $41 million, it’s going to be some amount in excess of that. Although there will be some layoffs, not nearly as many, and all of the science will be protected. There will not be any diminution of the science.

NASA chief to scientists on budget cuts: “I feel your pain” Read More »

nasa-is-about-to-make-its-most-important-safety-decision-in-nearly-a-generation

NASA is about to make its most important safety decision in nearly a generation

Boeing's Starliner spacecraft, seen docked at the International Space Station through the window of a SpaceX Dragon spacecraft.

Enlarge / Boeing’s Starliner spacecraft, seen docked at the International Space Station through the window of a SpaceX Dragon spacecraft.

As soon as this week, NASA officials will make perhaps the agency’s most consequential safety decision in human spaceflight in 21 years.

NASA astronauts Butch Wilmore and Suni Williams are nearly 10 weeks into a test flight that was originally set to last a little more than one week. The two retired US Navy test pilots were the first people to fly into orbit on Boeing’s Starliner spacecraft when it launched on June 5. Now, NASA officials aren’t sure Starliner is safe enough to bring the astronauts home.

Three of the managers at the center of the pending decision, Ken Bowersox and Steve Stich from NASA and Boeing’s LeRoy Cain, either had key roles in the ill-fated final flight of Space Shuttle Columbia in 2003 or felt the consequences of the accident.

At that time, officials misjudged the risk. Seven astronauts died, and the Space Shuttle Columbia was destroyed as it reentered the atmosphere over Texas. Bowersox, Stich, and Cain weren’t the people making the call on the health of Columbia‘s heat shield in 2003, but they had front-row seats to the consequences.

Bowersox was an astronaut on the International Space Station when NASA lost Columbia. He and his crewmates were waiting to hitch a ride home on the next Space Shuttle mission, which was delayed two-and-a-half years in the wake of the Columbia accident. Instead, Bowersox’s crew came back to Earth later that year on a Russian Soyuz capsule. After retiring from the astronaut corps, Bowersox worked at SpaceX and is now the head of NASA’s spaceflight operations directorate.

Stich and Cain were NASA flight directors in 2003, and they remain well-respected in human spaceflight circles. Stich is now the manager of NASA’s commercial crew program, and Cain is now a Boeing employee and chair of the company’s Starliner mission director. For the ongoing Starliner mission, Bowersox, Stich, and Cain are in the decision-making chain.

All three joined NASA in the late 1980s, soon after the Challenger accident. They have seen NASA attempt to reshape its safety culture after both of NASA’s fatal Space Shuttle tragedies. After Challenger, NASA’s astronaut office had a more central role in safety decisions, and the agency made efforts to listen to dissent from engineers. Still, human flaws are inescapable, and NASA’s culture was unable to alleviate them during Columbia‘s last flight in 2003.

NASA knew launching a Space Shuttle in cold weather reduced the safety margin on its solid rocket boosters, which led to the Challenger accident. And shuttle managers knew foam routinely fell off the external fuel tank. In a near-miss, one of these foam fragments hit a shuttle booster but didn’t damage it, just two flights prior to Columbia‘s STS-107 mission.

“I have wondered if some in management roles today that were here when we lost Challenger and Columbia remember that in both of those tragedies, there were those that were not comfortable proceeding,” Milt Heflin, a retired NASA flight director who spent 47 years at the agency, wrote in an email to Ars. “Today, those memories are still around.”

“I suspect Stich and Cain are paying attention to the right stuff,” Heflin wrote.

The question facing NASA’s leadership today? Should the two astronauts return to Earth from the International Space Station in Boeing’s Starliner spacecraft, with its history of thruster failures and helium leaks, or should they come home on a SpaceX Dragon capsule?

Under normal conditions, the first option is the choice everyone at NASA would like to make. It would be least disruptive to operations at the space station and would potentially maintain a clearer future for Boeing’s Starliner program, which NASA would like to become operational for regular crew rotation flights to the station.

But some people at NASA aren’t convinced this is the right call. Engineers still don’t fully understand why five of the Starliner spacecraft’s thrusters overheated and lost power as the capsule approached the space station for docking in June. Four of these five control jets are now back in action with near-normal performance, but managers would like to be sure the same thrusters—and maybe more—won’t fail again as Starliner departs the station and heads for reentry.

NASA is about to make its most important safety decision in nearly a generation Read More »