NASA

crew-10-launches,-finally-clearing-the-way-for-butch-and-suni-to-fly-home

Crew-10 launches, finally clearing the way for Butch and Suni to fly home

A Falcon 9 rocket launched four astronauts safely into orbit on Friday evening, marking the official beginning of the Crew-10 mission to the International Space Station.

Although any crew launch into orbit is notable, this mission comes with an added bit of importance as its success clears the way for two NASA astronauts, Butch Wilmore and Suni Williams, to finally return home from space after a saga spanning nine months.

Friday’s launch came two days after an initial attempt was scrubbed on Wednesday evening. This was due to a hydraulic issue with the ground systems that handle the Falcon 9 rocket at Launch Complex 39A in Florida.

There were no technical issues on Friday, and with clear skies NASA astronauts Anne McClain and Nichole Ayers, Japanese astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov rocketed smoothly into orbit.

If all goes well, the Crew Dragon spacecraft carrying the four astronauts will dock with the space station at 11: 30 pm ET on Saturday. They will spend about six months there.

A long, strange trip

Following their arrival at the space station, the members of Crew-10 will participate in a handover ceremony with the four astronauts of Crew-9, which includes Wilmore and Williams. This will clear the members of Crew 9 for departure from the station as early as next Wednesday, March 19, pending good weather in the waters surrounding Florida for splashdown of Dragon.

Crew-10 launches, finally clearing the way for Butch and Suni to fly home Read More »

the-starship-program-hits-another-speed-bump-with-second-consecutive-failure

The Starship program hits another speed bump with second consecutive failure

The flight plan going into Thursday’s mission called for sending Starship on a journey halfway around the world from Texas, culminating in a controlled reentry over the Indian Ocean before splashing down northwest of Australia.

The test flight was supposed to be a do-over of the previous Starship flight on January 16, when the rocket’s upper stage—itself known as Starship, or ship—succumbed to fires fueled by leaking propellants in its engine bay. Engineers determined the most likely cause of the propellant leak was a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected.

The Super Heavy booster returned to Starbase in Texas to be caught back at the launch pad. Credit: SpaceX

Engineers test-fired the Starship vehicle earlier this month for this week’s test flight, validating changes to propellant temperatures, operating thrust, and the ship’s fuel feed lines leading to its six Raptor engines.

But engineers missed something. On Thursday, the Raptor engines began shutting down on Starship about eight minutes into the flight, and the rocket started tumbling 90 miles (146 kilometers) over the southeastern Gulf of Mexico. SpaceX ground controllers lost all contact with the rocket about nine-and-a-half minutes after liftoff.

“Prior to the end of the ascent burn, an energetic event in the aft portion of Starship resulted in the loss of several Raptor engines,” SpaceX wrote on X. “This in turn led to a loss of attitude control and ultimately a loss of communications with Starship.”

Just like in January, residents and tourists across the Florida peninsula, the Bahamas, and the Turks and Caicos Islands shared videos of fiery debris trails appearing in the twilight sky. Air traffic controllers diverted or delayed dozens of commercial airline flights flying through the debris footprint, just as they did in response to the January incident.

There were no immediate reports Thursday of any Starship wreckage falling over populated areas. In January, residents in the Turks and Caicos Islands recovered small debris fragments, including one piece that caused minor damage when it struck a car. The debris field from Thursday’s failed flight appeared to fall west of the areas where debris fell after Starship Flight 7.

A spokesperson for the Federal Aviation Administration said the regulatory agency will require SpaceX to perform an investigation into Thursday’s Starship failure.

The Starship program hits another speed bump with second consecutive failure Read More »

nasa-officials-undermine-musk’s-claims-about-‘stranded’-astronauts

NASA officials undermine Musk’s claims about ‘stranded’ astronauts


“We were looking at this before some of those statements were made by the President.”

NASA astronauts Butch Wilmore and Suni Williams aboard the International Space Station. Credit: NASA

Over the last month there has been something more than a minor kerfuffle in the space industry over the return of two NASA astronauts from the International Space Station.

The fate of Butch Wilmore and Suni Williams, who launched on the first crewed flight of Boeing’s Starliner spacecraft on June 5, 2024, has become a political issue after President Donald Trump and SpaceX founder Elon Musk said the astronauts’ return was held up by the Biden White House.

In February, Trump and Musk appeared on FOX News. During the joint interview, the subject of Wilmore and Williams came up. They remain in space today after NASA decided it would be best they did not fly home in their malfunctioning Starliner spacecraft—but would return in a SpaceX-built Crew Dragon.

“At the President’s request, or instruction, we are accelerating the return of the astronauts, which was postponed to a ridiculous degree,” Musk said.

“They got left in space,” Trump added.

“They were left up there for political reasons, which is not good,” Musk concluded.

After this interview, a Danish astronaut named Andreas Mogensen asserted that Musk was lying. “What a lie,” Mogensen wrote on the social media site Musk owns, X. “And from someone who complains about lack of honesty from the mainstream media.”

Musk offered a caustic response to Mogensen. “You are fully retarded,” Musk wrote. “SpaceX could have brought them back several months ago. I OFFERED THIS DIRECTLY to the Biden administration and they refused. Return WAS pushed back for political reasons. Idiot.”

So what’s the truth?

NASA has not directly answered questions about this over the last month. However, the people who really know the answer lie within the human spaceflight programs at the space agency. After one news conference was canceled last month, two key NASA officials were finally made available on a media teleconference on Friday evening. These were Ken Bowersox, associate administrator, Space Operations Mission Directorate, and Steve Stich, manager, of NASA’s Commercial Crew Program, which is responsible for Starliner and Crew Dragon flights.

Musk is essentially making two claims. First, he is saying that last year SpaceX offered to bring Wilmore and Williams home from the International Space Station—and made the offer directly to the Biden Administration. And the offer was refused for “political” reasons.

Second, Musk says that, at Trump’s request, the return of Wilmore and Williams was accelerated. The pair is now likely to return home to Earth as part of the Crew 9 mission later this month, about a week after the launch of a new group of astronauts to the space station. This Crew 10 mission has a launch date of March 12, so Wilmore and Williams could finally fly home about two weeks from now.

Let’s examine each of Musk’s claims in light of what Bowersox and Stich said Friday evening.

Was Musk’s offer declined for political reasons?

On July 14, last year, NASA awarded SpaceX a special contract to study various options to bring Wilmore and Williams home on a Crew Dragon vehicle. At the time, the space agency was considering options if Starliner was determined to be unsafe. Among the options NASA was considering were to fly Wilmore and Williams home on the Crew 8 vehicle attached to the station (which would put an unprecedented six people in the capsule) or asking SpaceX to autonomously fly a Dragon to the station to return Wilmore and Williams separately.

“The SpaceX folks helped us with a lot of options for how we would bring Butch and Suni home on Dragon in a contingency,” Bowersox said during Friday’s teleconference. “When it comes to adding on missions, or bringing a capsule home early, those were always options. But we ruled them out pretty quickly just based on how much money we’ve got in our budget, and the importance of keeping crews on the International Space Station. They’re an important part of maintaining the station.”

As a result, the Crew 9 mission launched in September with just two astronauts. Wilmore and Williams joined that crew for a full, six-month increment on the space station.

Stich said NASA made that decision based on flight schedules to the space station and the orbiting laboratory’s needs. It also allowed time to send SpaceX spacesuits up for the pair of astronauts and to produce seat liners that would make their landing in the water, under parachutes, safe.

“When we laid all that out, the best option was really the one that we’re embarking upon now,” Stich said. “And so we did Crew 9, flying the two empty seats, flying a suit for Butch up, and also making sure that the seats were right for Butch’s anthropometrics, and Suni’s, to return them safely.”

So yes, SpaceX has been working with NASA to present options, including the possibility of a return last fall. However, those discussions were being held within the program levels and their leaders: Stich for Commercial Crew and Dana Weigel for the International Space Station.

“Dana and I worked to come up with a decision that worked for the Commercial Crew Program and Space Station,” Stich said. “And then, Ken (Bowersox), we all we had the Flight Readiness Review process with you, and the Administrator of NASA listened in as well. So we had a recommendation to the agency and that was on the process that we typically use.”

Bowersox confirmed that the decision was made at the programmatic level.

“That’s typically the way our decisions work,” Bowersox said. “The programs work what makes the most sense for them, programmatically, technically. We’ll weigh in at the headquarters level, and in this case we thought the plan that we came up with made a lot of sense.”

During the teleconference, a vice president at SpaceX, Bill Gerstenmaier, was asked directly what offer Musk was referring to when he mentioned the Biden administration. He did not provide a substantive answer.

Musk claims he made an offer directly to senior officials in the Biden Administration. We have no way to verify that, but it does seem clear that the Biden administration never communicated such an offer to lower-level officials within NASA, who made their decision for technical rather than political reasons.

“I think you know we work for NASA, and we worked with NASA cooperatively to do whatever we think was the right thing,” the SpaceX official, Gerstenmaier, replied. “You know, we were willing to support in any manner they thought was the right way to support. They came up with the option you heard described today by them, and we’re supporting that option.”

Did Trump tell NASA to accelerate Butch and Suni’s return?

As of late last year, the Crew 9 mission was due to return in mid-February. However, there was a battery issue with a new Dragon spacecraft that was going to be used to fly Crew 10 into orbit. As a result, NASA announced on December 17 that the return of the crew was delayed into late March or early April.

Then, on February 11, NASA announced that the Crew 10 launch was being brought forward to March 12. This was a couple of weeks earlier than planned, and it was possible because NASA and SpaceX decided to swap out Dragon capsules, using a previously flown vehicle—Crew Dragon Endurance—for Crew 10.

So was this change to accelerate the return of Wilmore and Williams politically driven?

The decision to swap to Endurance was made in late January, Stich said, and this allowed the launch date to be moved forward. Asked if political pressure was a reason, Stich said it was not. “It really was driven by a lot of other factors, and we were looking at this before some of those statements were made by the President and Mr. Musk,” he said.

Bowersox added that this was correct but also said that NASA appreciated the President’s interest in the space program.

“I can verify that Steve has been talking about how we might need to juggle the flights and switch capsules a good month before there was any discussion outside of NASA, but the President’s interest sure added energy to the conversation,” Bowersox said.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

NASA officials undermine Musk’s claims about ‘stranded’ astronauts Read More »

intuitive-machines’-second-attempt-to-land-on-the-moon-also-went-sideways

Intuitive Machines’ second attempt to land on the Moon also went sideways

Inside a small control room, during the middle of the day on Thursday local time in Texas, about a dozen white-knuckled engineers at a space startup named Intuitive Machines started to get worried. Their spacecraft, a lander named Athena, was beginning its final descent down to the lunar surface.

A little more than a year had passed since the company’s first attempt to land on the Moon with a similarly built vehicle, Odysseus. Due to problems with that spacecraft’s laser rangefinder, it skidded into the Moon’s surface and toppled over.

So engineers at Intuitive Machines had checked, and re-checked the laser-based altimeters on Athena. When the lander got down within about 30 km of the lunar surface, they tested the rangefinders again. Worryingly, there was some noise in the readings as the laser bounced off the Moon. However, the engineers had reason to believe that, maybe, the readings would improve as the spacecraft got nearer to the surface.

“Our hope was that the signal to noise would improve as we got closer to the Moon,” said Tim Crain, chief technology officer for Intuitive Machines, speaking to reporters afterward.

It didn’t. The noise remained. And so, to some extent, Athena went down to the Moon blind. The spacecraft’s propulsion system, based on liquid oxygen and methane, and designed in-house, worked beautifully. But in the final moments, the spacecraft did not quite know where it was relative to the surface.

Probably lying on its side

Beyond that, Crain and the rest of the company, including its chief executive Steve Altemus, could not precisely say what happened. After Athena landed, the engineers in mission control could talk to the spacecraft, and they were able to generate some power from its solar arrays. But precisely where it was, or how it lay on the ground, they could not say a few hours later.

Based on a reading from an inertial measurement unit inside the vehicle, most likely Athena is lying on its side. This is the same fate Odysseus met last year, when it skidded into the Moon, broke a leg, and toppled over.

Intuitive Machines’ second attempt to land on the Moon also went sideways Read More »

yes,-we-are-about-to-be-treated-to-a-second-lunar-landing-in-a-week

Yes, we are about to be treated to a second lunar landing in a week

Because the space agency now has some expectation that Intuitive Machines will be fully successful with its second landing attempt, it has put some valuable experiments on board. Principal among them is the PRIME-1 experiment, which has an ice drill to sample any ice that lies below the surface. Drill, baby, drill.

The Athena lander also is carrying a NASA-funded “hopper” that will fire small hydrazine rockets to bounce around the Moon and explore lunar craters near the South Pole. It might even fly into a lava tube. If this happens it will be insanely cool.

Because this is a commercial program, NASA has encouraged the delivery companies to find additional, private payloads. Athena has some nifty ones, including a small rover from Lunar Outpost, a data center from Lonestar Data Holdings, and a 4G cellular network from Nokia. So there’s a lot riding on Athena‘s success.

So will it be a success?

“Of course, everybody’s wondering, are we gonna land upright?” Tim Crain, Intuitive Machines’ chief technology officer, told Ars. “So, I can tell you our laser test plan is much more comprehensive than those last time.”

During the first landing about a year ago, Odysseus‘ laser-based system for measuring altitude failed during the descent. Because Odysseus did not have access to altitude data, the spacecraft touched down faster, and on a 12-degree slope, which exceeded the 10-degree limit. As a result, the lander skidded across the surface, and one of its six legs broke, causing it to fall over.

Crain said about 10 major changes were made to the spacecraft and its software for the second mission. On top of that, about 30 smaller things, such as more efficient file management, were updated on the new vehicle.

In theory, everything should work this time. Intuitive Machines has the benefit of all of its learnings from the last time, and nearly everything worked right during this first attempt. But the acid test comes on Thursday.

The company and NASA will provide live coverage of the attempt beginning at 11: 30 am ET (16: 30 UTC) on NASA+, with landing set for just about one hour later. The Moon may be a harsh mistress, but hopefully not too harsh.

Yes, we are about to be treated to a second lunar landing in a week Read More »

butch-wilmore-says-elon-musk-is-“absolutely-factual”-on-dragon’s-delayed-return

Butch Wilmore says Elon Musk is “absolutely factual” on Dragon’s delayed return

For what it is worth, all of the reporting done by Ars over the last nine months suggests the decision to return Wilmore and Williams this spring was driven by technical reasons and NASA’s needs on board the International Space Station, rather than because of politics.

Q. How do you feel about waking up and finding yourself in a political storm?

Wilmore: I can tell you at the outset, all of us have the utmost respect for Mr. Musk, and obviously, respect and admiration for our president of the United States, Donald Trump. We appreciate them. We appreciate all that they do for us, for human space flight, for our nation. The words they said, politics, I mean, that’s part of life. We understand that. And there’s an important reason why we have a political system, a political system that we do have, and we’re behind it 100 percent. We know what we’ve lived up here, the ins and outs, and the specifics that they may not be privy to. And I’m sure that they have some issues that they are dealing with, information that they have, that we are not privy to. So when I think about your question, that’s part of life, we are on board with it.

Q. Did politics influence NASA’s decision for you to stay longer in space?

Wilmore: From my standpoint, politics is not playing into this at all. From our standpoint, I think that they would agree, we came up prepared to stay long, even though we plan to stay short. That’s what we do in human spaceflight. That’s what your nation’s human space flight program is all about, planning for unknown, unexpected contingencies. And we did that, and that’s why we flowed right into Crew 9, into Expedition 72 as we did. And it was somewhat of a seamless transition, because we had planned ahead for it, and we were prepared.

Butch Wilmore says Elon Musk is “absolutely factual” on Dragon’s delayed return Read More »

spacex-readies-a-redo-of-last-month’s-ill-fated-starship-test-flight

SpaceX readies a redo of last month’s ill-fated Starship test flight


The FAA has cleared SpaceX to launch Starship’s eighth test flight as soon as Monday.

Ship 34, destined to launch on the next Starship test flight, test-fired its engines in South Texas on February 12. Credit: SpaceX

SpaceX plans to launch the eighth full-scale test flight of its enormous Starship rocket as soon as Monday after receiving regulatory approval from the Federal Aviation Administration.

The test flight will be a repeat of what SpaceX hoped to achieve on the previous Starship launch in January, when the rocket broke apart and showered debris over the Atlantic Ocean and Turks and Caicos Islands. The accident prevented SpaceX from completing many of the flight’s goals, such as testing Starship’s satellite deployment mechanism and new types of heat shield material.

Those things are high on the to-do list for Flight 8, set to lift off at 5: 30 pm CST (6: 30 pm EST; 23: 30 UTC) Monday from SpaceX’s Starbase launch facility on the Texas Gulf Coast. Over the weekend, SpaceX plans to mount the rocket’s Starship upper stage atop the Super Heavy booster already in position on the launch pad.

The fully stacked rocket will tower 404 feet (123.1 meters) tall. Like the test flight on January 16, this launch will use a second-generation, Block 2, version of Starship with larger propellant tanks with 25 percent more volume than previous vehicle iterations. The payload compartment near the ship’s top is somewhat smaller than the payload bay on Block 1 Starships.

This block upgrade moves SpaceX closer to attempting more challenging things with Starship, such as returning the ship, or upper stage, back to the launch site from orbit. It will be caught with the launch tower at Starbase, just like SpaceX accomplished last year with the Super Heavy booster. Officials also want to bring Starship into service to launch Starlink Internet satellites and demonstrate in-orbit refueling, an enabling capability for future Starship flights to the Moon and Mars.

NASA has contracts with SpaceX worth more than $4 billion to develop a Starship spinoff as a human-rated Moon lander for the Artemis lunar program. The mega-rocket is central to Elon Musk’s ambition to create a human settlement on Mars.

Another shot at glory

Other changes introduced on Starship Version 2 include redesigned forward flaps, which are smaller and closer to the tip of the ship’s nose to better protect them from the scorching heat of reentry. Technicians also removed some of the ship’s thermal protection tiles to “stress-test vulnerable areas” of the vehicle during descent. SpaceX is experimenting with metallic tile designs, including one with active cooling, that might be less brittle than the ceramic tiles used elsewhere on the ship.

Engineers also installed rudimentary catch fittings on the ship to evaluate how they respond to the heat of reentry, when temperatures outside the vehicle climb to 2,600° Fahrenheit (1,430° Celsius). Read more about Starship Version in this previous story from Ars.

It will take about 1 hour and 6 minutes for Starship to fly from the launch pad in South Texas to a splashdown zone in the Indian Ocean northwest of Australia. The rocket’s Super Heavy booster will fire 33 methane-fueled Raptor engines for two-and-a-half minutes as it climbs east from the Texas coastline, then jettison from the Starship upper stage and reverse course to return to Starbase for another catch with mechanical arms on the launch tower.

Meanwhile, Starship will ignite six Raptor engines and accelerate to a speed just shy of orbital velocity, putting the ship on a trajectory to reenter the atmosphere after soaring about halfway around the world.

Booster 15 perched on the launch mount at Starbase, Texas. Credit: SpaceX

If you’ve watched the last few Starship flights, this profile probably sounds familiar. SpaceX achieved successful splashdowns after three Starship test flights last year, and hoped to do it again before the premature end of Flight 7 in January. Instead, the accident was the most significant technical setback for the Starship program since the first full-scale test flight in 2023, which damaged the launch pad before the rocket spun out of control in the upper atmosphere.

Now, SpaceX hopes to get back on track. At the end of last year, company officials said they targeted as many as 25 Starship flights in 2025. Two months in, SpaceX is about to launch its second Starship of the year.

The breakup of Starship last month prevented SpaceX from evaluating the performance of the ship’s Pez-like satellite deployer and upgraded heat shield. Engineers are eager to see how those perform on Monday’s flight. Once in space, the ship will release four simulators replicating the approximate size and mass of SpaceX’s next-generation Starlink Internet satellites. They will follow the same suborbital trajectory as Starship and reenter the atmosphere over the Indian Ocean.

That will be followed by a restart of a Raptor engine on Starship in space, repeating a feat first achieved on Flight 6 in November. Officials want to ensure Raptor engines can reignite reliably in space before actually launching Starship into a stable orbit, where the ship must burn an engine to guide itself back into the atmosphere for a controlled reentry. With another suborbital flight on tap Monday, the engine relight is purely a confidence-building demonstration and not critical for a safe return to Earth.

The flight plan for Starship’s next launch includes another attempt to catch the Super Heavy booster with the launch tower, a satellite deployment demonstration, and an important test of its heat shield. Credit: SpaceX

Then, about 47 minutes into the mission, Starship will plunge back into the atmosphere. If this flight is like the previous few, expect to see live high-definition video streaming back from Starship as super-heated plasma envelops the vehicle in a cloak of pink and orange. Finally, air resistance will slow the ship below the speed of sound, and just 20 seconds before reaching the ocean, the rocket will flip to a vertical orientation and reignite its Raptor engines again to brake for splashdown.

This is where SpaceX hopes Starship Version 2 will shine. Although three Starships have made it to the ocean intact, the scorching temperatures of reentry damaged parts of their heat shields and flaps. That won’t do for SpaceX’s vision of rapidly reusing Starship with minimal or no refurbishment. Heat shield repairs slowed down the turnaround time between NASA’s space shuttle missions, and officials hope the upgraded heat shield on Starship Version 2 will decrease the downtime.

FAA’s green light

The FAA confirmed Friday it issued a launch license earlier this week for Starship Flight 8.

“The FAA determined SpaceX met all safety, environmental and other licensing requirements for the suborbital test flight,” an FAA spokesperson said in a statement.

The federal regulator oversaw a SpaceX-led investigation into the failure of Flight 7. SpaceX said NASA, the National Transportation Safety Board, and the US Space Force also participated in the investigation, which determined that propellant leaks and fires in an aft compartment, or attic, of Starship led to the shutdown of its engines and eventual breakup.

Engineers concluded the leaks were most likely caused by a harmonic response several times stronger than predicted, suggesting the vibrations during the ship’s climb into space were in resonance with the vehicle’s natural frequency. This would have intensified the vibrations beyond the levels engineers expected from ground testing.

Earlier this month, SpaceX completed an extended-duration static fire of the next Starship upper stage to test hardware modifications at multiple engine thrust levels. According to SpaceX, findings from the static fire informed changes to the fuel feed lines to Starship’s Raptor engines, adjustments to propellant temperatures, and a new operating thrust for the next test flight.

“To address flammability potential in the attic section on Starship, additional vents and a new purge system utilizing gaseous nitrogen are being added to the current generation of ships to make the area more robust to propellant leakage,” SpaceX said. “Future upgrades to Starship will introduce the Raptor 3 engine, reducing the attic volume and eliminating the majority of joints that can leak into this volume.”

FAA officials were apparently satisfied with all of this. The agency’s commercial spaceflight division completed a “comprehensive safety review” and determined Starship can return to flight operations while the investigation into the Flight 7 failure remains open. This isn’t new. The FAA also used this safety determination to expedite SpaceX launch license approvals last year as officials investigated mishaps on Starship and Falcon 9 rocket flights.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

SpaceX readies a redo of last month’s ill-fated Starship test flight Read More »

in-a-last-minute-decision,-white-house-decides-not-to-terminate-nasa-employees

In a last-minute decision, White House decides not to terminate NASA employees

So what changed?

It was not immediately clear why. A NASA spokesperson in Washington, DC, offered no comment on the updated guidance. Two sources indicated that it was plausible that private astronaut Jared Isaacman, whom President Trump has nominated to lead the space agency, asked for the cuts to be put on hold.

Although this could not be confirmed, it seems reasonable that Isaacman would want to retain some control over where cuts at the agency are made. Firing all probationary employees—which is the most expedient way to reduce the size of government—is a blunt instrument. It whacks new hires that the agency may have recruited for key positions, as well as high performers who earned promotions.

The reprieve in these terminations does not necessarily signal that NASA will escape significant budget or employment cuts in the coming months.

The administration could still seek to terminate probationary employees. In addition, Ars reported earlier that directors at the agency’s field centers have been told to prepare options for a “significant” reduction in force in the coming months. The scope of these cuts has not been defined, and it’s likely they would need to be negotiated with Congress.

In a last-minute decision, White House decides not to terminate NASA employees Read More »

by-the-end-of-today,-nasa’s-workforce-will-be-about-10-percent-smaller

By the end of today, NASA’s workforce will be about 10 percent smaller

Spread across NASA’s headquarters and 10 field centers, which dot the United States from sea to sea, the space agency has had a workforce of nearly 18,000 civil servants.

However, by the end of today, that number will have shrunk by about 10 percent since the beginning of the second Trump administration four weeks ago. And the world’s preeminent space agency may still face significant additional cuts.

According to sources, about 750 employees at NASA accepted the “fork in the road” offer to take deferred resignation from the space agency later this year. This sounds like a lot of people, but generally about 1,000 people leave the agency every year, so effectively, many of these people might just be getting paid to leave jobs they were already planning to exit from.

The culling of “probationary” employees will be more impactful. As it has done at other federal agencies, the Trump administration is generally firing federal employees who are in the “probationary” period of their employment, which includes new hires within the last one or two years or long-time employees who have moved into or been promoted into a new position. About 1,000 or slightly more employees at NASA were impacted by these cuts.

Adding up the deferred resignations and probationary cuts, the Trump White House has now trimmed about 10 percent of the agency’s workforce.

However, the cuts may not stop there. Two sources told Ars that directors at the agency’s field centers have been told to prepare options for a “significant” reduction in force in the coming months. The scope of these cuts has not been defined, and it’s possible they may not even happen, given that the White House must negotiate budgets for NASA and other agencies with the US Congress. But this directive for further reductions in force casts more uncertainty on an already demoralized workforce and signals that the Trump administration would like to make further cuts.

By the end of today, NASA’s workforce will be about 10 percent smaller Read More »

nasa-nominee-previews-his-vision-for-the-agency:-mars,-hard-work,-inspiration

NASA nominee previews his vision for the agency: Mars, hard work, inspiration

“When I see a picture like this, it is impossible not to feel energized about the future,” he wrote. “I think it is so important for people to understand the profound implications of sending humans to another planet.”

Among these, Isaacman cited the benefits of advancing state-of-the-art technologies including propulsion, habitability, power generation, in-situ resource utilization, and manufacturing.

“We will create systems, countermeasures, and pharmaceuticals to sustain human life in extreme conditions, addressing challenges like radiation and microgravity over extended durations,” he said. “These advancements will form the foundation for lower-cost, more frequent crewed and robotic missions across the solar system, creating a flywheel effect to accelerate world-changing discoveries.”

Additionally, Isaacman said taking the first steps toward humanity living beyond Earth was critical to the long-term survival of the species, and that such an achievement would inspire a new generation of scientific and technological leaders.

“Achieving such an outrageous endeavor—like landing American astronauts on another planet—will inspire generations of dreamers to build upon these accomplishments, set even bolder goals, and drive humankind’s greatest adventure forward,” he wrote.

Upon being asked about his thoughts about sending humans to Mars during the launch window in late 2028 or early 2029, Isaacman said he remains on the outside of NASA’s planning process for now. But he did say the United States should start to put serious effort toward sending humans to Mars.

“We should invest a reasonable amount of resources coupled with extreme work intensity and then make them a reality,” he wrote. “Even getting 90% there in the near term would set humankind on an incredible trajectory for the long term.”

NASA nominee previews his vision for the agency: Mars, hard work, inspiration Read More »

boeing-has-informed-its-employees-that-nasa-may-cancel-sls-contracts

Boeing has informed its employees that NASA may cancel SLS contracts

The primary contractor for the Space Launch System rocket, Boeing, is preparing for the possibility that NASA cancels the long-running program.

On Friday, with less than an hour’s notice, David Dutcher, Boeing’s vice president and program manager for the SLS rocket, scheduled an all-hands meeting for the approximately 800 employees working on the program. The apparently scripted meeting lasted just six minutes, and Dutcher didn’t take questions.

During his remarks, Dutcher said Boeing’s contracts for the rocket could end in March and that the company was preparing for layoffs in case the contracts with the space agency were not renewed. “Cold and scripted” is how one person described Dutcher’s demeanor.

Giving a 60-day notice

The aerospace company, which is the primary contractor for the rocket’s large core stage, issued the notifications as part of the Worker Adjustment and Retraining Notification (or WARN) Act, which requires US employers with 100 or more full-time employees to provide a 60-day notice in advance of mass layoffs or plant closings.

“To align with revisions to the Artemis program and cost expectations, today we informed our Space Launch Systems team of the potential for approximately 400 fewer positions by April 2025,” a Boeing spokesperson told Ars. “This will require 60-day notices of involuntary layoff be issued to impacted employees in coming weeks, in accordance with the Worker Adjustment and Retraining Notification Act. We are working with our customer and seeking opportunities to redeploy employees across our company to minimize job losses and retain our talented teammates.”

The timing of Friday’s hastily called meeting aligns with the anticipated release of President Trump’s budget proposal for fiscal year 2026. This may not be an entire plan but rather a “skinny” budget that lays out a wish list of spending requests for Congress and some basic economic projections. Congress does not have to act on Trump’s budget priorities.

Boeing has informed its employees that NASA may cancel SLS contracts Read More »

don’t-panic,-but-an-asteroid-has-a-1.9%-chance-of-hitting-earth-in-2032

Don’t panic, but an asteroid has a 1.9% chance of hitting Earth in 2032


More data will likely reduce the chance of an impact to zero. If not, we have options.

Discovery images of asteroid 2024 YR4. Credit: ATLAS

Something in the sky captured the attention of astronomers in the final days of 2024. A telescope in Chile scanning the night sky detected a faint point of light, and it didn’t correspond to any of the thousands of known stars, comets, and asteroids in astronomers’ all-sky catalog.

The detection on December 27 came from one of a network of telescopes managed by the Asteroid Terrestrial-impact Last Alert System (ATLAS), a NASA-funded project to provide warning of asteroids on a collision course with Earth.

Within a few days, scientists gathered enough information on the asteroid—officially designated 2024 YR4—to determine that its orbit will bring it quite close to Earth in 2028, and then again in 2032. Astronomers ruled out any chance of an impact with Earth in 2028, but there’s a small chance the asteroid might hit our planet on December 22, 2032.

How small? The probability has fluctuated in recent days, but as of Thursday, NASA’s Center for Near Earth Object Studies estimated a 1.9 percent chance of an impact with Earth in 2032. The European Space Agency (ESA) put the probability at 1.8 percent. So as of now, NASA believes there’s a 1-in-53 chance of 2024 YR4 striking Earth. That’s about twice as likely as the lifetime risk of dying in a motor vehicle crash, according to the National Safety Council.

These numbers are slightly higher than the probabilities published last month, when ESA estimated a 1.2 percent chance of an impact. In a matter of weeks or months, the number will likely drop to zero.

No surprise here, according to ESA.

“It is important to remember that an asteroid’s impact probability often rises at first before quickly dropping to zero after additional observations,” ESA said in a press release. The agency released a short explainer video, embedded below, showing how an asteroid’s cone of uncertainty shrinks as scientists get a better idea of its trajectory.

Refining the risk

Scientists estimate that 2024 YR4 is between 130 to 300 feet (40 and 90 meters) wide, large enough to cause localized devastation near the impact site. The asteroid responsible for the Tunguska event of 1908, which leveled some 500 square miles (1,287 square kilometers) of forest in remote Siberia, was probably about the same size. The meteor that broke apart in the sky over Chelyabinsk, Russia, in 2013 was about 20 meters wide.

Astronomers use the Torino scale for measuring the risk of potential asteroid impacts. Asteroid 2024 YR4 is now rated at Level 3 on this scale, meaning it merits close attention from astronomers, the public, and government officials. This is the second time an asteroid has reached this level since the scale’s adoption in 1999. The other case happened in 2004, when asteroid Apophis briefly reached a Level 4 rating until further observations of the asteroid eliminated any chance of an impact with the Earth in 2029.

In the unlikely event that it impacts the Earth, an asteroid the size of 2024 YR4 could cause blast damage as far as 30 miles (50 kilometers) from the location of the impact or airburst if the object breaks apart in the atmosphere, according to the International Asteroid Warning Network (IAWN), established in the aftermath of the Chelyabinsk event.

The asteroid warning network is affiliated with the United Nations. Officials activate the IAWN when an asteroid bigger than 10 meters has a greater than 1 percent chance of striking Earth within the next 20 years. The risk of 2024 YR4 meets this threshold.

The red points on this image show the possible locations of asteroid 2024 YR4 on December 22, 2032, as projected by a Monte Carlo simulation. As this image shows, most of the simulations project the asteroid missing the Earth. Credit: ESA/Planetary Defense Office

Determining the asteroid’s exact size will be difficult. Scientists would need deep space radar observations, thermal infrared observations, or imagery from a spacecraft that could closely approach the asteroid, according to the IAWN. The asteroid won’t come close enough to Earth for deep space radar observations until shortly before its closest approach in 2032.

Astronomers need numerous observations to precisely plot an asteroid’s motion through the Solar System. Over time, these observations will reduce uncertainty and narrow the corridor the asteroid will follow as it comes near Earth.

Scientists already know a little about asteroid 2024 YR4’s orbit, which follows an elliptical path around the Sun. The orbit brings the asteroid inside of Earth’s orbit at its closest point to the Sun and then into the outer part of the asteroid belt when it is farthest from the Sun.

But there’s a complication in astronomers’ attempts to nail down the asteroid’s path. The object is currently moving away from Earth in almost a straight line. This makes it difficult to accurately determine its orbit by studying how its trajectory curves over time, according to ESA.

It also means observers will need to use larger telescopes to see the asteroid before it becomes too distant to see it from Earth in April. By the end of this year’s observing window, the asteroid warning network says the impact probability could increase to a couple tens of percent, or it could more likely drop back below the notification threshold (1 percent impact probability).

“It is possible that asteroid 2024 YR4 will fade from view before we are able to entirely rule out any chance of impact in 2032,” ESA said. “In this case, the asteroid will likely remain on ESA’s risk list until it becomes observable again in 2028.”

Planetary defenders

This means that public officials might need to start planning what to do later this year.

For the first time, an international board called the Space Mission Planning Advisory Group met this week to discuss what we can do to respond to the risk of an asteroid impact. This group, known as SMPAG, coordinates planning among representatives from the world’s space agencies, including NASA, ESA, China, and Russia.

The group decided on Monday to give astronomers a few more months to refine their estimates of the asteroid’s orbit before taking action. They will meet again in late April or early May or earlier if the impact risk increases significantly. If there’s still a greater than 1 percent probability of 2024 YR4 hitting the Earth, the group will issue a recommendation for further action to the United Nations Office for Outer Space Affairs.

So what are the options? If the data in a few months still shows that the asteroid poses a hazard to Earth, it will be time for the world’s space agencies to consider a deflection mission. NASA demonstrated its ability to alter the orbit of an asteroid in 2022 with a first-of-its-kind experiment in space. The mission, called DART, put a small spacecraft on a collision course with an asteroid two to four times larger than 2024 YR4.

The kinetic energy from the spacecraft’s death dive into the asteroid was enough to slightly nudge the object off its natural orbit around a nearby larger asteroid. This proved that an asteroid deflection mission could work if scientists have enough time to design and build it, an undertaking that took about five years for DART.

Italy’s LICIACube spacecraft snapped this image of asteroids Didymos (lower left) and Dimorphos (upper right) a few minutes after the impact of DART on September 26, 2022. Credit: ASI/NASA

A deflection mission is most effective well ahead of an asteroid’s potential encounter with the Earth, so it’s important not to wait until the last minute.

Fans of Hollywood movies know there’s a nuclear option for dealing with an asteroid coming toward us. The drawback of using a nuclear warhead is that it could shatter one large asteroid into many smaller objects, although recent research suggests a more distant nuclear explosion could produce enough X-ray radiation to push an asteroid off a collision course.

Waiting for additional observations in 2028 would leave little time to develop a deflection mission. Therefore, in the unlikely event that the risk of an impact rises over the next few months, it will be time for officials to start seriously considering the possibility of an intervention.

Even without a deflection, there’s plenty of time for government officials to do something here on Earth. It should be possible for authorities to evacuate any populations that might be affected by the asteroid.

The asteroid could devastate an area the size of a large city, but any impact is most likely to happen in a remote region or in the ocean. The risk corridor for 2024 YR4 extends from the eastern Pacific Ocean to northern South America, the Atlantic Ocean, Africa, the Arabian Sea, and South Asia.

There’s an old joke that dinosaurs went extinct because they didn’t have a space program. Whatever happens in 2032, we’re not at risk of extinction. However, occasions like this are exactly why most Americans think we should have a space program. A 2019 poll showed that 68 percent of Americans considered it very or extremely important for the space program to monitor asteroids, comets, or other objects from space that could strike the planet.

In contrast, about a quarter of those polled placed such importance on returning astronauts to the Moon or sending people to Mars. The cost of monitoring and deflecting asteroids is modest compared to the expensive undertakings of human missions to the Moon and Mars.

From taxpayers’ point of view, it seems this part of NASA offers the greatest bang for their buck.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Don’t panic, but an asteroid has a 1.9% chance of hitting Earth in 2032 Read More »