NASA

a-wb-57-pilot-just-made-a-heroic-landing-in-houston-after-its-landing-gear-failed

A WB-57 pilot just made a heroic landing in Houston after its landing gear failed

One of NASA’s three large WB-57 aircraft made an emergency landing at Ellington Field on Tuesday morning in southeastern Houston.

Video captured by KHOU 11 television showed the aircraft touching down on the runway without its landing gear extended. The pilot then maintains control of the vehicle as it slides down the runway, slowing the aircraft through friction. The crew was not harmed, NASA spokesperson Bethany Stevens said.

WB-57 landing.

“Today, a mechanical issue with one of NASA’s WB-57s resulted in a gear-up landing at Ellington Field,” she said. “Response to the incident is ongoing, and all crew are safe at this time. As with any incident, a thorough investigation will be conducted by NASA into the cause. NASA will transparently update the public as we gather more information.”

The B-57 line of aircraft dates back to 1944, when the English Electric Company began developing the plane. After the Royal Air Force showcased the B-57 in 1951 by crossing the Atlantic in a record four hours and 40 minutes and becoming the first jet-powered aircraft to span the Atlantic without refueling, the United States Air Force began buying them to replace its aging Douglas B-26 Invader.

Now used for science

The aircraft performed bombing missions in Vietnam and other military campaigns, and a variant that later became the WB-57 was designed with longer wings that could fly even higher, up to 62,000 feet. This proved useful for weather reconnaissance and, around the world, to sample the upper atmosphere for evidence of nuclear debris where US officials suspected the atmospheric testing of nuclear weapons.

A WB-57 pilot just made a heroic landing in Houston after its landing gear failed Read More »

webb-reveals-a-planetary-nebula-with-phenomenal-clarity,-and-it-is-spectacular

Webb reveals a planetary nebula with phenomenal clarity, and it is spectacular

The Helix Nebula is one of the most well-known and commonly photographed planetary nebulae because it resembles the “Eye of Sauron.” It is also one of the closest bright nebulae to Earth, located approximately 655 light-years from our Solar System.

You may not know what this particular nebula looks like when reading its name, but the Hubble Space Telescope has taken some iconic images of it over the years. And almost certainly, you’ll recognize a photograph of the Helix Nebula, shown below.

Like many objects in astronomy, planetary nebulae have a confusing name, since they are formed not by planets but by stars like our own Sun, though a little larger. Near the end of their lives, these stars shed large amounts of gas in an expanding shell that, however briefly in cosmological time, put on a grand show.

This is one of the Hubble Space Telescope’s iconic images of the Helix Nebula

Credit: NASA

This is one of the Hubble Space Telescope’s iconic images of the Helix Nebula Credit: NASA

Now the James Webb Space Telescope has turned its sights on the Helix Nebula, and, oh my, does it have a story to tell. NASA released the new images of the nebula on Tuesday.

In this image, there are vibrant pillars of gas along the inner region of the nebula’s expanding shell of gas. According to the space agency, this is what we’re seeing:

Webb reveals a planetary nebula with phenomenal clarity, and it is spectacular Read More »

the-fastest-human-spaceflight-mission-in-history-crawls-closer-to-liftoff

The fastest human spaceflight mission in history crawls closer to liftoff


After a remarkably smooth launch campaign, Artemis II reached its last stop before the Moon.

NASA’s Space Launch System rocket rolls to Launch Complex 39B on Saturday. Credit: Stephen Clark/Ars Technica

KENNEDY SPACE CENTER, Florida—Preparations for the first human spaceflight to the Moon in more than 50 years took a big step forward this weekend with the rollout of the Artemis II rocket to its launch pad.

The rocket reached a top speed of just 1 mph on the four-mile, 12-hour journey from the Vehicle Assembly Building to Launch Complex 39B at NASA’s Kennedy Space Center in Florida. At the end of its nearly 10-day tour through cislunar space, the Orion capsule on top of the rocket will exceed 25,000 mph as it plunges into the atmosphere to bring its four-person crew back to Earth.

“This is the start of a very long journey,” said NASA Administrator Jared Isaacman. “We ended our last human exploration of the moon on Apollo 17.”

The Artemis II mission will set several notable human spaceflight records. Astronauts Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen will travel farther from Earth than any human in history. They won’t land. That distinction will fall to the next mission in line in NASA’s Artemis program.

But the Artemis II astronauts will travel more than 4,000 miles beyond the far side of the Moon (the exact distance depends on the launch date), setting up for a human spaceflight speed record during their blazing reentry over the Pacific Ocean a few days later. Koch will become the first woman to fly to the vicinity of the Moon, and Hansen will be the first non-US astronaut to do the same.

“We really are ready to go,” said Wiseman, the Artemis II commander, during Saturday’s rollout to the launch pad. “We were in a sim [in Houston] for about 10 hours yesterday doing our final capstone entry and landing sim. We got in T-38s last night and we flew to the Cape to be here for this momentous occasion.”

The rollout began around sunrise Saturday, with NASA’s Space Launch System rocket and Orion capsule riding a mobile launch platform and a diesel-powered crawler transporter along a throughway paved with crushed Alabama river rock. Employees, VIPs, and guests gathered along the crawlerway to watch the 11 million-pound stack inch toward the launch pad. The rollout concluded about an hour after sunset, when the crawler transporter’s jacking system lowered the mobile launch platform onto pedestals at Pad 39B.

Hitting the launch window

The rollout keeps the Artemis II mission on track for liftoff as soon as next month, when NASA has a handful of launch opportunities on February 6, 7, 8, 10, and 11.

The big milestone leading up to launch day will be a practice countdown or Wet Dress Rehearsal (WDR), currently slated for around February 2, when NASA’s launch team will pump more than 750,000 gallons of super-cold liquid hydrogen and liquid oxygen into the rocket. NASA had trouble keeping the cryogenic fluids at the proper temperature, then encountered hydrogen leaks when the launch team first tried to fill the rocket for the unpiloted Artemis I mission in 2022. Engineers implemented the same fixes on Artemis II that they used to finally get over the hump with propellant loading on Artemis I.

So, what are the odds NASA can actually get the Artemis II mission off the ground next month?

“We’ll have to have things go right,” said Matt Ramsey, NASA’s Artemis II mission manager, in an interview with Ars on Saturday. “There’s a day of margin there for weather. There’s some time after WDR that we’ve got for data reviews and that sort of thing. It’s not unreasonable, but I do think it’s a success-oriented schedule.”

The Moon has to be in the right position in its orbit for the Artemis II launch to proceed. There are also restrictions on launch dates to ensure the Orion capsule returns to Earth and reenters the atmosphere at an angle safe for the ship’s heat shield. If the launch does not happen in February, NASA has a slate of backup launch dates in early March.

Ars was at Kennedy Space Center for the rocket’s move to the launch pad Saturday. The photo gallery below shows the launcher emerging from the Vehicle Assembly Building, the same facility once used to stack Saturn V rockets during the Apollo Moon program. The Artemis II astronauts were also on hand for a question and answer session with reporters.

Around the clock

The first flight of astronauts on the SLS rocket and Orion spacecraft is running at least five years late. The flight’s architecture, trajectory, and goals have changed multiple times, and technical snags discovered during manufacturing and testing repeatedly shifted the schedule. The program’s engineering and budgetary problems are well documented.

But the team readying the rocket and spacecraft for launch has hit a stride in recent months. Technicians inside the Vehicle Assembly Building started stacking the SLS rocket in late 2024, beginning with the vehicle’s twin solid-fueled boosters. Then ground teams added the core stage, upper stage, and finally installed the Orion spacecraft on top of the rocket last October.

Working nearly around the clock in three shifts, it took about 12 months for crews at Kennedy to assemble the rocket and prepare it for rollout. But the launch campaign inside the VAB was remarkably smooth. Ground teams shaved about two months off the time it took to integrate the SLS rocket and Orion spacecraft for the Artemis I mission, which launched on the program’s first full-up unpiloted test flight in 2022.

“About a year ago, I was down here and we set the rollout date, and we hit it within a day or two,” said Matt Ramsey, NASA’s mission manager for Artemis II. “Being able to stay on schedule, it was a daily grind to be able to do that.”

Engineers worked through a handful of technical problems last year, including an issue with a pressure-assisted device used to assist the astronauts in opening the Orion hatch in the event of an emergency. More recently, NASA teams cleared a concern with caps installed on the rocket’s upper stage, according to Ramsey.

The most significant engineering review focused on proving the Orion heat shield is safe to fly. That assessment occurred in the background from the perspective of the technicians working on Artemis II at Kennedy.

The Artemis II team is now focused on activities at the launch pad. This week, NASA plans to perform a series of tests extending and retracting the crew access mark. Next, the Artemis II astronauts will rehearse an emergency evacuation from the launch pad. That will be followed by servicing of the rocket’s hydraulic steering system.

The big question mark

All of this leads up to the crucial practice countdown early next month. The astronauts won’t be aboard the rocket for the test, but almost everything else will look like launch day. The countdown will halt around 30 seconds prior to the simulated liftoff.

It took repeated tries to get through the Wet Dress Rehearsal for the Artemis I mission. There were four attempts at the countdown practice run before the first actual Artemis I launch countdown. After encountering hydrogen leaks on two scrubbed launch attempts, NASA performed another fueling test before finally successfully launching Artemis I in November 2022.

The launch team repaired a leaky hydrogen seal and introduced a gentler hydrogen loading procedure to overcome the problem. Hydrogen is an extremely efficient fuel for rockets, but its super-cold temperature and the tiny size of hydrogen molecules make it prone to leakage. The hydrogen feeds the SLS rocket’s four core stage engines and single upper stage engine.

“Artemis I was a test flight, and we learned a lot during that campaign getting to launch,” said Charlie Blackwell-Thompson, NASA’s Artemis II launch director. “The things that we’ve learned relative to how to go load this vehicle, how to load LOX (liquid oxygen), how to load hydrogen, have all been rolled in to the way in which we intend to load the Artemis II vehicle.”

NASA is hesitant to publicly set a target launch date until the agency gets through the dress rehearsal, but agency officials say a February launch remains feasible.

“We’ve held schedule pretty well getting to rollout today,” Isaacman said. “We have zero intention of communicating an actual launch date until we get through wet dress. But look, that’s our first window, and if everything is tracking accordingly, I know the teams are prepared, I know this crew is prepared, we’ll take it.”

“Wet dress is the driver to launch,” Blackwell-Thompson said. “With a wet dress that is without significant issues, if everything goes to plan, then certainly there are opportunities within February that could be achievable.”

One constraint that threw a wrench into NASA’s Artemis I launch campaign is no longer a significant factor for Artemis II. On Artemis I, NASA had to roll the rocket back to the Vehicle Assembly Building (VAB) after the wet dress rehearsal to complete final installation and testing on its flight termination system, which consists of a series of pyrotechnic charges designed to destroy the rocket if it flies off course and threatens populated areas after liftoff.

The US Space Force’s Eastern Range, responsible for public safety for all launches from Florida’s Space Coast, requires the flight termination system be retested after 28 to 35 days, a clock that started ticking last week before rollout. During Artemis I, technicians could not access the parts of the rocket they needed to in order to perform the retest at the launch pad. NASA now has structural arms to give ground teams the ability to reach parts higher up the rocket for the retest without returning to the hangar.

With this new capability, Artemis II could remain at the pad for launch opportunities in February and March before officials need to bring it back to the VAB to replace the flight termination system’s batteries, which still can’t be accessed at the pad.

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

The fastest human spaceflight mission in history crawls closer to liftoff Read More »

managers-on-alert-for-“launch-fever”-as-pressure-builds-for-nasa’s-moon-mission

Managers on alert for “launch fever” as pressure builds for NASA’s Moon mission

“Putting crew on the rocket and taking the crew around the Moon, this is going be our first step toward a sustained lunar presence,” Honeycutt said. “It’s 10 days [and] four astronauts going farther from Earth than any other human has ever traveled. We’ll be validating the Orion spacecraft’s life support, navigation and crew systems in the really harsh environments of deep space, and that’s going to pave the way for future landings.”

NASA’s 322-foot-tall (98-meter) SLS rocket inside the Vehicle Assembly Building on the eve of rollout to Launch Complex 39B.

Credit: NASA/Joel Kowsky

NASA’s 322-foot-tall (98-meter) SLS rocket inside the Vehicle Assembly Building on the eve of rollout to Launch Complex 39B. Credit: NASA/Joel Kowsky

There is still much work ahead before NASA can clear Artemis II for launch. At the launch pad, technicians will complete final checkouts and closeouts before NASA’s launch team gathers in early February for a critical practice countdown. During this countdown, called a Wet Dress Rehearsal (WDR), Blackwell-Thompson and her team will oversee the loading of the SLS rocket’s core stage and upper stage with super-cold liquid hydrogen and liquid oxygen propellants.

The cryogenic fluids, particularly liquid hydrogen, gave fits to the Artemis launch team as NASA prepared to launch the Artemis I mission—without astronauts—on the SLS rocket’s first test flight in 2022. Engineers resolved the issues and successfully launched the Artemis I mission in November 2022, and officials will apply the lessons for the Artemis II countdown.

“Artemis I was a test flight, and we learned a lot during that campaign getting to launch,” Blackwell-Thompson said. “And the things that we’ve learned relative to how to go load this vehicle, how to load LOX (liquid oxygen), how to load hydrogen, have all been rolled in to the way in which we intend to do for the Artemis II vehicle.”

Finding the right time to fly

Assuming the countdown rehearsal goes according to plan, NASA could be in a position to launch the Artemis II mission as soon as February 6. But the schedule for February 6 is tight, with no margin for error. Officials typically have about five days per month when they can launch Artemis II, when the Moon is in the right position relative to Earth, and the Orion spacecraft can follow the proper trajectory toward reentry and splashdown to limit stress on the capsule’s heat shield.

In February, the available launch dates are February 6, 7, 8, 10, and 11, with launch windows in the overnight hours in Florida. If the mission isn’t off the ground by February 11, NASA will have to stand down until a new series of launch opportunities beginning March 6. The space agency has posted a document showing all available launch dates and times through the end of April.

John Honeycutt, chair NASA’s Mission Management Team for the Artemis II mission, speaks during a news conference at Kennedy Space Center in Florida on January 16, 2026.

Credit: Jim Watson/AFP via Getty Images

John Honeycutt, chair NASA’s Mission Management Team for the Artemis II mission, speaks during a news conference at Kennedy Space Center in Florida on January 16, 2026. Credit: Jim Watson/AFP via Getty Images

NASA’s leaders are eager for Artemis II to fly. NASA is not only racing China, a reality the agency’s former administrator acknowledged during the Biden administration. Now, the Trump administration is pushing NASA to accomplish a human landing on the Moon by the end of his presidential term on January 20, 2029.

One of Honeycutt’s jobs as chair of the Mission Management Team (MMT) is ensuring all the Is are dotted and Ts are crossed amid the frenzy of final launch preparations. While the hardware for Artemis II is on the move in Florida, the astronauts and flight controllers are wrapping up their final training and simulations at Johnson Space Center in Houston.

“I think I’ve got a good eye for launch fever,” he said Friday.

“As chair of the MMT, I’ve got one job, and it’s the safe return of Reid, Victor, Christina, and Jeremy. I consider that a duty and a trust, and it’s one I intend to see through.”

Managers on alert for “launch fever” as pressure builds for NASA’s Moon mission Read More »

nasa’s-first-medical-evacuation-from-space-ends-with-on-target-splashdown

NASA’s first medical evacuation from space ends with on-target splashdown

“Because the astronaut is absolutely stable, this is not an emergent evacuation,” said James “JD” Polk, NASA’s chief medical officer, in a press conference last week. “We’re not immediately disembarking and getting the astronaut down.”

Amit Kshatriya, the agency’s associate administrator, called the situation a “controlled medical evacuation” in a briefing with reporters.

But without a confirmed diagnosis of the astronaut’s medical issue, there was some “lingering risk” for the astronaut’s health if they remained in orbit, Polk said. That’s why NASA Administrator Jared Isaacman and his deputies agreed to call an early end to the Crew-11 mission.

A first for NASA

The Crew-11 mission launched on August 1 and was supposed to stay on the space station until around February 20, a few days after the scheduled arrival of SpaceX’s Crew-12 mission with a team of replacement astronauts. But the early departure means the space station will operate with a crew of three until the launch of Crew-12 next month.

NASA astronaut Chris Williams will be the sole astronaut responsible for maintaining the US segment of the station. Russian cosmonauts Sergey Kud-Sverchkov and Sergey Mikayev launched with Williams in November on a Russian Soyuz vehicle. The Crew Dragon was the lifeboat for all four Crew-11 astronauts, so standard procedure called for the entire crew to return with the astronaut suffering the undisclosed medical issue.

The space station regularly operated with just three crew members for the first decade of its existence. The complex has been permanently staffed since 2000, sometimes with as few as two astronauts or cosmonauts. The standard crew size was raised to six in 2009, then to seven in 2020.

SpaceX’s Crew Dragon Endeavour spacecraft descends toward the Pacific Ocean under four main parachutes.

Credit: NASA

SpaceX’s Crew Dragon Endeavour spacecraft descends toward the Pacific Ocean under four main parachutes. Credit: NASA

Williams will have his hands full until reinforcements arrive. The scaled-down crew will not be able to undertake any spacewalks, and some of the lab’s science programs may have to be deferred to ensure the crew can keep up with maintenance tasks.

This is the first time NASA has called an early end to a space mission for medical reasons, but the Soviet Union faced similar circumstances several times during the Cold War. Russian officials cut short an expedition to the Salyut 7 space station in 1985 after the mission’s commander fell ill in orbit. A similar situation occurred in 1976 with the Soyuz 21 mission to the Salyut 5 space station.

NASA’s first medical evacuation from space ends with on-target splashdown Read More »

nasa-orders-“controlled-medical-evacuation”-from-the-international-space-station

NASA orders “controlled medical evacuation” from the International Space Station


“The crew is highly trained, and they came to the aid of their colleague right away.”

The International Space Station orbits 260 miles (420 kilometers) above the Earth. Credit: NASA

NASA officials said Thursday they have decided to bring home four of the seven crew members on the International Space Station after one of them experienced a “medical situation” earlier this week.

The space agency has said little about the incident, and officials have not identified which crew member suffered the medical issue. James “JD” Polk, NASA’s chief health and medical officer, told reporters Thursday the crew member is “absolutely stable” but that the agency is “erring on the side of caution” with the decision to return the astronaut to Earth.

The ailing astronaut is part of the Crew-11 mission, which launched to the station August 1 and was slated to come back to Earth around February 20. Instead, the Crew-11 astronauts will depart the International Space Station (ISS) in the coming days and head for reentry and a parachute-assisted splashdown in the Pacific Ocean off the coast of California.

After discussions with our chief health and medical officer, Dr. JD Polk, and leadership across the agency, I’ve come to the decision that it’s in the best interests of our astronauts to return Crew-11 ahead of their planned departure,” NASA Administrator Jared Isaacman said Thursday.

The Crew-11 mission is led by commander Zena Cardman, 38, who is wrapping up her first mission to space. Second in command is pilot Mike Fincke, a 58-year-old astronaut on his fourth spaceflight. Japanese astronaut Kimiya Yui, 55, and Russian cosmonaut Oleg Platonov, 39, round out the crew.

Isaacman said NASA will release more information about the schedule for Crew-11’s undocking and reentry within the next 48 hours. The crew will come home aboard the same SpaceX Crew Dragon spacecraft they launched in more than five months ago. The entire crew must return to Earth together because they rely on the same Dragon spacecraft as a lifeboat.

“For over 60 years, NASA has set the standard for safety and security in crewed spaceflight,” Isaacman said. “In these endeavors, including the 25 years of continuous human presence onboard the International Space Station, the health and well-being of our astronauts is always and will be our highest priority.”

From left to right: Crew-11 mission specialist Oleg Platonov, pilot Mike Fincke, commander Zena Cardman, and mission specialist Kimiya Yui. This photo was taken during training at SpaceX’s facility in Hawthorne, California.

Credit: SpaceX

From left to right: Crew-11 mission specialist Oleg Platonov, pilot Mike Fincke, commander Zena Cardman, and mission specialist Kimiya Yui. This photo was taken during training at SpaceX’s facility in Hawthorne, California. Credit: SpaceX

Lingering risk

Polk, a physician who has served as NASA’s chief medical officer since 2016, said the agency is not ready to release details about the medical issue, citing privacy concerns. “I’m not going to speak about any particular astronaut or any particular specific diagnosis,” Polk said. “I’d ask that we still respect the privacy of the astronaut.”

Two of the Crew-11 astronauts, Cardman and Fincke, were preparing to head outside the space station on a spacewalk early Thursday. Spacewalk preps at the space station include a period of time breathing high concentrations of oxygen to purge nitrogen from the astronauts’ bloodstreams, a mitigation to avoid decompression sickness when crew members are sealed inside their spacesuits’ pure oxygen atmosphere.

Polk said whatever happened Wednesday “had nothing to do” with preparing for the spacewalk. “This was totally unrelated to any operations onboard,” he said. “It’s mostly having a medical issue in the difficult areas of microgravity with the suite of hardware that we have at our avail to complete a diagnosis.”

Yui radioed mission controllers in Houston on Wednesday afternoon requesting a private medical conference with a flight surgeon, then asked ground teams to turn on camera views inside the station ahead of the session. Medical sessions are carried out on private radio channels and are not heard on the regular communication loops between the space station and mission control. Those open loops are streamed around the clock online, but NASA removed the audio feed from YouTube soon after the crew asked for the medical conference.

NASA publicly revealed a medical concern with one of the astronauts later Wednesday afternoon, then announced late Wednesday night that officials were considering bringing the crew home early.

“I won’t go into specific details about the medical incident itself,” Polk said. “But the crew is highly trained, and they came to the aid of their colleague right away, and that’s part of why we do that training.”

The space station is stocked with medical gear and medications to help astronauts respond to emergencies. Crew members are trained to perform ultrasounds, defibrillate patients, and start IVs, among other things. The medical treatment available on the ISS is akin to what an EMT might provide in transit to a hospital, former astronaut Tom Marshburn, himself a medical doctor, said in 2021.

“We have a very robust suite of medical hardware onboard the International Space Station, but we don’t have the complete amount of hardware that I would have in the emergency department, for example, to complete the workup of a patient,” Polk said.

NASA Administrator Jared Isaacman, associate administrator Amit Kshatriya, and chief medical officer James “JD” Polk brief reporters on the status of the Crew-11 mission Thursday.

Credit: NASA/Joel Kowsky

NASA Administrator Jared Isaacman, associate administrator Amit Kshatriya, and chief medical officer James “JD” Polk brief reporters on the status of the Crew-11 mission Thursday. Credit: NASA/Joel Kowsky

Space station managers will take a few days to determine when the Dragon spacecraft will leave the station. SpaceX will dispatch a recovery ship from Southern California to sail for the splashdown zone in the Pacific, and officials will assess weather and sea conditions before selecting the best opportunity to depart the station. Like every crew return, the vessel will be staffed with medical personnel to examine the astronauts after exiting from the Dragon capsule.

“Because the astronaut is absolutely stable, this is not an emergent evacuation,” Polk said. “We’re not immediately disembarking and getting the astronaut down.”

But without a confirmed diagnosis of the astronaut’s medical issue, there’s some “lingering risk” for the astronaut’s health if they remained in orbit, Polk said. That’s why Isaacman and his deputies agreed to call an early end to the Crew-11 mission.

This was the most significant decision of Isaacman’s young tenure as NASA administrator. He was sworn in as NASA chief last month after clearing a confirmation vote in the Senate. Before taking the helm at NASA, Isaacman charted a career as an entrepreneur and private astronaut, flying to space twice on commercial missions with SpaceX.

An inevitability

After Crew-11’s departure, the space station will operate with a smaller crew of three until the arrival of SpaceX’s Crew-12 mission with a fresh team of astronauts next month. Isaacman said NASA and SpaceX are looking at options to move up the launch of Crew-12 from its current target date of February 15.

Until then, the station’s crew will consist of NASA astronaut Chris Williams and two Russian cosmonauts, who launched to the space station in November on a Russian Soyuz vehicle. Williams and his crewmates—Sergey Kud-Sverchkov and Sergey Mikayev—have their own lifeboat in the Soyuz spacecraft, so they will still have a ride home in the event of a future emergency.

The space station regularly operated with just three crew members for the first decade of its existence. The complex has been permanently staffed since 2000, sometimes with as few as two astronauts or cosmonauts. The standard crew size was raised to six in 2009, then to seven in 2020.

NASA astronaut Zena Cardman works with a spacesuit helmet inside the International Space Station’s airlock.

Credit: NASA

NASA astronaut Zena Cardman works with a spacesuit helmet inside the International Space Station’s airlock. Credit: NASA

Williams will be solely responsible for overseeing the lab’s US segment until Crew-12 arrives. He will be busy keeping up with maintenance tasks, so managers will likely defer some of the station’s scientific investigations until the complex is back to a full crew.

The early departure of Crew-11, leaving Williams as the only US astronaut aboard, also means NASA will be unable to perform spacewalks. This will mean a “slightly elevated risk” in NASA’s ability to respond to a major hardware failure that might require a spacewalk to fix, said Amit Kshatriya, the agency’s associate administrator.

NASA and the Russian space agency, Roscosmos, inked an agreement in 2022 to fly multinational crews on Dragon and Soyuz missions to ensure an American and a Russian are always at the space station. The so-called “seat swap” deal is proving worthwhile with this week’s events.

NASA has never before cut short a human spaceflight mission for medical reasons. “It’s the first time we’ve done a controlled medical evacuation from the vehicle, so that is unusual,” Kshatriya said.

The Soviet Union called an early end for an expedition to the Salyut 7 space station in 1985 after the mission’s commander fell ill in orbit.

In a sense, it is surprising that it took this long. Polk said predictive models suggested the ISS would have a medical evacuation about once every three years. It ended up taking 25 years. In that time, NASA has improved astronauts’ abilities to treat aches and pains, minor injuries, and routine illnesses.

Crews in orbit can now self-treat ailments that might have prompted a crew to return to Earth in the past. One astronaut was diagnosed with deep vein thrombosis, or a blood clot, in 2018 without requiring an early departure from the space station. Another astronaut suffered a pinched nerve in 2021 and remained in orbit for another seven months.

One of the more compelling reasons for the space station’s existence is its ability to act as a testbed for learning how to live and work off the planet. The station has served as a laboratory for studying how spaceflight affects the human body, and as a platform to test life support systems necessary for long-duration voyages to deep space.

“We are doing all this to continue to learn,” Isaacman said. “We will absolutely learn from this situation as well, to see if that informs our future on-orbit operations, whether that be on the space station or our future lunar base that we’re pursuing right now, and eventually for deep space missions to Mars.”

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

NASA orders “controlled medical evacuation” from the International Space Station Read More »

is-orion’s-heat-shield-really-safe?-new-nasa-chief-conducts-final-review-on-eve-of-flight.

Is Orion’s heat shield really safe? New NASA chief conducts final review on eve of flight.


“That level of openness and transparency is exactly what should be expected of NASA.”

The Orion heat shield as seen after the Artemis I flight. Credit: NASA

The Orion heat shield as seen after the Artemis I flight. Credit: NASA

WASHINGTON, DC—This week, NASA’s new administrator, Jared Isaacman, said he has “full confidence” in the space agency’s plans to use the existing heat shield to protect the Orion spacecraft during its upcoming lunar mission.

Isaacman made the determination after briefings with senior leaders at the agency and a half-day review of NASA’s findings with outside experts.

“We have full confidence in the Orion spacecraft and its heat shield, grounded in rigorous analysis and the work of exceptional engineers who followed the data throughout the process,” Isaacman said Thursday.

Isaacman has previously indicated that reviewing the heat shield issue early in his tenure, especially with the Artemis II mission due to launch in as few as four weeks, was a top priority. He met with senior agency officials about the matter within hours of being sworn in on December 18.

The private astronaut and billionaire entrepreneur has also said there should be more public transparency at NASA.

Following the Artemis I mission in November 2022, NASA was roundly criticized for its opaque handling of damage to Orion’s heat shield. The seriousness of the problem was not disclosed for nearly a year and a half after the Artemis I mission, when NASA’s Inspector General finally published close-up images of char loss—chunks of ablative material at Orion’s base that were intended to protect the spacecraft during its return but had fallen away.

To address these concerns, NASA tapped an “independent review team” in April 2024 to assess the agency’s investigation of the heat shield. This group’s findings were finalized in December 2024, at which time NASA formally decided to fly the Artemis II mission with the existing heat shield. Although NASA held a news conference to discuss its conclusions, a publicly released copy of the independent review team’s report was heavily redacted, creating further doubt about the integrity of the process. Some notable critics assailed NASA’s decision to fly on the heat shield as is and decried the ongoing lack of transparency.

That is more or less where the matter stood until a few days before Christmas, when Isaacman officially became NASA administrator.

Transparency for the taxpayer

After taking the job in Washington, DC, Isaacman asked the engineers who investigated the heat shield issue for NASA, as well as the chair of the independent review team and senior human spaceflight officials, to meet with a handful of outside experts. These included former NASA astronauts Charles Camarda and Danny Olivas, both of whom have expertise in heat shields and had expressed concerns about the agency’s decision-making.

For the sake of transparency, Isaacman also invited two reporters to sit in on the meeting, me and Micah Maidenberg of The Wall Street Journal. We were allowed to report on the discussions without directly quoting participants for the sake of a full and open discussion.

The inspector general’s report, released on May 1, 2024, included new images of Orion’s heat shield.

Credit: NASA Inspector General

The inspector general’s report, released on May 1, 2024, included new images of Orion’s heat shield. Credit: NASA Inspector General

Convened in a ninth-floor conference room at NASA Headquarters known as the Program Review Center, the meeting lasted for more than three hours. Isaacman attended much of it, though he stepped out from time to time to handle an ongoing crisis involving an unwell astronaut on orbit. He was flanked by the agency’s associate administrator, Amit Kshatriya; the agency’s chief of staff, Jackie Jester; and Lori Glaze, the acting associate administrator for NASA’s Exploration Systems Development Mission Directorate. The heat shield experts joined virtually from Houston, along with Orion Program Manager Howard Hu.

Isaacman made it clear at the outset that, after reviewing the data and discussing the matter with NASA engineers, he accepted the agency’s decision to fly Artemis II as planned. The team had his full confidence, and he hoped that by making the same experts available to Camarda and Olivas, it would ease some of their concerns.

What followed was a spirited discussion, with Camarda sparring regularly with the presenters and Olivas asking questions more infrequently. The engineering team in Houston, led by Luis Saucedo, went through dozens of charts and presented reams of data that had not been made public before.

“That level of openness and transparency is exactly what should be expected of NASA,” Isaacman said after the meeting.

“What if we’re wrong?”

Perhaps the most striking revelation was what the NASA engineers called “what if we’re wrong” testing.

At the base of Orion, there are 186 blocks of a material called Avcoat, individually attached to provide a protective layer that allows the spacecraft to survive the heating of atmospheric reentry. Returning from the Moon, Orion encounters temperatures of up to 5,000° Fahrenheit (2,760° Celsius). A char layer that builds up on the outer skin of the Avcoat material is supposed to ablate, or erode, in a predictable manner during reentry. Instead, during Artemis I, fragments fell off the heat shield and left cavities in the Avcoat material.

Work by Saucedo and others—including substantial testing in ground facilities, wind tunnels, and high-temperature arc jet chambers—allowed engineers to find the cause of gases becoming trapped in the heat shield, leading to cracking. This was due to the Avcoat material being “impermeable,” essentially meaning it could not breathe.

After considering several options, including swapping the heat shield out for a newer one with more permeable Avcoat, NASA decided instead to change Orion’s reentry profile. For Artemis II, it would return through Earth’s atmosphere at a steeper angle, spending fewer minutes in the environment where this outgassing occurred during Artemis I. Much of Thursday’s meeting involved details about how the agency reached this conclusion and why the engineers deemed the approach safe.

A test block of Avcoat undergoes heat pulse testing inside an arc jet test chamber at NASA’s Ames Research Center in California. The test article, configured with both permeable (upper) and non-permeable (lower) Avcoat sections for comparison, helped to confirm an understanding of the root cause of the loss of charred Avcoat material on Artemis I.

Credit: NASA

A test block of Avcoat undergoes heat pulse testing inside an arc jet test chamber at NASA’s Ames Research Center in California. The test article, configured with both permeable (upper) and non-permeable (lower) Avcoat sections for comparison, helped to confirm an understanding of the root cause of the loss of charred Avcoat material on Artemis I. Credit: NASA

However, toward the end of the meeting, the NASA team agreed to discuss something that “no one really liked to talk about.” This was an analysis of what would happen to Orion if large sections of the heat shield failed completely during Artemis II. Formally, this is known as a “damage tolerance evaluation,” the engineers said. Informally, it’s known as “What if we’re wrong.”

The Avcoat blocks, which are about 1.5 inches thick, are laminated onto a thick composite base of the Orion spacecraft. Inside this is a titanium framework that carries the load of the vehicle. The NASA engineers wanted to understand what would happen if large chunks of the heat shield were stripped away entirely from the composite base of Orion. So they subjected this base material to high energies for periods of 10 seconds up to 10 minutes, which is longer than the period of heating Artemis II will experience during reentry.

What they found is that, in the event of such a failure, the structure of Orion would remain solid, the crew would be safe within, and the vehicle could still land in a water-tight manner in the Pacific Ocean.

“We have the data to say, on our worst day, we’re able to deal with that if we got to that point,” one of the NASA engineers said.

Getting to “flight rationale”

The composite layer beneath the heat shield is intended to withstand a maximum temperature of 500° F during reentry. During Artemis I, the maximum temperature recorded, despite the persistent cracking and char loss, was 160°. So any crew on board would have been safe. Even so, the heat shield damage was a serious concern because the agency’s modeling did not predict it.

After more than two years of testing and analysis of the char loss issue, the NASA engineers are convinced that, by increasing the angle of Orion’s descent during Artemis II, they can minimize damage to the heat shield. During Artemis I, as the vehicle descended from about 400,000 to 100,000 feet, it was under a “heat load” of various levels for 14 minutes. With Artemis II, this time will be reduced to eight minutes.

Orion’s entry profile will be similar for the first two and a half minutes, but afterward, the Artemis II entry will undertake a bit of a higher heat load than Artemis I for a couple of minutes. All of the agency’s modeling and extensive arc jet testing indicate this will produce significantly less cracking in the Avcoat material.

Much of the discussion Thursday delved into the technical minutiae of heat shields, tamp planes (the process of packing Avcoat into blocks), early char loss, spallation, and more. The discourse also revealed that one test in 2019, three years before Artemis I, indicated hints of the char loss later observed in flight. But this finding was not unequivocal, nor did it throw up a huge red flag at the time, the NASA officials said.

Technicians inspect the heat shield for the Artemis II launch.

Credit: NASA

Technicians inspect the heat shield for the Artemis II launch. Credit: NASA

The message from Isaacman, Kshatriya, and other NASA officials at the meeting was clear. This heat shield was not perfect. If NASA knew several years ago what it knows now, the heat shield would be designed differently. It would be permeable to prevent the outgassing problems. Those changes are being incorporated into the Artemis III mission’s heat shield. There will be other tweaks to increase reliability.

Nevertheless, the agency is confident that flying the Artemis II heat shield on the revised profile is perfectly safe. In NASA jargon, such a rigorous justification that a space mission is safe to fly is known as flight rationale.

But why get to flight rationale at all? About 18 months ago, as the agency was narrowing in on the root cause of the heat shield issues, NASA’s leaders at the time, including Kshatriya, considered their options. They mulled the possibility of flying Artemis II in low-Earth orbit to test its life support equipment but not overly stress the heat shield. They thought about flying a second robotic mission around the Moon.

Perhaps most seriously, they considered moving forward with the Orion spacecraft (or at least its heat shield) that will be flown in Artemis III, which has permeable Avcoat, to be used for this mission. I asked Kshatriya on Thursday why they had not simply done this.

“We had considered ‘let’s just pull forward CSM 3 (the Artemis III spacecraft),’” he said, in part. “and essentially turn CSM 2 (Artemis II) either into a test article or something else. Again, CSM 3 has unique capabilities, docking systems on it, right? We didn’t have a docking mode for that mission (Artemis II). CSM 2 could not be retrofitted with the docking system because of the uniqueness of the tunnel. Really, CSM 2 is kind of uniquely a free return vehicle because of the way it was designed initially. So the mods that would have had to be made for (Artemis) II and III to do that swap would have been too odious, and we wouldn’t have gotten the learnings. And, you know, we’re trying to get up hill as quickly as we can.”

Given all of this, how should we feel about this flight rationale, with Artemis II potentially launching in early February?

Over the last 18 months, I have had many discussions with experts about this, from mid-level engineers and current and former astronauts to senior leaders. I know definitively that the four Artemis II astronauts, Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen, are comfortable with the decision. They did not feel that way at the beginning of the process. Wiseman, in particular, was quite skeptical. But they’ve been won over. Like almost everyone else who has reviewed NASA’s data at length, they accept the plan. Indeed, they are ready and eager to fly.

But what of the outside critics? That was the whole point of Thursday’s session. Could the NASA engineers convince Olivas and Camarda?

Yes, and maybe

Olivas flew two Space Shuttle missions in 2007 and 2009 and has an advanced degree in materials science from Rice University. Before this week’s meeting, he had not gone public with his heat shield concerns. But he has been talking to me and another space reporter, Robert Pearlman, for about a month now.

Olivas is very credible on these issues. He was asked by the NASA leadership in late 2023, before the independent review team was formally named, to provide a second set of eyes on the space agency’s heat shield work. He saw all of the investigative data in real time. Although not formally a member, he sat in on the review team’s meetings through 2024 before that process ended. Afterward, he had some lingering questions he felt were unresolved by that process. A few weeks ago, he told Pearlman and me he would be reluctant to fly on Orion. It was a stunning admission.

Isaacman appeared to take these concerns seriously. In advance of Thursday’s meeting, he engaged with Olivas to hear him out and share information about what NASA’s engineers had done over the last 18 months to resolve some of the independent review team’s questions. These included char loss very early in Orion’s reentry.

After Thursday’s meeting, Olivas told me he had changed his mind, expressing appreciation and admiration for the in-depth engineering work done by the NASA team. He would now fly on Orion.

Camarda, another former shuttle astronaut, was less effusive. He has been very public with his criticism of NASA’s handling of the Orion heat shield. He told me in December 2024 that the space agency and its leadership team should be “ashamed.” Unlike Olivas, however, he has been on the outside the whole time. NASA had kept Camarda, 73, at arm’s length, and he felt disrespected. Given his credentials—the aerospace engineer spent two decades working on thermal protection for the space shuttle and hypersonic vehicles–Camarda could be a potent voice of skepticism leading up to the Artemis II launch.

After the meeting, I asked Camarda whether he felt any better about flying crew on the Artemis II heat shield.

“I would never be happy accepting a workaround and flying something that I know is the worst version of that heat shield we could possibly fly and hoping that the workaround is going to fix it,” Camarda said. “What I really hope he [Isaacman] gets is that if we don’t get back to doing research at NASA, we’re not going to be able to help Starship solve their problems. We’ve got to get back to doing research.”

But Camarda was no longer the firebrand he was at the outset of the meeting. Near its end, in fact, he even thanked the leadership team for being brought in, read in on the data, and allowed to have his say.

Photo of Eric Berger

Eric Berger is the senior space editor at Ars Technica, covering everything from astronomy to private space to NASA policy, and author of two books: Liftoff, about the rise of SpaceX; and Reentry, on the development of the Falcon 9 rocket and Dragon. A certified meteorologist, Eric lives in Houston.

Is Orion’s heat shield really safe? New NASA chief conducts final review on eve of flight. Read More »

rocket-report:-a-new-super-heavy-launch-site-in-california;-2025-year-in-review

Rocket Report: A new super-heavy launch site in California; 2025 year in review


SpaceX opened its 2026 launch campaign with a mission for the Italian government.

A Chinese Long March 7 rocket carrying a cargo ship for China’s Tiangong space station soars into orbit from the Wenchang Space Launch Site on July 15, 2025. Credit: Liu Guoxing/VCG via Getty Images

Welcome to Edition 8.24 of the Rocket Report! We’re back from a restorative holiday, and there’s a great deal Eric and I look forward to covering in 2026. You can get a taste of what we’re expecting this year in this feature. Other storylines are also worth watching this year that didn’t make the Top 20. Will SpaceX’s Starship begin launching Starlink satellites? Will United Launch Alliance finally get its Vulcan rocket flying at a higher cadence? Will Blue Origin’s New Glenn rocket be certified by the US Space Force? I’m looking forward to learning the answers to these questions, and more. As for what has already happened in 2026, it has been a slow start on the world’s launch pads, with only a pair of SpaceX missions completed in the first week of the year. Only? Two launches in one week by any company would have been remarkable just a few years ago.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

New launch records set in 2025. The number of orbital launch attempts worldwide last year surpassed the record 2024 flight rate by 25 percent, with SpaceX and China accounting for the bulk of the launch activity, Aviation Week & Space Technology reports. Including near-orbital flight tests of SpaceX’s Starship-Super Heavy launch system, the number of orbital launch attempts worldwide reached 329 last year, an annual analysis of global launch and satellite activity by Jonathan’s Space Report shows. Of those 329 attempts, 321 reached orbit or marginal orbits. In addition to five Starship-Super Heavy launches, SpaceX launched 165 Falcon 9 rockets in 2025, surpassing its 2024 record of 134 Falcon 9 and two Falcon Heavy flights. No Falcon Heavy rockets flew in 2025. US providers, including Rocket Lab Electron orbital flights from its New Zealand spaceport, added another 30 orbital launches to the 2025 tally, solidifying the US as the world leader in space launch.

International launches… China, which attempted 92 orbital launches in 2025, is second, followed by Russia, with 17 launches last year, and Europe with eight. Rounding out the 2025 orbital launch manifest were five orbital launch attempts from India, four from Japan, two from South Korea, and one each from Israel, Iran, and Australia, the analysis shows. The global launch tally has been on an upward trend since 2019, but the numbers may plateau this year. SpaceX expects to launch about the same number of Falcon 9 rockets this year as it did last year as the company prepares to ramp up the pace of Starship flights.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

South Korean startup suffers launch failure. The first commercial rocket launched at Brazil’s Alcantara Space Center crashed soon after liftoff on December 22, dealing a blow to Brazilian aerospace ambitions and the South Korean satellite launch company Innospace, Reuters reports. The rocket began its vertical trajectory as planned after liftoff but fell to the ground after something went wrong 30 seconds into its flight, according to Innospace, the South Korean startup that developed the launch vehicle. The craft crashed within a pre-designated safety zone and did not harm anyone, officials said.

An unsurprising result... This was the first flight of Innospace’s nano-launcher, named Hanbit-Nano. The rocket was loaded with eight small payloads, including five deployable satellites, heading for low-Earth orbit. But rocket debuts don’t have a good track record, and Innospace’s rocket made it a bit farther than some new launch vehicles do. The rocket is designed to place up to 200 pounds (90 kilograms) of payload mass into Sun-synchronous orbit. It has a unique design, with hybrid engines consuming a mix of paraffin as the fuel and liquid oxygen as the oxidizer. Innospace said it intends to launch a second test flight in 2026. (submitted by EllPeaTea)

Take two for Germany’s Isar Aerospace. Isar Aerospace is gearing up for a second launch attempt of its light-class Spectrum rocket after completing 30-second integrated static test firings for both stages late last year, Aviation Week & Space Technology reports. The endeavor would be the first orbital launch for Spectrum and an effort at a clean mission after a March 30 flight ended in failure because a vent valve inadvertently opened soon after liftoff, causing a loss of control. “Rapid iteration is how you win in this domain. Being back on the pad less than nine months after our first test flight is proof that we can operate at the speed the world now demands,” said Daniel Metzler, co-founder and CEO of Isar Aerospace.

No earlier than… Airspace and maritime warning notices around the Spectrum rocket’s launch site in northern Norway suggest Isar Aerospace is targeting launch no earlier than January 17. Based near Munich, Isar Aerospace is Europe’s leading launch startup. Not only has Isar beat its competitors to the launch pad, the company has raised far more money than other European rocket firms. After its most recent fundraising round in June, Isar has raised more than 550 million euros ($640 million) from venture capital investors and government-backed funds. Now, Isar just needs to reach orbit.

A step forward for Canada’s launch ambitions. The Atlantic Spaceport Complex—a new launch facility being developed by the aerospace company NordSpace on the southern coast of Newfoundland—has won an important regulatory approval, NASASpaceflight.com reports. The provincial government of Newfoundland and Labrador “released” the spaceport from the environmental assessment process. “At this stage, the spaceport no longer requires further environmental assessment,” NordSpace said in a statement. “This release represents the single most significant regulatory milestone for NordSpace’s spaceport development to date, clearing the path for rapid execution of Canada’s first purpose-built, sovereign orbital launch complex designed and operated by an end-to-end launch services provider.”

Now, about that rocket... NordSpace began construction of the Atlantic Spaceport Complex last year and planned to launch its first suborbital rocket from the spaceport last August. But bad weather and technical problems kept NordSpace’s Taiga rocket grounded, and then the company had to wait for the Canadian government to reissue a launch license. NordSpace said it most recently delayed the suborbital launch until March in order to “continue our focus on advancing our orbital-scale technologies.” NordSpace is one of the companies likely to participate in a challenge sponsored by the Canadian government, which is committing 105 million Canadian dollars ($75 million) to develop a sovereign orbital launch capability. (submitted by EllPeaTea)

H3 rocket falters on the way to orbit. A faulty payload fairing may have doomed Japan’s latest H3 rocket mission, with the Japanese space agency now investigating if the shield separated abnormally and crippled the vehicle in flight after lifting off on December 21, the Asahi Shimbun reports. Japan Aerospace Exploration Agency officials told a science ministry panel on December 23 they suspect an abnormal separation of the rocket’s payload fairing—a protective nose cone shield—caused a critical drop in pressure in the second-stage engine’s hydrogen tank. The second-stage engine lost thrust as it climbed into space, then failed to restart for a critical burn to boost Japan’s Michibiki 5 navigation satellite into a high-altitude orbit.

Growing pains… The H3 rocket is Japan’s flagship launch vehicle, having replaced the country’s H-IIA rocket after its retirement last year. The December launch was the seventh flight of an H3 rocket, and its second failure. While engineers home in on the rocket’s suspect payload fairing, several H3 launches planned for this year now face delays. Japanese officials already announced that the next H3 flight will be delayed from February. Japan’s space agency plans to launch a robotic mission to Mars on an H3 rocket in October. While there’s still time for officials to investigate and fix the issues that caused last month’s launch failure, the incident adds a question mark to the schedule for the Mars launch. (submitted by tsunam and EllPeaTea)

SpaceX opens 2026 with launch for Italy. SpaceX rang in the new year with a Falcon 9 rocket launch on January 2 from Vandenberg Space Force Base in California, Spaceflight Now reports. The payload was Italy’s Cosmo-SkyMed Second Generation Flight Model 3 (CSG-FM3) satellite, a radar surveillance satellite for dual civilian and military use. The Cosmo-SkyMed mission was the first Falcon 9 rocket flight in 16 days, the longest stretch without a SpaceX orbital launch in four years.

Poached from Europe… The CSG-FM3 satellite is the third of four second-generation Cosmo-SkyMed radar satellites ordered by the Italian government. The second and third satellites have now launched on SpaceX Falcon 9 rockets instead of their initial ride: Europe’s Vega C launcher. Italy switched the satellites to SpaceX after delays in making the Vega C rocket operational and Europe’s loss of access to Russian Soyuz rockets in the aftermath of the invasion of Ukraine. The rocket swap became a regular occurrence for European satellites in the last few years as Europe’s indigenous launch program encountered repeated delays.

Rocket deploys heaviest satellite ever launched from India. An Indian LVM3 rocket launched AST SpaceMobile’s next-generation direct-to-device BlueBird satellite December 23, kicking off the rollout of dozens of spacecraft built around the largest commercial communications antenna ever deployed in low-Earth orbit, Space News reports. At 13,450 pounds (6.1 metric tons), the BlueBird 6 satellite was the heaviest spacecraft ever launched on an Indian rocket. The LVM3 rocket released BlueBird 6 into an orbit approximately 323 miles (520 kilometers) above the Earth.

The pressure is on… BlueBird 6 is the first of AST SpaceMobile’s Block 2 satellites designed to beam Internet signals directly to smartphones. The Texas-based company is competing with SpaceX’s Starlink network in the same direct-to-cell market. Starlink has an early lead in the direct-to-device business, but AST SpaceMobile says it plans to launch between 45 and 60 satellites by the end of this year. AST’s BlueBird satellites are significantly larger than SpaceX’s Starlink platforms, with antennas unfurling in space to cover an area of 2,400 square feet (223 square meters). The competition between SpaceX and AST SpaceMobile has led to a race for spectrum access and partnerships with cell service providers.

Ars’ annual power rankings of US rocket companies. There’s been some movement near the top of our annual power rankings. It was not difficult to select the first-place company on this list. As it has every year in our rankings, SpaceX holds the top spot. Blue Origin was the biggest mover on the list, leaping from No. 4 on the list to No. 2. It was a breakthrough year for Jeff Bezos’ space company, finally shaking the notion that it was a company full of promise that could not quite deliver. Blue Origin delivered big time in 2025. On the very first launch of the massive New Glenn rocket in January, Blue Origin successfully sent a test payload into orbit. Although a landing attempt failed after New Glenn’s engines failed to re-light, it was a remarkable success. Then, in November, New Glenn sent a pair of small spacecraft on their way to Mars. This successful launch was followed by a breathtaking and inspiring landing of the rocket’s first stage on a barge.

Where’s ULA?… Rocket Lab came in at No. 3. The company had an excellent year, garnering its highest total of Electron launches and having complete mission success. Rocket Lab has now gone more than three dozen launches without a failure. Rocket Lab also continued to make progress on its medium-lift Neutron vehicle, although its debut was ultimately delayed to mid-2026, at least. United Launch Alliance slipped from No. 2 to No. 4 after launching its new Vulcan rocket just once last year, well short of the company’s goal of flying up to 10 Vulcan missions.

Rocketdyne changes hands again. If you are a student of space history or tracked the space industry before billionaires and venture capital changed it forever, you probably know the name Rocketdyne. A half-century ago, Rocketdyne manufactured almost all of the large liquid-fueled rocket engines in the United States. The Saturn V rocket that boosted astronauts toward the Moon relied on powerful engines developed by Rocketdyne, as did the Space Shuttle, the Atlas, Thor, and Delta rockets, and the US military’s earliest ballistic missiles. But Rocketdyne has lost its luster in the 21st century as it struggled to stay relevant in the emerging commercial launch industry. Now, the engine-builder is undergoing its fourth ownership change in 20 years. AE Industrial Partners, a private equity firm, announced it will purchase a controlling stake in Rocketdyne from L3Harris after less than three years of ownership, Ars reports.

Splitting up… Rocketdyne’s RS-25 engine, used on NASA’s Space Launch System rocket, is not part of the deal with AE Industrial. It will remain under the exclusive ownership of L3Harris. Rocketdyne’s work on solid-fueled propulsion, ballistic missile interceptors, tactical missiles, and other military munitions will also remain under L3Harris control. The split of the company’s space and defense segments will allow L3Harris to concentrate on Pentagon programs, the company said. So, what is AE Industrial getting in its deal with L3Harris? Aside from the Rocketdyne name, the private equity firm will have a majority stake in the production of the liquid-fueled RL10 upper-stage engine used on United Launch Alliance’s Vulcan rocket. AE Industrial’s Rocketdyne will also continue the legacy company’s work in nuclear propulsion, electric propulsion, and smaller in-space maneuvering thrusters used on satellites.

Tory Bruno has a new employer. Jeff Bezos-founded Blue Origin said on December 26 that it has hired Tory Bruno, the longtime CEO of United Launch Alliance, as president of its newly formed national security-focused unit, Reuters reports. Bruno will head the National Security Group and report to Blue Origin CEO Dave Limp, the company said in a social media post, underscoring its push to expand in US defense and intelligence launch markets. The hire brings one of the US launch industry’s most experienced executives to Blue Origin as the company works to challenge the dominance of SpaceX and win a larger share of lucrative US military and intelligence launch contracts.

11 years at ULA… The move comes days after Bruno stepped down as CEO of ULA, the Boeing-Lockheed Martin joint venture that has long dominated US national security space launches alongside Elon Musk’s SpaceX. In 11 years at ULA, Bruno oversaw the development of the Vulcan rocket, the company’s next-generation launch vehicle designed to replace its Atlas V and Delta IV rockets and secure future Pentagon contracts. (submitted by r0twhylr)

A California spaceport has room to grow. A new orbital launch site is up for grabs at Vandenberg Space Force Base in California, Spaceflight Now reports. The Department of the Air Force published a request for information from launch providers to determine the level of interest in what would become the southernmost launch complex on the Western Range. The location, which will be designated as Space Launch Complex-14 or SLC-14, is being set aside for orbital rockets in a heavy or super-heavy vertical launch class. One of the requirements listed in the RFI includes what the government calls the “highest technical maturity.” It states that for the bid from a launch provider to be taken seriously, it needs to prove that it can begin operations within approximately five years of receiving a lease for the property.

Who’s in contention?… Multiple US launch providers have rockets in the heavy to super-heavy classification either currently launching or in development. Given all the requirements and the state of play on the orbital launch front, one of the contenders would likely be SpaceX’s Starship-Super Heavy rocket. The company is slated to launch the latest iteration of the rocket, dubbed Version 3, sometime in early 2026. Blue Origin is another likely contender for the prospective launch site. Blue Origin currently has an undeveloped space at Vandenberg’s SLC-9 for its New Glenn rocket. But the company unveiled plans in November for a new super-heavy lift version called New Glenn 9×4. (submitted by EllPeaTea)

Next three launches

Jan. 9: Falcon 9 | Starlink 6-96 | Cape Canaveral Space Force Station, Florida | 18: 05 UTC

Jan. 11: Falcon 9 | Twilight Mission | Vandenberg Space Force Base, California | 13: 19 UTC

Jan. 11: Falcon 9 | Starlink 6-97 | Cape Canaveral Space Force Station, Florida | 18: 08 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: A new super-heavy launch site in California; 2025 year in review Read More »

nasa’s-science-budget-won’t-be-a-train-wreck-after-all

NASA’s science budget won’t be a train wreck after all

“Those hours could have been spent running and analyzing data from these valuable missions,” Dreier said. “It created a lot of needless friction and churn at a time when NASA is being told it must remain competitive with China and other nations in space.”

Budget likely to be signed soon

The House of Representatives could vote on the budget bill for Commerce, Justice, Science, and Related Agencies as soon as this week, with the US Senate possibly following next week. It is expected that President Trump will sign the bill. It would then go into effect immediately for the current fiscal year, which began on October 1.

The biggest casualty in the NASA science budget is the Mars Sample Return mission, a NASA-led effort to return Martian rocks and soil for study in Earth-based laboratories.

“As proposed in the budget, the agreement does not support the existing Mars Sample Return (MSR) program,” the budget document states. “However, the technological capabilities being developed in the MSR program are not only critical to the success of future science missions but also to human exploration of the Moon and Mars.”

Although it offers no details, the budget provides $110 million for something called the “Mars Future Missions” program to support “radar, spectroscopy, entry, descent, and landing systems.”

Some hope for future missions, too

NASA previously said it was pausing the ambitious sample return mission because its projected cost was approximately $10 billion, with no certain return date for the samples.

Now it seems likely that the agency and its new administrator, Jared Isaacman, will have to develop a new strategy. This may include sending humans to Mars, rather than bringing Martian rocks back to Earth.

Unlike the Trump budget request, the science budget also keeps future missions, such as the DAVINCI probe for Venus, alive. It also provides $10 million to continue studying the development of a Uranus orbiter, as well as $150 million for a flagship telescope to search for signs of life on nearby, Earth-like planets called the Habitable Worlds Observatory.

NASA’s science budget won’t be a train wreck after all Read More »

after-half-a-decade,-the-russian-space-station-segment-stopped-leaking

After half a decade, the Russian space station segment stopped leaking

Their success with the long-running leak problem probably will not prevent new leaks from developing in the decades-old hardware. The Zvezda module was launched a quarter of a century ago, in July 2000, on a Russian Proton rocket. The cracking issue first appeared in 2019, and despite the long-running investigations, its precise cause remains unknown. But this is a nice win in space for both Russia and NASA.

NASA appears confident in pad repairs, too

There is other potential good news on the horizon regarding Russia’s civil space program. This involves the country’s primary launch pad for getting people and cargo to the International Space Station.

The problems there occurred when a Soyuz rocket launched Roscosmos cosmonauts Sergei Kud-Sverchkov and Sergei Mikayev, as well as NASA astronaut Christopher Williams, on an eight-month mission to the International Space Station in late November. The rocket had no difficulties, but a large mobile platform below the rocket was not properly secured prior to the launch and crashed into the flame trench below, taking the pad offline.

It is unclear when the pad, Site 31 at the Baikonur Cosmodrome in Kazakhstan, will come back online.

Russia had been targeting a return-to-flight mission in March 2026. NASA now appears to believe that. The US space agency’s internal schedule, which was recently updated, has the next Progress spacecraft launch set for March 22, followed by another Progress mission on April 26. The next Soyuz crewed mission, MS-29, remains scheduled for July 14th. This flight will carry NASA astronaut Anil Menon to the space station.

After half a decade, the Russian space station segment stopped leaking Read More »

safety-panel-says-nasa-should-have-taken-starliner-incident-more-seriously

Safety panel says NASA should have taken Starliner incident more seriously

Invoking the designation also ensures an independent investigation detached from the teams involved in the incident itself, according to retired Air Force Lt. Gen. Susan Helms, chair of the safety panel. “We just, I think, are advocates of safety investigation best practices, and that clearly is one of the top best practices,” Helms said.

Another member of the safety panel, Mark Sirangelo, said NASA should formally declare mishaps and close calls as soon as possible. “It allows for the investigative team to be starting to be formed a lot sooner, which makes them more effective and makes the results quicker for everyone,” Sirangelo said.

In the case of last year’s Starliner test flight, NASA’s decision not to declare a mishap or close call created confusion within the agency, safety officials said.

A few weeks into the Starliner test flight last year, the manager of NASA’s Commercial Crew Program, Steve Stich, told reporters the agency’s plan was “to continue to return [the astronauts] on Starliner and return them home at the right time.” Mark Nappi, then Boeing’s Starliner program manager, regularly appeared to downplay the seriousness of the thruster issues during press conferences throughout Starliner’s nearly three-month mission.

“Specifically, there’s a significant difference, philosophically, between we will work toward proving the Starliner is safe for crew return, versus a philosophy of Starliner is no-go for return, and the primary path is on an alternate vehicle, such as Dragon or Soyuz, unless and until we learn how to ensure the on-orbit failures won’t recur on entry with the Starliner,” Precourt said.

“The latter would have been the more appropriate direction,” he said. “However, there were many stakeholders that believed the direction was the former approach. This ambiguity continued throughout the summer months, while engineers and managers pursued multiple test protocols in the Starliner propulsion systems, undoubtedly affecting the workforce.”

After months of testing and analysis, NASA officials were unsure if the thruster problems would recur on Starliner’s flight home. They decided in August 2024 to return the spacecraft to the ground without the astronauts, and the capsule safely landed in New Mexico the following month. The next Starliner flight will carry only cargo to the ISS.

The safety panel recommended that NASA review its criteria and processes to ensure the language is “unambiguous” in requiring the agency to declare an in-flight mishap or a high-visibility close call for any event involving NASA personnel “that leads to an impact on crew or spacecraft safety.”

Safety panel says NASA should have taken Starliner incident more seriously Read More »

nasa-rewraps-boeing-starliner-astrovan-ii-for-artemis-ii-ride-to-launch-pad

NASA rewraps Boeing Starliner Astrovan II for Artemis II ride to launch pad

Artemis II, meet Astrovan II.

NASA’s first astronauts who will fly by the moon in more than 50 years participated in a practice launch countdown on Saturday, December 20, including taking their first trip on a transport vehicle steeped in almost the entire span of US space history—from Apollo through to the ongoing commercial crew program.

Three men and a woman wearing bright orange pressure suits pose for a photo next to a motor coach.

Artemis II astronauts (from right to left) Reid Wiseman, Victor Glover, Christina Koch, and Jeremy Hansen pose for photographs before boarding the Astrovan II crew transport vehicle for a ride to their rocket during a rehearsal of their launch-day activities at NASA’s Kennedy Space Center in Florida on Saturday, Dec. 20, 2025. Credit: NASA/Aubrey Gemignani

Artemis II commander Reid Wiseman, pilot Victor Glover, and mission specialist Christina Koch (all with NASA) and mission specialist Jeremy Hansen, an astronaut with the Canadian Space Agency, began the rehearsal at the Kennedy Space Center in Florida, proceeding as they will when they are ready to fly next year (the Artemis II launch is slated for no earlier than the first week of February and no later than April 2026).

Parked outside of their crew quarters and suit-up room was their ride to their rocket, “Astrovan II,” a modified Airstream motorhome. The almost 25-foot-long (8-meter) crew transport vehicle (CTV) was custom-wrapped with graphics depicting the moon, the Artemis II mission patch, and program insignia.

From Canoo to coach

Airstream’s Atlas Touring Coach, though, was not originally planned as NASA’s Artemis CTV. In July 2023, NASA took delivery of three fully electric vans from Canoo Technologies after the company, a startup based in Torrance, California, was awarded the contract the year before. At the time, NASA touted its selection as focusing on the “crews’ safety and comfort on the way to the [launch] pad.”

Three vans with rounded corners are parked side by side in front of a large building and an overcast sky.

The three Canoo Technologies’ specially designed, fully-electric, environmentally friendly crew transportation vehicles for Artemis missions arrived at Kennedy Space Center on July 11, 2023. The company now bankrupt, the CTVs will serve as a backup to the Astrovan II. Credit: NASA/Isaac Watson

Six months later, Canoo filed for bankruptcy, and NASA ceased active use of the electric vans, citing a lack of support for its mission requirements. Instead, the agency turned to another of its commercial partners, Boeing, which had its own CTV but no astronauts at present to use it.

NASA rewraps Boeing Starliner Astrovan II for Artemis II ride to launch pad Read More »