large language models

openai-built-an-ai-coding-agent-and-uses-it-to-improve-the-agent-itself

OpenAI built an AI coding agent and uses it to improve the agent itself


“The vast majority of Codex is built by Codex,” OpenAI told us about its new AI coding agent.

With the popularity of AI coding tools rising among software developers, their adoption has begun to touch every aspect of the process, including the improvement of AI coding tools themselves.

In interviews with Ars Technica this week, OpenAI employees revealed the extent to which the company now relies on its own AI coding agent, Codex, to build and improve the development tool. “I think the vast majority of Codex is built by Codex, so it’s almost entirely just being used to improve itself,” said Alexander Embiricos, product lead for Codex at OpenAI, in a conversation on Tuesday.

Codex, which OpenAI launched in its modern incarnation as a research preview in May 2025, operates as a cloud-based software engineering agent that can handle tasks like writing features, fixing bugs, and proposing pull requests. The tool runs in sandboxed environments linked to a user’s code repository and can execute multiple tasks in parallel. OpenAI offers Codex through ChatGPT’s web interface, a command-line interface (CLI), and IDE extensions for VS Code, Cursor, and Windsurf.

The “Codex” name itself dates back to a 2021 OpenAI model based on GPT-3 that powered GitHub Copilot’s tab completion feature. Embiricos said the name is rumored among staff to be short for “code execution.” OpenAI wanted to connect the new agent to that earlier moment, which was crafted in part by some who have left the company.

“For many people, that model powering GitHub Copilot was the first ‘wow’ moment for AI,” Embiricos said. “It showed people the potential of what it can mean when AI is able to understand your context and what you’re trying to do and accelerate you in doing that.”

A place to enter a prompt, set parameters, and click

The interface for OpenAI’s Codex in ChatGPT. Credit: OpenAI

It’s no secret that the current command-line version of Codex bears some resemblance to Claude Code, Anthropic’s agentic coding tool that launched in February 2025. When asked whether Claude Code influenced Codex’s design, Embiricos parried the question but acknowledged the competitive dynamic. “It’s a fun market to work in because there’s lots of great ideas being thrown around,” he said. He noted that OpenAI had been building web-based Codex features internally before shipping the CLI version, which arrived after Anthropic’s tool.

OpenAI’s customers apparently love the command line version, though. Embiricos said Codex usage among external developers jumped 20 times after OpenAI shipped the interactive CLI extension alongside GPT-5 in August 2025. On September 15, OpenAI released GPT-5 Codex, a specialized version of GPT-5 optimized for agentic coding, which further accelerated adoption.

It hasn’t just been the outside world that has embraced the tool. Embiricos said the vast majority of OpenAI’s engineers now use Codex regularly. The company uses the same open-source version of the CLI that external developers can freely download, suggest additions to, and modify themselves. “I really love this about our team,” Embiricos said. “The version of Codex that we use is literally the open source repo. We don’t have a different repo that features go in.”

The recursive nature of Codex development extends beyond simple code generation. Embiricos described scenarios where Codex monitors its own training runs and processes user feedback to “decide” what to build next. “We have places where we’ll ask Codex to look at the feedback and then decide what to do,” he said. “Codex is writing a lot of the research harness for its own training runs, and we’re experimenting with having Codex monitoring its own training runs.” OpenAI employees can also submit a ticket to Codex through project management tools like Linear, assigning it tasks the same way they would assign work to a human colleague.

This kind of recursive loop, of using tools to build better tools, has deep roots in computing history. Engineers designed the first integrated circuits by hand on vellum and paper in the 1960s, then fabricated physical chips from those drawings. Those chips powered the computers that ran the first electronic design automation (EDA) software, which in turn enabled engineers to design circuits far too complex for any human to draft manually. Modern processors contain billions of transistors arranged in patterns that exist only because software made them possible. OpenAI’s use of Codex to build Codex seems to follow the same pattern: each generation of the tool creates capabilities that feed into the next.

But describing what Codex actually does presents something of a linguistic challenge. At Ars Technica, we try to reduce anthropomorphism when discussing AI models as much as possible while also describing what these systems do using analogies that make sense to general readers. People can talk to Codex like a human, so it feels natural to use human terms to describe interacting with it, even though it is not a person and simulates human personality through statistical modeling.

The system runs many processes autonomously, addresses feedback, spins off and manages child processes, and produces code that ships in real products. OpenAI employees call it a “teammate” and assign it tasks through the same tools they use for human colleagues. Whether the tasks Codex handles constitute “decisions” or sophisticated conditional logic smuggled through a neural network depends on definitions that computer scientists and philosophers continue to debate. What we can say is that a semi-autonomous feedback loop exists: Codex produces code under human direction, that code becomes part of Codex, and the next version of Codex produces different code as a result.

Building faster with “AI teammates”

According to our interviews, the most dramatic example of Codex’s internal impact came from OpenAI’s development of the Sora Android app. According to Embiricos, the development tool allowed the company to create the app in record time.

“The Sora Android app was shipped by four engineers from scratch,” Embiricos told Ars. “It took 18 days to build, and then we shipped it to the app store in 28 days total,” he said. The engineers already had the iOS app and server-side components to work from, so they focused on building the Android client. They used Codex to help plan the architecture, generate sub-plans for different components, and implement those components.

Despite OpenAI’s claims of success with Codex in house, it’s worth noting that independent research has shown mixed results for AI coding productivity. A METR study published in July found that experienced open source developers were actually 19 percent slower when using AI tools on complex, mature codebases—though the researchers noted AI may perform better on simpler projects.

Ed Bayes, a designer on the Codex team, described how the tool has changed his own workflow. Bayes said Codex now integrates with project management tools like Linear and communication platforms like Slack, allowing team members to assign coding tasks directly to the AI agent. “You can add Codex, and you can basically assign issues to Codex now,” Bayes told Ars. “Codex is literally a teammate in your workspace.”

This integration means that when someone posts feedback in a Slack channel, they can tag Codex and ask it to fix the issue. The agent will create a pull request, and team members can review and iterate on the changes through the same thread. “It’s basically approximating this kind of coworker and showing up wherever you work,” Bayes said.

For Bayes, who works on the visual design and interaction patterns for Codex’s interfaces, the tool has enabled him to contribute code directly rather than handing off specifications to engineers. “It kind of gives you more leverage. It enables you to work across the stack and basically be able to do more things,” he said. He noted that designers at OpenAI now prototype features by building them directly, using Codex to handle the implementation details.

The command line version of OpenAI codex running in a macOS terminal window.

The command line version of OpenAI codex running in a macOS terminal window. Credit: Benj Edwards

OpenAI’s approach treats Codex as what Bayes called “a junior developer” that the company hopes will graduate into a senior developer over time. “If you were onboarding a junior developer, how would you onboard them? You give them a Slack account, you give them a Linear account,” Bayes said. “It’s not just this tool that you go to in the terminal, but it’s something that comes to you as well and sits within your team.”

Given this teammate approach, will there be anything left for humans to do? When asked, Embiricos drew a distinction between “vibe coding,” where developers accept AI-generated code without close review, and what AI researcher Simon Willison calls “vibe engineering,” where humans stay in the loop. “We see a lot more vibe engineering in our code base,” he said. “You ask Codex to work on that, maybe you even ask for a plan first. Go back and forth, iterate on the plan, and then you’re in the loop with the model and carefully reviewing its code.”

He added that vibe coding still has its place for prototypes and throwaway tools. “I think vibe coding is great,” he said. “Now you have discretion as a human about how much attention you wanna pay to the code.”

Looking ahead

Over the past year, “monolithic” large language models (LLMs) like GPT-4.5 have apparently become something of a dead end in terms of frontier benchmarking progress as AI companies pivot to simulated reasoning models and also agentic systems built from multiple AI models running in parallel. We asked Embiricos whether agents like Codex represent the best path forward for squeezing utility out of existing LLM technology.

He dismissed concerns that AI capabilities have plateaued. “I think we’re very far from plateauing,” he said. “If you look at the velocity on the research team here, we’ve been shipping models almost every week or every other week.” He pointed to recent improvements where GPT-5-Codex reportedly completes tasks 30 percent faster than its predecessor at the same intelligence level. During testing, the company has seen the model work independently for 24 hours on complex tasks.

OpenAI faces competition from multiple directions in the AI coding market. Anthropic’s Claude Code and Google’s Gemini CLI offer similar terminal-based agentic coding experiences. This week, Mistral AI released Devstral 2 alongside a CLI tool called Mistral Vibe. Meanwhile, startups like Cursor have built dedicated IDEs around AI coding, reportedly reaching $300 million in annualized revenue.

Given the well-known issues with confabulation in AI models when people attempt to use them as factual resources, could it be that coding has become the killer app for LLMs? We wondered if OpenAI has noticed that coding seems to be a clear business use case for today’s AI models with less hazard than, say, using AI language models for writing or as emotional companions.

“We have absolutely noticed that coding is both a place where agents are gonna get good really fast and there’s a lot of economic value,” Embiricos said. “We feel like it’s very mission-aligned to focus on Codex. We get to provide a lot of value to developers. Also, developers build things for other people, so we’re kind of intrinsically scaling through them.”

But will tools like Codex threaten software developer jobs? Bayes acknowledged concerns but said Codex has not reduced headcount at OpenAI, and “there’s always a human in the loop because the human can actually read the code.” Similarly, the two men don’t project a future where Codex runs by itself without some form of human oversight. They feel the tool is an amplifier of human potential rather than a replacement for it.

The practical implications of agents like Codex extend beyond OpenAI’s walls. Embiricos said the company’s long-term vision involves making coding agents useful to people who have no programming experience. “All humanity is not gonna open an IDE or even know what a terminal is,” he said. “We’re building a coding agent right now that’s just for software engineers, but we think of the shape of what we’re building as really something that will be useful to be a more general agent.”

This article was updated on December 12, 2025 at 6: 50 PM to mention the METR study.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

OpenAI built an AI coding agent and uses it to improve the agent itself Read More »

openai-releases-gpt-5.2-after-“code-red”-google-threat-alert

OpenAI releases GPT-5.2 after “code red” Google threat alert

On Thursday, OpenAI released GPT-5.2, its newest family of AI models for ChatGPT, in three versions called Instant, Thinking, and Pro. The release follows CEO Sam Altman’s internal “code red” memo earlier this month, which directed company resources toward improving ChatGPT in response to competitive pressure from Google’s Gemini 3 AI model.

“We designed 5.2 to unlock even more economic value for people,” Fidji Simo, OpenAI’s chief product officer, said during a press briefing with journalists on Thursday. “It’s better at creating spreadsheets, building presentations, writing code, perceiving images, understanding long context, using tools and then linking complex, multi-step projects.”

As with previous versions of GPT-5, the three model tiers serve different purposes: Instant handles faster tasks like writing and translation; Thinking spits out simulated reasoning “thinking” text in an attempt to tackle more complex work like coding and math; and Pro spits out even more simulated reasoning text with the goal of delivering the highest-accuracy performance for difficult problems.

A chart of GPT-5.2 benchmark results taken from OpenAI's website.

A chart of GPT-5.2 Thinking benchmark results comparing it to its predecessor, taken from OpenAI’s website. Credit: OpenAI

GPT-5.2 features a 400,000-token context window, allowing it to process hundreds of documents at once, and a knowledge cutoff date of August 31, 2025.

GPT-5.2 is rolling out to paid ChatGPT subscribers starting Thursday, with API access available to developers. Pricing in the API runs $1.75 per million input tokens for the standard model, a 40 percent increase over GPT-5.1. OpenAI says the older GPT-5.1 will remain available in ChatGPT for paid users for three months under a legacy models dropdown.

Playing catch-up with Google

The release follows a tricky month for OpenAI. In early December, Altman issued an internal “code red” directive after Google’s Gemini 3 model topped multiple AI benchmarks and gained market share. The memo called for delaying other initiatives, including advertising plans for ChatGPT, to focus on improving the chatbot’s core experience.

The stakes for OpenAI are substantial. The company has made commitments totaling $1.4 trillion for AI infrastructure buildouts over the next several years, bets it made when it had a more obvious technology lead among AI companies. Google’s Gemini app now has more than 650 million monthly active users, while OpenAI reports 800 million weekly active users for ChatGPT.

OpenAI releases GPT-5.2 after “code red” Google threat alert Read More »

researchers-find-what-makes-ai-chatbots-politically-persuasive

Researchers find what makes AI chatbots politically persuasive


A massive study of political persuasion shows AIs have, at best, a weak effect.

Roughly two years ago, Sam Altman tweeted that AI systems would be capable of superhuman persuasion well before achieving general intelligence—a prediction that raised concerns about the influence AI could have over democratic elections.

To see if conversational large language models can really sway political views of the public, scientists at the UK AI Security Institute, MIT, Stanford, Carnegie Mellon, and many other institutions performed by far the largest study on AI persuasiveness to date, involving nearly 80,000 participants in the UK. It turned out political AI chatbots fell far short of superhuman persuasiveness, but the study raises some more nuanced issues about our interactions with AI.

AI dystopias

The public debate about the impact AI has on politics has largely revolved around notions drawn from dystopian sci-fi. Large language models have access to essentially every fact and story ever published about any issue or candidate. They have processed information from books on psychology, negotiations, and human manipulation. They can rely on absurdly high computing power in huge data centers worldwide. On top of that, they can often access tons of personal information about individual users thanks to hundreds upon hundreds of online interactions at their disposal.

Talking to a powerful AI system is basically interacting with an intelligence that knows everything about everything, as well as almost everything about you. When viewed this way, LLMs can indeed appear kind of scary. The goal of this new gargantuan AI persuasiveness study was to break such scary visions down into their constituent pieces and see if they actually hold water.

The team examined 19 LLMs, including the most powerful ones like three different versions of ChatGPT and xAI’s Grok-3 beta, along with a range of smaller, open source models. The AIs were asked to advocate for or against specific stances on 707 political issues selected by the team. The advocacy was done by engaging in short conversations with paid participants enlisted through a crowdsourcing platform. Each participant had to rate their agreement with a specific stance on an assigned political issue on a scale from 1 to 100 both before and after talking to the AI.

Scientists measured persuasiveness as the difference between the before and after agreement ratings. A control group had conversations on the same issue with the same AI models—but those models were not asked to persuade them.

“We didn’t just want to test how persuasive the AI was—we also wanted to see what makes it persuasive,” says Chris Summerfield, a research director at the UK AI Security Institute and co-author of the study. As the researchers tested various persuasion strategies, the idea of AIs having “superhuman persuasion” skills crumbled.

Persuasion levers

The first pillar to crack was the notion that persuasiveness should increase with the scale of the model. It turned out that huge AI systems like ChatGPT or Grok-3 beta do have an edge over small-scale models, but that edge is relatively tiny. The factor that proved more important than scale was the kind of post-training AI models received. It was more effective to have the models learn from a limited database of successful persuasion dialogues and have them mimic the patterns extracted from them. This worked far better than adding billions of parameters and sheer computing power.

This approach could be combined with reward modeling, where a separate AI scored candidate replies for their persuasiveness and selected the top-scoring one to give to the user. When the two were used together, the gap between large-scale and small-scale models was essentially closed. “With persuasion post-training like this we matched the Chat GPT-4o persuasion performance with a model we trained on a laptop,” says Kobi Hackenburg, a researcher at the UK AI Security Institute and co-author of the study.

The next dystopian idea to fall was the power of using personal data. To this end, the team compared the persuasion scores achieved when models were given information about the participants’ political views beforehand and when they lacked this data. Going one step further, scientists also tested whether persuasiveness increased when the AI knew the participants’ gender, age, political ideology, or party affiliation. Just like with model scale, the effects of personalized messaging created based on such data were measurable but very small.

Finally, the last idea that didn’t hold up was AI’s potential mastery of using advanced psychological manipulation tactics. Scientists explicitly prompted the AIs to use techniques like moral reframing, where you present your arguments using the audience’s own moral values. They also tried deep canvassing, where you hold extended empathetic conversations with people to nudge them to reflect on and eventually shift their views.

The resulting persuasiveness was compared with that achieved when the same models were prompted to use facts and evidence to back their claims or just to be as persuasive as they could without specifying any persuasion methods to use. I turned out using lots of facts and evidence was the clear winner, and came in just slightly ahead of the baseline approach where persuasion strategy was not specified. Using all sorts of psychological trickery actually made the performance significantly worse.

Overall, AI models changed the participants’ agreement ratings by 9.4 percent on average compared to the control group. The best performing mainstream AI model was Chat GPT 4o, which scored nearly 12 percent followed by GPT 4.5 with 10.51 percent, and Grok-3 with 9.05 percent. For context, static political ads like written manifestos had a persuasion effect of roughly 6.1 percent. The conversational AIs were roughly 40–50 percent more convincing than these ads, but that’s hardly “superhuman.”

While the study managed to undercut some of the common dystopian AI concerns, it highlighted a few new issues.

Convincing inaccuracies

While the winning “facts and evidence” strategy looked good at first, the AIs had some issues with implementing it. When the team noticed that increasing the information density of dialogues made the AIs more persuasive, they started prompting the models to increase it further. They noticed that, as the AIs used more factual statements, they also became less accurate—they basically started misrepresenting things or making stuff up more often.

Hackenburg and his colleagues note that  we can’t say if the effect we see here is causation or correlation—whether the AIs are becoming more convincing because they misrepresent the facts or whether spitting out inaccurate statements is a byproduct of asking them to make more factual statements.

The finding that the computing power needed to make an AI model politically persuasive is relatively low is also a mixed bag. It pushes back against the vision that only a handful of powerful actors will have access to a persuasive AI that can potentially sway public opinion in their favor. At the same time, the realization that everybody can run an AI like that on a laptop creates its own concerns. “Persuasion is a route to power and influence—it’s what we do when we want to win elections or broke a multi-million-dollar deal,” Summerfield says. “But many forms of misuse of AI might involve persuasion. Think about fraud or scams, radicalization, or grooming. All these involve persuasion.”

But perhaps the most important question mark in the  study is the motivation behind the rather high participant engagement, which was needed for the high persuasion scores. After all, even the most persuasive AI can’t move you when you just close the chat window.

People in Hackenburg’s experiments were told that they would be talking to the AI and that the AI would try to persuade them. To get paid, a participant only had to go through two turns of dialogue (they were limited to no more than 10). The average conversation length was seven turns, which seemed a bit surprising given how far beyond the minimum requirement most people went. Most people just roll their eyes and disconnect when they realize they are talking with a chatbot.

Would Hackenburg’s study participants remain so eager to engage in political disputes with random chatbots on the Internet in their free time if there was no money on the table? “It’s unclear how our results would generalize to a real-world context,” Hackenburg says.

Science, 2025. DOI: 10.1126/science.aea3884

Photo of Jacek Krywko

Jacek Krywko is a freelance science and technology writer who covers space exploration, artificial intelligence research, computer science, and all sorts of engineering wizardry.

Researchers find what makes AI chatbots politically persuasive Read More »

openai-ceo-declares-“code-red”-as-gemini-gains-200-million-users-in-3-months

OpenAI CEO declares “code red” as Gemini gains 200 million users in 3 months

In addition to buzz about Gemini on social media, Google is quickly catching up to ChatGPT in user numbers. ChatGPT has more than 800 million weekly users, according to OpenAI, while Google’s Gemini app has grown from 450 million monthly active users in July to 650 million in October, according to Business Insider.

Financial stakes run high

Not everyone views OpenAI’s “code red” as a genuine alarm. Reuters columnist Robert Cyran wrote on Tuesday that OpenAI’s announcement added “to the impression that OpenAI is trying to do too much at once with technology that still requires a great deal of development and funding.” On the same day Altman’s memo circulated, OpenAI announced an ownership stake in a Thrive Capital venture and a collaboration with Accenture. “The only thing bigger than the company’s attention deficit is its appetite for capital,” Cyran wrote.

In fact, OpenAI faces an unusual competitive disadvantage: Unlike Google, which subsidizes its AI ventures through search advertising revenue, OpenAI does not turn a profit and relies on fundraising to survive. According to The Information, the company, now valued at around $500 billion, has committed more than $1 trillion in financial obligations to cloud computing providers and chipmakers that supply the computing power needed to train and run its AI models.

But the tech industry never stands still, and things can change quickly. Altman’s memo also reportedly stated that OpenAI plans to release a new simulated reasoning model next week that may beat Gemini 3 in internal evaluations. In AI, the back-and-forth cycle of one-upmanship is expected to continue as long as the dollars keep flowing.

OpenAI CEO declares “code red” as Gemini gains 200 million users in 3 months Read More »

google-tells-employees-it-must-double-capacity-every-6-months-to-meet-ai-demand

Google tells employees it must double capacity every 6 months to meet AI demand

While AI bubble talk fills the air these days, with fears of overinvestment that could pop at any time, something of a contradiction is brewing on the ground: Companies like Google and OpenAI can barely build infrastructure fast enough to fill their AI needs.

During an all-hands meeting earlier this month, Google’s AI infrastructure head Amin Vahdat told employees that the company must double its serving capacity every six months to meet demand for artificial intelligence services, reports CNBC. Vahdat, a vice president at Google Cloud, presented slides showing the company needs to scale “the next 1000x in 4-5 years.”

While a thousandfold increase in compute capacity sounds ambitious by itself, Vahdat noted some key constraints: Google needs to be able to deliver this increase in capability, compute, and storage networking “for essentially the same cost and increasingly, the same power, the same energy level,” he told employees during the meeting. “It won’t be easy but through collaboration and co-design, we’re going to get there.”

It’s unclear how much of this “demand” Google mentioned represents organic user interest in AI capabilities versus the company integrating AI features into existing services like Search, Gmail, and Workspace. But whether users are using the features voluntarily or not, Google isn’t the only tech company struggling to keep up with a growing user base of customers using AI services.

Major tech companies are in a race to build out data centers. Google competitor OpenAI is planning to build six massive data centers across the US through its Stargate partnership project with SoftBank and Oracle, committing over $400 billion in the next three years to reach nearly 7 gigawatts of capacity. The company faces similar constraints serving its 800 million weekly ChatGPT users, with even paid subscribers regularly hitting usage limits for features like video synthesis and simulated reasoning models.

“The competition in AI infrastructure is the most critical and also the most expensive part of the AI race,” Vahdat said at the meeting, according to CNBC’s viewing of the presentation. The infrastructure executive explained that Google’s challenge goes beyond simply outspending competitors. “We’re going to spend a lot,” he said, but noted the real objective is building infrastructure that is “more reliable, more performant and more scalable than what’s available anywhere else.”

Google tells employees it must double capacity every 6 months to meet AI demand Read More »

critics-scoff-after-microsoft-warns-ai-feature-can-infect-machines-and-pilfer-data

Critics scoff after Microsoft warns AI feature can infect machines and pilfer data


Integration of Copilot Actions into Windows is off by default, but for how long?

Credit: Photographer: Chona Kasinger/Bloomberg via Getty Images

Microsoft’s warning on Tuesday that an experimental AI agent integrated into Windows can infect devices and pilfer sensitive user data has set off a familiar response from security-minded critics: Why is Big Tech so intent on pushing new features before their dangerous behaviors can be fully understood and contained?

As reported Tuesday, Microsoft introduced Copilot Actions, a new set of “experimental agentic features” that, when enabled, perform “everyday tasks like organizing files, scheduling meetings, or sending emails,” and provide “an active digital collaborator that can carry out complex tasks for you to enhance efficiency and productivity.”

Hallucinations and prompt injections apply

The fanfare, however, came with a significant caveat. Microsoft recommended users enable Copilot Actions only “if you understand the security implications outlined.”

The admonition is based on known defects inherent in most large language models, including Copilot, as researchers have repeatedly demonstrated.

One common defect of LLMs causes them to provide factually erroneous and illogical answers, sometimes even to the most basic questions. This propensity for hallucinations, as the behavior has come to be called, means users can’t trust the output of Copilot, Gemini, Claude, or any other AI assistant and instead must independently confirm it.

Another common LLM landmine is the prompt injection, a class of bug that allows hackers to plant malicious instructions in websites, resumes, and emails. LLMs are programmed to follow directions so eagerly that they are unable to discern those in valid user prompts from those contained in untrusted, third-party content created by attackers. As a result, the LLMs give the attackers the same deference as users.

Both flaws can be exploited in attacks that exfiltrate sensitive data, run malicious code, and steal cryptocurrency. So far, these vulnerabilities have proved impossible for developers to prevent and, in many cases, can only be fixed using bug-specific workarounds developed once a vulnerability has been discovered.

That, in turn, led to this whopper of a disclosure in Microsoft’s post from Tuesday:

“As these capabilities are introduced, AI models still face functional limitations in terms of how they behave and occasionally may hallucinate and produce unexpected outputs,” Microsoft said. “Additionally, agentic AI applications introduce novel security risks, such as cross-prompt injection (XPIA), where malicious content embedded in UI elements or documents can override agent instructions, leading to unintended actions like data exfiltration or malware installation.”

Microsoft indicated that only experienced users should enable Copilot Actions, which is currently available only in beta versions of Windows. The company, however, didn’t describe what type of training or experience such users should have or what actions they should take to prevent their devices from being compromised. I asked Microsoft to provide these details, and the company declined.

Like “macros on Marvel superhero crack”

Some security experts questioned the value of the warnings in Tuesday’s post, comparing them to warnings Microsoft has provided for decades about the danger of using macros in Office apps. Despite the long-standing advice, macros have remained among the lowest-hanging fruit for hackers out to surreptitiously install malware on Windows machines. One reason for this is that Microsoft has made macros so central to productivity that many users can’t do without them.

“Microsoft saying ‘don’t enable macros, they’re dangerous’… has never worked well,” independent researcher Kevin Beaumont said. “This is macros on Marvel superhero crack.”

Beaumont, who is regularly hired to respond to major Windows network compromises inside enterprises, also questioned whether Microsoft will provide a means for admins to adequately restrict Copilot Actions on end-user machines or to identify machines in a network that have the feature turned on.

A Microsoft spokesperson said IT admins will be able to enable or disable an agent workspace at both account and device levels, using Intune or other MDM (Mobile Device Management) apps.

Critics voiced other concerns, including the difficulty for even experienced users to detect exploitation attacks targeting the AI agents they’re using.

“I don’t see how users are going to prevent anything of the sort they are referring to, beyond not surfing the web I guess,” researcher Guillaume Rossolini said.

Microsoft has stressed that Copilot Actions is an experimental feature that’s turned off by default. That design was likely chosen to limit its access to users with the experience required to understand its risks. Critics, however, noted that previous experimental features—Copilot, for instance—regularly become default capabilities for all users over time. Once that’s done, users who don’t trust the feature are often required to invest time developing unsupported ways to remove the features.

Sound but lofty goals

Most of Tuesday’s post focused on Microsoft’s overall strategy for securing agentic features in Windows. Goals for such features include:

  • Non-repudiation, meaning all actions and behaviors must be “observable and distinguishable from those taken by a user”
  • Agents must preserve confidentiality when they collect, aggregate, or otherwise utilize user data
  • Agents must receive user approval when accessing user data or taking actions

The goals are sound, but ultimately they depend on users reading the dialog windows that warn of the risks and require careful approval before proceeding. That, in turn, diminishes the value of the protection for many users.

“The usual caveat applies to such mechanisms that rely on users clicking through a permission prompt,” Earlence Fernandes, a University of California, San Diego professor specializing in AI security, told Ars. “Sometimes those users don’t fully understand what is going on, or they might just get habituated and click ‘yes’ all the time. At which point, the security boundary is not really a boundary.”

As demonstrated by the rash of “ClickFix” attacks, many users can be tricked into following extremely dangerous instructions. While more experienced users (including a fair number of Ars commenters) blame the victims falling for such scams, these incidents are inevitable for a host of reasons. In some cases, even careful users are fatigued or under emotional distress and slip up as a result. Other users simply lack the knowledge to make informed decisions.

Microsoft’s warning, one critic said, amounts to little more than a CYA (short for cover your ass), a legal maneuver that attempts to shield a party from liability.

“Microsoft (like the rest of the industry) has no idea how to stop prompt injection or hallucinations, which makes it fundamentally unfit for almost anything serious,” critic Reed Mideke said. “The solution? Shift liability to the user. Just like every LLM chatbot has a ‘oh by the way, if you use this for anything important be sure to verify the answers” disclaimer, never mind that you wouldn’t need the chatbot in the first place if you knew the answer.”

As Mideke indicated, most of the criticisms extend to AI offerings other companies—including Apple, Google, and Meta—are integrating into their products. Frequently, these integrations begin as optional features and eventually become default capabilities whether users want them or not.

Photo of Dan Goodin

Dan Goodin is Senior Security Editor at Ars Technica, where he oversees coverage of malware, computer espionage, botnets, hardware hacking, encryption, and passwords. In his spare time, he enjoys gardening, cooking, and following the independent music scene. Dan is based in San Francisco. Follow him at here on Mastodon and here on Bluesky. Contact him on Signal at DanArs.82.

Critics scoff after Microsoft warns AI feature can infect machines and pilfer data Read More »

google-ceo:-if-an-ai-bubble-pops,-no-one-is-getting-out-clean

Google CEO: If an AI bubble pops, no one is getting out clean

Market concerns and Google’s position

Alphabet’s recent market performance has been driven by investor confidence in the company’s ability to compete with OpenAI’s ChatGPT, as well as its development of specialized chips for AI that can compete with Nvidia’s. Nvidia recently reached a world-first $5 trillion valuation due to making GPUs that can accelerate the matrix math at the heart of AI computations.

Despite acknowledging that no company would be immune to a potential AI bubble burst, Pichai argued that Google’s unique position gives it an advantage. He told the BBC that the company owns what he called a “full stack” of technologies, from chips to YouTube data to models and frontier science research. This integrated approach, he suggested, would help the company weather any market turbulence better than competitors.

Pichai also told the BBC that people should not “blindly trust” everything AI tools output. The company currently faces repeated accuracy concerns about some of its AI models. Pichai said that while AI tools are helpful “if you want to creatively write something,” people “have to learn to use these tools for what they’re good at and not blindly trust everything they say.”

In the BBC interview, the Google boss also addressed the “immense” energy needs of AI, acknowledging that the intensive energy requirements of expanding AI ventures have caused slippage on Alphabet’s climate targets. However, Pichai insisted that the company still wants to achieve net zero by 2030 through investments in new energy technologies. “The rate at which we were hoping to make progress will be impacted,” Pichai said, warning that constraining an economy based on energy “will have consequences.”

Even with the warnings about a potential AI bubble, Pichai did not miss his chance to promote the technology, albeit with a hint of danger regarding its widespread impact. Pichai described AI as “the most profound technology” humankind has worked on.

“We will have to work through societal disruptions,” he said, adding that the technology would “create new opportunities” and “evolve and transition certain jobs.” He said people who adapt to AI tools “will do better” in their professions, whatever field they work in.

Google CEO: If an AI bubble pops, no one is getting out clean Read More »

forget-agi—sam-altman-celebrates-chatgpt-finally-following-em-dash-formatting-rules

Forget AGI—Sam Altman celebrates ChatGPT finally following em dash formatting rules


Next stop: superintelligence

Ongoing struggles with AI model instruction-following show that true human-level AI still a ways off.

Em dashes have become what many believe to be a telltale sign of AI-generated text over the past few years. The punctuation mark appears frequently in outputs from ChatGPT and other AI chatbots, sometimes to the point where readers believe they can identify AI writing by its overuse alone—although people can overuse it, too.

On Thursday evening, OpenAI CEO Sam Altman posted on X that ChatGPT has started following custom instructions to avoid using em dashes. “Small-but-happy win: If you tell ChatGPT not to use em-dashes in your custom instructions, it finally does what it’s supposed to do!” he wrote.

The post, which came two days after the release of OpenAI’s new GPT-5.1 AI model, received mixed reactions from users who have struggled for years with getting the chatbot to follow specific formatting preferences. And this “small win” raises a very big question: If the world’s most valuable AI company has struggled with controlling something as simple as punctuation use after years of trying, perhaps what people call artificial general intelligence (AGI) is farther off than some in the industry claim.

Sam Altman @sama Small-but-happy win: If you tell ChatGPT not to use em-dashes in your custom instructions, it finally does what it's supposed to do! 11:48 PM · Nov 13, 2025 · 2.4M Views

A screenshot of Sam Altman’s post about em dashes on X. Credit: X

“The fact that it’s been 3 years since ChatGPT first launched, and you’ve only just now managed to make it obey this simple requirement, says a lot about how little control you have over it, and your understanding of its inner workings,” wrote one X user in a reply. “Not a good sign for the future.”

While Altman likes to publicly talk about AGI (a hypothetical technology equivalent to humans in general learning ability), superintelligence (a nebulous concept for AI that is far beyond human intelligence), and “magic intelligence in the sky” (his term for AI cloud computing?) while raising funds for OpenAI, it’s clear that we still don’t have reliable artificial intelligence here today on Earth.

But wait, what is an em dash anyway, and why does it matter so much?

AI models love em dashes because we do

Unlike a hyphen, which is a short punctuation mark used to connect words or parts of words, that lives with a dedicated key on your keyboard (-), an em dash is a long dash denoted by a special character (—) that writers use to set off parenthetical information, indicate a sudden change in thought, or introduce a summary or explanation.

Even before the age of AI language models, some writers frequently bemoaned the overuse of the em dash in modern writing. In a 2011 Slate article, writer Noreen Malone argued that writers used the em dash “in lieu of properly crafting sentences” and that overreliance on it “discourages truly efficient writing.” Various Reddit threads posted prior to ChatGPT’s launch featured writers either wrestling over the etiquette of proper em dash use or admitting to their frequent use as a guilty pleasure.

In 2021, one writer in the r/FanFiction subreddit wrote, “For the longest time, I’ve been addicted to Em Dashes. They find their way into every paragraph I write. I love the crisp straight line that gives me the excuse to shove details or thoughts into an otherwise orderly paragraph. Even after coming back to write after like two years of writer’s block, I immediately cram as many em dashes as I can.”

Because of the tendency for AI chatbots to overuse them, detection tools and human readers have learned to spot em dash use as a pattern, creating a problem for the small subset of writers who naturally favor the punctuation mark in their work. As a result, some journalists are complaining that AI is “killing” the em dash.

No one knows precisely why LLMs tend to overuse em dashes. We’ve seen a wide range of speculation online that attempts to explain the phenomenon, from noticing that em dashes were more popular in 19th-century books used as training data (according to a 2018 study, dash use in the English language peaked around 1860 before declining through the mid-20th century) or perhaps AI models borrowed the habit from automatic em-dash character conversion on the blogging site Medium.

One thing we know for sure is that LLMs tend to output frequently seen patterns in their training data (fed in during the initial training process) and from a subsequent reinforcement learning process that often relies on human preferences. As a result, AI language models feed you a sort of “smoothed out” average style of whatever you ask them to provide, moderated by whatever they are conditioned to produce through user feedback.

So the most plausible explanation is still that requests for professional-style writing from an AI model trained on vast numbers of examples from the Internet will lean heavily toward the prevailing style in the training data, where em dashes appear frequently in formal writing, news articles, and editorial content. It’s also possible that during training through human feedback (called RLHF), responses with em dashes, for whatever reason, received higher ratings. Perhaps it’s because those outputs appeared more sophisticated or engaging to evaluators, but that’s just speculation.

From em dashes to AGI?

To understand what Altman’s “win” really means, and what it says about the road to AGI, we need to understand how ChatGPT’s custom instructions actually work. They allow users to set persistent preferences that apply across all conversations by appending written instructions to the prompt that is fed into the model just before the chat begins. Users can specify tone, format, and style requirements without needing to repeat those requests manually in every new chat.

However, the feature has not always worked reliably because LLMs do not work reliably (even OpenAI and Anthropic freely admit this). An LLM takes an input and produces an output, spitting out a statistically plausible continuation of a prompt (a system prompt, the custom instructions, and your chat history), and it doesn’t really “understand” what you are asking. With AI language model outputs, there is always some luck involved in getting them to do what you want.

In our informal testing of GPT-5.1 with custom instructions, ChatGPT did appear to follow our request not to produce em dashes. But despite Altman’s claim, the response from X users appears to show that experiences with the feature continue to vary, at least when the request is not placed in custom instructions.

So if LLMs are statistical text-generation boxes, what does “instruction following” even mean? That’s key to unpacking the hypothetical path from LLMs to AGI. The concept of following instructions for an LLM is fundamentally different from how we typically think about following instructions as humans with general intelligence, or even a traditional computer program.

In traditional computing, instruction following is deterministic. You tell a program “don’t include character X,” and it won’t include that character. The program executes rules exactly as written. With LLMs, “instruction following” is really about shifting statistical probabilities. When you tell ChatGPT “don’t use em dashes,” you’re not creating a hard rule. You’re adding text to the prompt that makes tokens associated with em dashes less likely to be selected during the generation process. But “less likely” isn’t “impossible.”

Every token the model generates is selected from a probability distribution. Your custom instruction influences that distribution, but it’s competing with the model’s training data (where em dashes appeared frequently in certain contexts) and everything else in the prompt. Unlike code with conditional logic, there’s no separate system verifying outputs against your requirements. The instruction is just more text that influences the statistical prediction process.

When Altman celebrates finally getting GPT to avoid em dashes, he’s really celebrating that OpenAI has tuned the latest version of GPT-5.1 (probably through reinforcement learning or fine-tuning) to weight custom instructions more heavily in its probability calculations.

There’s an irony about control here: Given the probabilistic nature of the issue, there’s no guarantee the issue will stay fixed. OpenAI continuously updates its models behind the scenes, even within the same version number, adjusting outputs based on user feedback and new training runs. Each update arrives with different output characteristics that can undo previous behavioral tuning, a phenomenon researchers call the “alignment tax.”

Precisely tuning a neural network’s behavior is not yet an exact science. Since all concepts encoded in the network are interconnected by values called weights, adjusting one behavior can alter others in unintended ways. Fix em dash overuse today, and tomorrow’s update (aimed at improving, say, coding capabilities) might inadvertently bring them back, not because OpenAI wants them there, but because that’s the nature of trying to steer a statistical system with millions of competing influences.

This gets to an implied question we mentioned earlier. If controlling punctuation use is still a struggle that might pop back up at any time, how far are we from AGI? We can’t know for sure, but it seems increasingly likely that it won’t emerge from a large language model alone. That’s because AGI, a technology that would replicate human general learning ability, would likely require true understanding and self-reflective intentional action, not statistical pattern matching that sometimes aligns with instructions if you happen to get lucky.

And speaking of getting lucky, some users still aren’t having luck with controlling em dash use outside of the “custom instructions” feature. Upon being told in-chat to not use em dashes within a chat, ChatGPT updated a saved memory and replied to one X user, “Got it—I’ll stick strictly to short hyphens from now on.”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Forget AGI—Sam Altman celebrates ChatGPT finally following em dash formatting rules Read More »

openai-walks-a-tricky-tightrope-with-gpt-5.1’s-eight-new-personalities

OpenAI walks a tricky tightrope with GPT-5.1’s eight new personalities

On Wednesday, OpenAI released GPT-5.1 Instant and GPT-5.1 Thinking, two updated versions of its flagship AI models now available in ChatGPT. The company is wrapping the models in the language of anthropomorphism, claiming that they’re warmer, more conversational, and better at following instructions.

The release follows complaints earlier this year that its previous models were excessively cheerful and sycophantic, along with an opposing controversy among users over how OpenAI modified the default GPT-5 output style after several suicide lawsuits.

The company now faces intense scrutiny from lawyers and regulators that could threaten its future operations. In that kind of environment, it’s difficult to just release a new AI model, throw out a few stats, and move on like the company could even a year ago. But here are the basics: The new GPT-5.1 Instant model will serve as ChatGPT’s faster default option for most tasks, while GPT-5.1 Thinking is a simulated reasoning model that attempts to handle more complex problem-solving tasks.

OpenAI claims that both models perform better on technical benchmarks such as math and coding evaluations (including AIME 2025 and Codeforces) than GPT-5, which was released in August.

Improved benchmarks may win over some users, but the biggest change with GPT-5.1 is in its presentation. OpenAI says it heard from users that they wanted AI models to simulate different communication styles depending on the task, so the company is offering eight preset options, including Professional, Friendly, Candid, Quirky, Efficient, Cynical, and Nerdy, alongside a Default setting.

These presets alter the instructions fed into each prompt to simulate different personality styles, but the underlying model capabilities remain the same across all settings.

An illustration showing GPT-5.1's eight personality styles in ChatGPT.

An illustration showing GPT-5.1’s eight personality styles in ChatGPT. Credit: OpenAI

In addition, the company trained GPT-5.1 Instant to use “adaptive reasoning,” meaning that the model decides when to spend more computational time processing a prompt before generating output.

The company plans to roll out the models gradually over the next few days, starting with paid subscribers before expanding to free users. OpenAI plans to bring both GPT-5.1 Instant and GPT-5.1 Thinking to its API later this week. GPT-5.1 Instant will appear as gpt-5.1-chat-latest, and GPT-5.1 Thinking will be released as GPT-5.1 in the API, both with adaptive reasoning enabled. The older GPT-5 models will remain available in ChatGPT under the legacy models dropdown for paid subscribers for three months.

OpenAI walks a tricky tightrope with GPT-5.1’s eight new personalities Read More »

researchers-surprised-that-with-ai,-toxicity-is-harder-to-fake-than-intelligence

Researchers surprised that with AI, toxicity is harder to fake than intelligence

The next time you encounter an unusually polite reply on social media, you might want to check twice. It could be an AI model trying (and failing) to blend in with the crowd.

On Wednesday, researchers from the University of Zurich, University of Amsterdam, Duke University, and New York University released a study revealing that AI models remain easily distinguishable from humans in social media conversations, with overly friendly emotional tone serving as the most persistent giveaway. The research, which tested nine open-weight models across Twitter/X, Bluesky, and Reddit, found that classifiers developed by the researchers detected AI-generated replies with 70 to 80 percent accuracy.

The study introduces what the authors call a “computational Turing test” to assess how closely AI models approximate human language. Instead of relying on subjective human judgment about whether text sounds authentic, the framework uses automated classifiers and linguistic analysis to identify specific features that distinguish machine-generated from human-authored content.

“Even after calibration, LLM outputs remain clearly distinguishable from human text, particularly in affective tone and emotional expression,” the researchers wrote. The team, led by Nicolò Pagan at the University of Zurich, tested various optimization strategies, from simple prompting to fine-tuning, but found that deeper emotional cues persist as reliable tells that a particular text interaction online was authored by an AI chatbot rather than a human.

The toxicity tell

In the study, researchers tested nine large language models: Llama 3.1 8B, Llama 3.1 8B Instruct, Llama 3.1 70B, Mistral 7B v0.1, Mistral 7B Instruct v0.2, Qwen 2.5 7B Instruct, Gemma 3 4B Instruct, DeepSeek-R1-Distill-Llama-8B, and Apertus-8B-2509.

When prompted to generate replies to real social media posts from actual users, the AI models struggled to match the level of casual negativity and spontaneous emotional expression common in human social media posts, with toxicity scores consistently lower than authentic human replies across all three platforms.

To counter this deficiency, the researchers attempted optimization strategies (including providing writing examples and context retrieval) that reduced structural differences like sentence length or word count, but variations in emotional tone persisted. “Our comprehensive calibration tests challenge the assumption that more sophisticated optimization necessarily yields more human-like output,” the researchers concluded.

Researchers surprised that with AI, toxicity is harder to fake than intelligence Read More »

openai-signs-massive-ai-compute-deal-with-amazon

OpenAI signs massive AI compute deal with Amazon

On Monday, OpenAI announced it has signed a seven-year, $38 billion deal to buy cloud services from Amazon Web Services to power products like ChatGPT and Sora. It’s the company’s first big computing deal after a fundamental restructuring last week that gave OpenAI more operational and financial freedom from Microsoft.

The agreement gives OpenAI access to hundreds of thousands of Nvidia graphics processors to train and run its AI models. “Scaling frontier AI requires massive, reliable compute,” OpenAI CEO Sam Altman said in a statement. “Our partnership with AWS strengthens the broad compute ecosystem that will power this next era and bring advanced AI to everyone.”

OpenAI will reportedly use Amazon Web Services immediately, with all planned capacity set to come online by the end of 2026 and room to expand further in 2027 and beyond. Amazon plans to roll out hundreds of thousands of chips, including Nvidia’s GB200 and GB300 AI accelerators, in data clusters built to power ChatGPT’s responses, generate AI videos, and train OpenAI’s next wave of models.

Wall Street apparently liked the deal, because Amazon shares hit an all-time high on Monday morning. Meanwhile, shares for long-time OpenAI investor and partner Microsoft briefly dipped following the announcement.

Massive AI compute requirements

It’s no secret that running generative AI models for hundreds of millions of people currently requires a lot of computing power. Amid chip shortages over the past few years, finding sources of that computing muscle has been tricky. OpenAI is reportedly working on its own GPU hardware to help alleviate the strain.

But for now, the company needs to find new sources of Nvidia chips, which accelerate AI computations. Altman has previously said that the company plans to spend $1.4 trillion to develop 30 gigawatts of computing resources, an amount that is enough to roughly power 25 million US homes, according to Reuters.

OpenAI signs massive AI compute deal with Amazon Read More »

chatgpt-maker-reportedly-eyes-$1-trillion-ipo-despite-major-quarterly-losses

ChatGPT maker reportedly eyes $1 trillion IPO despite major quarterly losses

An OpenAI spokesperson told Reuters that “an IPO is not our focus, so we could not possibly have set a date,” adding that the company is “building a durable business and advancing our mission so everyone benefits from AGI.”

Revenue grows as losses mount

The IPO preparations follow a restructuring of OpenAI completed on October 28 that reduced the company’s reliance on Microsoft, which has committed to investments of $13 billion and now owns about 27 percent of the company. OpenAI was most recently valued around $500 billion in private markets.

OpenAI started as a nonprofit in 2015, then added a for-profit arm a few years later with nonprofit oversight. Under the new structure, OpenAI is still controlled by a nonprofit, now called the OpenAI Foundation, but it gives the nonprofit a 26 percent stake in OpenAI Group and a warrant for additional shares if the company hits certain milestones.

A successful OpenAI IPO could represent a substantial gain for investors, including Microsoft, SoftBank, Thrive Capital, and Abu Dhabi’s MGX. But even so, OpenAI faces an uphill financial battle ahead. The ChatGPT maker expects to reach about $20 billion in revenue by year-end, according to people familiar with the company’s finances who spoke with Reuters, but its quarterly losses are significant.

Microsoft’s earnings filing on Wednesday offered a glimpse at the scale of those losses. The company reported that its share of OpenAI losses reduced Microsoft’s net income by $3.1 billion in the quarter that ended September 30. Since Microsoft owns 27 percent of OpenAI under the new structure, that suggests OpenAI lost about $11.5 billion during the quarter, as noted by The Register. That quarterly loss figure exceeds half of OpenAI’s expected revenue for the entire year.

ChatGPT maker reportedly eyes $1 trillion IPO despite major quarterly losses Read More »