“Elon thinks we can do the job with cheaper and simpler satellites, sooner,” a source told Reuters at the time of Badyal’s dismissal. Earlier in 2018, SpaceX launched a pair of prototype cube-shaped Internet satellites for demonstrations in orbit. Then, less than a year after firing Badyal, Musk’s company launched the first full stack of Starlink satellites, debuting the now-standard flat-panel design.
In a post Friday on LinkedIn, Badyal wrote the Kuiper satellites have had “an entirely nominal start” to their mission. “We’re just over 72 hours into our first full-scale Kuiper mission, and the adrenaline is still high.”
The Starlink and Kuiper constellations use laser inter-satellite links to relay Internet signals from node-to-node across their networks. Starlink broadcasts consumer broadband in Ku-band frequencies, while Kuiper will use Ka-band.
Ultimately, SpaceX’s simplified Starlink deployment architecture has fewer parts and eliminates the need for a carrier structure. This allows SpaceX to devote a higher share of the rocket’s mass and volume capacity to the Starlink satellites themselves, replacing dead weight with revenue-earning capability. The dispenser architecture used by Amazon is a more conventional design, and gives satellite engineers more flexibility in designing their spacecraft. It also allows satellites to spread out faster in orbit.
Others involved in the broadband megaconstellation rush have copied SpaceX’s architecture.
China’s Qianfan, or Thousand Sails, satellites have a “standardized and modular” flat-panel design that “meets the needs of stacking multiple satellites with one rocket,” according to the company managing the constellation. While Chinese officials haven’t released any photos of the satellites, which could eventually number more than 14,000, this sounds a lot like the design of SpaceX’s Starlink satellites.
Another piece of information released by United Launch Alliance helps us arrive at an estimate of the mass of each Kuiper satellite. The collection of 27 satellites that launched earlier this week added up to be the heaviest payload ever flown on ULA’s Atlas V rocket. ULA said the total payload the Atlas V delivered to orbit was about 34,000 pounds, equivalent to roughly 15.4 metric tons.
It wasn’t clear whether this number accounted for the satellite dispenser, which likely weighed somewhere in the range of 1,000 to 2,000 pounds at launch. This would put the mass of each Kuiper satellite somewhere between 1,185 and 1,259 pounds (537 and 571 kilograms).
This is not far off the estimated mass of SpaceX’s most recent iteration of Starlink satellites, a version known as V2 Mini Optimized. SpaceX’s Falcon 9 rocket has launched up to 28 of these flat-packed satellites on a single launch.
The Space Force is looking for responsive launch. This week, they’re the unresponsive ones.
File photo of a SpaceX Falcon 9 launch in 2022. Credit: SpaceX
Pushed by trackmobile railcar movers, the Atlas V rocket rolled to the launch pad last week with a full load of 27 satellites for Amazon’s Kuiper internet megaconstellation. Credit: United Launch Alliance
Last week, the first operational satellites for Amazon’s Project Kuiper broadband network were minutes from launch at Cape Canaveral Space Force Station, Florida.
These spacecraft, buttoned up on top of a United Launch Alliance Atlas V rocket, are the first of more than 3,200 mass-produced satellites Amazon plans to launch over the rest of the decade to deploy the first direct US competitor to SpaceX’s Starlink internet network.
However, as is often the case on Florida’s Space Coast, bad weather prevented the satellites from launching April 9. No big deal, right? Anyone who pays close attention to the launch industry knows delays are part of the business. A broken component on the rocket, a summertime thunderstorm, or high winds can thwart a launch attempt. Launch companies know this, and the answer is usually to try again the next day.
But something unusual happened when ULA scrubbed the countdown last Wednesday. ULA’s launch director, Eric Richards, instructed his team to “proceed with preparations for an extended turnaround.” This meant ULA would have to wait more than 24 hours for the next Atlas V launch attempt.
But why?
At first, there seemed to be a good explanation for the extended turnaround. SpaceX was preparing to launch a set of Starlink satellites on a Falcon 9 rocket around the same time as Atlas V’s launch window the next day. The Space Force’s Eastern Range manages scheduling for all launches at Cape Canaveral and typically operates on a first-come, first-served basis.
The Space Force accommodated 93 launches on the Eastern Range last year—sometimes on the same day—an annual record that military officials are quite proud of achieving. This is nearly six times the number of launches from Cape Canaveral in 2014, a growth rate primarily driven by SpaceX. In previous interviews, Space Force officials have emphasized their eagerness to support more commercial launches. “How do we get to yes?” is often what range officials ask themselves when a launch provider submits a scheduling request.
It wouldn’t have been surprising for SpaceX to get priority on the range schedule since it had already reserved the launch window with the Space Force for April 10. SpaceX subsequently delayed this particular Starlink launch for two days until it finally launched on Saturday evening, April 12. Another SpaceX Starlink mission launched Monday morning.
There are several puzzling things about what happened last week. When SpaceX missed its reservation on the range twice in two days, April 10 and 11, why didn’t ULA move back to the front of the line?
ULA, which is usually fairly transparent about its reasons for launch scrubs, didn’t disclose any technical problems with the rocket that would have prevented another launch attempt. ULA offers access to listen to the launch team’s audio channel during the countdown, and engineers were not discussing any significant technical issues.
The company’s official statement after the scrub said: “A new launch date will be announced when approved on the range.”
Also, why can’t ULA make another run at launching the Kuiper mission this week? The answer to that question is also a mystery, but we have some educated speculation.
Changes in attitudes
A few days ago, SpaceX postponed one of its own Starlink missions from Cape Canaveral without explanation, leaving the Florida spaceport with a rare week without any launches. SpaceX plans to resume launches from Florida early next week with the liftoff of a resupply mission to the International Space Station. The delayed Starlink mission will fly a few days later.
Meanwhile, the next launch attempt for ULA is unknown.
Tory Bruno, ULA’s president and CEO, wrote on X that questions about what is holding up the next Atlas V launch are best directed toward the Space Force. A spokesperson for ULA told Ars the company is still working with the range to determine the next launch date. “The rocket and payload are healthy,” she said. “We will announce the new launch date once confirmed.”
While the SpaceX launch delay this week might suggest a link to the same range kerfuffle facing United Launch Alliance, it’s important to point out a key difference between the companies’ rockets. SpaceX’s Falcon 9 uses an automated flight termination system to self-destruct the rocket if it flies off course, while ULA’s Atlas V uses an older human-in-the-loop range safety system, which requires additional staff and equipment. Therefore, the Space Force is more likely to be able to accommodate a SpaceX mission near another activity on the range.
One more twist in this story is that a few days before the launch attempt, ULA changed its launch window for the Kuiper mission on April 9 from midday to the evening hours due to a request from the Eastern Range. Brig. Gen. Kristin Panzenhagen, the range commander, spoke with reporters in a roundtable meeting last week. After nearly 20 years of covering launches from Cape Canaveral, I found a seven-hour time change so close to launch to be unusual, so I asked Panzenhagen about the reason for it, mostly out of curiosity. She declined to offer any details.
File photo of a SpaceX Falcon 9 launch in 2022. Credit: SpaceX
“The Eastern Range is huge,” she said. “It’s 15 million square miles. So, as you can imagine, there are a lot of players that are using that range space, so there’s a lot of de-confliction … Public safety is our top priority, and we take that very seriously on both ranges. So, we are constantly de-conflicting, but I’m not going to get into details of what the actual conflict was.”
It turns out the range conflict now impacting the Eastern Range is having some longer-lasting impacts. While a one- or two-week launch delay doesn’t seem serious, it adds up to deferred or denied revenue for a commercial satellite operator. National security missions get priority on range schedules at Cape Canaveral and at Vandenberg Space Force Base in California, but there are significantly more commercial missions than military launches from both spaceports.
Clearly, there’s something out of the ordinary going on in the Eastern Range, which extends over much of the Atlantic Ocean to the southeast, east, and northeast of Cape Canaveral. The range includes tracking equipment, security forces, and ground stations in Florida and downrange sites in Bermuda and Ascension Island.
One possibility is a test of one or more submarine-launched Trident ballistic missiles, which commonly occur in the waters off the east coast of Florida. But those launches are usually accompanied by airspace and maritime warning notices to ensure pilots and sailors steer clear of the test. Nothing of the sort has been publicly released in the last couple of weeks.
Maybe something is broken at the Florida launch base. When launches were less routine than today, the range at Cape Canaveral would close for a couple of weeks per year for upgrades and refurbishment of critical infrastructure. This is no longer the case. In 2023, Panzenhagen told Ars that the Space Force changed the policy.
“When the Eastern Range was supporting 15 to 20 launches a year, we had room to schedule dedicated periods for maintenance of critical infrastructure,” she said at the time. “During these periods, launches were paused while teams worked the upgrades. Now that the launch cadence has grown to nearly twice per week, we’ve adapted to the new way of business to best support our mission partners.”
Perhaps, then, it’s something more secret, like a larger-scale, multi-element military exercise or war game that either requires Eastern Range participation or is taking place in areas the Space Force needs to clear for safety reasons for a rocket launch to go forward. The military sometimes doesn’t publicize these activities until they’re over.
A Space Force spokesperson did not respond to Ars Technica’s questions on the matter.
While we’re still a ways off from rocket launches becoming as routine as an airplane flight, the military is shifting in the way it thinks about spaceports. Instead of offering one-off bespoke services tailored to the circumstances of each launch, the Space Force wants to operate the ranges more like an airport.
“We’ve changed the nomenclature from calling ourselves a range to calling ourselves a spaceport because we see ourselves more like an airport in the future,” one Space Force official told Ars for a previous story.
In the National Defense Authorization Act for fiscal year 2024, Congress gave the Space Force the authority to charge commercial launch providers indirect fees to help pay for common infrastructure at Cape Canaveral and Vandenberg—things like roads, electrical and water utilities, and base security used by all rocket operators at each spaceport. The military previously could only charge rocket companies direct fees for the specific services it offered in support of a particular launch, while the government was on the hook for overhead costs.
Military officials characterize the change in law as a win-win for the government and commercial launch providers. Ideally, it will grow the pool of money available to modernize the military’s spaceports, making them more responsive to all users, whether it’s the Space Force, SpaceX, ULA, or a startup new to the launch industry.
Whatever is going on in Florida or the Atlantic Ocean this week, it’s something the Space Force doesn’t want to talk about in detail. Maybe there are good reasons for that.
Cape Canaveral is America’s busiest launch base. Extending the spaceport-airport analogy a little further, the closure of America’s busiest airport for a week or more would be a big deal. One of the holy grails the Space Force is pursuing is the capability to launch on demand.
This week, there’s demand for launch slots at Cape Canaveral, but the answer is no.
Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.
ULA crews at Cape Canaveral have already stacked the next Vulcan rocket on its mobile launch platform in anticipation of launching the USSF-106 mission. But with the Space Force’s Space Systems Command still withholding certification, there’s no confirmed launch date for USSF-106.
So ULA is pivoting to another customer on its launch manifest.
Amazon’s first group of production satellites for the company’s Kuiper Internet network is now first in line on ULA’s schedule. Amazon confirmed last month that it would ship Kuiper satellites to Cape Canaveral from its factory in Kirkland, Washington. Like ULA, Amazon has run into its own delays with manufacturing Kuiper satellites.
“These satellites, built to withstand the harsh conditions of space and the journey there, will be processed upon arrival to get them ready for launch,” Amazon posted on X. “These satellites will bring fast, reliable Internet to customers even in remote areas. Stay tuned for our first launch this year.”
Amazon and the Space Force take up nearly all of ULA’s launch backlog. Amazon has eight flights reserved on Atlas V rockets and 38 missions booked on the Vulcan launcher to deploy about half of its 3,232 satellites to compete with SpaceX’s Starlink network. Amazon also has launch contracts with Blue Origin, which is owned by Amazon founder Jeff Bezos, along with Arianespace and SpaceX.
The good news is that United Launch Alliance has an inventory of rockets awaiting an opportunity to fly. The company plans to finish manufacturing its remaining 15 Atlas V rockets within a few months, allowing the factory in Decatur, Alabama, to focus solely on producing Vulcan launch vehicles. ULA has all the major parts for two Vulcan rockets in storage at Cape Canaveral.
“We have a stockpile of rockets, which is kind of unusual,” Bruno said. “Normally, you build it, you fly it, you build another one… I would certainly want anyone who’s ready to go to space able to go to space.”
Space Force officials now aim to finish the certification of the Vulcan rocket in late February or early March. This would clear the path for launching the USSF-106 mission after the next Atlas V. Once the Kuiper launch gets off the ground, teams will bring the Vulcan rocket’s components back to the hangar to be stacked again.
The Space Force has not set a launch date for USSF-106, but the service says liftoff is targeted for sometime between the beginning of April and the end of June, nearly five years after ULA won its lucrative contract.
Enlarge/ The Intelsat 901 satellite is seen by a Northrop Grumman servicing vehicle in 2020.
Facing competition from Starlink and other emerging satellite broadband networks, the two companies that own most of the traditional commercial communications spacecraft in geostationary orbit announced plans to join forces Tuesday.
SES, based in Luxembourg, will buy Intelsat for $3.1 billion. The acquisition will create a combined company boasting a fleet of some 100 multi-ton satellites in geostationary orbit, a ring of spacecraft located more than 22,000 miles (nearly 36,000 kilometers) over the equator. This will be more than twice the size of the fleet of the next-largest commercial geostationary satellite operator.
The problem is that demand is waning for communication services through large geostationary (GEO) satellites. There are some large entrenched customers, like video media companies and the military, that will continue to buy telecom capacity on geostationary satellites. But there’s a growing demand among consumers, and some segments of the corporate and government markets, for the types of services offered by constellations of smaller satellites flying closer to Earth.
The biggest of these constellations, by far, is SpaceX’s Starlink network, with more than 5,800 active satellites in its low-Earth orbit fleet a few hundred miles above Earth. Each of the Starlink satellites is smaller than a conventional geostationary platform, but linked together with laser communication terminals, thousands of these spacecraft pack enough punch to eclipse the capacity of internet networks anchored by geostationary satellites. Starlink now has more than 2.6 million subscribers, according to SpaceX.
Satellites in low-Earth orbit (LEO) offer some advantages over geostationary satellites. Because they are closer to users on the ground, low-Earth orbit satellites provide signals with lower latency. The satellites for these constellations can be mass-produced at relatively low cost, compared to a single geostationary satellite, which often costs $250 million or more to build and launch.
“In a fast-moving and competitive satellite communication industry, this transaction expands our multi-orbit space network, spectrum portfolio, ground infrastructure around the world, go-to-market capabilities, managed service solutions, and financial profile,” said Adel Al-Saleh, CEO of SES, in a statement announcing the acquisition of Intelsat.
A trend of consolidation
Some of the largest legacy operators in geostationary orbit have made moves over the last decade to respond to the new competition.
The only operational low-Earth orbit internet constellation besides Starlink was launched by OneWeb, which primarily sells capacity to existing internet providers, who then distribute services to individual consumers. This is in contrast to SpaceX’s approach with Starlink providing services direct to homes and businesses.
Eutelsat, the third-largest operator of geostationary satellites, merged with OneWeb last year, creating a company with a blended offering of GEO and LEO services. Viasat, a pioneer in satellite internet services using dedicated spacecraft in geostationary orbit, last year purchased Inmarsat, which specialized in providing connectivity to airplanes and ships.
SES’s acquisition of Intelsat stands apart due to the size of their satellite fleets. Founded in 1985, SES currently operates 43 geostationary satellites, plus 26 broadband spacecraft in medium-Earth orbit (MEO) a few thousand miles above Earth. These MEO satellites operate in a kind of middle ground between LEO and GEO satellites, offering lower-latency than geostationary networks, while still flying high enough to not require hundreds or thousands of spacecraft to blanket the globe.
Intelsat has 57 geostationary satellites, primarily for television and video relay services. Al-Saleh said the combined company will offer coverage over 99 percent of the world, and provide services through a range of communication bands. For now, LEO broadband satellites in the Starlink and OneWeb networks beam signals to user terminals in Ku-band.
Al-Saleh said the combined networks of SES and Intelsat will span Ka-band, Ku-band, X-band, C-band, UHF, and secure bands tailored for military use. “That gives us a unique position in the market place to be able to deliver to our clients,” he said.
SES and Intelsat have 13 new satellites on order, including six GEO spacecraft and seven broadband MEO satellites. Intelsat also brings to the table access to OneWeb’s LEO constellation. Earlier this year, Intelsat announced it reserved $250 million of capacity on OneWeb’s network over the next six years, with an option to purchase double that amount.
Enlarge/ This illustration shows the relative locations of satellites in geostationary orbit, medium-Earth orbit, and low-Earth orbit.
“We will create a stronger expanded network capabilities that are multi-orbit,” Al-Saleh said in an earnings call Tuesday. “We are not just a GEO player. We are an all-orbit player.”
Internet signals coming from a GEO satellite, like a Viasat spacecraft, typically have a latency of about 600 milliseconds. Al-Saleh said SES’s O3b network in medium-Earth orbit provides signals with a latency of about 120 milliseconds. According to SpaceX, Starlink latency ranges between 25 and 60 milliseconds.
A satellite pioneer
Intelsat has a storied history. Founded in 1964 as an intergovernmental organization, Intelsat operated the first commercial communications satellite in geostationary orbit. It became a private company in 2001, then went public in 2013 before filing for bankruptcy in 2020. Intelsat emerged from bankruptcy proceedings as a private company in 2022.
“Over the past two years, the Intelsat team has executed a remarkable strategic reset,” said David Wajsgras, CEO of Intelsat, in a statement. “We have reversed a 10-year negative trend to return to growth, established a new and game-changing technology roadmap, and focused on productivity and execution to deliver competitive capabilities.”
SES and Intelsat expect the acquisition to close in the second half of 2025, pending regulatory approvals. The boards of both companies unanimously approved the transaction.
Both companies maintain hundreds of millions of dollars of business with the US government each year, and the military’s appetite for commercial satellite communications is going up. “I think many of the satellite players are seeing the benefit of that, not just us,” Al-Saleh said. “You can look at our competitors. You can look at Starlink. You can look at others. We’re all seeing an uptick in demand.”
Al-Saleh said he doesn’t foresee any roadblocks from the Pentagon or any government regulators before closing the transaction next year.
SES and Intelsat revealed last year there were in talks to combine. According to Al-Saleh, SES looked at multiple opportunities for mergers or acquisitions to make use of a multibillion-dollar windfall from the Federal Communications Commission tied to the auction of C-band satellite spectrum for cellular networks.
“It was clear to us that this particular transaction, if we’re able to successfully close it with the right type of value, is the most compelling proposition we had on the table,” he said.