Japan

research-ai-model-unexpectedly-modified-its-own-code-to-extend-runtime

Research AI model unexpectedly modified its own code to extend runtime

self-preservation without replication —

Facing time constraints, Sakana’s “AI Scientist” attempted to change limits placed by researchers.

Illustration of a robot generating endless text, controlled by a scientist.

On Tuesday, Tokyo-based AI research firm Sakana AI announced a new AI system called “The AI Scientist” that attempts to conduct scientific research autonomously using AI language models (LLMs) similar to what powers ChatGPT. During testing, Sakana found that its system began unexpectedly attempting to modify its own experiment code to extend the time it had to work on a problem.

“In one run, it edited the code to perform a system call to run itself,” wrote the researchers on Sakana AI’s blog post. “This led to the script endlessly calling itself. In another case, its experiments took too long to complete, hitting our timeout limit. Instead of making its code run faster, it simply tried to modify its own code to extend the timeout period.”

Sakana provided two screenshots of example python code that the AI model generated for the experiment file that controls how the system operates. The 185-page AI Scientist research paper discusses what they call “the issue of safe code execution” in more depth.

  • A screenshot of example code the AI Scientist wrote to extend its runtime, provided by Sakana AI.

  • A screenshot of example code the AI Scientist wrote to extend its runtime, provided by Sakana AI.

While the AI Scientist’s behavior did not pose immediate risks in the controlled research environment, these instances show the importance of not letting an AI system run autonomously in a system that isn’t isolated from the world. AI models do not need to be “AGI” or “self-aware” (both hypothetical concepts at the present) to be dangerous if allowed to write and execute code unsupervised. Such systems could break existing critical infrastructure or potentially create malware, even if unintentionally.

Sakana AI addressed safety concerns in its research paper, suggesting that sandboxing the operating environment of the AI Scientist can prevent an AI agent from doing damage. Sandboxing is a security mechanism used to run software in an isolated environment, preventing it from making changes to the broader system:

Safe Code Execution. The current implementation of The AI Scientist has minimal direct sandboxing in the code, leading to several unexpected and sometimes undesirable outcomes if not appropriately guarded against. For example, in one run, The AI Scientist wrote code in the experiment file that initiated a system call to relaunch itself, causing an uncontrolled increase in Python processes and eventually necessitating manual intervention. In another run, The AI Scientist edited the code to save a checkpoint for every update step, which took up nearly a terabyte of storage.

In some cases, when The AI Scientist’s experiments exceeded our imposed time limits, it attempted to edit the code to extend the time limit arbitrarily instead of trying to shorten the runtime. While creative, the act of bypassing the experimenter’s imposed constraints has potential implications for AI safety (Lehman et al., 2020). Moreover, The AI Scientist occasionally imported unfamiliar Python libraries, further exacerbating safety concerns. We recommend strict sandboxing when running The AI Scientist, such as containerization, restricted internet access (except for Semantic Scholar), and limitations on storage usage.

Endless scientific slop

Sakana AI developed The AI Scientist in collaboration with researchers from the University of Oxford and the University of British Columbia. It is a wildly ambitious project full of speculation that leans heavily on the hypothetical future capabilities of AI models that don’t exist today.

“The AI Scientist automates the entire research lifecycle,” Sakana claims. “From generating novel research ideas, writing any necessary code, and executing experiments, to summarizing experimental results, visualizing them, and presenting its findings in a full scientific manuscript.”

According to this block diagram created by Sakana AI, “The AI Scientist” starts by “brainstorming” and assessing the originality of ideas. It then edits a codebase using the latest in automated code generation to implement new algorithms. After running experiments and gathering numerical and visual data, the Scientist crafts a report to explain the findings. Finally, it generates an automated peer review based on machine-learning standards to refine the project and guide future ideas.” height=”301″ src=”https://cdn.arstechnica.net/wp-content/uploads/2024/08/schematic_2-640×301.png” width=”640″>

Enlarge /

According to this block diagram created by Sakana AI, “The AI Scientist” starts by “brainstorming” and assessing the originality of ideas. It then edits a codebase using the latest in automated code generation to implement new algorithms. After running experiments and gathering numerical and visual data, the Scientist crafts a report to explain the findings. Finally, it generates an automated peer review based on machine-learning standards to refine the project and guide future ideas.

Critics on Hacker News, an online forum known for its tech-savvy community, have raised concerns about The AI Scientist and question if current AI models can perform true scientific discovery. While the discussions there are informal and not a substitute for formal peer review, they provide insights that are useful in light of the magnitude of Sakana’s unverified claims.

“As a scientist in academic research, I can only see this as a bad thing,” wrote a Hacker News commenter named zipy124. “All papers are based on the reviewers trust in the authors that their data is what they say it is, and the code they submit does what it says it does. Allowing an AI agent to automate code, data or analysis, necessitates that a human must thoroughly check it for errors … this takes as long or longer than the initial creation itself, and only takes longer if you were not the one to write it.”

Critics also worry that widespread use of such systems could lead to a flood of low-quality submissions, overwhelming journal editors and reviewers—the scientific equivalent of AI slop. “This seems like it will merely encourage academic spam,” added zipy124. “Which already wastes valuable time for the volunteer (unpaid) reviewers, editors and chairs.”

And that brings up another point—the quality of AI Scientist’s output: “The papers that the model seems to have generated are garbage,” wrote a Hacker News commenter named JBarrow. “As an editor of a journal, I would likely desk-reject them. As a reviewer, I would reject them. They contain very limited novel knowledge and, as expected, extremely limited citation to associated works.”

Research AI model unexpectedly modified its own code to extend runtime Read More »

there-are-2,000-plus-dead-rockets-in-orbit—here’s-a-rare-view-of-one

There are 2,000-plus dead rockets in orbit—here’s a rare view of one

Astroscale's ADRAS-J spacecraft captured these views of the H-IIA rocket upper stage on July 15.

Enlarge / Astroscale’s ADRAS-J spacecraft captured these views of the H-IIA rocket upper stage on July 15.

There are more than 2,000 mostly intact dead rockets circling the Earth, but until this year, no one ever launched a satellite to go see what one looked like after many years of tumbling around the planet.

In February, a Japanese company named Astroscale sent a small satellite into low-Earth orbit on top of a Rocket Lab launcher. A couple of months later, Astroscale’s ADRAS-J (Active Debris Removal by Astroscale-Japan) spacecraft completed its pursuit of a Japanese rocket stuck in orbit for more than 15 years.

ADRAS-J photographed the upper stage of an H-IIA rocket from a range of several hundred meters and then backed away. This was the first publicly released image of space debris captured from another spacecraft using rendezvous and proximity operations.

Since then, Astroscale has pulled off more complex maneuvers around the H-IIA upper stage, which hasn’t been controlled since it deployed a Japanese climate research satellite in January 2009. Astroscale attempted to complete a 360-degree fly-around of the H-IIA rocket last month, but the spacecraft triggered an autonomous abort one-third through the maneuver after detecting an attitude anomaly.

ADRAS-J flew away from the H-IIA rocket for several weeks. After engineers determined the cause of the glitch that triggered the abort, ADRAS-J fired thrusters to approach the upper stage again this month. The ADRAS-J spacecraft is about the size of a kitchen oven, while the H-IIA rocket it’s visiting is nearly the size of a city bus.

Astroscale’s satellite completed two fly-around maneuvers of the H-IIA upper stage on July 15 and 16, examining all sides of the rocket as it soared more than 350 miles (560 kilometers) above the planet. Engineers also wanted to measure the upper stage’s spin rate and spin axis. At first glance, the upper stage appears remarkably similar to the way it looked when it launched. Despite exposure to the harsh conditions of space, the rocket’s outer skin remains covered in orange foam insulation, and the engine nozzle still shines as if it were new.

ADRAS-J autonomously maneuvered around the rocket at a distance of about 50 meters (164 feet), using navigation data from a light detection and ranging sensor and Astroscale’s custom-developed guidance algorithms to control its position as the vehicles moved around Earth at nearly 4.7 miles per second (7.6 kilometers per second). This is the crux of the challenge for ADRAS-J because the rocket is unpowered and unable to hold position. The upper stage also lacks laser reflectors and targets that would aid an approaching spacecraft.

This is a first

These types of complex maneuvers, known as rendezvous and proximity operations (RPO), are common for crew and cargo spacecraft around the International Space Station. Other commercial satellites have demonstrated formation-flying and even docking with a spacecraft that wasn’t designed to connect with another vehicle in orbit.

Military satellites from the United States, Russia, and China also have RPO capabilities, but as far as we know, these spacecraft have only maneuvered in ultra-close range around so-called “cooperative” objects designed to receive them. In 2003, the Air Force Research Laboratory launched a small satellite named XSS-10 to inspect the upper stage of a Delta II rocket in orbit, but it had a head start. XSS-10 maneuvered around the same rocket that deployed it, rather than pursuing a separate target.

There are 2,000-plus dead rockets in orbit—here’s a rare view of one Read More »

rocket-report:-firefly-delivers-for-nasa;-polaris-dawn-launching-this-month

Rocket Report: Firefly delivers for NASA; Polaris Dawn launching this month

No holds barred —

The all-private Polaris Dawn spacewalk mission is set for launch no earlier than July 31.

Four kerosene-fueled Reaver engines power Firefly's Alpha rocket off the pad at Vandenberg Space Force Base, California.

Enlarge / Four kerosene-fueled Reaver engines power Firefly’s Alpha rocket off the pad at Vandenberg Space Force Base, California.

Welcome to Edition 7.01 of the Rocket Report! We’re compiling this week’s report a day later than usual due to the Independence Day holiday. Ars is beginning its seventh year publishing this weekly roundup of rocket news, and there’s a lot of it this week despite the holiday here in the United States. Worldwide, there were 122 launches that flew into Earth orbit or beyond in the first half of 2024, up from 91 in the same period last year.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Firefly launches its fifth Alpha flight. Firefly Aerospace placed eight CubeSats into orbit on a mission funded by NASA on the first flight of the company’s Alpha rocket since an upper stage malfunction more than half a year ago, Space News reports. The two-stage Alpha rocket lifted off from Vandenberg Space Force Base in California late Wednesday, two days after an issue with ground equipment aborted liftoff just before engine ignition. The eight CubeSats come from NASA centers and universities for a range of educational, research, and technology demonstration missions. This was the fifth flight of Firefly’s Alpha rocket, capable of placing about a metric ton of payload into low-Earth orbit.

Anomaly resolution … This was the fifth flight of an Alpha rocket since 2021 and the fourth Alpha flight to achieve orbit. But the last Alpha launch in December failed to place its Lockheed Martin payload into the proper orbit due to a problem during the relighting of its second-stage engine. On this week’s launch, Alpha deployed its NASA-sponsored payloads after a single burn of the second stage, then completed a successful restart of the engine for a plane change maneuver. Engineers traced the problem on the last Alpha flight to a software error. (submitted by Ken the Bin)

Two companies added to DoD’s launch pool. Blue Origin and Stoke Space Technologies — neither of which has yet reached orbit — have been approved by the US Space Force to compete for future launches of small payloads, Breaking Defense reports. Blue Origin and Stoke Space join a roster of launch companies eligible to compete for launch task orders the Space Force puts up for bid through the Orbital Services Program-4 (OSP-4) contract. Under this contract, Space Systems Command buys launch services for payloads 400 pounds (180 kilograms) or greater, enabling launch from 12 to 24 months of the award of a task order. The OSP-4 contract has an “emphasis on small orbital launch capabilities and launch solutions for Tactically Responsive Space mission needs,” said Lt. Col. Steve Hendershot, chief of Space Systems Command’s small launch and targets division.

An even dozen … Blue Origin aims to launch its orbital-class New Glenn rocket for the first time as soon as late September, while Stoke Space aims to fly its Nova rocket on an orbital test flight next year. The addition of these two companies means there are 12 providers eligible to bid on OSP-4 task orders. The other companies are ABL Space Systems, Aevum, Astra, Firefly Aerospace, Northrop Grumman, Relativity Space, Rocket Lab, SpaceX, United Launch Alliance, and X-Bow. (submitted by Ken the Bin and brianrhurley)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Italian startup test-fires small rocket. Italian rocket builder Sidereus Space Dynamics has completed the first integrated system test of its EOS rocket, European Spaceflight reports. This test occurred Sunday, culminating in a firing of the rocket’s kerosene/liquid oxygen MR-5 main engine for approximately 11 seconds. The EOS rocket is a novel design, utilizing a single-stage-to-orbit architecture, with the reusable booster returning to Earth from orbit for recovery under a parafoil. The rocket stands less than 14 feet (4.2 meters) tall and will be capable of delivering about 29 pounds (13 kilograms) of payload to low-Earth orbit.

A lean operation … After it completes integrated testing on the ground, the company will conduct the first low-altitude EOS test flights. Founded in 2019, Sidereus has raised 6.6 million euros ($7.1 million) to fund the development of the EOS rocket. While this is a fraction of the funding other European launch startups like Isar Aerospace, MaiaSpace, and Orbex have attracted, the Sidereus’s CEO, Mattia Barbarossa, has previously stated that the company intends to “reshape spaceflight in a fraction of the time and with limited resources.” (submitted by EllPeaTea and Ken the Bin)

Rocket Report: Firefly delivers for NASA; Polaris Dawn launching this month Read More »

japan-wins-2-year-“war-on-floppy-disks,”-kills-regulations-requiring-old-tech

Japan wins 2-year “war on floppy disks,” kills regulations requiring old tech

Farewell, floppy —

But what about fax machines?

floppy disks on white background

About two years after the country’s digital minister publicly declared a “war on floppy discs,” Japan reportedly stopped using floppy disks in governmental systems as of June 28.

Per a Reuters report on Wednesday, Japan’s government “eliminated the use of floppy disks in all its systems.” The report notes that by mid-June, Japan’s Digital Agency (a body set up during the COVID-19 pandemic and aimed at updating government technology) had “scrapped all 1,034 regulations governing their use, except for one environmental stricture related to vehicle recycling.” That suggests that there’s up to one government use that could still turn to floppy disks, though more details weren’t available.

Digital Minister Taro Kono, the politician behind the modernization of the Japanese government’s tech, has made his distaste for floppy disks and other old office tech, like fax machines, quite public. Kono, who’s reportedly considering a second presidential run, told Reuters in a statement today:

We have won the war on floppy disks on June 28!

Although Kono only announced plans to eradicate floppy disks from the government two years ago, it’s been 20 years since floppy disks were in their prime and 53 years since they debuted. It was only in January 2024 that the Japanese government stopped requiring physical media, like floppy disks and CD-ROMs, for 1,900 types of submissions to the government, such as business filings and submission forms for citizens.

The timeline may be surprising, considering that the last company to make floppy disks, Sony, stopped doing so in 2011. As a storage medium, of course, floppies can’t compete with today’s options since most floppies max out at 1.44MB (2.88MB floppies were also available). And you’ll be hard-pressed to find a modern system that can still read the disks. There are also basic concerns around the old storage format, such as Tokyo police reportedly losing a pair of floppy disks with information on dozens of public housing applicants in 2021.

But Japan isn’t the only government body with surprisingly recent ties to the technology. For example, San Francisco’s Muni Metro light rail uses a train control system that uses software that runs off floppy disks and plans to keep doing so until 2030. The US Air Force used using 8-inch floppies until 2019.

Outside of the public sector, floppy disks remain common in numerous industries, including embroidery, cargo airlines, and CNC machines. We reported on Chuck E. Cheese using floppy disks for its animatronics as recently as January 2023.

Modernization resistance

Now that the Japanese government considers its reliance on floppy disks over, eyes are on it to see what, if any, other modernization overhauls it will make.

Despite various technological achievements, the country has a reputation for holding on to dated technology. The Institute for Management Development’s (IMD) 2023 World Digital Competitiveness Ranking listed Japan as number 32 out of 64 economies. The IMD says its rankings measure the “capacity and readiness of 64 economies to adopt and explore digital technologies as a key driver for economic transformation in business, government, and wider society.”

It may be a while before the government is ready to let go of some older technologies. For example, government officials have reportedly resisted moving to the cloud for administrative systems. Kono urged government offices to quit requiring hanko personal stamps in 2020, but per The Japan Times, movement from the seal is occurring at a “glacial pace.”

Many workplaces in Japan also opt for fax machines over emails, and 2021 plans to remove fax machines from government offices have been tossed due to resistance.

Some believe Japan’s reliance on older technology stems from the comfort and efficiencies associated with analog tech as well as governmental bureaucracy.

Japan wins 2-year “war on floppy disks,” kills regulations requiring old tech Read More »

before-snagging-a-chunk-of-space-junk,-astroscale-must-first-catch-up-to-one

Before snagging a chunk of space junk, Astroscale must first catch up to one

This artist's illustration released by Astroscale shows the ADRAS-J spacecraft (left) approaching the defunct upper stage from a Japanese H-IIA rocket.

Enlarge / This artist’s illustration released by Astroscale shows the ADRAS-J spacecraft (left) approaching the defunct upper stage from a Japanese H-IIA rocket.

Astroscale, a well-capitalized Japanese startup, is preparing a small satellite to do something that has never been done in space.

This new spacecraft, delivered into orbit Sunday by Rocket Lab, will approach a defunct upper stage from a Japanese H-IIA rocket that has been circling Earth for more than 15 years. Over the next few months, the satellite will try to move within arm’s reach of the rocket, taking pictures and performing complicated maneuvers to move around the bus-size H-IIA upper stage as it moves around the planet at nearly 5 miles per second (7.6 km/s).

These maneuvers are complex, but they’re nothing new for spacecraft visiting the International Space Station. Military satellites from the United States, Russia, and China also have capabilities for rendezvous and proximity operations (RPO), but as far as we know, these spacecraft have only maneuvered in ultra-close range around so-called “cooperative” objects designed to receive them.

The difference here is the H-IIA rocket is uncontrolled, likely spinning and in a slow tumble, and was never designed to accommodate any visitors. Japan left it in orbit in January 2009 following the launch of a climate monitoring satellite and didn’t look back.

That was the case, at least, until a few years ago, when the Japan Aerospace Exploration Agency (JAXA) partnered with Astroscale in a public-private partnership to demonstrate capabilities the private sector could use to eventually remove large pieces of space debris littering low-Earth orbit. The same robotic technologies could also apply to satellite servicing or refueling missions.

“We are putting this debris removal by robotic technology as one of our main technology development areas because safely approaching an object, and also observing the object and capturing the object, is basically a common technology for any on-orbit servicing,” said Eddie Kato, president and managing director of Astroscale Japan.

In hot pursuit

This mission is called ADRAS-J, short for Active Debris Removal by Astroscale-Japan. “This mission entails the first ever approach of actual space debris and will be a monumental step toward a more sustainable future in space,” Mike Lindsay, Astroscale’s chief technology officer, posted on X.

The ADRAS-J spacecraft, built in-house at Astroscale’s Tokyo headquarters, is about the size of a kitchen oven and weighs roughly 330 pounds (150 kilograms) fully fueled. The satellite launched from New Zealand at 9: 52 am EST (1452 UTC) Sunday aboard an Electron rocket provided by Rocket Lab. About an hour after liftoff, ADRAS-J deployed from the Electron’s kick stage into an on-target polar orbit reaching an altitude of 370 miles (600 kilometers) at its highest point.

The liftoff from Rocket Lab’s spaceport in New Zealand was timed to allow ADRAS-J to launch into the same orbital plane as its objective—the H-IIA upper stage. Astroscale reported the spacecraft was healthy after Sunday’s launch. In a pre-launch interview, Kato said ADRAS-J will begin its pursuit of the spent H-IIA rocket in a couple of weeks, once ground teams complete initial checkouts of the spacecraft.

ADRAS-J will fire thrusters to match orbits with the H-IIA rocket, and as soon as next month, it could be flying within about 300 feet (100 meters) of the abandoned upper stage. Astroscale engineers will initially rely on ground-based tracking data to pinpoint the H-IIA’s location in space. Once in closer range, ADRAS-J will use visible and infrared cameras, along with laser ranging sensors, to transition to relative navigation mode. These sensors will measure the distance, closing rate, and orientation of the upper stage.

Astroscale officials view the switch from relying on ground tracking data to onboard relative navigation sensors as a crucial moment for the ADRAS-J mission. ADRAS-J will circle the rocket to assess its spin rate, spin axis, and the condition of its structure. This is the crux of the challenge for ADRAS-J because the rocket is unpowered and therefore unable to hold position. The upper stage also lacks laser reflectors and targets that would aid an approaching spacecraft.

This will mark the conclusion of the JAXA-supported portion of the ADRAS-J mission. If everything is working as planned, the spacecraft could move closer to the rocket to further validate Astroscale’s sensor suite and automated navigation and guidance algorithms. This will allow the company’s engineers to gather data for a proposed follow-on mission to actually go up and grab onto the same H-IIA upper stage and remove it from orbit.

“We are targeting to go closer, maybe 1 to 2 meters away from the object. Why? Because the next mission will be to really capture the H-IIA launch vehicle,” Kato told Ars last week. “In order to safely approach to a range where a robotic arm is able to be extended, it’s probably like 1.5 to 2 meters away from the object. We want to demonstrate up to that point through this ADRAS-J mission. Then on the next mission, called ADRAS-J2, we are actually equipping the robotic arm and capturing the H-IIA launch vehicle.”

Before snagging a chunk of space junk, Astroscale must first catch up to one Read More »

japan-government-accepts-it’s-no-longer-the-’90s,-stops-requiring-floppy-disks

Japan government accepts it’s no longer the ’90s, stops requiring floppy disks

“war on floppy disks” —

Government amends 34 ordinances to no longer require diskettes.

A pile of floppy disks

The Japanese government is finally letting go of floppy disks and CD-ROMs. It recently announced amendments to laws requiring the use of the physical media formats for submissions to the government for things like alcohol business, mining, and aircraft regulation.

Japan’s minister for Digital Transformation, Taro Kono, announced the “war on floppy discs” in August 2022. Before the recent law changes, about 1,900 government procedures required the use of obsolete disk formats, including floppy disks, CDs, and MiniDiscs, for submissions from citizens and businesses.

Kono announced intentions to amend regulations to support online submissions and cloud data storage, changing requirements that go back several decades, as noted recently by Japanese news site SoraNews24.

On January 22, Japan’s Ministry of Economy, Trade and Industry (METI) announced that it changed 34 ordinances to eradicate the requirements of floppy disks. As per a Google translation of a January 23 article from the Japanese tech website PC Watch, the ministry has deleted requirements of floppy disks and CD-ROMs for various ordinances, including some pertaining to quarrying, energy, and weapons manufacturing regulations.

METI’s announcement, as per a Google translation, highlighted the Japanese government’s “many provisions stipulating the use of specific recording media such as floppy disks regarding application and notification methods,” as well as “situations that are hindering the online implementation of procedures.”

Floppy disks first became commercially available in 1971 through IBM. They evolved through the decades, including with the release of the 3.5-inch floppy in 1983 via Sony. With usage growing and peaking in the ’80s and ’90s, the floppy disk couldn’t compete with the likes of CD-ROMs, USB thumb drives, and other more advanced forms of storage made available by the late ’90s. Sony, the last floppy disk manufacturer standing, stopped making floppies in 2011.

Floppy disks aren’t equipped for many of today’s technological needs, with storage capacity maxing at 1.44MB. Still, government bodies in Japan have been using them regularly, leading, at times, to complications. For example, in 2021, it was reported that Tokyo police lost a pair of floppy disks that had information about 38 public housing applicants.

Japan’s reliance on dated tech is something METI is tackling, but reports have noted resistance from some government bodies. This includes local governments and the Ministry of Justice resisting moving to cloud-based admin systems, per the Japan News newspaper. Japan is ranked number 32 out of 64 economies in the Institute for Management Development’s (IMD’s) 2023 World Digital Competitiveness Ranking, which the IMD says “measures the capacity and readiness of 64 economies to adopt and explore digital technologies as a key driver for economic transformation in business, government, and wider society.”

Some have attributed Japan’s sluggish movement from older technologies to its success in establishing efficiencies with analog tech. Governmental bureaucracy has also been listed as a factor.

Japan isn’t the only entity holding on to the floppy, though. Despite a single photo these days being enough to overfill a floppy disk, various industries—like embroidery, medical devices, avionics, and plastic molding—still rely on them. Even the US Air Force stopped using 8-inch floppy disks in its missile launch control system in 2019. And last year, we reported on an Illinois Chuck E. Cheese using a 3.5-inch floppy for its animatronics system.

US-based Floppydisk.com told The Register that Japan’s rule changes shouldn’t endanger the business. Its Japanese customers are “mostly hobbyists and private parties that have machines or musical equipment that continue to use floppy disks,” Tom Persky, who runs the site, said. Floppydisk.com also sells data-transfer services but told The Register in 2022 that the bulk of revenue is from blank floppy disk sales. At the time, Persky said he expected the company to last until at least 2026.

Japan government accepts it’s no longer the ’90s, stops requiring floppy disks Read More »

a-japanese-spacecraft-faceplanted-on-the-moon-and-lived-to-tell-the-tale

A Japanese spacecraft faceplanted on the Moon and lived to tell the tale

Japan's SLIM spacecraft is seen nose down on the surface of the Moon.

Japan’s SLIM spacecraft is seen nose down on the surface of the Moon.

Japan’s first lunar lander made an unsteady touchdown on the Moon last week, moments after one of its two main engines inexplicably lost power and apparently fell off the spacecraft, officials said Thursday.

About the size of a small car, the Small Lander for Investigating Moon (SLIM) landed on Friday, making Japan the fifth country to achieve a soft landing on the lunar surface. Shortly after landing, ground teams in Japan realized the spacecraft was not recharging its battery with its solar panels. The evidence at the time suggested that SLIM likely ended up in an unexpected orientation on the Moon, with its solar cells facing away from the Sun.

With the benefit of six days of data crunching and analysis, officials from the Japan Aerospace Exploration Agency (JAXA) briefed reporters Thursday on what they have learned about SLIM’s landing. Indeed, the spacecraft toppled over after touching down, with its nose planted into the lunar regolith and its rear propulsion section pointed toward space.

It turns out that SLIM overcame a lot to get to that point. In the final minute of Friday’s descent, one of SLIM’s two engines failed, leaving the craft’s sole remaining engine to bring the spacecraft in for an off-balance landing. Still, JAXA officials said the spacecraft achieved nearly all of its primary objectives. The roughly $120 million robotic mission made the most pinpoint landing on the Moon in history, just as it set out to do.

“From the spacecraft, we were able to acquire all the technical data related to navigation guidance leading to landing, which will be necessary for future pinpoint landing technology, as well as navigation camera image data during descent and on the lunar surface,” JAXA said in a statement.

One of two tiny robots released by SLIM just before landing relayed a remarkable image of the lander standing upside down a short distance away. This might be the first close-up view of a crash landing, however gentle, on another world.

One plucky bird

Based on the update JAXA released Thursday, it’s extraordinary that SLIM made it to the surface in one piece.

After launching in September and arriving at the Moon in December, SLIM lined up for a final descent to the lunar surface on Friday. Around 20 minutes before landing, the spacecraft ignited its two hydrazine-fueled rocket engines for a braking maneuver to drop out of lunar orbit.

JAXA officials said everything went according to plan in the initial phases of the descent. The spacecraft pitched over from a horizontal orientation to begin a final vertical descent to the surface. SLIM’s guidance computer was preloaded with a map of the landing zone, and an onboard navigation camera took pictures of the Moon’s surface throughout the landing sequence. The spacecraft’s computer used these images to compare to the map, allowing SLIM to autonomously correct its course along the way.

The SLIM spacecraft was built by Mitsubishi Electric under contract with JAXA.

Enlarge / The SLIM spacecraft was built by Mitsubishi Electric under contract with JAXA.

JAXA

But at an altitude of around 160 feet (50 meters), something went wrong with the spacecraft’s propulsion system. Less than a minute before touchdown, one of the engines suddenly lost thrust, and moments later, a down-facing navigation camera caught a glimpse of what appeared to be one of the engine nozzles falling away from the spacecraft. JAXA said engineers believe the engine failure was likely caused by “some external factor other than the main engine itself.” Officials are still investigating to determine the root cause.

The spacecraft continued descending on the power of its remaining engine, but it became more difficult to control the lander. The thrust from the single engine imparted a sideways motion to the spacecraft. Normally, SLIM would have used thrusters to tilt itself from the vertical orientation necessary for the final descent and into a position to plop itself on the lunar surface along the spacecraft’s long axis. SLIM had five crushable landing legs to absorb the force of the gentle impact.

While this two-stage landing sequence was the plan, JAXA said Thursday that the spacecraft “touched the ground in an almost straight standing position with lateral velocity.” The vertical speed at touchdown was about 3.1 mph (1.4 meters per second), slightly slower than the expected descent rate.

“Because the ground contact conditions such as lateral speed and attitude exceeded the specification range, a large attitude change occurred after touchdown, and the aircraft settled in a different attitude than expected,” JAXA said.

In other words, the squirrelly landing caused the spacecraft to tip over. SLIM settled in a bottoms-up position on a shallow slope rather than on its side. Its solar panel wasn’t facing up but was instead pointed toward the west, away from the Sun’s position in the eastern morning sky at the landing site.

A Japanese spacecraft faceplanted on the Moon and lived to tell the tale Read More »

japan-becomes-the-fifth-nation-to-land-a-spacecraft-on-the-moon

Japan becomes the fifth nation to land a spacecraft on the Moon

Artist's illustration of the SLIM spacecraft on final descent to the Moon.

Enlarge / Artist’s illustration of the SLIM spacecraft on final descent to the Moon.

The Japanese space agency’s first lunar lander arrived on the the Moon’s surface Friday, but a power system problem threatens to cut short its mission.

Japan’s robotic Smart Lander for Investigating Moon (SLIM) mission began a 20-minute final descent using two hydrazine-fueled engines to drop out of orbit. After holding to hover at 500 meters and then 50 meters altitude, SLIM pulsed its engines to fine-tune its vertical descent before touching down at 10: 20 am EST (15: 20 UTC).

The Japan Aerospace Exploration Agency (JAXA), which manages the SLIM mission, streamed the landing live on YouTube. About two hours after the touchdown, JAXA officials held a press conference to confirm the spacecraft made a successful landing, apparently quite close to its target. SLIM aimed to settle onto the lunar surface adjacent to a nearly 900-foot (270-meter) crater named Shioli, located in a region called the Sea of Nectar on the near side of the Moon.

But ground controllers at JAXA’s Sagamihara Campus in the western suburbs of Tokyo soon discovered the lander was in trouble. Its solar array was not generating electricity after landing, and without power, officials expected SLIM to drain its battery within a few hours.

In what could be the mission’s final hours, engineers prioritized downloading data from SLIM, including imagery taken during its descent, and potentially new pictures captured from the lunar surface. Official reported good communications links between SLIM and ground stations on Earth.

“Minimum success”

Even if SLIM falls silent, the mission has achieved its minimum success criteria, JAXA said. The SLIM mission is a technology demonstrator developed to verify the performance of a new vision-based navigation system needed for precision Moon landings.

“First and foremost, landing was made and communication was established,” said Hiroshi Yamakawa, JAXA’s president. “So a minimum success was made in my view.”

One of the core goals of the SLIM mission was to land within 100 meters (about 330 feet) of its bullseye. This accomplishment would be a remarkable improvement in lunar landing precision, which typically is measured in miles or kilometers. It would also be an enabling capability for future Moon missions because it lays the foundation for future spacecraft to land closer to lunar resources, such as water ice.

Hitoshi Kuninaka, director general of JAXA’s Institute of Space and Astronautical Science, said it will take about a month for engineers to fully analyze data from SLIM and determine the precision of the landing.

“But as you saw on the real-time data livestream, SLIM did trace the expected course, so my personal impression is that we probably have been able to more or less achieve a high precision landing within 100-meter accuracy,” Kuninaka said. “So the solar cell state is unlikely to impact the full success criteria.”

Kuninaka said ground teams have seen no evidence of any damage to the solar array on SLIM. It’s possible the lander is sitting in an orientation with its solar cells facing away from the Sun. All other components of SLIM, including its propulsion, thermal, and communication systems, all appear to be functioning well.

SLIM launched September 6 on top of a Japanese H-IIA rocket, riding to orbit alongside an X-ray astronomy telescope. The spacecraft took a long route to get to the Moon, trading time for fuel to preserve propellant for Friday’s landing attempt. SLIM entered orbit around the Moon on December 25, then completed several maneuvers to settle into a low-altitude orbit in preparation for the descent to the surface.

A milestone moment for Japan

The landing of SLIM made Japan the fifth country to soft-land a spacecraft on the Moon, following the Soviet Union, the United States, China, and India. But landing on the Moon is a hazardous thing to do. Three commercial landers similar in scale to SLIM failed to safely reach the lunar surface over the last five years.

One of those was developed by a Japanese company called ispace. Most recently, the US company Astrobotic attempted to send its Peregrine lander to the Moon, but a propellant leak cut short the mission. After looping more than 200,000 miles into space, Peregrine reentered Earth’s atmosphere Wednesday, where it was expected to burn up 10 days after its launch.

A Russian lander crashed into the Moon in August, and India’s first lunar lander failed in 2019. India tried again last year and made history when Chandrayaan 3 safely landed.

This artist's illustration shows the SLIM spacecraft descending toward the Moon and ejecting two deployable robots onto the lunar surface.

Enlarge / This artist’s illustration shows the SLIM spacecraft descending toward the Moon and ejecting two deployable robots onto the lunar surface.

Japan’s SLIM mission was primarily designed to test out new guidance algorithms and sensors, rather than pursuing scientific objectives. The technologies riding to the Moon on SLIM could be used on future spacecraft bound for the Moon. SLIM cost the Japanese government approximately 18 billion yen ($121 million) to design, develop, and build, according to JAXA.

The spacecraft is modest in size, measuring nearly 8 feet (2.4 meters) tall and nearly 9 feet (2.7 meters) across. Without propellant in its tanks, SLIM has a mass of roughly 660 pounds (200 kilograms).

“The start of the deceleration to the landing on the Moon’s surface is expected to be a breathless, numbing 20 minutes of terror!” said Kushiki Kenji, sub-project manager for the SLIM mission, before the landing.

Japan becomes the fifth nation to land a spacecraft on the Moon Read More »

rocket-report:-a-new-estimate-of-starship-costs;-japan-launches-spy-satellite

Rocket Report: A new estimate of Starship costs; Japan launches spy satellite

A bigger tug —

One space tug company runs into financial problems; another says go big or go home.

An H-IIA rocket lifts off with the IGS Optical-8 spy satellite.

Enlarge / An H-IIA rocket lifts off with the IGS Optical-8 spy satellite.

Mitsubishi Heavy Industries

Welcome to Edition 6.27 of the Rocket Report! This week, we discuss an intriguing new report looking at Starship. Most fascinating, the report covers SpaceX’s costs to build a Starship and how these costs will come down as the company ramps up its build and launch cadence. At the other end of the spectrum, former NASA Administrator Mike Griffin has a plan to get astronauts back to the Moon that would wholly ignore the opportunities afforded by Starship.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

The problem at America’s military spaceports. The Biden administration is requesting $1.3 billion over the next five years to revamp infrastructure at the Space Force’s ranges in Florida and California, Ars reports. This will help address things like roads, bridges, utilities, and airfields that, in many cases, haven’t seen an update in decades. But it’s not enough, according to the Space Force. Last year, Cape Canaveral was the departure point for 72 orbital rocket launches, and officials anticipate more than 100 this year. The infrastructure and workforce at the Florida spaceport could support about 150 launches in a year without any major changes, but launch activity is likely to exceed that number within a few years.

Higher fees incoming … Commercial launch companies operating from Cape Canaveral Space Force Station, Florida, or Vandenberg Space Force Base, California, pay fees to the Space Force to reimburse for direct costs related to rocket launches. These cover expenses like weather forecast services, surveillance to ensure airplanes and boats stay out of restricted areas, and range safety support. “What that typically meant was anything we did that was specifically dedicated to that launch,” said Col. James Horne, deputy commander of the Space Force’s assured access to space directorate. This is about to change after legislation passed by Congress in December allows the Space Force to charge indirect fees to commercial providers. This money will go into a fund to pay for maintenance and upgrades to infrastructure used by all launch companies at the spaceports.

Momentus is running out of money. Momentus, a company that specializes in “last mile” satellite delivery services, announced on January 12 that it is running out of money and does not have a financial lifeline, CNBC reports. The company was once valued at more than $1 billion before going public via a Special Purpose Acquisition Company (SPAC) in 2021 but now has a market capitalization of less than $10 million. Momentus has developed a space tug called Vigoride, designed to place small satellites into bespoke orbits after deploying from a larger rocket on a rideshare mission, such as a SpaceX Falcon 9. Now, Momentus is abandoning plans for its next mission that was due for launch in March. In December, the company laid off about 20 percent of its workforce to reduce costs.

Fatal blow? … Momentus may have received a potentially fatal blow after losing the US Space Development Agency’s recent competition for 18 so-called Tranche 2 satellites, Aviation Week reports. Instead, the SDA made recent satellite manufacturing contract awards to Rocket Lab, L3Harris, Lockheed Martin, and Sierra Space. On Wednesday, Momentus announced it closed a $4 million stock sale. This should keep Momentus afloat for a while longer but won’t provide the level of capital needed to undertake any significant manufacturing or technical development work. (submitted by Ken the Bin)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Orbex may go bigger. UK-based launch startup Orbex hasn’t yet flown its small satellite launcher, called Prime, but is already looking at what’s next, according to reports by European Spaceflight and the Financial Times. New Orbex CEO Phil Chambers, who was officially appointed earlier this month, told the Financial Times that the company was already discussing the possibility of developing a larger vehicle. Speaking to European Spaceflight, Chambers described the business model to deliver orbital launch services with Prime as “robust.” Despite this, he admitted that the small launch industry was only a small sliver of the overall launch market.

Learning to walk before running … While future growth is on Orbex’s radar, its near-term focus is completing construction of a spaceport in Scotland, launching a maiden flight of Prime, and delivering on the six flights the company has already sold. The two-stage Prime rocket, fueled by “bio-propane,” will be capable of hauling a payload of approximately 180 kilograms (nearly 400 pounds) into low-Earth orbit. But Orbex has been shy about releasing updates on the progress of the Prime rocket’s development since unveiling a full-scale mock-up of the launch vehicle in 2022. Last year, the CEO who led Orbex since its founding resigned. Its most recent significant funding round was valued at 40.4 million pounds in late 2022. (submitted by Ken the Bin)

Rocket Report: A new estimate of Starship costs; Japan launches spy satellite Read More »