Japan

trump-is-“desperate”-to-make-a-deal—china-isn’t,-analysts-say

Trump is “desperate” to make a deal—China isn’t, analysts say

Donald Trump has started signaling that he’s ready to slash tariffs on Chinese imports, but economists have warned that the US softening its stance now likely cedes power to China, which perhaps benefits from dragging out trade talks.

On Tuesday, Trump confirmed that he is willing to reduce 145 percent tariffs on all Chinese imports. A senior White House official told The Wall Street Journal that the tariffs may come “down to between roughly 50 percent and 65 percent.” Or perhaps the US may use a tiered approach, charging a 35 percent tax on goods that don’t threaten national security, while requiring 100 percent tariffs on imports “deemed as strategic to America’s interest,” other insiders told the WSJ.

For now, Trump is being vague, only confirming that tariffs “won’t be that high” or “anywhere near” 145 percent. Attempting to maintain a tough veneer, Trump warned that China must act quickly to make a deal to end the trade war or else risk making concessions that China may not consider ideal.

“If they don’t make a deal, we’ll set the deal,” he said.

But analysts told the South China Morning Post that Trump appears “anxious” and “panicked,” rushing to make a deal that China can afford to delay until more favorable terms are offered.

So far, Trump has not met with China’s president Xi Jinping, the WSJ reported, which will be essential to inking a deal. Instead, US officials have been in contact with underlings who have not helped advance the deal. Last week, Trump confirmed the deal was not “imminent,” the South China Morning Post reported, despite meeting a “number of times” to discuss opening up negotiations.

On Wednesday, while analysts suggested that Trump appeared “desperate” for a “quick deal,” China’s foreign ministry spokesperson, Guo Jiakun, warned that the only path to a deal required the US to “stop making threats and resorting to coercion.” According to Alicia Garcia-Herrero, chief economist for Asia-Pacific at Natixis, China is well-positioned to get a better deal.

“[Trump] needs a quick deal,” Garcia-Herrero told the South China Morning Post. “China does not need to offer anything big in such circumstances, because the US is so desperate for a deal. With a few billion in imports from the US, China might manage to lower the tariffs. The deal might be sweeter for China than in 2019.”

Trump is “desperate” to make a deal—China isn’t, analysts say Read More »

japanese-railway-shelter-replaced-in-less-than-6-hours-by-3d-printed-model

Japanese railway shelter replaced in less than 6 hours by 3D-printed model

Hatsushima is not a particularly busy station, relative to Japanese rail commuting as a whole. It serves a town (Arida) of about 25,000, known for mandarin oranges and scabbardfish, that is shrinking in population, like most of Japan. Its station sees between one to three trains per hour at its stop, helping about 530 riders find their way. Its wooden station was due for replacement, and the replacement could be smaller.

The replacement, it turned out, could also be a trial for industrial-scale 3D-printing of custom rail shelters. Serendix, a construction firm that previously 3D-printed 538-square-foot homes for about $38,000, built a shelter for Hatsushima in about seven days, as shown at The New York Times. The fabricated shelter was shipped in four parts by rail, then pieced together in a span that the site Futurism says is “just under three hours,” but which the Times, seemingly present at the scene, pegs at six. It was in place by the first train’s arrival at 5: 45 am.

Either number of hours is a marked decrease from the days or weeks you might expect for a new rail station to be constructed. In one overnight, teams assembled a shelter that is 2.6 meters (8.5 feet) tall and 10 square meters (32 square feet) in area. It’s not actually in use yet, as it needs ticket machines and finishing, but is expected to operate by July, according to the Japan Times.

Japanese railway shelter replaced in less than 6 hours by 3D-printed model Read More »

the-early-2000s-capacitor-plague-is-probably-not-just-a-stolen-recipe

The early 2000s capacitor plague is probably not just a stolen recipe

It’s a widely known problem with roots in urban legend: Devices with motherboards failing in the early 2000s with a sudden pop, a gruesome spill, or sometimes a burst of flames. And it was allegedly all due to one guy who didn’t copy a stolen formula correctly.

The “capacitor plague” of the early 2000s was real and fairly widespread among devices, even if the majority of those devices didn’t go bad at the same time or even in the same year. The story of this widespread failure, passing between industry insider stories and media reports, had a specific culprit, but also a broad narrative about the shift from Japanese to Taiwanese manufacturers and about outsourcing generally.

The Asianometry channel on YouTube recently dug into the “capacitor plague” in a video that asks, “What happened to the capacitors in 2002?” and comes to some informed, broad, and layered answers. It explains the specifics of what’s happening inside both a working capacitor and the faulty models, relays the reporting on the companies blamed and affected, and, crucially, puts the plague in the wider context of hotter chips, complex supply chains, counterfeits, and, sure, some industrial sabotage.

“We will never know what exactly happened, but let’s try,” the host says at the start. It is recommended you follow along.

“What Happened to the Capacitors in 2002?” by Asianometry.

Without replicating too much of the video and larger mythos, the basic story is that, according to various disputed timelines, electrolytic capacitors put into electronics between 1999 and 2003 or so failed in dire ways from 2002 through (perhaps) 2007. Boards and computers bought from Abit, HP, IBM, and, infamously, Dell, among others, suffered these faulty capacitors and were handled with recalls, repairs, or, sometimes, silence.

A finely balanced cocktail

The “Low equivalent series resistance,” or “low impedance” aluminum capacitors at issue, contained an electrolyte solution that, when doing its job, served as a cathode and kept the paper separating two files inside the rolled-up capacitor saturated. Because the electrolyte is roughly 70 percent water, and the capacitor could take on wider fluctuations of voltage, it became a cheap, popular component in many devices.

The early 2000s capacitor plague is probably not just a stolen recipe Read More »

kaizen:-a-factory-story-makes-a-game-of-perfecting-1980s-japanese-manufacturing

Kaizen: A Factory Story makes a game of perfecting 1980s Japanese manufacturing

Zach Barth, the namesake of game studio Zachtronics, tends to make a certain kind of game.

Besides crafting the free browser game Infiniminer, which inspired the entire global Minecraft industry, Barth and his collaborators made SpaceChem, Infinifactory, TIS-100, Shenzen I/O, Opus Magnum, and Exapunks. Each one of them is some combination of puzzle game, light capitalism horror, and the most memorable introductory-level computer science, chemistry, or logistics class into which you unwittingly enrolled. Each game is its own thing, but they have a certain similar brain feel between them. It is summed up perhaps best by the Zachtronics team itself in a book: Zach-Like.

Barth and his crew have made other kinds of games, including a forward-looking visual novel about AI, Eliza, and multiplayer card battler Nerts!. And Barth himself told PC Gamer that he hates “saying Zach-like.” But fans of refining inputs, ordering operations, and working their way past constraints will thrill to learn that Zach is, in fact, back.

Announcement trailer for Kaizen: A Factory Story.

Kaizen: A Factory Story, from developer Coincidence and comprising “the original Zachtronics team,” puts you, an American neophyte business type, in charge of a factory making toys, tiny electronics, and other goods during the Japanese economic boom of the 1980s. You arrange the spacing and order of operations of the mechanical arms that snap the head onto a robot toy, or the battery onto a Walkman, for as little time, power, and financial cost as possible.

Kaizen: A Factory Story makes a game of perfecting 1980s Japanese manufacturing Read More »

astroscale-aced-the-world’s-first-rendezvous-with-a-piece-of-space-junk

Astroscale aced the world’s first rendezvous with a piece of space junk

Astroscale’s US subsidiary won a $25.5 million contract from the US Space Force in 2023 to build a satellite refueler that can hop around geostationary orbit. Like the ADRAS-J mission, this project is a public-private partnership, with Astroscale committing $12 million of its own money. In January, the Japanese government selected Astroscale for a contract worth up to $80 million to demonstrate chemical refueling in low-Earth orbit.

The latest win for Astroscale came Thursday, when the Japanese Ministry of Defense awarded the company a contract to develop a prototype satellite that could fly in geostationary orbit and collect information on other objects in the domain for Japan’s military and intelligence agencies.

“We are very bullish on the prospects for defense-related business,” said Nobu Matsuyama, Astroscale’s chief financial officer.

Astroscale’s other projects include a life extension mission for an unidentified customer in geostationary orbit, providing a similar service as Northrop Grumman’s Mission Extension Vehicle (MEV).

So, can Astroscale really do all of this? In an era of a militarized final frontier, it’s easy to see the usefulness of sidling up next to a “non-cooperative” satellite—whether it’s to refuel it, repair it, de-orbit it, inspect it, or (gasp!) disable it. Astroscale’s demonstration with ADRAS-J showed it can safely operate near another object in space without navigation aids, which is foundational to any of these applications.

So far, governments are driving demand for this kind of work.

Astroscale raised nearly $400 million in venture capital funding before going public on the Tokyo Stock Exchange last June. After quickly spiking to nearly $1 billion, the company’s market valuation has dropped to about $540 million as of Thursday. Astroscale has around 590 full-time employees across all its operating locations.

Matsuyama said Astroscale’s total backlog is valued at about 38.9 billion yen, or $260 million. The company is still in a ramp-up phase, reporting operating losses on its balance sheet and steep research and development spending that Matsuyama said should max out this year.

“We are the only company that has proved RPO technology for non-cooperative objects, like debris, in space,” Okada said last month.

“In simple terms, this means approach and capture of objects,” Okada continued. “This capability did not exist before us, but one’s mastering of this technology enables you to provide not only debris removal service, but also orbit correction, refueling, inspection, observation, and eventually repair and reuse services.”

Astroscale aced the world’s first rendezvous with a piece of space junk Read More »

rocket-report:-another-hiccup-with-spacex-upper-stage;-japan’s-h3-starts-strong

Rocket Report: Another hiccup with SpaceX upper stage; Japan’s H3 starts strong


Vast’s schedule for deploying a mini-space station in low-Earth orbit was always ambitious.

A stack of 21 Starlink Internet satellites arrives in orbit Tuesday following launch on a Falcon 9 rocket. Credit: SpaceX

Welcome to Edition 7.30 of the Rocket Report! The US government relies on SpaceX for a lot of missions. These include launching national security satellites, putting astronauts on the Moon, and global broadband communications. But there are hurdles—technical and, increasingly, political—on the road ahead. To put it generously, Elon Musk, without whom much of what SpaceX does wouldn’t be possible, is one of the most divisive figures in American life today.

Now, a Democratic lawmaker in Congress has introduced a bill that would end federal contracts for special government employees (like Musk), citing conflict-of-interest concerns. The bill will go nowhere with Republicans in control of Congress, but it is enough to make me pause and think. When the Trump era passes and a new administration takes the White House, how will they view Musk? Will there be an appetite to reduce the government’s reliance on SpaceX? To answer this question, you must first ask if the government will even have a choice. What if, as is the case in many areas today, there’s no viable replacement for the services offered by SpaceX?

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Blue Origin flight focuses on lunar research. For the first time, Jeff Bezos’ Blue Origin space venture has put its New Shepard suborbital rocket ship through a couple of minutes’ worth of Moon-level gravity, GeekWire reports. The uncrewed mission, known as NS-29, sent 30 research payloads on a 10-minute trip from Blue Origin’s Launch Site One in West Texas. For this trip, the crew capsule was spun up to 11 revolutions per minute, as opposed to the typical half-revolution per minute. The resulting centrifugal force was equivalent to one-sixth of Earth’s gravity, which is what would be felt on the Moon.

Gee, that’s cool … The experiments aboard Blue Origin’s space capsule examined how to process lunar soil to extract resources and how to manufacture solar cells on the Moon for Blue Origin’s Blue Alchemist project. Another investigated how moondust gets electrically charged and levitated when exposed to ultraviolet light. These types of experiments in partial gravity can be done on parabolic airplane flights, but those only provide a few seconds of the right conditions to simulate the Moon’s gravity. (submitted by EllPeaTea)

Orbex announces two-launch deal with D-Orbit. UK-based rocket builder Orbex announced Monday that it has signed a two-launch deal with Italian in-orbit logistics provider D-Orbit, European Spaceflight reports. The deal includes capacity aboard two launches on Orbex’s Prime rocket over the next three years. D-Orbit aggregates small payloads on rideshare missions (primarily on SpaceX rockets so far) and has an orbital transfer vehicle for ferrying satellites to different altitudes after separation from a launch vehicle. Orbex’s Prime rocket is sized for the small satellite industry, and the company aims to debut it later this year.

Thanks to fresh funding? … Orbex has provided only sparse updates on its progress toward launching the Prime rocket. What we do know is that Orbex suspended plans to develop a spaceport in Scotland to focus its resources on the Prime rocket itself. Despite little evidence of any significant accomplishments, Orbex last month secured a $25 million investment from the UK government. The timing of the launch agreement with D-Orbit begs the question of whether the UK government’s backing helped seal the deal. As Andrew Parsonson of European Spaceflight writes: “Is this a clear indication of how important strong institutional backing is for the growth of privately developed launch systems in Europe?” (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Falcon 9’s upper stage misfires again. The second stage of a SpaceX Falcon 9 rocket remained in orbit following a launch Saturday from Vandenberg Space Force Base, California. The rocket successfully deployed a new batch of Starlink Internet satellites but was supposed to reignite its engine for a braking maneuver to head for a destructive reentry over the Pacific Ocean. While airspace warning notices from the FAA showed a reentry zone over the eastern Pacific Ocean, publicly available US military tracking continued to show the upper stage in orbit this week. Sources also told Ars that SpaceX delayed two Falcon 9 launches this week by a day to allow time for engineers to evaluate the problem.

3 in 6 months … This is the third time since last July that the Falcon 9’s upper stage has encountered a problem in flight. On one occasion, the upper stage failed to reach its targeted orbit, leading to the destruction of 20 Starlink satellites. Then, an upper stage misfired during a deorbit burn after an otherwise successful launch in September, causing debris to fall outside of the pre-approved danger area. After both events, the FAA briefly grounded the Falcon 9 rocket while SpaceX conducted an investigation. This time, an FAA spokesperson said the agency won’t require an investigation. “All flight events occurred within the scope of SpaceX’s licensed activities,” the spokesperson told Ars.

Vast tests hardware for commercial space station. Vast Space has started testing a qualification model of its first commercial space station but has pushed back the launch of that station into 2026, Space News reports. In an announcement Thursday, Vast said it completed a proof test of the primary structure of a test version of its Haven-1 space station habitat at a facility in Mojave, California. During the testing, Vast pumped up the pressure inside the structure to 1.8 times its normal level and conducted a leak test. “On the first try we passed that critical test,” Max Haot, chief executive of Vast, told Space News.

Not this year … It’s encouraging to see Vast making tangible progress in developing its commercial space station. The privately held company is one of several seeking to develop a commercial outpost in low-Earth orbit to replace the International Space Station after its scheduled retirement in 2030. NASA is providing funding to two industrial teams led by Blue Origin and Voyager Space, which are working on different space station concepts. But so far, Vast’s work has been funded primarily through private capital. The launch of the Haven-1 outpost, which Vast previously said could happen this year, is now scheduled no earlier than May 2026. The spacecraft will launch in one piece on a Falcon 9 rocket, and the first astronaut crew to visit Haven-1 could launch a month later. Haven-1 is a pathfinder for a larger commercial station called Haven-2, which Vast intends to propose to NASA. (submitted by EllPeaTea)

H3 deploys Japanese navigation satellite. Japan successfully launched a flagship H3 rocket Sunday and put into orbit a Quasi-Zenith Satellite (QZS), aiming to improve the accuracy of global positioning data for various applications, Kyodo News reports. After separation from the H3 rocket, the Michibiki 6 satellite will climb into geostationary orbit, where it will supplement navigation signals from GPS satellites to provide more accurate positioning data to users in Japan and surrounding regions, particularly in mountainous terrain and amid high-rise buildings in large cities. The new satellite joins a network of four QZS spacecraft launched by Japan beginning in 2010. Two more Quasi-Zenith Satellites are under construction, and Japan’s government is expected to begin development of an additional four regional navigation satellites this year.

A good start … After a failed inaugural flight in 2023, Japan’s new H3 rocket has reeled off four consecutive successful launches in less than a year. This may not sound like a lot, but the H3 has achieved its first four successful flights faster than any other rocket since 2000. SpaceX’s Falcon 9 rocket completed its first four successful flights in a little more than two years, and United Launch Alliance’s Atlas V logged its fourth flight in a similar timeframe. More than 14 months elapsed between the first and fourth successful flight of Rocket Lab’s Electron rocket. The H3 is an expendable rocket with no roadmap to reusability, so its service life and commercial potential are likely limited. But the rocket is shaping up to provide reliable access to space for Japan’s space agency and military, while some of its peers in Europe and the United States struggle to ramp up to a steady launch cadence. (submitted by EllPeaTea)

Europe really doesn’t like relying on Elon Musk. Europe’s space industry has struggled to keep up with SpaceX for a decade. The writing was on the wall when SpaceX landed a Falcon 9 booster for the first time. Now, European officials are wary of becoming too reliant on SpaceX, and there’s broad agreement on the continent that Europe should have the capability to launch its own satellites. In this way, access to space is a strategic imperative for Europe. The problem is, Europe’s new Ariane 6 rocket is just not competitive with SpaceX’s Falcon 9, and there’s no concrete plan to counter SpaceX’s dominance.

So here’s another terrible idea … Airbus, Europe’s largest aerospace contractor with a 50 percent stake in the Ariane 6 program, has enlisted Goldman Sachs for advice on how to forge a new European space and satellite company to better compete with SpaceX. France-based Thales and the Italian company Leonardo are part of the talks, with Bank of America also advising on the initiative. The idea that some bankers from Goldman and Bank of America will go into the guts of some of Europe’s largest institutional space companies and emerge with a lean, competitive entity seems far-fetched, to put it mildly, Ars reports.

The FAA still has some bite. We’re now three weeks removed from the most recent test flight of SpaceX’s Starship rocket, which ended with the failure of the vehicle’s upper stage in the final moments of its launch sequence. The accident rained debris over the Atlantic Ocean and the Turks and Caicos Islands. Unsurprisingly, the Federal Aviation Administration grounded Starship and ordered an investigation into the accident on the day after the launch. This decision came three days before the inauguration of President Donald Trump, who counts Musk as one of his top allies. So far, the FAA hasn’t budged on its requirement for an investigation, an agency spokesperson told Ars.

Debris field … In the hours and days after the failed Starship launch, residents and tourists in the Turks and Caicos shared images of debris scattered across the islands and washing up onshore. The good news is there were no injuries or reports of significant damage from the wreckage, but the FAA confirmed one report of minor damage to a vehicle located in South Caicos. It’s rare for debris from US rockets to fall over land during a launch. This would typically only happen if a launch failed at certain parts of the flight. Before now, there has been no public record of any claims of third-party property damage in the era of commercial spaceflight.

DOD eager to reap the benefits of Starship. A Defense Department unit is examining how SpaceX’s Starship vehicle could be used to support a broader architecture of in-space refueling, Space News reports. A senior adviser at the Defense Innovation Unit (DIU) said SpaceX approached the agency about how Starship’s refueling architecture could be used by the wider space industry. The plan for Starship is to transfer cryogenic propellants between tankers, depots, and ships heading to the Moon, Mars, or other deep-space destinations.

Few details available … US military officials have expressed interest in orbital refueling to support in-space mobility, where ground controllers have the freedom to maneuver national security satellites between different orbits without worrying about running out of propellant. For several years, Space Force commanders and Pentagon officials have touted the importance of in-space mobility, or dynamic space operations, in a new era of orbital warfare. However, there are reports that the Space Force has considered zeroing out a budget line item for space mobility in its upcoming fiscal year 2026 budget request.

A small step toward a fully reusable European rocket. The French space agency CNES has issued a call for proposals to develop a reusable upper stage for a heavy-lift rocket, European Spaceflight reports. This project is named DEMESURE (DEMonstration Étage SUpérieur REutilisable / Reusable Upper Stage Demonstration), and it marks one of Europe’s first steps in developing a fully reusable rocket. That’s all good, but there’s a sense of tentativeness in this announcement. The current call for proposals will only cover the earliest phases of development, such as a requirements evaluation, cost estimation review, and a feasibility meeting. A future call will deal with the design and fabrication of a “reduced scale” upper stage, followed by a demonstration phase with a test flight, recovery, and reuse of the vehicle. CNES’s vision is to field a fully reusable rocket as a successor to the single-use Ariane 6.

Toes in the water … If you’re looking for reasons to be skeptical about Project DEMESURE, look no further than the Themis program, which aims to demonstrate the recovery and reuse of a booster stage akin to SpaceX’s Falcon 9. Themis originated in a partnership between CNES and European industry in 2019, then ESA took over the project in 2020. Five years later, the Themis demonstrator still hasn’t flown. After some initial low-altitude hops, Themis is supposed to launch on a high-altitude test flight and maneuver through the entire flight profile of a reusable booster, from liftoff to a vertical propulsive landing. As we’ve seen with SpaceX, recovering an orbital-class upper stage is a lot harder than landing the booster. An optimistic view of this announcement is that anything worth doing requires taking a first step, and that’s what CNES has done here. (submitted by EllPeaTea)

Next three launches

Feb. 7: Falcon 9 | Starlink 12-9 | Cape Canaveral Space Force Station, Florida | 18: 52 UTC

Feb. 8: Electron | IoT 4 You and Me | Māhia Peninsula, New Zealand | 20: 43 UTC

Feb. 10: Falcon 9 | Starlink 11-10 | Vandenberg Space Force Base, California | 00: 03 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Another hiccup with SpaceX upper stage; Japan’s H3 starts strong Read More »

two-lunar-landers-are-on-the-way-to-the-moon-after-spacex’s-double-moonshot

Two lunar landers are on the way to the Moon after SpaceX’s double moonshot

Julianna Scheiman, director of NASA science missions for SpaceX, said it made sense to pair the Firefly and ispace missions on the same Falcon 9 rocket.

“When we have two missions that can each go to the Moon on the same launch, that is something that we obviously want to take advantage of,” Scheiman said. “So when we found a solution for the Firefly and ispace missions to fly together on the same Falcon 9, it was a no-brainer to put them together.”

SpaceX stacked the two landers, one on top of the other, inside the Falcon 9’s payload fairing. Firefly’s lander, the larger of the two spacecraft, rode on top of the stack and deployed from the rocket first. The Resilience lander from ispace launched in the lower position, cocooned inside a specially designed canister. Once Firefly’s lander separated from the Falcon 9, the rocket jettisoned the canister, performed a brief engine firing to maneuver into a slightly different orbit, then released ispace’s lander.

This dual launch arrangement resulted in a lower launch price for Firefly and ispace, according to Scheiman.

“At SpaceX, we are really interested in and invested in lowering the cost of launch for everybody,” she said. “So that’s something we’re really proud of.”

The Resilience lunar lander is pictured at ispace’s facility in Japan last year. The company’s small Tenacious rover is visible on the upper left part of the spacecraft. credit: ispace Credit: ispace

The Blue Ghost and Resilience landers will take different paths toward the Moon.

Firefly’s Blue Ghost will spend about 25 days in Earth orbit, then four days in transit to the Moon. After Blue Ghost enters lunar orbit, Firefly’s ground team will verify the readiness of the lander’s propulsion and navigation systems and execute several thruster burns to set up for landing.

Blue Ghost’s final descent to the Moon is tentatively scheduled for March 2. The target landing site is in Mare Crisium, an ancient 350-mile-wide (560-kilometer) impact basin in the northeast part of the near side of the Moon.

After touchdown, Blue Ghost will operate for about 14 days (one entire lunar day). The instruments aboard Firefly’s lander include a subsurface drill, an X-ray imager, and an experimental electrodynamic dust shield to test methods of repelling troublesome lunar dust from accumulating on sensitive spacecraft components.

The Resilience lander from ispace will take four to five months to reach the Moon. It carries several intriguing tech demo experiments, including a water electrolyzer provided by a Japanese company named Takasago Thermal Engineering. This demonstration will test equipment that future lunar missions could use to convert the Moon’s water ice resources into electricity and rocket fuel.

The lander will also deploy a “micro-rover” named Tenacious, developed by an ispace subsidiary in Luxembourg. The Tenacious rover will attempt to scoop up lunar soil and capture high-definition imagery of the Moon.

Ron Garan, CEO of ispace’s US-based subsidiary, told Ars that this mission is “pivotal” for the company.

“We were not fully successful on our first mission,” Garan said in an interview. “It was an amazing accomplishment, even though we didn’t have a soft landing… Although the hardware worked flawlessly, exactly as it was supposed to, we did have some lessons learned in the software department. The fixes to prevent what happened on the first mission from happening on the second mission were fairly straightforward, so that boosts our confidence.”

The ispace subsidiary led by Garan, a former NASA astronaut, is based in Colorado. While the Resilience lander launched Wednesday is not part of the CLPS program, the company will build an upgraded lander for a future CLPS mission for NASA, led by Draper Laboratory.

“I think the fact that we have two lunar landers on the same rocket for the first time in history is pretty substantial,” Garan said. I think we all are rooting for each other.”

Investors need to see more successes with commercial lunar landers to fully realize the market’s potential, Garan said.

“That market, right now, is very nascent. It’s very, very immature. And one of the reasons for that is that it’s very difficult for companies that are contemplating making investments on equipment, experiments, etc., to put on the lunar surface and lunar orbit,” Garan said. “It’s very difficult to make those investments, especially if they’re long-term investments, because there really hasn’t been a proof of concept yet.”

“So every time we have a success, that makes it more likely that these companies that will serve as the foundation of a commercial lunar market movement will be able to make those investments,” Garan said. “Conversely, every time we have a failure, the opposite happens.”

Two lunar landers are on the way to the Moon after SpaceX’s double moonshot Read More »

research-ai-model-unexpectedly-modified-its-own-code-to-extend-runtime

Research AI model unexpectedly modified its own code to extend runtime

self-preservation without replication —

Facing time constraints, Sakana’s “AI Scientist” attempted to change limits placed by researchers.

Illustration of a robot generating endless text, controlled by a scientist.

On Tuesday, Tokyo-based AI research firm Sakana AI announced a new AI system called “The AI Scientist” that attempts to conduct scientific research autonomously using AI language models (LLMs) similar to what powers ChatGPT. During testing, Sakana found that its system began unexpectedly attempting to modify its own experiment code to extend the time it had to work on a problem.

“In one run, it edited the code to perform a system call to run itself,” wrote the researchers on Sakana AI’s blog post. “This led to the script endlessly calling itself. In another case, its experiments took too long to complete, hitting our timeout limit. Instead of making its code run faster, it simply tried to modify its own code to extend the timeout period.”

Sakana provided two screenshots of example python code that the AI model generated for the experiment file that controls how the system operates. The 185-page AI Scientist research paper discusses what they call “the issue of safe code execution” in more depth.

  • A screenshot of example code the AI Scientist wrote to extend its runtime, provided by Sakana AI.

  • A screenshot of example code the AI Scientist wrote to extend its runtime, provided by Sakana AI.

While the AI Scientist’s behavior did not pose immediate risks in the controlled research environment, these instances show the importance of not letting an AI system run autonomously in a system that isn’t isolated from the world. AI models do not need to be “AGI” or “self-aware” (both hypothetical concepts at the present) to be dangerous if allowed to write and execute code unsupervised. Such systems could break existing critical infrastructure or potentially create malware, even if unintentionally.

Sakana AI addressed safety concerns in its research paper, suggesting that sandboxing the operating environment of the AI Scientist can prevent an AI agent from doing damage. Sandboxing is a security mechanism used to run software in an isolated environment, preventing it from making changes to the broader system:

Safe Code Execution. The current implementation of The AI Scientist has minimal direct sandboxing in the code, leading to several unexpected and sometimes undesirable outcomes if not appropriately guarded against. For example, in one run, The AI Scientist wrote code in the experiment file that initiated a system call to relaunch itself, causing an uncontrolled increase in Python processes and eventually necessitating manual intervention. In another run, The AI Scientist edited the code to save a checkpoint for every update step, which took up nearly a terabyte of storage.

In some cases, when The AI Scientist’s experiments exceeded our imposed time limits, it attempted to edit the code to extend the time limit arbitrarily instead of trying to shorten the runtime. While creative, the act of bypassing the experimenter’s imposed constraints has potential implications for AI safety (Lehman et al., 2020). Moreover, The AI Scientist occasionally imported unfamiliar Python libraries, further exacerbating safety concerns. We recommend strict sandboxing when running The AI Scientist, such as containerization, restricted internet access (except for Semantic Scholar), and limitations on storage usage.

Endless scientific slop

Sakana AI developed The AI Scientist in collaboration with researchers from the University of Oxford and the University of British Columbia. It is a wildly ambitious project full of speculation that leans heavily on the hypothetical future capabilities of AI models that don’t exist today.

“The AI Scientist automates the entire research lifecycle,” Sakana claims. “From generating novel research ideas, writing any necessary code, and executing experiments, to summarizing experimental results, visualizing them, and presenting its findings in a full scientific manuscript.”

According to this block diagram created by Sakana AI, “The AI Scientist” starts by “brainstorming” and assessing the originality of ideas. It then edits a codebase using the latest in automated code generation to implement new algorithms. After running experiments and gathering numerical and visual data, the Scientist crafts a report to explain the findings. Finally, it generates an automated peer review based on machine-learning standards to refine the project and guide future ideas.” height=”301″ src=”https://cdn.arstechnica.net/wp-content/uploads/2024/08/schematic_2-640×301.png” width=”640″>

Enlarge /

According to this block diagram created by Sakana AI, “The AI Scientist” starts by “brainstorming” and assessing the originality of ideas. It then edits a codebase using the latest in automated code generation to implement new algorithms. After running experiments and gathering numerical and visual data, the Scientist crafts a report to explain the findings. Finally, it generates an automated peer review based on machine-learning standards to refine the project and guide future ideas.

Critics on Hacker News, an online forum known for its tech-savvy community, have raised concerns about The AI Scientist and question if current AI models can perform true scientific discovery. While the discussions there are informal and not a substitute for formal peer review, they provide insights that are useful in light of the magnitude of Sakana’s unverified claims.

“As a scientist in academic research, I can only see this as a bad thing,” wrote a Hacker News commenter named zipy124. “All papers are based on the reviewers trust in the authors that their data is what they say it is, and the code they submit does what it says it does. Allowing an AI agent to automate code, data or analysis, necessitates that a human must thoroughly check it for errors … this takes as long or longer than the initial creation itself, and only takes longer if you were not the one to write it.”

Critics also worry that widespread use of such systems could lead to a flood of low-quality submissions, overwhelming journal editors and reviewers—the scientific equivalent of AI slop. “This seems like it will merely encourage academic spam,” added zipy124. “Which already wastes valuable time for the volunteer (unpaid) reviewers, editors and chairs.”

And that brings up another point—the quality of AI Scientist’s output: “The papers that the model seems to have generated are garbage,” wrote a Hacker News commenter named JBarrow. “As an editor of a journal, I would likely desk-reject them. As a reviewer, I would reject them. They contain very limited novel knowledge and, as expected, extremely limited citation to associated works.”

Research AI model unexpectedly modified its own code to extend runtime Read More »

there-are-2,000-plus-dead-rockets-in-orbit—here’s-a-rare-view-of-one

There are 2,000-plus dead rockets in orbit—here’s a rare view of one

Astroscale's ADRAS-J spacecraft captured these views of the H-IIA rocket upper stage on July 15.

Enlarge / Astroscale’s ADRAS-J spacecraft captured these views of the H-IIA rocket upper stage on July 15.

There are more than 2,000 mostly intact dead rockets circling the Earth, but until this year, no one ever launched a satellite to go see what one looked like after many years of tumbling around the planet.

In February, a Japanese company named Astroscale sent a small satellite into low-Earth orbit on top of a Rocket Lab launcher. A couple of months later, Astroscale’s ADRAS-J (Active Debris Removal by Astroscale-Japan) spacecraft completed its pursuit of a Japanese rocket stuck in orbit for more than 15 years.

ADRAS-J photographed the upper stage of an H-IIA rocket from a range of several hundred meters and then backed away. This was the first publicly released image of space debris captured from another spacecraft using rendezvous and proximity operations.

Since then, Astroscale has pulled off more complex maneuvers around the H-IIA upper stage, which hasn’t been controlled since it deployed a Japanese climate research satellite in January 2009. Astroscale attempted to complete a 360-degree fly-around of the H-IIA rocket last month, but the spacecraft triggered an autonomous abort one-third through the maneuver after detecting an attitude anomaly.

ADRAS-J flew away from the H-IIA rocket for several weeks. After engineers determined the cause of the glitch that triggered the abort, ADRAS-J fired thrusters to approach the upper stage again this month. The ADRAS-J spacecraft is about the size of a kitchen oven, while the H-IIA rocket it’s visiting is nearly the size of a city bus.

Astroscale’s satellite completed two fly-around maneuvers of the H-IIA upper stage on July 15 and 16, examining all sides of the rocket as it soared more than 350 miles (560 kilometers) above the planet. Engineers also wanted to measure the upper stage’s spin rate and spin axis. At first glance, the upper stage appears remarkably similar to the way it looked when it launched. Despite exposure to the harsh conditions of space, the rocket’s outer skin remains covered in orange foam insulation, and the engine nozzle still shines as if it were new.

ADRAS-J autonomously maneuvered around the rocket at a distance of about 50 meters (164 feet), using navigation data from a light detection and ranging sensor and Astroscale’s custom-developed guidance algorithms to control its position as the vehicles moved around Earth at nearly 4.7 miles per second (7.6 kilometers per second). This is the crux of the challenge for ADRAS-J because the rocket is unpowered and unable to hold position. The upper stage also lacks laser reflectors and targets that would aid an approaching spacecraft.

This is a first

These types of complex maneuvers, known as rendezvous and proximity operations (RPO), are common for crew and cargo spacecraft around the International Space Station. Other commercial satellites have demonstrated formation-flying and even docking with a spacecraft that wasn’t designed to connect with another vehicle in orbit.

Military satellites from the United States, Russia, and China also have RPO capabilities, but as far as we know, these spacecraft have only maneuvered in ultra-close range around so-called “cooperative” objects designed to receive them. In 2003, the Air Force Research Laboratory launched a small satellite named XSS-10 to inspect the upper stage of a Delta II rocket in orbit, but it had a head start. XSS-10 maneuvered around the same rocket that deployed it, rather than pursuing a separate target.

There are 2,000-plus dead rockets in orbit—here’s a rare view of one Read More »

rocket-report:-firefly-delivers-for-nasa;-polaris-dawn-launching-this-month

Rocket Report: Firefly delivers for NASA; Polaris Dawn launching this month

No holds barred —

The all-private Polaris Dawn spacewalk mission is set for launch no earlier than July 31.

Four kerosene-fueled Reaver engines power Firefly's Alpha rocket off the pad at Vandenberg Space Force Base, California.

Enlarge / Four kerosene-fueled Reaver engines power Firefly’s Alpha rocket off the pad at Vandenberg Space Force Base, California.

Welcome to Edition 7.01 of the Rocket Report! We’re compiling this week’s report a day later than usual due to the Independence Day holiday. Ars is beginning its seventh year publishing this weekly roundup of rocket news, and there’s a lot of it this week despite the holiday here in the United States. Worldwide, there were 122 launches that flew into Earth orbit or beyond in the first half of 2024, up from 91 in the same period last year.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Firefly launches its fifth Alpha flight. Firefly Aerospace placed eight CubeSats into orbit on a mission funded by NASA on the first flight of the company’s Alpha rocket since an upper stage malfunction more than half a year ago, Space News reports. The two-stage Alpha rocket lifted off from Vandenberg Space Force Base in California late Wednesday, two days after an issue with ground equipment aborted liftoff just before engine ignition. The eight CubeSats come from NASA centers and universities for a range of educational, research, and technology demonstration missions. This was the fifth flight of Firefly’s Alpha rocket, capable of placing about a metric ton of payload into low-Earth orbit.

Anomaly resolution … This was the fifth flight of an Alpha rocket since 2021 and the fourth Alpha flight to achieve orbit. But the last Alpha launch in December failed to place its Lockheed Martin payload into the proper orbit due to a problem during the relighting of its second-stage engine. On this week’s launch, Alpha deployed its NASA-sponsored payloads after a single burn of the second stage, then completed a successful restart of the engine for a plane change maneuver. Engineers traced the problem on the last Alpha flight to a software error. (submitted by Ken the Bin)

Two companies added to DoD’s launch pool. Blue Origin and Stoke Space Technologies — neither of which has yet reached orbit — have been approved by the US Space Force to compete for future launches of small payloads, Breaking Defense reports. Blue Origin and Stoke Space join a roster of launch companies eligible to compete for launch task orders the Space Force puts up for bid through the Orbital Services Program-4 (OSP-4) contract. Under this contract, Space Systems Command buys launch services for payloads 400 pounds (180 kilograms) or greater, enabling launch from 12 to 24 months of the award of a task order. The OSP-4 contract has an “emphasis on small orbital launch capabilities and launch solutions for Tactically Responsive Space mission needs,” said Lt. Col. Steve Hendershot, chief of Space Systems Command’s small launch and targets division.

An even dozen … Blue Origin aims to launch its orbital-class New Glenn rocket for the first time as soon as late September, while Stoke Space aims to fly its Nova rocket on an orbital test flight next year. The addition of these two companies means there are 12 providers eligible to bid on OSP-4 task orders. The other companies are ABL Space Systems, Aevum, Astra, Firefly Aerospace, Northrop Grumman, Relativity Space, Rocket Lab, SpaceX, United Launch Alliance, and X-Bow. (submitted by Ken the Bin and brianrhurley)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Italian startup test-fires small rocket. Italian rocket builder Sidereus Space Dynamics has completed the first integrated system test of its EOS rocket, European Spaceflight reports. This test occurred Sunday, culminating in a firing of the rocket’s kerosene/liquid oxygen MR-5 main engine for approximately 11 seconds. The EOS rocket is a novel design, utilizing a single-stage-to-orbit architecture, with the reusable booster returning to Earth from orbit for recovery under a parafoil. The rocket stands less than 14 feet (4.2 meters) tall and will be capable of delivering about 29 pounds (13 kilograms) of payload to low-Earth orbit.

A lean operation … After it completes integrated testing on the ground, the company will conduct the first low-altitude EOS test flights. Founded in 2019, Sidereus has raised 6.6 million euros ($7.1 million) to fund the development of the EOS rocket. While this is a fraction of the funding other European launch startups like Isar Aerospace, MaiaSpace, and Orbex have attracted, the Sidereus’s CEO, Mattia Barbarossa, has previously stated that the company intends to “reshape spaceflight in a fraction of the time and with limited resources.” (submitted by EllPeaTea and Ken the Bin)

Rocket Report: Firefly delivers for NASA; Polaris Dawn launching this month Read More »

japan-wins-2-year-“war-on-floppy-disks,”-kills-regulations-requiring-old-tech

Japan wins 2-year “war on floppy disks,” kills regulations requiring old tech

Farewell, floppy —

But what about fax machines?

floppy disks on white background

About two years after the country’s digital minister publicly declared a “war on floppy discs,” Japan reportedly stopped using floppy disks in governmental systems as of June 28.

Per a Reuters report on Wednesday, Japan’s government “eliminated the use of floppy disks in all its systems.” The report notes that by mid-June, Japan’s Digital Agency (a body set up during the COVID-19 pandemic and aimed at updating government technology) had “scrapped all 1,034 regulations governing their use, except for one environmental stricture related to vehicle recycling.” That suggests that there’s up to one government use that could still turn to floppy disks, though more details weren’t available.

Digital Minister Taro Kono, the politician behind the modernization of the Japanese government’s tech, has made his distaste for floppy disks and other old office tech, like fax machines, quite public. Kono, who’s reportedly considering a second presidential run, told Reuters in a statement today:

We have won the war on floppy disks on June 28!

Although Kono only announced plans to eradicate floppy disks from the government two years ago, it’s been 20 years since floppy disks were in their prime and 53 years since they debuted. It was only in January 2024 that the Japanese government stopped requiring physical media, like floppy disks and CD-ROMs, for 1,900 types of submissions to the government, such as business filings and submission forms for citizens.

The timeline may be surprising, considering that the last company to make floppy disks, Sony, stopped doing so in 2011. As a storage medium, of course, floppies can’t compete with today’s options since most floppies max out at 1.44MB (2.88MB floppies were also available). And you’ll be hard-pressed to find a modern system that can still read the disks. There are also basic concerns around the old storage format, such as Tokyo police reportedly losing a pair of floppy disks with information on dozens of public housing applicants in 2021.

But Japan isn’t the only government body with surprisingly recent ties to the technology. For example, San Francisco’s Muni Metro light rail uses a train control system that uses software that runs off floppy disks and plans to keep doing so until 2030. The US Air Force used using 8-inch floppies until 2019.

Outside of the public sector, floppy disks remain common in numerous industries, including embroidery, cargo airlines, and CNC machines. We reported on Chuck E. Cheese using floppy disks for its animatronics as recently as January 2023.

Modernization resistance

Now that the Japanese government considers its reliance on floppy disks over, eyes are on it to see what, if any, other modernization overhauls it will make.

Despite various technological achievements, the country has a reputation for holding on to dated technology. The Institute for Management Development’s (IMD) 2023 World Digital Competitiveness Ranking listed Japan as number 32 out of 64 economies. The IMD says its rankings measure the “capacity and readiness of 64 economies to adopt and explore digital technologies as a key driver for economic transformation in business, government, and wider society.”

It may be a while before the government is ready to let go of some older technologies. For example, government officials have reportedly resisted moving to the cloud for administrative systems. Kono urged government offices to quit requiring hanko personal stamps in 2020, but per The Japan Times, movement from the seal is occurring at a “glacial pace.”

Many workplaces in Japan also opt for fax machines over emails, and 2021 plans to remove fax machines from government offices have been tossed due to resistance.

Some believe Japan’s reliance on older technology stems from the comfort and efficiencies associated with analog tech as well as governmental bureaucracy.

Japan wins 2-year “war on floppy disks,” kills regulations requiring old tech Read More »

before-snagging-a-chunk-of-space-junk,-astroscale-must-first-catch-up-to-one

Before snagging a chunk of space junk, Astroscale must first catch up to one

This artist's illustration released by Astroscale shows the ADRAS-J spacecraft (left) approaching the defunct upper stage from a Japanese H-IIA rocket.

Enlarge / This artist’s illustration released by Astroscale shows the ADRAS-J spacecraft (left) approaching the defunct upper stage from a Japanese H-IIA rocket.

Astroscale, a well-capitalized Japanese startup, is preparing a small satellite to do something that has never been done in space.

This new spacecraft, delivered into orbit Sunday by Rocket Lab, will approach a defunct upper stage from a Japanese H-IIA rocket that has been circling Earth for more than 15 years. Over the next few months, the satellite will try to move within arm’s reach of the rocket, taking pictures and performing complicated maneuvers to move around the bus-size H-IIA upper stage as it moves around the planet at nearly 5 miles per second (7.6 km/s).

These maneuvers are complex, but they’re nothing new for spacecraft visiting the International Space Station. Military satellites from the United States, Russia, and China also have capabilities for rendezvous and proximity operations (RPO), but as far as we know, these spacecraft have only maneuvered in ultra-close range around so-called “cooperative” objects designed to receive them.

The difference here is the H-IIA rocket is uncontrolled, likely spinning and in a slow tumble, and was never designed to accommodate any visitors. Japan left it in orbit in January 2009 following the launch of a climate monitoring satellite and didn’t look back.

That was the case, at least, until a few years ago, when the Japan Aerospace Exploration Agency (JAXA) partnered with Astroscale in a public-private partnership to demonstrate capabilities the private sector could use to eventually remove large pieces of space debris littering low-Earth orbit. The same robotic technologies could also apply to satellite servicing or refueling missions.

“We are putting this debris removal by robotic technology as one of our main technology development areas because safely approaching an object, and also observing the object and capturing the object, is basically a common technology for any on-orbit servicing,” said Eddie Kato, president and managing director of Astroscale Japan.

In hot pursuit

This mission is called ADRAS-J, short for Active Debris Removal by Astroscale-Japan. “This mission entails the first ever approach of actual space debris and will be a monumental step toward a more sustainable future in space,” Mike Lindsay, Astroscale’s chief technology officer, posted on X.

The ADRAS-J spacecraft, built in-house at Astroscale’s Tokyo headquarters, is about the size of a kitchen oven and weighs roughly 330 pounds (150 kilograms) fully fueled. The satellite launched from New Zealand at 9: 52 am EST (1452 UTC) Sunday aboard an Electron rocket provided by Rocket Lab. About an hour after liftoff, ADRAS-J deployed from the Electron’s kick stage into an on-target polar orbit reaching an altitude of 370 miles (600 kilometers) at its highest point.

The liftoff from Rocket Lab’s spaceport in New Zealand was timed to allow ADRAS-J to launch into the same orbital plane as its objective—the H-IIA upper stage. Astroscale reported the spacecraft was healthy after Sunday’s launch. In a pre-launch interview, Kato said ADRAS-J will begin its pursuit of the spent H-IIA rocket in a couple of weeks, once ground teams complete initial checkouts of the spacecraft.

ADRAS-J will fire thrusters to match orbits with the H-IIA rocket, and as soon as next month, it could be flying within about 300 feet (100 meters) of the abandoned upper stage. Astroscale engineers will initially rely on ground-based tracking data to pinpoint the H-IIA’s location in space. Once in closer range, ADRAS-J will use visible and infrared cameras, along with laser ranging sensors, to transition to relative navigation mode. These sensors will measure the distance, closing rate, and orientation of the upper stage.

Astroscale officials view the switch from relying on ground tracking data to onboard relative navigation sensors as a crucial moment for the ADRAS-J mission. ADRAS-J will circle the rocket to assess its spin rate, spin axis, and the condition of its structure. This is the crux of the challenge for ADRAS-J because the rocket is unpowered and therefore unable to hold position. The upper stage also lacks laser reflectors and targets that would aid an approaching spacecraft.

This will mark the conclusion of the JAXA-supported portion of the ADRAS-J mission. If everything is working as planned, the spacecraft could move closer to the rocket to further validate Astroscale’s sensor suite and automated navigation and guidance algorithms. This will allow the company’s engineers to gather data for a proposed follow-on mission to actually go up and grab onto the same H-IIA upper stage and remove it from orbit.

“We are targeting to go closer, maybe 1 to 2 meters away from the object. Why? Because the next mission will be to really capture the H-IIA launch vehicle,” Kato told Ars last week. “In order to safely approach to a range where a robotic arm is able to be extended, it’s probably like 1.5 to 2 meters away from the object. We want to demonstrate up to that point through this ADRAS-J mission. Then on the next mission, called ADRAS-J2, we are actually equipping the robotic arm and capturing the H-IIA launch vehicle.”

Before snagging a chunk of space junk, Astroscale must first catch up to one Read More »