dragon

rocket-report:-australia-says-yes-to-the-launch;-russia-delivers-for-iran

Rocket Report: Australia says yes to the launch; Russia delivers for Iran


The world’s first wooden satellite arrived at the International Space Station this week.

A Falcon 9 booster fires its engines on SpaceX’s “tripod” test stand in McGregor, Texas. Credit: SpaceX

Welcome to Edition 7.19 of the Rocket Report! Okay, we get it. We received more submissions from our readers on Australia’s approval of a launch permit for Gilmour Space than we’ve received on any other news story in recent memory. Thank you for your submissions as global rocket activity continues apace. We’ll cover Gilmour in more detail as they get closer to launch. There will be no Rocket Report next week as Eric and I join the rest of the Ars team for our 2024 Technicon in New York.

As always, we welcome reader submissions. If you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets as well as a quick look ahead at the next three launches on the calendar.

Gilmour Space has a permit to fly. Gilmour Space Technologies has been granted a permit to launch its 82-foot-tall (25-meter) orbital rocket from a spaceport in Queensland, Australia. The space company, founded in 2012, had initially planned to lift off in March but was unable to do so without approval from the Australian Space Agency, the Australian Broadcasting Corporation reports. The government approved Gilmour’s launch permit Monday, although the company is still weeks away from flying its three-stage Eris rocket.

A first for Australia … Australia hosted a handful of satellite launches with US and British rockets from 1967 through 1971, but Gilmour’s Eris rocket would become the first all-Australian launch vehicle to reach orbit. The Eris rocket is capable of delivering about 670 pounds (305 kilograms) of payload mass into a Sun-synchronous orbit. Eris will be powered by hybrid rocket engines burning a solid fuel mixed with a liquid oxidizer, making it unique among orbital-class rockets. Gilmour completed a wet dress rehearsal, or practice countdown, with the Eris rocket on the launch pad in Queensland in September. The launch permit becomes active after 30 days, or the first week of December. “We do think we’ve got a good chance of launching at the end of the 30-day period, and we’re going to give it a red hot go,” said Adam Gilmour, the company’s co-founder and CEO. (submitted by Marzipan, mryall, ZygP, Ken the Bin, Spencer Willis, MarkW98, and EllPeaTea)

North Korea tests new missile. North Korea apparently completed a successful test of its most powerful intercontinental ballistic missile on October 31, lofting it nearly 4,800 miles (7,700 kilometers) into space before the projectile fell back to Earth, Ars reports. This solid-fueled, multi-stage missile, named the Hwasong-19, is a new tool in North Korea’s increasingly sophisticated arsenal of weapons. It has enough range—perhaps as much as 9,320 miles (15,000 kilometers), according to Japan’s government—to strike targets anywhere in the United States. It also happens to be one of the largest ICBMs in the world, rivaling the missiles fielded by the world’s more established nuclear powers.

Quid pro quo? … The Hwasong-19 missile test comes as North Korea deploys some 10,000 troops inside Russia to support the country’s war against Ukraine. The budding partnership between Russia and North Korea has evolved for several years. Russian President Vladimir Putin has met with North Korean leader Kim Jong Un on multiple occasions, most recently in Pyongyang in June. This has fueled speculation about what Russia is offering North Korea in exchange for the troops deployed on Russian soil. US and South Korean officials have some thoughts. They said North Korea is likely to ask for technology transfers in diverse areas related to tactical nuclear weapons, ICBMs, and reconnaissance satellites.

The easiest way to keep up with Eric Berger’s and Stephen Clark’s reporting on all things space is to sign up for our newsletter. We’ll collect their stories and deliver them straight to your inbox.

Sign Me Up!

Virgin Galactic is on the hunt for cash. Virgin Galactic is proposing to raise $300 million in additional capital to accelerate production of suborbital spaceplanes and a mothership aircraft the company says can fuel its long-term growth, Space News reports. The company, founded by billionaire Richard Branson, suspended operations of its VSS Unity suborbital spaceplane earlier this year. VSS Unity hit a monthly flight cadence carrying small groups of space tourists and researchers to the edge of space, but it just wasn’t profitable. Now, Virgin Galactic is developing larger Delta-class spaceplanes it says will be easier and cheaper to turn around between flights.

All-in with Delta … Michael Colglazier, Virgin Galactic’s CEO, announced the company’s appetite for fundraising in a quarterly earnings call with investment analysts Wednesday. He said manufacturing of components for Virgin Galactic’s first two Delta-class ships, which the company says it can fund with existing cash, is proceeding on schedule at a factory in Arizona. Virgin Galactic previously said it would use revenue from paying passengers on its first two Delta-class ships to pay for development of future vehicles. Instead, Virgin Galactic now says it wants to raise money to speed up work on the third and fourth Delta-class vehicles, along with a second airplane mothership to carry the spaceplanes aloft before they release and fire into space. (submitted by Ken the Bin and EllPeaTea)

ESA breaks its silence on Themis. The European Space Agency has provided a rare update on the progress of its Themis reusable booster demonstrator project, European Spaceflight reports. ESA is developing the Themis test vehicle for atmospheric flights to fine-tune technologies for a future European reusable rocket capable of vertical takeoffs and vertical landings. Themis started out as a project led by CNES, the French space agency, in 2018. ESA member states signed up to help fund the project in 2019, and the agency awarded ArianeGroup a contract to move forward with Themis in 2020. At the time, the first low-altitude hop test was expected to take place in 2022.

Some slow progress … Now, the first low-altitude hop is scheduled for 2025 from Esrange Space Centre in Sweden, a three-year delay. This week, ESA said engineers have completed testing of the Themis vehicle’s main systems, and assembly of the demonstrator is underway in France. A single methane-fueled Prometheus engine, also developed by ArianeGroup, has been installed on the rocket. Teams are currently adding avionics, computers, electrical systems, and cable harnesses. Themis’ stainless steel propellant tanks have been manufactured, tested, and cleaned and are now ready to be installed on the Themis demonstrator. Then, the rocket will travel by road from France to the test site in Sweden for its initial low-altitude hops. After those flights are complete, officials plan to add two more Prometheus engines to the rocket and ship it to French Guiana for high-altitude test flights. (submitted by Ken the Bin and EllPeaTea)

SpaceX will give the ISS a boost. A Cargo Dragon spacecraft docked to the International Space Station on Tuesday morning, less than a day after lifting off from Florida. As space missions go, this one is fairly routine, ferrying about 6,000 pounds (2,700 kilograms) of cargo and science experiments to the space station. One thing that’s different about this mission is that it delivered to the station a tiny 2 lb (900 g) satellite named LignoSat, the first spacecraft made of wood, for later release outside the research complex. There is one more characteristic of this flight that may prove significant for NASA and the future of the space station, Ars reports. As early as Friday, NASA and SpaceX have scheduled a “reboost and attitude control demonstration,” during which the Dragon spacecraft will use some of the thrusters at the base of the capsule. This is the first time the Dragon spacecraft will be used to move the space station.

Dragon’s breath … Dragon will fire a subset of its 16 Draco thrusters, each with about 90 pounds of thrust, for approximately 12.5 minutes to make a slight adjustment to the orbital trajectory of the roughly 450-ton space station. SpaceX and NASA engineers will analyze the results from the demonstration to determine if Dragon could be used for future space station reboost opportunities. The data will also inform the design of the US Deorbit Vehicle, which SpaceX is developing to perform the maneuvers required to bring the space station back to Earth for a controlled, destructive reentry in the early 2030s. For NASA, demonstrating Dragon’s ability to move the space station will be another step toward breaking free of reliance on Russia, which is currently responsible for providing propulsion to maneuver the orbiting outpost. Northrop Grumman’s Cygnus supply ship also previously demonstrated a reboost capability. (submitted by Ken the Bin and N35t0r)

Russia launches Soyuz in service of Iran. Russia launched a Soyuz rocket Monday carrying two satellites designed to monitor the space weather around Earth and 53 small satellites, including two Iranian ones, Reuters reports. The primary payloads aboard the Soyuz-2.1b rocket were two Ionosfera-M satellites to probe the ionosphere, an outer layer of the atmosphere near the edge of space. Solar activity can alter conditions in the ionosphere, impacting communications and navigation. The two Iranian satellites on this mission were named Kowsar and Hodhod. They will collect high-resolution reconnaissance imagery and support communications for Iran.

A distant third … This was only the 13th orbital launch by Russia this year, trailing far behind the United States and China. We know of two more Soyuz flights planned for later this month, but no more, barring a surprise military launch (which is possible). The projected launch rate puts Russia on pace for its quietest year of launch activity since 1961, the year Yuri Gagarin became the first person to fly in space. A major reason for this decline in launches is the decisions of Western governments and companies to move their payloads off of Russian rockets after the invasion of Ukraine. For example, OneWeb stopped launching on Soyuz in 2022, and the European Space Agency suspended its partnership with Russia to launch Soyuz rockets from French Guiana. (submitted by Ken the Bin)

H3 deploys Japanese national security satellite. Japan launched a defense satellite Monday aimed at speedier military operations and communication on an H3 rocket and successfully placed it into orbit, the Associated Press reports. The Kirameki 3 satellite will use high-speed X-band communication to support Japan’s defense ministry with information and data sharing, and command and control services. The satellite will serve Japanese land, air, and naval forces from its perch in geostationary orbit alongside two other Kirameki communications satellites.

Gaining trust … The H3 is Japan’s new flagship rocket, developed by Mitsubishi Heavy Industries (MHI) and funded by the Japan Aerospace Exploration Agency (JAXA). The launch of Kirameki 3 marked the third consecutive successful launch of the H3 rocket, following a debut flight in March 2023 that failed to reach orbit. This was the first time Japan’s defense ministry put one of its satellites on the H3 rocket. The first two Kirameki satellites launched on a European Ariane 5 and a Japanese H-IIA rocket, which the H3 will replace. (submitted by Ken the Bin, tsunam, and EllPeaTea)

Rocket Lab enters the race for military contracts. Rocket Lab is aiming to chip away at SpaceX’s dominance in military space launch, confirming its bid to compete for Pentagon contracts with its new medium-lift rocket, Neutron, Space News reports. Last month, the Space Force released a request for proposals from launch companies seeking to join the military’s roster of launch providers in the National Security Space Launch (NSSL) program. The Space Force will accept bids for launch providers to “on-ramp” to the NSSL Phase 3 Lane 1 contract, which doles out task orders to launch companies for individual missions. In order to win a task order, a launch provider must be on the Phase 3 Lane 1 contract. Currently, SpaceX, United Launch Alliance, and Blue Origin are the only rocket companies eligible. SpaceX won all of the first round of Lane 1 task orders last month.

Joining the club … The Space Force is accepting additional risk for Lane 1 missions, which largely comprise repeat launches deploying a constellation of missile-tracking and data-relay satellites for the Space Development Agency. A separate class of heavy-lift missions, known as Lane 2, will require rockets to undergo a thorough certification by the Space Force to ensure their reliability. In order for a launch company to join the Lane 1 roster, the Space Force requires bidders to be ready for a first launch by December 2025. Peter Beck, Rocket Lab’s founder and CEO, said he thinks the Neutron rocket will be ready for its first launch by then. Other new medium-lift rockets, such as Firefly Aerospace’s MLV and Relativity’s Terran-R, almost certainly won’t be ready to launch by the end of next year, leaving Rocket Lab as the only company that will potentially join incumbents SpaceX, ULA, and Blue Origin. (submitted by Ken the Bin)

Next Starship flight is just around the corner. Less than a month has passed since the historic fifth flight of SpaceX’s Starship, during which the company caught the booster with mechanical arms back at the launch pad in Texas. Now, another test flight could come as soon as November 18, Ars reports. The improbable but successful recovery of the Starship first stage with “chopsticks” last month, and the on-target splashdown of the Starship upper stage halfway around the world, allowed SpaceX to avoid an anomaly investigation by the Federal Aviation Administration. Thus, the company was able to press ahead on a sixth test flight if it flew a similar profile. And that’s what SpaceX plans to do, albeit with some notable additions to the flight plan.

Around the edges … Perhaps the most significant change to the profile for Flight 6 will be an attempt to reignite a Raptor engine on Starship while it is in space. SpaceX tried to do this on a test flight in March but aborted the burn because the ship’s rolling motion exceeded limits. A successful demonstration of a Raptor engine relight could pave the way for SpaceX to launch Starship into a higher stable orbit around Earth on future test flights. This is required for SpaceX to begin using Starship to launch Starlink Internet satellites and perform in-orbit refueling experiments with two ships docked together. (submitted by EllPeaTea)

China’s version of Starship. China has updated the design of its next-generation heavy-lift rocket, the Long March 9, and it looks almost exactly like a clone of SpaceX’s Starship rocket, Ars reports. The Long March 9 started out as a conventional-looking expendable rocket, then morphed into a launcher with a reusable first stage. Now, the rocket will have a reusable booster and upper stage. The booster will have 30 methane-fueled engines, similar to the number of engines on SpaceX’s Super Heavy booster. The upper stage looks remarkably like Starship, with flaps in similar locations. China intends to fly this vehicle for the first time in 2033, nearly a decade from now.

A vehicle for the Moon … The reusable Long March 9 is intended to unlock robust lunar operations for China, similar to the way Starship, and to some extent Blue Origin’s Blue Moon lander, promises to support sustained astronaut stays on the Moon’s surface. China says it plans to land its astronauts on the Moon by 2030, initially using a more conventional architecture with an expendable rocket named the Long March 10, and a lander reminiscent of NASA’s Apollo lunar lander. These will allow Chinese astronauts to remain on the Moon for a matter of days. With Long March 9, China could deliver massive loads of cargo and life support resources to sustain astronauts for much longer stays.

Ta-ta to the tripod. The large three-legged vertical test stand at SpaceX’s engine test site in McGregor, Texas, is being decommissioned, NASA Spaceflight reports. Cranes have started removing propellant tanks from the test stand, nicknamed the tripod, towering above the Central Texas prairie. McGregor is home to SpaceX’s propulsion test team and has 16 test cells to support firings of Merlin, Raptor, and Draco engines multiple times per day for the Falcon 9 rocket, Starship, and Dragon spacecraft.

Some history … The tripod might have been one of SpaceX’s most important assets in the company’s early years. It was built by Beal Aerospace for liquid-fueled rocket engine tests in the late 1990s. Beal Aerospace folded, and SpaceX took over the site in 2003. After some modifications, SpaceX installed the first qualification version of its Falcon 9 rocket on the tripod for a series of nine-engine test-firings leading up to the rocket’s inaugural flight in 2010. SpaceX test-fired numerous new Falcon 9 boosters on the tripod before shipping them to launch sites in Florida or California. Most recently, the tripod was used for testing of Raptor engines destined to fly on Starship and the Super Heavy booster.

Next three launches

Nov. 9:  Long March 2C | Unknown Payload | Jiuquan Satellite Launch Center, China | 03: 40 UTC

Nov. 9: Falcon 9 | Starlink 9-10 | Vandenberg Space Force Base, California | 06: 14 UTC

Nov. 10:  Falcon 9 | Starlink 6-69 | Cape Canaveral Space Force Station, Florida | 21: 28 UTC

Photo of Stephen Clark

Stephen Clark is a space reporter at Ars Technica, covering private space companies and the world’s space agencies. Stephen writes about the nexus of technology, science, policy, and business on and off the planet.

Rocket Report: Australia says yes to the launch; Russia delivers for Iran Read More »

astronaut-hospitalized-after-returning-from-235-day-space-mission

Astronaut hospitalized after returning from 235-day space mission

NASA said Friday one its astronauts is in a hospital in Florida for medical observation after a “normal” predawn splashdown in the Gulf of Mexico inside a SpaceX capsule.

The mission’s other three crew members were cleared to return to their home base at Johnson Space Center in Houston after their own medical evaluations, NASA said.

The hospitalized astronaut “is in stable condition and under observation as a precautionary measure,” a NASA spokesperson said in a statement. The agency did not identify the astronaut or provide any more details about their condition, citing medical privacy protections.

Strapped into their seats onside SpaceX’s Crew Dragon Endeavour spacecraft, the four-person crew splashed down just south of Pensacola, Florida, at 3: 29 am EDT (07: 29 UTC) Friday, wrapping up a 235-day mission in low-Earth orbit.

NASA extended their stay at the International Space Station earlier this year to accommodate schedule changes caused by the troubled test flight of Boeing’s Starliner spacecraft, then to wait for better weather conditions in SpaceX’s recovery zones near Florida.

Commander Matthew Dominick, pilot Michael Barratt, mission specialist Jeanette Epps, and Russian cosmonaut Alexander Grebenkin were inside SpaceX’s Dragon spacecraft for reentry and splashdown. NASA said one of its astronauts “experienced a medical issue” after the splashdown, and all four crew members were flown to Ascension Sacred Heart Pensacola for medical evaluation.

Three of the crew members were later released and departed Pensacola on a NASA business jet to fly back to Houston, according to NASA. The unidentified astronaut remains at Ascension.

“We’re grateful to Ascension Sacred Heart for its support during this time, and we are proud of our team for its quick action to ensure the safety of our crew members,” the NASA spokesperson said. “NASA will provide additional information as it becomes available.”

Roscosmos cosmonaut Alexander Grebenkin, left, NASA astronauts Michael Barratt, second from left, Matthew Dominick, second from right, and Jeanette Epps, right are seen inside the SpaceX Dragon Endeavour spacecraft shortly after splashdown Friday morning.

Credit: NASA/Joel Kowsky

Roscosmos cosmonaut Alexander Grebenkin, left, NASA astronauts Michael Barratt, second from left, Matthew Dominick, second from right, and Jeanette Epps, right are seen inside the SpaceX Dragon Endeavour spacecraft shortly after splashdown Friday morning. Credit: NASA/Joel Kowsky

This mission, named Crew-8, was SpaceX’s eighth operational crew rotation flight to the space station under a multibillion-dollar commercial crew contract with NASA. This was the first flight to space for Dominick, Epps, and Grebenkin, and the third space mission for Barratt.

Roscosmos, the Russian space agency, released a photo of Grebenkin standing in Pensacola a few hours after splashdown. “After the space mission and splashdown, cosmonaut Alexander Grebenkin feels great!” Roscosmos posted on its Telegram channel.

Adapting to Earth

This is not the first time an astronaut has been hospitalized after returning to Earth, but it is uncommon. South Korean astronaut Yi So-yeon was hospitalized for back pain after experiencing higher-than-expected g-forces during reentry in a Russian Soyuz spacecraft in 2008.

Three NASA astronauts were hospitalized in Hawaii after splashing down at the end of the Apollo-Soyuz Test Project mission in 1975. The astronauts suffered lung irritation after breathing in toxic vapors from the Apollo spacecraft’s thrusters in the final moments before splashdown.

Astronaut hospitalized after returning from 235-day space mission Read More »

spacex-launches-mission-to-bring-starliner-astronauts-back-to-earth

SpaceX launches mission to bring Starliner astronauts back to Earth

Ch-ch-changes —

SpaceX is bringing back propulsive landings with its Dragon capsule, but only in emergencies.

Updated

SpaceX's Crew Dragon spacecraft climbs away from Cape Canaveral Space Force Station, Florida, on Saturday atop a Falcon 9 rocket.

Enlarge / SpaceX’s Crew Dragon spacecraft climbs away from Cape Canaveral Space Force Station, Florida, on Saturday atop a Falcon 9 rocket.

NASA/Keegan Barber

NASA astronaut Nick Hague and Russian cosmonaut Aleksandr Gorbunov lifted off Saturday from Florida’s Space Coast aboard a SpaceX Dragon spacecraft, heading for a five-month expedition on the International Space Station.

The two-man crew launched on top of SpaceX’s Falcon 9 rocket at 1: 17 pm EDT (17: 17 UTC), taking an advantage of a break in stormy weather to begin a five-month expedition in space. Nine kerosene-fueled Merlin engines powered the first stage of the flight on a trajectory northeast from Cape Canaveral Space Force Station, then the booster detached and returned to landing at Cape Canaveral as the Falcon 9’s upper stage accelerated SpaceX’s Crew Dragon Freedom spacecraft into orbit.

“It was a sweet ride,” Hague said after arriving in space. With a seemingly flawless launch, Hague and Gorbunov are on track to arrive at the space station around 5: 30 pm EDT (2130 UTC) Sunday.

Empty seats

This is SpaceX’s 15th crew mission since 2020, and SpaceX’s 10th astronaut launch for NASA, but Saturday’s launch was unusual in a couple of ways.

“All of our missions have unique challenges and this one, I think, will be memorable for a lot of us,” said Ken Bowersox, NASA’s associate administrator for space operations.

First, only two people rode into orbit on SpaceX’s Crew Dragon spacecraft, rather than the usual complement of four astronauts. This mission, known as Crew-9, originally included Hague, Gorbunov, commander Zena Cardman, and NASA astronaut Stephanie Wilson.

But the troubled test flight of Boeing’s Starliner spacecraft threw a wrench into NASA’s plans. The Starliner mission launched in June with NASA astronauts Butch Wilmore and Suni Williams. Boeing’s spacecraft reached the space station, but thruster failures and helium leaks plagued the mission, and NASA officials decided last month it was too risky to being the crew back to Earth on Starliner.

NASA selected SpaceX and Boeing for multibillion-dollar commercial crew contracts in 2014, with each company responsible for developing human-rated spaceships to ferry astronauts to and from the International Space Station. SpaceX flew astronauts for the first time in 2020, and Boeing reached the same milestone with the test flight that launched in June.

Ultimately, the Starliner spacecraft safely returned to Earth on September 6 with a successful landing in New Mexico. But it left Wilmore and Williams behind on the space station with the lab’s long-term crew of seven astronauts and cosmonauts. The space station crew rigged two temporary seats with foam inside a SpaceX Dragon spacecraft currently docked at the outpost, where the Starliner astronauts would ride home if they needed to evacuate the complex in an emergency.

NASA astronaut Nick Hague and Russian cosmonaut Aleksandr Gorbunov in their SpaceX pressure suits.

Enlarge / NASA astronaut Nick Hague and Russian cosmonaut Aleksandr Gorbunov in their SpaceX pressure suits.

NASA/Kim Shiflett

This is a temporary measure to allow the Dragon spacecraft to return to Earth with six people instead of the usual four. NASA officials decided to remove two of the astronauts from the next SpaceX crew mission to free up normal seats for Wilmore and Williams to ride home in February, when Crew-9 was already slated to end its mission.

The decision to fly the Starliner spacecraft back to Earth without its crew had several second order effects on space station operations. Managers at NASA’s Johnson Space Center in Houston had to decide who to bump from the Crew-9 mission, and who to keep on the crew.

Nick Hague and Aleksandr Gorbunov ended up keeping their seats on the Crew-9 flight. Hague originally trained as the pilot on Crew-9, and NASA decided he would take Zena Cardman’s place as commander. Hague, a 49-year-old Space Force colonel, is a veteran of one long-duration mission on the International Space Station, and also experienced a rare in-flight launch abort in 2018 due to a failure of a Russian Soyuz rocket.

NASA announced the original astronaut assignments for the Crew-9 mission in January. Cardman, a 36-year-old geobiologist, would have been the first rookie astronaut without test pilot experience to command a NASA spaceflight. Three-time space shuttle flier Stephanie Wilson, 58, was the other astronaut removed from the Crew-9 mission.

The decision on who to fly on Crew-9 was a “really close call,” said Bowersox, who oversees NASA’s spaceflight operations directorate. “They were thinking very hard about flying Zena, but in this situation, it made sense to have somebody who had at least one flight under their belt.”

Gorbunov, a 34-year-old Russian aerospace engineer making his first flight to space, moved over to take pilot’s seat in the Crew Dragon spacecraft, although he remains officially designated a mission specialist. His remaining presence on the crew was preordained because of an international agreement between NASA and Russia’s space agency that provides seats for Russian cosmonauts on US crew missions and US astronauts on Russian Soyuz flights to the space station.

Bowersox said NASA will reassign Cardman and Wilson to future flights.

NASA astronauts Suni Williams and Butch Wilmore, seen in their Boeing flight suits before their launch.

Enlarge / NASA astronauts Suni Williams and Butch Wilmore, seen in their Boeing flight suits before their launch.

Operational flexibility

This was also the first launch of astronauts from Space Launch Complex-40 (SLC-40) at Cape Canaveral, SpaceX’s busiest launch pad. SpaceX has outfitted the launch pad with the equipment necessary to support launches of human spaceflight missions on the Crew Dragon spacecraft, including a more than 200-foot-tall tower and a crew access arm to allow astronauts to board spaceships on top of Falcon 9 rockets.

SLC-40 was previously based on a “clean pad” architecture, without any structures to service or access Falcon 9 rockets while they were vertical on the pad. SpaceX also installed slide chutes to give astronauts and ground crews an emergency escape route away from the launch pad in an emergency.

SpaceX constructed the crew tower last year and had it ready for the launch of a Dragon cargo mission to the space station in March. Saturday’s launch demonstrated the pad’s ability to support SpaceX astronaut missions, which have previously all departed from Launch Complex-39A (LC-39A) at NASA’s Kennedy Space Center, a few miles north of SLC-40.

Bringing human spaceflight launch capability online at SLC-40 gives SpaceX and NASA additional flexibility in their scheduling. For example, LC-39A remains the only launch pad configured to support flights of SpaceX’s Falcon Heavy rocket. SpaceX is now preparing LC-39A for a Falcon Heavy launch October 10 with NASA’s Europa Clipper mission, which only has a window of a few weeks to depart Earth this year and reach its destination at Jupiter in 2030.

With SLC-40 now certified for astronaut launches, SpaceX and NASA teams are able to support the Crew-9 and Europa Clipper missions without worrying about scheduling conflicts. The Florida spaceport now has three launch pads certified for crew flights—two for SpaceX’s Dragon and one for Boeing’s Starliner—and NASA will add a fourth human-rated launch pad with the Artemis II mission to the Moon late next year.

“That’s pretty exciting,” said Pam Melroy, NASA’s deputy administrator. “I think it’s a reflection of where we are in our space program at NASA, but also the capabilities that the United States has developed.”

Earlier this week, Hague and Gorbunov participated in a launch day dress rehearsal, when they had the opportunity to familiarize themselves with SLC-40. The launch pad has the same capabilities as LC-39A, but with a slightly different layout. SpaceX also test-fired the Falcon 9 rocket Tuesday evening, before lowering the rocket horizontal and moving it back into a hangar for safekeeping as the outer bands of Hurricane Helene moved through Central Florida.

Inside the hangar, SpaceX technicians discovered sooty exhaust from the Falcon 9’s engines accumulated on the outside of the Dragon spacecraft during the test-firing. Ground teams wiped the soot off of the craft’s solar arrays and heat shield, then repainted portions of the capsule’s radiators around the edge of Dragon’s trunk section before rolling the vehicle back to the launch pad Friday.

“It’s important that the radiators radiate heat in the proper way to space, so we had to put some some new paint on to get that back to the right emissivity and the right reflectivity and absorptivity of the solar radiation that hit those panels so it will reject the heat properly,” said Bill Gerstenmaier, SpaceX’s vice president of build and flight reliability.

Gerstenmaier also outlined a new backup ability for the Crew Dragon spacecraft to safely splash down even if all of its parachutes fail to deploy on final descent back to Earth. This involves using the capsule’s eight powerful SuperDraco thrusters, normally only used in the unlikely instance of a launch abort, to fire for a few seconds and slow Dragon’s speed for a safe splashdown.

A hover test using SuperDraco thrusters on a prototype Crew Dragon spacecraft in 2015.

Enlarge / A hover test using SuperDraco thrusters on a prototype Crew Dragon spacecraft in 2015.

SpaceX

“The way it works is, in the case where all the parachutes totally fail, this essentially fires the thrusters at the very end,” Gerstenmaier said. “That essentially gives the crew a chance to land safely, and essentially escape the vehicle. So it’s not used in any partial conditions. We can land with one chute out. We can land with other failures in the chute system. But this is only in the case where all four parachutes just do not operate.”

When SpaceX first designed the Crew Dragon spacecraft more than a decade ago, the company wanted to use the SuperDraco thrusters to enable the capsule to perform propulsive helicopter-like landings. Eventually, SpaceX and NASA agreed to change to a more conventional parachute-assisted splashdown.

The SuperDracos remained on the Crew Dragon spacecraft to push the capsule away from its Falcon 9 rocket during a catastrophic launch failure. The eight high-thrust engines burn hydrazine and nitrogen tetroxide propellants that combust when making contact with one another.

The backup option has been activated for some previous commercial Crew Dragon missions, but not for a NASA flight, according to Gerstenmaier. The capability “provides a tolerable landing for the crew,” he added. “So it’s a true deep, deep contingency. I think our philosophy is, rather than have a system that you don’t use, even though it’s not maybe fully certified, it gives the crew a chance to escape a really, really bad situation.”

Steve Stich, NASA’s commercial crew program manager, said the emergency propulsive landing capability will be enabled for the return of the Crew-8 mission, which has been at the space station since March. With the arrival of Hague and Gorbunov on Crew-9—and the extension of Wilmore and Williams’ mission—the Crew-8 mission is slated to depart the space station and splash down in early October.

This story was updated after confirmation of a successful launch.

SpaceX launches mission to bring Starliner astronauts back to Earth Read More »

nasa-not-comfortable-with-starliner-thrusters,-so-crew-will-fly-home-on-dragon

NASA not comfortable with Starliner thrusters, so crew will fly home on Dragon

Boeing is going home empty handed —

“I would say the White Sands testing did give us a surprise.”

Photos of Crew Dragon relocation on the International Space Station.

Enlarge / Crew Dragon approaches the International Space Station

NASA TV

Following weeks of speculation, NASA finally made it official on Saturday: two astronauts who flew to the International Space Station on Boeing’s Starliner spacecraft in June will not return home on that vehicle. Instead, the agency has asked SpaceX to use its Crew Dragon spacecraft to fly astronauts Butch Wilmore and Suni Williams back to Earth.

“NASA has decided that Butch and Suni will return with Crew-9 next February,” said NASA Administrator Bill Nelson at the outset of a news conference on Saturday afternoon at Johnson Space Center.

In a sign of the gravity surrounding the agency’s decision, both Nelson and NASA’s deputy administrator, Pam Melroy, attended a Flight Readiness Review meeting held Saturday in Houston. During that gathering of the agency’s senior officials, an informal “go/no go” poll was taken. Those present voted unanimously for Wilmore and Williams to return to Earth on Crew Dragon. The official recommendation of the Commercial Crew Program was the same, and Nelson accepted it.

Therefore, Boeing’s Starliner spacecraft will undock from the station early next month—the tentative date, according to a source, is September 6—and attempt to make an autonomous return to Earth and land in a desert in the southwestern United States.

Then, no earlier than September 24, a Crew Dragon spacecraft will launch with two astronauts (NASA has not named the two crew members yet) to the space station with two empty seats. Wilmore and Williams will join these two Crew-9 astronauts for their previously scheduled six-month increment on the space station. All four will then return to Earth on the Crew Dragon vehicle.

Saturday’s announcement has big implications for Boeing, which entered NASA’s Commercial Crew Program more than a decade ago and lent legitimacy to NASA’s efforts to pay private companies for transporting astronauts to the International Space Station. The company’s failure—and despite the encomiums from NASA officials during Saturday’s news conference, this Starliner mission is a failure—will affect Boeing’s future in spaceflight. Ars will have additional coverage of Starliner’s path forward later today.

Never could get comfortable with thruster issues

For weeks after Starliner’s arrival at the space station in early June, officials from Boeing and NASA expressed confidence in the ability of the spacecraft to fly Wilmore and Williams home. They said they just needed to collect a little more data on the performance of the vehicle’s reaction control system thrusters. Five of these 28 small thrusters that guide Starliner failed during the trip to the space station.

Engineers from Boeing and NASA tested the performance of these thrusters at a facility in White Sands, New Mexico, in July. Initially, the engineers were excited to replicate the failures observed during Starliner’s transit to the space station. (Replicating failures is a critical step to understanding the root cause of a hardware problem.)

However, what NASA found after taking apart the failed thrusters was concerning, said the chief of NASA’s Commercial Crew Program, Steve Stich.

“I would say the White Sands testing did give us a surprise,” Stich said Saturday. “It was this piece of Teflon that swells up and got in the flow path and causes the oxidizer to not go into the thruster the way it needs to. That’s what caused the degradation of thrust. When we saw that, I think that’s when things changed a bit for us.”

When NASA took this finding to the thruster’s manufacturer, Aerojet Rocketdyne, the propulsion company said it had never seen this phenomenon before. It was at this point that agency engineers started to believe that it might not be possible to identify the root cause of the problem in a timely manner and become comfortable enough with the physics to be sure that the thruster problem would not occur during Starliner’s return to Earth.

Thank you for flying SpaceX

The result of this uncertainty is that NASA will now turn to the other commercial crew provider, SpaceX. This is not a pleasant outcome for Boeing which, a decade ago, looked askance at SpaceX as something akin to space cowboys. I have covered the space industry closely during the last 15 years, and during most of that time Boeing was perceived by much of the industry as the blueblood of spaceflight while SpaceX was the company that was going to kill astronauts due to its supposed recklessness.

Now the space agency is asking SpaceX to, in effect, rescue the Boeing astronauts currently on the International Space Station.

It won’t be the first time that SpaceX has helped a competitor recently. In the last two years SpaceX has launched satellites for a low-Earth orbit Internet competitor, OneWeb, after Russia’s space program squeezed the company; it has launched Europe’s sovereign Galileo satellites after delays to the Ariane 6 rocket; and it has launched the Cygnus spacecraft built by NASA’s other space station cargo services provider, Northrop Grumman, multiple times. Now SpaceX will help out Boeing, a crew competitor.

After Saturday’s news conference, I asked Jim Free, NASA’s highest-ranking civil servant, what he made of the once-upstart SpaceX now helping to backstop the rest of the Western spaceflight community. Without SpaceX, after all, NASA would not have a way to get crew or cargo to the International Space Station.

“They’re flying a lot, and they’re having success,” Free said. “And you know, when they have an issue, they find a way to recover like with the second-stage issue, We set out to have two providers to take crew to station to have options, and they’ve given us the option. In the reverse, Boeing could have been out there, and we still would face the same thing if they had a systemic Dragon problem, Boeing would have to bring us back. But I can’t argue with how much they’ve flown, that’s for sure, and what they’ve flown.”

NASA not comfortable with Starliner thrusters, so crew will fly home on Dragon Read More »

spacex-moving-dragon-splashdowns-to-pacific-to-solve-falling-debris-problem

SpaceX moving Dragon splashdowns to Pacific to solve falling debris problem

A Crew Dragon spacecraft is seen docked at the International Space Station in 2022. The section of the spacecraft on the left is the pressurized capsule, while the rear section, at right, is the trunk.

Enlarge / A Crew Dragon spacecraft is seen docked at the International Space Station in 2022. The section of the spacecraft on the left is the pressurized capsule, while the rear section, at right, is the trunk.

NASA

Sometime next year, SpaceX will begin returning its Dragon crew and cargo capsules to splashdowns in the Pacific Ocean and end recoveries of the spacecraft off the coast of Florida.

This will allow SpaceX to make changes to the way it brings Dragons back to Earth and eliminate the risk, however tiny, that a piece of debris from the ship’s trunk section might fall on someone and cause damage, injury, or death.

“After five years of splashing down off the coast of Florida, we’ve decided to shift Dragon recovery operations back to the West Coast,” said Sarah Walker, SpaceX’s director of Dragon mission management.

Public safety

In the past couple of years, landowners have discovered debris from several Dragon missions on their property, and the fragments all came from the spacecraft’s trunk, an unpressurized section mounted behind the capsule as it carries astronauts or cargo on flights to and from the International Space Station.

SpaceX returned its first 21 Dragon cargo missions to splashdowns in the Pacific Ocean southwest of Los Angeles. When an upgraded human-rated version of Dragon started flying in 2019, SpaceX moved splashdowns to the Atlantic Ocean and the Gulf of Mexico to be closer to the company’s refurbishment and launch facilities at Cape Canaveral, Florida. The benefits of landing near Florida included a faster handover of astronauts and time-sensitive cargo back to NASA and shorter turnaround times between missions.

The old version of Dragon, known as Dragon 1, separated its trunk after the deorbit burn, allowing the trunk to fall into the Pacific. With the new version of Dragon, called Dragon 2, SpaceX changed the reentry profile to jettison the trunk before the deorbit burn. This meant that the trunk remained in orbit after each Dragon mission, while the capsule reentered the atmosphere on a guided trajectory. The trunk, which is made of composite materials and lacks a propulsion system, usually takes a few weeks or a few months to fall back into the atmosphere and doesn’t have control of where or when it reenters.

Air resistance from the rarefied upper atmosphere gradually slows the trunk’s velocity enough to drop it out of orbit, and the amount of aerodynamic drag the trunk sees is largely determined by fluctuations in solar activity.

SpaceX and NASA, which funded a large portion of the Dragon spacecraft’s development, initially determined the trunk would entirely burn up when it reentered the atmosphere and would pose no threat of surviving reentry and causing injuries or damaging property. However, that turned out to not be the case.

In May, a 90-pound chunk of a SpaceX Dragon spacecraft that departed the International Space Station fell on the property of a “glamping” resort in North Carolina. At the same time, a homeowner in a nearby town found a smaller piece of material that also appeared to be from the same Dragon mission.

These events followed the discovery in April of another nearly 90-pound piece of debris from a Dragon capsule on a farm in the Canadian province of Saskatchewan. SpaceX and NASA later determined the debris fell from orbit in February, and earlier this month, SpaceX employees came to the farm to retrieve the wreckage, according to CBC.

Pieces of a Dragon spacecraft also fell over Colorado last year, and a farmer in Australia found debris from a Dragon capsule on his land in 2022.

SpaceX moving Dragon splashdowns to Pacific to solve falling debris problem Read More »

nasa-and-spacex-misjudged-the-risks-from-reentering-space-junk

NASA and SpaceX misjudged the risks from reentering space junk

A European ATV cargo freighter reenters the atmosphere over the Pacific Ocean in 2013.

Enlarge / A European ATV cargo freighter reenters the atmosphere over the Pacific Ocean in 2013.

Since the beginning of the year, landowners have discovered several pieces of space junk traced to missions supporting the International Space Station. On all of these occasions, engineers expected none of the disposable hardware would survive the scorching heat of reentry and make it to Earth’s surface.

These incidents highlight an urgency for more research into what happens when a spacecraft makes an uncontrolled reentry into the atmosphere, according to engineers from the Aerospace Corporation, a federally funded research center based in El Segundo, California. More stuff is getting launched into space than ever before, and the trend will continue as companies deploy more satellite constellations and field heavier rockets.

“The biggest immediate need now is just to do some more work to really understand this whole process and to be in a position to be ready to accommodate new materials, new operational approaches as they happen more quickly,” said Marlon Sorge, executive director of Aerospace’s Center for Orbital and Reentry Debris Studies. “Clearly, that’s the direction that spaceflight is going.”

Ideally, a satellite or rocket body at the end of its life could be guided to a controlled reentry into the atmosphere over a remote part of the ocean. But this is often cost-prohibitive because it would require carrying extra fuel for the de-orbit maneuvers, and in many cases, a spacecraft doesn’t have any rocket thrusters at all.

In March, a fragment from a battery pack jettisoned from the space station punched a hole in the roof of a Florida home, a rare instance of terrestrial property damage attributed to a piece of space junk. In May, a 90-pound chunk of a SpaceX Dragon spacecraft that departed the International Space Station fell on the property of a “glamping” resort in North Carolina. At the same time, a homeowner in a nearby town found a smaller piece of material that also appeared to be from the same Dragon mission.

These events followed the discovery in April of another nearly 90-pound piece of debris from a Dragon capsule on a farm in the Canadian province of Saskatchewan. NASA and SpaceX later determined the debris fell from orbit in February, and earlier this month, SpaceX employees came to the farm to retrieve the wreckage, according to CBC.

Pieces of a Dragon spacecraft also fell over Colorado last year, and a farmer in Australia found debris from a Dragon capsule on his land in 2022.

NASA and SpaceX misjudged the risks from reentering space junk Read More »

spacex’s-workhorse-launch-pad-now-has-the-accoutrements-for-astronauts

SpaceX’s workhorse launch pad now has the accoutrements for astronauts

A Falcon 9 rocket lifts off Thursday from Cape Canaveral, Florida.

Enlarge / A Falcon 9 rocket lifts off Thursday from Cape Canaveral, Florida.

Upgrades at SpaceX’s most-used launch pad in Florida got a trial run Thursday with the liftoff of a Falcon 9 rocket with a Dragon cargo ship heading for the International Space Station.

SpaceX’s Cargo Dragon spacecraft launched at 4: 55 pm EDT (20: 55 UTC) Thursday from Space Launch Complex 40 (SLC-40) at Cape Canaveral Space Force Station in Florida. This mission, known as CRS-30, is SpaceX’s 30th resupply mission to the space station since 2012.

The automated Dragon supply ship took off on top of a Falcon 9 rocket, heading for a monthlong stay at the International Space Station, where it will deliver more than 6,000 pounds of hardware, fresh food, and experiments for the lab’s seven-person crew.

In the last few months, SpaceX has outfitted the launch pad with the equipment necessary to support launches of human spaceflight missions on the Crew Dragon spacecraft. The Cargo Dragon capsule is the same size and shape as SpaceX’s Crew Dragon, but it’s filled with cargo racks and storage platforms rather than seats and cockpit displays.

This week, SpaceX technicians used the newly installed launch tower and crew access arm at SLC-40 to load time-sensitive experiments and supplies into the Cargo Dragon capsule atop the Falcon 9 rocket.

“CRS-30 will be our first Dragon to launch from Pad 40 since we put that brand-new crew tower in place,” said Sarah Walker, SpaceX’s director of Dragon mission management, in a prelaunch press conference.

Building new capability

Starting last year, construction crews at Cape Canaveral erected segments of a more than 200-foot-tall metal lattice tower at SLC-40, right next to the starting blocks for SpaceX’s Falcon 9 rocket. Before then, SLC-40 was based on a “clean pad” architecture, without any structures to service or access Falcon 9 rockets while they were vertical on the pad.

In November, contractors raised the crew access arm to an attach point near the top of the tower. This walkway will allow astronauts to crawl into the Crew Dragon spacecraft during a launch countdown. It also provides access to the hatch on the Cargo Dragon spacecraft for final cargo loading.

Earlier this year, SpaceX tested an escape chute at SLC-40 that would be used in an emergency to help astronauts and ground crews quickly get away from the pad. The chute is similar in function to slide-wire baskets in use for decades at LC-39A, but instead of riding a basket from the top of the tower, personnel escaping a pad emergency would slide down a chute to carry them several hundred feet from the rocket.

SpaceX employees tested the pad escape chute last month at SLC-40. Gwynne Shotwell, SpaceX’s president and chief operating officer, took the ride down the chute. “Astronaut and personnel safety is SpaceX’s highest priority, which is why I had to personally test the new slide,” she posted on X, alongside a wink emoji.

Teams test the new emergency chutes from the pad 40 crew tower in Florida pic.twitter.com/rWVj7zaHp0

— SpaceX (@SpaceX) March 19, 2024

“The team took commercially available off the shelf technology and applied it to the crew tower,” Kiko Dontchev, SpaceX’s vice president of launch, wrote on X. “You are trained on it the same way you are trained on using an emergency exit door on airplane. Only takes a couple of quick physical actions to deploy the slide and anyone can effectively do it.”

As more people travel to space, particularly on larger vehicles like SpaceX’s Starship, simplifying safety systems will be important.

“This system will help us scale to bigger towers and spaceships (think 100 people on Starship),” Dontchev wrote.

SpaceX and its contractors completed all of this work as Falcon 9s fired off SLC-40 every few days with Starlink satellites and other missions.

For the last four years, all of SpaceX’s crew and cargo launches to the space station have departed from Launch Complex 39A (LC-39A) at NASA’s Kennedy Space Center, a few miles up the coast from SLC-40. In 2018 and 2019, SpaceX outfitted LC-39A for Cargo Dragon and Crew Dragon missions ahead of the company’s first human spaceflight mission in 2020.

Walker said the new infrastructure added at SLC-40 is “nearly functionally identical” to the equipment for crew missions at LC-39A. The primary differences are the means of pad escape—the chute instead of slide-wire baskets—and a more robust elevator in the tower at SLC-40.

Previously, SpaceX used both SLC-40 and LC-39A for launches of its now-retired first-generation Dragon cargo capsules, which had their final supplies loaded before SpaceX raised the rocket vertical for launch. Like regular satellite launches on Falcon 9s, both pads could support the first-generation Dragon cargo missions.

“Thanks to this new state-of-the-art crew tower required for our human spaceflight missions, that late-load cargo operation got a massive upgrade, too,” Walker said. “It is much easier to load a huge complement of time-critical NASA science into our Dragon spacecraft in the flight orientation.”

SpaceX has drastically ramped up its launch cadence since building LC-39A for Dragon missions. The company plans nearly 150 Falcon 9 or Falcon Heavy launches this year. When you’re flying rockets every two or three days, it’s inevitable two missions will end up vying for the same launch slots. Most recently, that happened in February, when a NASA crew mission was ready to launch from LC-39A around the same time as a narrow launch window for Intuitive Machines’ first commercial lunar lander. Both had to go off of LC-39A.

“Historically, Pad 40 has kind of become our high rate pad,” Walker said. “We’ve gotten the time between launches down to just a couple of days.”

LC-39A has seen less use, primarily for Dragon crew and cargo flights, Falcon Heavy missions, and other “uniquely complex” missions like the Intuitive Machines lander, Walker said.

SpaceX’s workhorse launch pad now has the accoutrements for astronauts Read More »