Biz & IT

health-care-giant-ascension-says-5.6-million-patients-affected-in-cyberattack

Health care giant Ascension says 5.6 million patients affected in cyberattack

Health care company Ascension lost sensitive data for nearly 5.6 million individuals in a cyberattack that was attributed to a notorious ransomware gang, according to documents filed with the attorney general of Maine.

Ascension owns 140 hospitals and scores of assisted living facilities. In May, the organization was hit with an attack that caused mass disruptions as staff was forced to move to manual processes that caused errors, delayed or lost lab results, and diversions of ambulances to other hospitals. Ascension managed to restore most services by mid-June. At the time, the company said the attackers had stolen protected health information and personally identifiable information for an undisclosed number of people.

Investigation concluded

A filing Ascension made earlier in December revealed that nearly 5.6 million people were affected by the breach. Data stolen depended on the particular person but included individuals’ names and medical information (e.g., medical record numbers, dates of service, types of lab tests, or procedure codes), payment information (e.g., credit card information or bank account numbers), insurance information (e.g., Medicaid/Medicare ID, policy number, or insurance claim), government

identification (e.g., Social Security numbers, tax identification numbers, driver’s license numbers, or passport numbers), and other personal information (such as date of birth or address).

Health care giant Ascension says 5.6 million patients affected in cyberattack Read More »

the-ai-war-between-google-and-openai-has-never-been-more-heated

The AI war between Google and OpenAI has never been more heated

Over the past month, we’ve seen a rapid cadence of notable AI-related announcements and releases from both Google and OpenAI, and it’s been making the AI community’s head spin. It has also poured fuel on the fire of the OpenAI-Google rivalry, an accelerating game of one-upmanship taking place unusually close to the Christmas holiday.

“How are people surviving with the firehose of AI updates that are coming out,” wrote one user on X last Friday, which is still a hotbed of AI-related conversation. “in the last <24 hours we got gemini flash 2.0 and chatGPT with screenshare, deep research, pika 2, sora, chatGPT projects, anthropic clio, wtf it never ends."

Rumors travel quickly in the AI world, and people in the AI industry had been expecting OpenAI to ship some major products in December. Once OpenAI announced “12 days of OpenAI” earlier this month, Google jumped into gear and seemingly decided to try to one-up its rival on several counts. So far, the strategy appears to be working, but it’s coming at the cost of the rest of the world being able to absorb the implications of the new releases.

“12 Days of OpenAI has turned into like 50 new @GoogleAI releases,” wrote another X user on Monday. “This past week, OpenAI & Google have been releasing at the speed of a new born startup,” wrote a third X user on Tuesday. “Even their own users can’t keep up. Crazy time we’re living in.”

“Somebody told Google that they could just do things,” wrote a16z partner and AI influencer Justine Moore on X, referring to a common motivational meme telling people they “can just do stuff.”

The Google AI rush

OpenAI’s “12 Days of OpenAI” campaign has included releases of their full o1 model, an upgrade from o1-preview, alongside o1-pro for advanced “reasoning” tasks. The company also publicly launched Sora for video generation, added Projects functionality to ChatGPT, introduced Advanced Voice features with video streaming capabilities, and more.

The AI war between Google and OpenAI has never been more heated Read More »

12-days-of-openai:-the-ars-technica-recap

12 days of OpenAI: The Ars Technica recap


Did OpenAI’s big holiday event live up to the billing?

Over the past 12 business days, OpenAI has announced a new product or demoed an AI feature every weekday, calling the PR event “12 days of OpenAI.” We’ve covered some of the major announcements, but we thought a look at each announcement might be useful for people seeking a comprehensive look at each day’s developments.

The timing and rapid pace of these announcements—particularly in light of Google’s competing releases—illustrates the intensifying competition in AI development. What might normally have been spread across months was compressed into just 12 business days, giving users and developers a lot to process as they head into 2025.

Humorously, we asked ChatGPT what it thought about the whole series of announcements, and it was skeptical that the event even took place. “The rapid-fire announcements over 12 days seem plausible,” wrote ChatGPT-4o, “But might strain credibility without a clearer explanation of how OpenAI managed such an intense release schedule, especially given the complexity of the features.”

But it did happen, and here’s a chronicle of what went down on each day.

Day 1: Thursday, December 5

On the first day of OpenAI, the company released its full o1 model, making it available to ChatGPT Plus and Team subscribers worldwide. The company reported that the model operates faster than its preview version and reduces major errors by 34 percent on complex real-world questions.

The o1 model brings new capabilities for image analysis, allowing users to upload and receive detailed explanations of visual content. OpenAI said it plans to expand o1’s features to include web browsing and file uploads in ChatGPT, with API access coming soon. The API version will support vision tasks, function calling, and structured outputs for system integration.

OpenAI also launched ChatGPT Pro, a $200 subscription tier that provides “unlimited” access to o1, GPT-4o, and Advanced Voice features. Pro subscribers receive an exclusive version of o1 that uses additional computing power for complex problem-solving. Alongside this release, OpenAI announced a grant program that will provide ChatGPT Pro access to 10 medical researchers at established institutions, with plans to extend grants to other fields.

Day 2: Friday, December 6

Day 2 wasn’t as exciting. OpenAI unveiled Reinforcement Fine-Tuning (RFT), a model customization method that will let developers modify “o-series” models for specific tasks. The technique reportedly goes beyond traditional supervised fine-tuning by using reinforcement learning to help models improve their reasoning abilities through repeated iterations. In other words, OpenAI created a new way to train AI models that lets them learn from practice and feedback.

OpenAI says that Berkeley Lab computational researcher Justin Reese tested RFT for researching rare genetic diseases, while Thomson Reuters has created a specialized o1-mini model for its CoCounsel AI legal assistant. The technique requires developers to provide a dataset and evaluation criteria, with OpenAI’s platform managing the reinforcement learning process.

OpenAI plans to release RFT to the public in early 2024 but currently offers limited access through its Reinforcement Fine-Tuning Research Program for researchers, universities, and companies.

Day 3: Monday, December 9

On day 3, OpenAI released Sora, its text-to-video model, as a standalone product now accessible through sora.com for ChatGPT Plus and Pro subscribers. The company says the new version operates faster than the research preview shown in February 2024, when OpenAI first demonstrated the model’s ability to create videos from text descriptions.

The release moved Sora from research preview to a production service, marking OpenAI’s official entry into the video synthesis market. The company published a blog post detailing the subscription tiers and deployment strategy for the service.

Day 4: Tuesday, December 10

On day 4, OpenAI moved its Canvas feature out of beta testing, making it available to all ChatGPT users, including those on free tiers. Canvas provides a dedicated interface for extended writing and coding projects beyond the standard chat format, now with direct integration into the GPT-4o model.

The updated canvas allows users to run Python code within the interface and includes a text-pasting feature for importing existing content. OpenAI added compatibility with custom GPTs and a “show changes” function that tracks modifications to writing and code. The company said Canvas is now on chatgpt.com for web users and also available through a Windows desktop application, with more features planned for future updates.

Day 5: Wednesday, December 11

On day 5, OpenAI announced that ChatGPT would integrate with Apple Intelligence across iOS, iPadOS, and macOS devices. The integration works on iPhone 16 series phones, iPhone 15 Pro models, iPads with A17 Pro or M1 chips and later, and Macs with M1 processors or newer, running their respective latest operating systems.

The integration lets users access ChatGPT’s features (such as they are), including image and document analysis, directly through Apple’s system-level intelligence features. The feature works with all ChatGPT subscription tiers and operates within Apple’s privacy framework. Iffy message summaries remain unaffected by the additions.

Enterprise and Team account users need administrator approval to access the integration.

Day 6: Thursday, December 12

On the sixth day, OpenAI added two features to ChatGPT’s voice capabilities: “video calling” with screen sharing support for ChatGPT Plus and Pro subscribers and a seasonal Santa Claus voice preset.

The new visual Advanced Voice Mode features work through the mobile app, letting users show their surroundings or share their screen with the AI model during voice conversations. While the rollout covers most countries, users in several European nations, including EU member states, Switzerland, Iceland, Norway, and Liechtenstein, will get access at a later date. Enterprise and education users can expect these features in January.

The Santa voice option appears as a snowflake icon in the ChatGPT interface across mobile devices, web browsers, and desktop apps, with conversations in this mode not affecting chat history or memory. Don’t expect Santa to remember what you want for Christmas between sessions.

Day 7: Friday, December 13

OpenAI introduced Projects, a new organizational feature in ChatGPT that lets users group related conversations and files, on day 7. The feature works with the company’s GPT-4o model and provides a central location for managing resources related to specific tasks or topics—kinda like Anthropic’s “Projects” feature.

ChatGPT Plus, Pro, and Team subscribers can currently access Projects through chatgpt.com and the Windows desktop app, with view-only support on mobile devices and macOS. Users can create projects by clicking a plus icon in the sidebar, where they can add files and custom instructions that provide context for future conversations.

OpenAI said it plans to expand Projects in 2024 with support for additional file types, cloud storage integration through Google Drive and Microsoft OneDrive, and compatibility with other models like o1. Enterprise and education users will receive access to Projects in January.

Day 8: Monday, December 16

On day 8, OpenAI expanded its search features in ChatGPT, extending access to all users with free accounts while reportedly adding speed improvements and mobile optimizations. Basically, you can use ChatGPT like a web search engine, although in practice it doesn’t seem to be as comprehensive as Google Search at the moment.

The update includes a new maps interface and integration with Advanced Voice, allowing users to perform searches during voice conversations. The search capability, which previously required a paid subscription, now works across all platforms where ChatGPT operates.

Day 9: Tuesday, December 17

On day 9, OpenAI released its o1 model through its API platform, adding support for function calling, developer messages, and vision processing capabilities. The company also reduced GPT-4o audio pricing by 60 percent and introduced a GPT-4o mini option that costs one-tenth of previous audio rates.

OpenAI also simplified its WebRTC integration for real-time applications and unveiled Preference Fine-Tuning, which provides developers new ways to customize models. The company also launched beta versions of software development kits for the Go and Java programming languages, expanding its toolkit for developers.

Day 10: Wednesday, December 18

On Wednesday, OpenAI did something a little fun and launched voice and messaging access to ChatGPT through a toll-free number (1-800-CHATGPT), as well as WhatsApp. US residents can make phone calls with a 15-minute monthly limit, while global users can message ChatGPT through WhatsApp at the same number.

OpenAI said the release is a way to reach users who lack consistent high-speed Internet access or want to try AI through familiar communication channels, but it’s also just a clever hack. As evidence, OpenAI notes that these new interfaces serve as experimental access points, with more “limited functionality” than the full ChatGPT service, and still recommends existing users continue using their regular ChatGPT accounts for complete features.

Day 11: Thursday, December 19

On Thursday, OpenAI expanded ChatGPT’s desktop app integration to include additional coding environments and productivity software. The update added support for Jetbrains IDEs like PyCharm and IntelliJ IDEA, VS Code variants including Cursor and VSCodium, and text editors such as BBEdit and TextMate.

OpenAI also included integration with Apple Notes, Notion, and Quip while adding Advanced Voice Mode compatibility when working with desktop applications. These features require manual activation for each app and remain available to paid subscribers, including Plus, Pro, Team, Enterprise, and Education users, with Enterprise and Education customers needing administrator approval to enable the functionality.

Day 12: Friday, December 20

On Friday, OpenAI concluded its twelve days of announcements by previewing two new simulated reasoning models, o3 and o3-mini, while opening applications for safety and security researchers to test them before public release. Early evaluations show o3 achieving a 2727 rating on Codeforces programming contests and scoring 96.7 percent on AIME 2024 mathematics problems.

The company reports o3 set performance records on advanced benchmarks, solving 25.2 percent of problems on EpochAI’s Frontier Math evaluations and scoring above 85 percent on the ARC-AGI test, which is comparable to human results. OpenAI also published research about “deliberative alignment,” a technique used in developing o1. The company has not announced firm release dates for either new o3 model, but CEO Sam Altman said o3-mini might ship in late January.

So what did we learn?

OpenAI’s December campaign revealed that OpenAI had a lot of things sitting around that it needed to ship, and it picked a fun theme to unite the announcements. Google responded in kind, as we have covered.

Several trends from the releases stand out. OpenAI is heavily investing in multimodal capabilities. The o1 model’s release, Sora’s evolution from research preview to product, and the expansion of voice features with video calling all point toward systems that can seamlessly handle text, images, voice, and video.

The company is also focusing heavily on developer tools and customization, so it can continue to have a cloud service business and have its products integrated into other applications. Between the API releases, Reinforcement Fine-Tuning, and expanded IDE integrations, OpenAI is building out its ecosystem for developers and enterprises. And the introduction of o3 shows that OpenAI is still attempting to push technological boundaries, even in the face of diminishing returns in training LLM base models.

OpenAI seems to be positioning itself for a 2025 where generative AI moves beyond text chatbots and simple image generators and finds its way into novel applications that we probably can’t even predict yet. We’ll have to wait and see what the company and developers come up with in the year ahead.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

12 days of OpenAI: The Ars Technica recap Read More »

openai-announces-o3-and-o3-mini,-its-next-simulated-reasoning-models

OpenAI announces o3 and o3-mini, its next simulated reasoning models

On Friday, during Day 12 of its “12 days of OpenAI,” OpenAI CEO Sam Altman announced its latest AI “reasoning” models, o3 and o3-mini, which build upon the o1 models launched earlier this year. The company is not releasing them yet but will make these models available for public safety testing and research access today.

The models use what OpenAI calls “private chain of thought,” where the model pauses to examine its internal dialog and plan ahead before responding, which you might call “simulated reasoning” (SR)—a form of AI that goes beyond basic large language models (LLMs).

The company named the model family “o3” instead of “o2” to avoid potential trademark conflicts with British telecom provider O2, according to The Information. During Friday’s livestream, Altman acknowledged his company’s naming foibles, saying, “In the grand tradition of OpenAI being really, truly bad at names, it’ll be called o3.”

According to OpenAI, the o3 model earned a record-breaking score on the ARC-AGI benchmark, a visual reasoning benchmark that has gone unbeaten since its creation in 2019. In low-compute scenarios, o3 scored 75.7 percent, while in high-compute testing, it reached 87.5 percent—comparable to human performance at an 85 percent threshold.

OpenAI also reported that o3 scored 96.7 percent on the 2024 American Invitational Mathematics Exam, missing just one question. The model also reached 87.7 percent on GPQA Diamond, which contains graduate-level biology, physics, and chemistry questions. On the Frontier Math benchmark by EpochAI, o3 solved 25.2 percent of problems, while no other model has exceeded 2 percent.

OpenAI announces o3 and o3-mini, its next simulated reasoning models Read More »

not-to-be-outdone-by-openai,-google-releases-its-own-“reasoning”-ai-model

Not to be outdone by OpenAI, Google releases its own “reasoning” AI model

Google DeepMind’s chief scientist, Jeff Dean, says that the model receives extra computing power, writing on X, “we see promising results when we increase inference time computation!” The model works by pausing to consider multiple related prompts before providing what it determines to be the most accurate answer.

Since OpenAI’s jump into the “reasoning” field in September with o1-preview and o1-mini, several companies have been rushing to achieve feature parity with their own models. For example, DeepSeek launched DeepSeek-R1 in early November, while Alibaba’s Qwen team released its own “reasoning” model, QwQ earlier this month.

While some claim that reasoning models can help solve complex mathematical or academic problems, these models might not be for everybody. While they perform well on some benchmarks, questions remain about their actual usefulness and accuracy. Also, the high computing costs needed to run reasoning models have created some rumblings about their long-term viability. That high cost is why OpenAI’s ChatGPT Pro costs $200 a month, for example.

Still, it appears Google is serious about pursuing this particular AI technique. Logan Kilpatrick, a Google employee in its AI Studio, called it “the first step in our reasoning journey” in a post on X.

Not to be outdone by OpenAI, Google releases its own “reasoning” AI model Read More »

as-firms-abandon-vmware,-broadcom-is-laughing-all-the-way-to-the-bank

As firms abandon VMware, Broadcom is laughing all the way to the bank

2025 challenges

Broadcom seemed okay with ending business with Ingram, which ties it to solution providers that may be supporting smaller firms. At the same time, Broadcom has shown willingness to fight for the business of large accounts.

For example, this month it settled an increasingly nasty dispute in which AT&T sued Broadcom for allegedly breaking a contract to provide perpetual license support. Broadcom infamously stopped VMware perpetual license sales, in favor of subscriptions, in December 2023.

Broadcom is also paying close attention to VMware’s biggest accounts, taking over 500 of those biggest accounts directly, thereby barring channel partners from deals.

Broadcom originally planned to take VMware’s biggest 2,000 accounts direct. But as Canalys chief analyst Alastair Edwards put it, letting 1,500 of the biggest accounts be run by channel partners helps tie professional services to VMware products, making migrations harder.

However, the VMware channel is under turmoil, having undergone numerous business-impacting changes over the past year, including Broadcom killing the VMware partner program in favor of its own, while announcing that there will be a new VMware channel chief, as CRN reported. Some of the resellers that could help VMware keep customers are showing frustration with the changes and what the characterize as poor communication from Broadcom.

“Broadcom has abandoned the channel market by making it nearly impossible to work with them due to constantly changing requirements, packaging and changes to the program,” Jason Slagle, president of Toledo-based managed services provider and VMware partner CNWR, told CRN today.

Meanwhile, Forrester analysts Michele Pelino and Naveen Chhabra predict that next year, “VMware’s largest 2,000 customers will shrink their deployment size by an average of 40 percent,” in favor of “public cloud, on-premises alternatives, and new architecture.”

Still, “Broadcom’s price increases and cost-cutting measures are expected to boost its net profits, as there are not many credible competitors capable of helping clients replace VMware virtualization,” the Forrester analysts said.

So although Broadcom is challenged to maintain business from VMware’s biggest accounts and appease the solution providers driving smaller accounts, it’s expected to keep making money off of VMware—even as firms like Ingram close the door on it.

As firms abandon VMware, Broadcom is laughing all the way to the bank Read More »

new-physics-sim-trains-robots-430,000-times-faster-than-reality

New physics sim trains robots 430,000 times faster than reality

The AI-generated worlds reportedly include realistic physics, camera movements, and object behaviors, all from text commands. The system then creates physically accurate ray-traced videos and data that robots can use for training.

Examples of “4D dynamical and physical” worlds that Genesis created from text prompts.

This prompt-based system lets researchers create complex robot testing environments by typing natural language commands instead of programming them by hand. “Traditionally, simulators require a huge amount of manual effort from artists: 3D assets, textures, scene layouts, etc. But every component in the workflow can be automated,” wrote Fan.

Using its engine, Genesis can also generate character motion, interactive 3D scenes, facial animation, and more, which may allow for the creation of artistic assets for creative projects, but may also lead to more realistic AI-generated games and videos in the future, constructing a simulated world in data instead of operating on the statistical appearance of pixels as with a video synthesis diffusion model.

Examples of character motion generation from Genesis, using a prompt that includes, “A miniature Wukong holding a stick in his hand sprints across a table surface for 3 seconds, then jumps into the air, and swings his right arm downward during landing.”

While the generative system isn’t yet part of the currently available code on GitHub, the team plans to release it in the future.

Training tomorrow’s robots today (using Python)

Genesis remains under active development on GitHub, where the team accepts community contributions.

The platform stands out from other 3D world simulators for robotic training by using Python for both its user interface and core physics engine. Other engines use C++ or CUDA for their underlying calculations while wrapping them in Python APIs. Genesis takes a Python-first approach.

Notably, the non-proprietary nature of the Genesis platform makes high-speed robot training simulations available to any researcher for free through simple Python commands that work on regular computers with off-the-shelf hardware.

Previously, running robot simulations required complex programming and specialized hardware, says Fan in his post announcing Genesis, and that shouldn’t be the case. “Robotics should be a moonshot initiative owned by all of humanity,” he wrote.

New physics sim trains robots 430,000 times faster than reality Read More »

arm-says-it’s-losing-$50m-a-year-in-revenue-from-qualcomm’s-snapdragon-x-elite-socs

Arm says it’s losing $50M a year in revenue from Qualcomm’s Snapdragon X Elite SoCs

Arm and Qualcomm’s dispute over Qualcomm’s Snapdragon X Elite chips is continuing in court this week, with executives from each company taking the stand and attempting to downplay the accusations from the other side.

If you haven’t been following along, the crux of the issue is Qualcomm’s purchase of a chip design firm called Nuvia in 2021. Nuvia was originally founded by ex-Apple chip designers to create high-performance Arm chips for servers, but Qualcomm took an interest in Nuvia’s work and acquired the company to help it create high-end Snapdragon processors for consumer PCs instead. Arm claims that this was a violation of its licensing agreements with Nuvia and is seeking to have all chips based on Nuvia technology destroyed.

According to Reuters, Arm CEO Rene Haas testified this week that the Nuvia acquisition is depriving Arm of about $50 million a year, on top of the roughly $300 million a year in fees that Qualcomm already pays Arm to use its instruction set and some elements of its chip designs. This is because Qualcomm pays Arm lower royalty rates than Nuvia had agreed to pay when it was still an independent company.

For its part, Qualcomm argued that Arm was mainly trying to push Qualcomm out of the PC market because Arm had its own plans to create high-end PC chips, though Haas claimed that Arm was merely exploring possible future options. Nuvia founder and current Qualcomm Senior VP of Engineering Gerard Williams III also testified that Arm’s technology comprises “one percent or less” of Qualcomm’s finished chip designs, minimizing Arm’s contributions to Snapdragon chips.

Although testimony is ongoing, Reuters reports that a jury verdict in the trial “could come as soon as this week.”

If it succeeds, Arm could potentially halt sales of all Snapdragon chips with Nuvia’s technology in them, which at this point includes both the Snapdragon X Elite and Plus chips for Windows PCs and the Snapdragon 8 Elite chips that Qualcomm recently introduced for high-end Android phones.

Arm says it’s losing $50M a year in revenue from Qualcomm’s Snapdragon X Elite SoCs Read More »

call-chatgpt-from-any-phone-with-openai’s-new-1-800-voice-service

Call ChatGPT from any phone with OpenAI’s new 1-800 voice service

On Wednesday, OpenAI launched a 1-800-CHATGPT (1-800-242-8478) telephone number that anyone in the US can call to talk to ChatGPT via voice chat for up to 15 minutes for free. The company also says that people outside the US can send text messages to the same number for free using WhatsApp.

Upon calling, users hear a voice say, “Hello again, it’s ChatGPT, an AI assistant. Our conversation may be reviewed for safety. How can I help you?” Callers can ask ChatGPT anything they would normally ask the AI assistant and have a live, interactive conversation.

During a livestream demo of “Calling with ChatGPT” during Day 10 of “12 Days of OpenAI,” OpenAI employees demonstrated several examples of the telephone-based voice chat in action, asking ChatGPT to identify a distinctive house in California and for help in translating a message into Spanish for a friend. For fun, they showed calls from an iPhone, a flip phone, and a vintage rotary phone.

OpenAI developers demonstrate calling 1-800-CHATGPT during a livestream on December 18, 2024.

OpenAI developers demonstrate calling 1-800-CHATGPT during a livestream on December 18, 2024. Credit: OpenAI

OpenAI says the new features came out of an internal OpenAI “hack week” project that a team built just a few weeks ago. The company says its goal is to make ChatGPT more accessible if someone does not have a smartphone or a computer handy.

During the livestream, an OpenAI employee mentioned that 15 minutes of voice chatting are free and that you can download the app and create an account to get more. While the audio chat version seems to be running a full version of GPT-4o on the back end, a developer during the livestream said the free WhatsApp text mode is using GPT-4o mini.

Call ChatGPT from any phone with OpenAI’s new 1-800 voice service Read More »

t-mobile-users-can-try-starlink-enabled-phone-service-for-free-during-beta

T-Mobile users can try Starlink-enabled phone service for free during beta

T-Mobile today said it opened registration for the “T-Mobile Starlink” beta service that will enable text messaging via satellites in dead zones not covered by cell towers.

T-Mobile’s announcement said the service using Starlink’s low-Earth orbit satellites will “provid[e] coverage for the 500,000 square miles of land in the United States not covered by earth-bound cell towers.” Starlink parent SpaceX has so far launched over 300 satellites with direct-to-cell capabilities, T-Mobile noted.

A registration page says, “We expect the beta to begin in early 2025, starting with texting and expanding to data and voice over time. The beta is open to all T-Mobile postpaid customers for free, but capacity is limited.”

T-Mobile said the beta “is expected to work with most modern mobile phones” but will work best with “select smartphones.” People with those “select” devices will apparently have a better chance of getting into the beta.

“T-Mobile postpaid customers with optimized devices will be admitted on a ‘first come, first served’ basis,” T-Mobile said. “We’ll expand the beta to more customers and more devices as more satellites launch.”

Businesses and first responders can also register. “Because of the critical role these first responder agencies and individuals play in safeguarding our communities, T-Mobile is prioritizing this audience for the beta program,” the carrier said.

Commercial service sometime in 2025

T-Mobile said the commercial service will launch “sometime in 2025” but did not say how much it will cost.

T-Mobile users can try Starlink-enabled phone service for free during beta Read More »

yearlong-supply-chain-attack-targeting-security-pros-steals-390k-credentials

Yearlong supply-chain attack targeting security pros steals 390K credentials

Screenshot showing a graph tracking mining activity. Credit: Checkmarx

But wait, there’s more

On Friday, Datadog revealed that MUT-1244 employed additional means for installing its second-stage malware. One was through a collection of at least 49 malicious entries posted to GitHub that contained Trojanized proof-of-concept exploits for security vulnerabilities. These packages help malicious and benevolent security personnel better understand the extent of vulnerabilities, including how they can be exploited or patched in real-life environments.

A second major vector for spreading @0xengine/xmlrpc was through phishing emails. Datadog discovered MUT-1244 had left a phishing template, accompanied by 2,758 email addresses scraped from arXiv, a site frequented by professional and academic researchers.

A phishing email used in the campaign. Credit: Datadog

The email, directed to people who develop or research software for high-performance computing, encouraged them to install a CPU microcode update available that would significantly improve performance. Datadog later determined that the emails had been sent from October 5 through October 21.

Additional vectors discovered by Datadog. Credit: Datadog

Further adding to the impression of legitimacy, several of the malicious packages are automatically included in legitimate sources, such as Feedly Threat Intelligence and Vulnmon. These sites included the malicious packages in proof-of-concept repositories for the vulnerabilities the packages claimed to exploit.

“This increases their look of legitimacy and the likelihood that someone will run them,” Datadog said.

The attackers’ use of @0xengine/xmlrpc allowed them to steal some 390,000 credentials from infected machines. Datadog has determined the credentials were for use in logging into administrative accounts for websites that run the WordPress content management system.

Taken together, the many facets of the campaign—its longevity, its precision, the professional quality of the backdoor, and its multiple infection vectors—indicate that MUT-1244 was a skilled and determined threat actor. The group did, however, err by leaving the phishing email template and addresses in a publicly available account.

The ultimate motives of the attackers remain unclear. If the goal were to mine cryptocurrency, there would likely be better populations than security personnel to target. And if the objective was targeting researchers—as other recently discovered campaigns have done—it’s unclear why MUT-1244 would also employ cryptocurrency mining, an activity that’s often easy to detect.

Reports from both Checkmarx and Datadog include indicators people can use to check if they’ve been targeted.

Yearlong supply-chain attack targeting security pros steals 390K credentials Read More »

twirling-body-horror-in-gymnastics-video-exposes-ai’s-flaws

Twirling body horror in gymnastics video exposes AI’s flaws


The slithy toves did gyre and gimble in the wabe

Nonsensical jabberwocky movements created by OpenAI’s Sora are typical for current AI-generated video, and here’s why.

A still image from an AI-generated video of an ever-morphing synthetic gymnast. Credit: OpenAI / Deedy

On Wednesday, a video from OpenAI’s newly launched Sora AI video generator went viral on social media, featuring a gymnast who sprouts extra limbs and briefly loses her head during what appears to be an Olympic-style floor routine.

As it turns out, the nonsensical synthesis errors in the video—what we like to call “jabberwockies”—hint at technical details about how AI video generators work and how they might get better in the future.

But before we dig into the details, let’s take a look at the video.

An AI-generated video of an impossible gymnast, created with OpenAI Sora.

In the video, we see a view of what looks like a floor gymnastics routine. The subject of the video flips and flails as new legs and arms rapidly and fluidly emerge and morph out of her twirling and transforming body. At one point, about 9 seconds in, she loses her head, and it reattaches to her body spontaneously.

“As cool as the new Sora is, gymnastics is still very much the Turing test for AI video,” wrote venture capitalist Deedy Das when he originally shared the video on X. The video inspired plenty of reaction jokes, such as this reply to a similar post on Bluesky: “hi, gymnastics expert here! this is not funny, gymnasts only do this when they’re in extreme distress.”

We reached out to Das, and he confirmed that he generated the video using Sora. He also provided the prompt, which was very long and split into four parts, generated by Anthropic’s Claude, using complex instructions like “The gymnast initiates from the back right corner, taking position with her right foot pointed behind in B-plus stance.”

“I’ve known for the last 6 months having played with text to video models that they struggle with complex physics movements like gymnastics,” Das told us in a conversation. “I had to try it [in Sora] because the character consistency seemed improved. Overall, it was an improvement because previously… the gymnast would just teleport away or change their outfit mid flip, but overall it still looks downright horrifying. We hoped AI video would learn physics by default, but that hasn’t happened yet!”

So what went wrong?

When examining how the video fails, you must first consider how Sora “knows” how to create anything that resembles a gymnastics routine. During the training phase, when the Sora model was created, OpenAI fed example videos of gymnastics routines (among many other types of videos) into a specialized neural network that associates the progression of images with text-based descriptions of them.

That type of training is a distinct phase that happens once before the model’s release. Later, when the finished model is running and you give a video-synthesis model like Sora a written prompt, it draws upon statistical associations between words and images to produce a predictive output. It’s continuously making next-frame predictions based on the last frame of the video. But Sora has another trick for attempting to preserve coherency over time. “By giving the model foresight of many frames at a time,” reads OpenAI’s Sora System Card, we’ve solved a challenging problem of making sure a subject stays the same even when it goes out of view temporarily.”

A still image from a moment where the AI-generated gymnast loses her head. It soon re-attaches to her body.

A still image from a moment where the AI-generated gymnast loses her head. It soon reattaches to her body. Credit: OpenAI / Deedy

Maybe not quite solved yet. In this case, rapidly moving limbs prove a particular challenge when attempting to predict the next frame properly. The result is an incoherent amalgam of gymnastics footage that shows the same gymnast performing running flips and spins, but Sora doesn’t know the correct order in which to assemble them because it’s pulling on statistical averages of wildly different body movements in its relatively limited training data of gymnastics videos, which also likely did not include limb-level precision in its descriptive metadata.

Sora doesn’t know anything about physics or how the human body should work, either. It’s drawing upon statistical associations between pixels in the videos in its training dataset to predict the next frame, with a little bit of look-ahead to keep things more consistent.

This problem is not unique to Sora. All AI video generators can produce wildly nonsensical results when your prompts reach too far past their training data, as we saw earlier this year when testing Runway’s Gen-3. In fact, we ran some gymnast prompts through the latest open source AI video model that may rival Sora in some ways, Hunyuan Video, and it produced similar twirling, morphing results, seen below. And we used a much simpler prompt than Das did with Sora.

An example from open source Chinese AI model Hunyuan Video with the prompt, “A young woman doing a complex floor gymnastics routine at the olympics, featuring running and flips.”

AI models based on transformer technology are fundamentally imitative in nature. They’re great at transforming one type of data into another type or morphing one style into another. What they’re not great at (yet) is producing coherent generations that are truly original. So if you happen to provide a prompt that closely matches a training video, you might get a good result. Otherwise, you may get madness.

As we wrote about image-synthesis model Stable Diffusion 3’s body horror generations earlier this year, “Basically, any time a user prompt homes in on a concept that isn’t represented well in the AI model’s training dataset, the image-synthesis model will confabulate its best interpretation of what the user is asking for. And sometimes that can be completely terrifying.”

For the engineers who make these models, success in AI video generation quickly becomes a question of how many examples (and how much training) you need before the model can generalize enough to produce convincing and coherent results. It’s also a question of metadata quality—how accurately the videos are labeled. In this case, OpenAI used an AI vision model to describe its training videos, which helped improve quality, but apparently not enough—yet.

We’re looking at an AI jabberwocky in action

In a way, the type of generation failure in the gymnast video is a form of confabulation (or hallucination, as some call it), but it’s even worse because it’s not coherent. So instead of calling it a confabulation, which is a plausible-sounding fabrication, we’re going to lean on a new term, “jabberwocky,” which Dictionary.com defines as “a playful imitation of language consisting of invented, meaningless words; nonsense; gibberish,” taken from Lewis Carroll’s nonsense poem of the same name. Imitation and nonsense, you say? Check and check.

We’ve covered jabberwockies in AI video before with people mocking Chinese video-synthesis models, a monstrously weird AI beer commercial, and even Will Smith eating spaghetti. They’re a form of misconfabulation where an AI model completely fails to produce a plausible output. This will not be the last time we see them, either.

How could AI video models get better and avoid jabberwockies?

In our coverage of Gen-3 Alpha, we called the threshold where you get a level of useful generalization in an AI model the “illusion of understanding,” where training data and training time reach a critical mass that produces good enough results to generalize across enough novel prompts.

One of the key reasons language models like OpenAI’s GPT-4 impressed users was that they finally reached a size where they had absorbed enough information to give the appearance of genuinely understanding the world. With video synthesis, achieving this same apparent level of “understanding” will require not just massive amounts of well-labeled training data but also the computational power to process it effectively.

AI boosters hope that these current models represent one of the key steps on the way to something like truly general intelligence (often called AGI) in text, or in AI video, what OpenAI and Runway researchers call “world simulators” or “world models” that somehow encode enough physics rules about the world to produce any realistic result.

Judging by the morphing alien shoggoth gymnast, that may still be a ways off. Still, it’s early days in AI video generation, and judging by how quickly AI image-synthesis models like Midjourney progressed from crude abstract shapes into coherent imagery, it’s likely video synthesis will have a similar trajectory over time. Until then, enjoy the AI-generated jabberwocky madness.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Twirling body horror in gymnastics video exposes AI’s flaws Read More »