Biz & IT

chatgpt-maker-reportedly-eyes-$1-trillion-ipo-despite-major-quarterly-losses

ChatGPT maker reportedly eyes $1 trillion IPO despite major quarterly losses

An OpenAI spokesperson told Reuters that “an IPO is not our focus, so we could not possibly have set a date,” adding that the company is “building a durable business and advancing our mission so everyone benefits from AGI.”

Revenue grows as losses mount

The IPO preparations follow a restructuring of OpenAI completed on October 28 that reduced the company’s reliance on Microsoft, which has committed to investments of $13 billion and now owns about 27 percent of the company. OpenAI was most recently valued around $500 billion in private markets.

OpenAI started as a nonprofit in 2015, then added a for-profit arm a few years later with nonprofit oversight. Under the new structure, OpenAI is still controlled by a nonprofit, now called the OpenAI Foundation, but it gives the nonprofit a 26 percent stake in OpenAI Group and a warrant for additional shares if the company hits certain milestones.

A successful OpenAI IPO could represent a substantial gain for investors, including Microsoft, SoftBank, Thrive Capital, and Abu Dhabi’s MGX. But even so, OpenAI faces an uphill financial battle ahead. The ChatGPT maker expects to reach about $20 billion in revenue by year-end, according to people familiar with the company’s finances who spoke with Reuters, but its quarterly losses are significant.

Microsoft’s earnings filing on Wednesday offered a glimpse at the scale of those losses. The company reported that its share of OpenAI losses reduced Microsoft’s net income by $3.1 billion in the quarter that ended September 30. Since Microsoft owns 27 percent of OpenAI under the new structure, that suggests OpenAI lost about $11.5 billion during the quarter, as noted by The Register. That quarterly loss figure exceeds half of OpenAI’s expected revenue for the entire year.

ChatGPT maker reportedly eyes $1 trillion IPO despite major quarterly losses Read More »

npm-flooded-with-malicious-packages-downloaded-more-than-86,000-times

NPM flooded with malicious packages downloaded more than 86,000 times

Attackers are exploiting a major weakness that has allowed them access to the NPM code repository with more than 100 credential-stealing packages since August, mostly without detection.

The finding, laid out Wednesday by security firm Koi, brings attention to an NPM practice that allows installed packages to automatically pull down and run unvetted packages from untrusted domains. Koi said a campaign it tracks as PhantomRaven has exploited NPM’s use of “Remote Dynamic Dependences” to flood NPM with 126 malicious packages that have been downloaded more than 86,000 times. Some 80 of those packages remained available as of Wednesday morning, Koi said.

A blind spot

“PhantomRaven demonstrates how sophisticated attackers are getting [better] at exploiting blind spots in traditional security tooling,” Koi’s Oren Yomtov wrote. “Remote Dynamic Dependencies aren’t visible to static analysis.”

Remote Dynamic Dependencies provide greater flexibility in accessing dependencies—the code libraries that are mandatory for many other packages to work. Normally, dependencies are visible to the developer installing the package. They’re usually downloaded from NPM’s trusted infrastructure.

RDD works differently. It allows a package to download dependencies from untrusted websites, even those that connect over HTTP, which is unencrypted. The PhantomRaven attackers exploited this leniency by including code in the 126 packages uploaded to NPM. The code downloads malicious dependencies from URLs, including http://packages.storeartifact.com/npm/unused-imports. Koi said these dependencies are “invisible” to developers and many security scanners. Instead, they show the package contains “0 Dependencies.” An NPM feature causes these invisible downloads to be automatically installed.

Compounding the weakness, the dependencies are downloaded “fresh” from the attacker server each time a package is installed, rather than being cached, versioned, or otherwise static, as Koi explained:

NPM flooded with malicious packages downloaded more than 86,000 times Read More »

nvidia-hits-record-$5-trillion-mark-as-ceo-dismisses-ai-bubble-concerns

Nvidia hits record $5 trillion mark as CEO dismisses AI bubble concerns

Partnerships and government contracts fuel optimism

At the GTC conference on Tuesday, Nvidia’s CEO went out of his way to repeatedly praise Donald Trump and his policies for accelerating domestic tech investment while warning that excluding China from Nvidia’s ecosystem could limit US access to half the world’s AI developers. The overall event stressed Nvidia’s role as an American company, with Huang even nodding to Trump’s signature slogan in his sign-off by thanking the audience for “making America great again.”

Trump’s cooperation is paramount for Nvidia because US export controls have effectively blocked Nvidia’s AI chips from China, costing the company billions of dollars in revenue. Bob O’Donnell of TECHnalysis Research told Reuters that “Nvidia clearly brought their story to DC to both educate and gain favor with the US government. They managed to hit most of the hottest and most influential topics in tech.”

Beyond the political messaging, Huang announced a series of partnerships and deals that apparently helped ease investor concerns about Nvidia’s future. The company announced collaborations with Uber Technologies, Palantir Technologies, and CrowdStrike Holdings, among others. Nvidia also revealed a $1 billion investment in Nokia to support the telecommunications company’s shift toward AI and 6G networking.

The agreement with Uber will power a fleet of 100,000 self-driving vehicles with Nvidia technology, with automaker Stellantis among the first to deliver the robotaxis. Palantir will pair Nvidia’s technology with its Ontology platform to use AI techniques for logistics insights, with Lowe’s as an early adopter. Eli Lilly plans to build what Nvidia described as the most powerful supercomputer owned and operated by a pharmaceutical company, relying on more than 1,000 Blackwell AI accelerator chips.

The $5 trillion valuation surpasses the total cryptocurrency market value and equals roughly half the size of the pan European Stoxx 600 equities index, Reuters notes. At current prices, Huang’s stake in Nvidia would be worth about $179.2 billion, making him the world’s eighth-richest person.

Nvidia hits record $5 trillion mark as CEO dismisses AI bubble concerns Read More »

openai-data-suggests-1-million-users-discuss-suicide-with-chatgpt-weekly

OpenAI data suggests 1 million users discuss suicide with ChatGPT weekly

Earlier this month, the company unveiled a wellness council to address these concerns, though critics noted the council did not include a suicide prevention expert. OpenAI also recently rolled out controls for parents of children who use ChatGPT. The company says it’s building an age prediction system to automatically detect children using ChatGPT and impose a stricter set of age-related safeguards.

Rare but impactful conversations

The data shared on Monday appears to be part of the company’s effort to demonstrate progress on these issues, although it also shines a spotlight on just how deeply AI chatbots may be affecting the health of the public at large.

In a blog post on the recently released data, OpenAI says these types of conversations in ChatGPT that might trigger concerns about “psychosis, mania, or suicidal thinking” are “extremely rare,” and thus difficult to measure. The company estimates that around 0.07 percent of users active in a given week and 0.01 percent of messages indicate possible signs of mental health emergencies related to psychosis or mania. For emotional attachment, the company estimates around 0.15 percent of users active in a given week and 0.03 percent of messages indicate potentially heightened levels of emotional attachment to ChatGPT.

OpenAI also claims that on an evaluation of over 1,000 challenging mental health-related conversations, the new GPT-5 model was 92 percent compliant with its desired behaviors, compared to 27 percent for a previous GPT-5 model released on August 15. The company also says its latest version of GPT-5 holds up to OpenAI’s safeguards better in long conversations. OpenAI has previously admitted that its safeguards are less effective during extended conversations.

In addition, OpenAI says it’s adding new evaluations to attempt to measure some of the most serious mental health issues facing ChatGPT users. The company says its baseline safety testing for its AI language models will now include benchmarks for emotional reliance and non-suicidal mental health emergencies.

Despite the ongoing mental health concerns, OpenAI CEO Sam Altman announced on October 14 that the company will allow verified adult users to have erotic conversations with ChatGPT starting in December. The company had loosened ChatGPT content restrictions in February but then dramatically tightened them after the August lawsuit. Altman explained that OpenAI had made ChatGPT “pretty restrictive to make sure we were being careful with mental health issues” but acknowledged this approach made the chatbot “less useful/enjoyable to many users who had no mental health problems.”

If you or someone you know is feeling suicidal or in distress, please call the Suicide Prevention Lifeline number, 1-800-273-TALK (8255), which will put you in touch with a local crisis center.

OpenAI data suggests 1 million users discuss suicide with ChatGPT weekly Read More »

a-single-point-of-failure-triggered-the-amazon-outage-affecting-millions

A single point of failure triggered the Amazon outage affecting millions

In turn, the delay in network state propagations spilled over to a network load balancer that AWS services rely on for stability. As a result, AWS customers experienced connection errors from the US-East-1 region. AWS network functions affected included the creating and modifying Redshift clusters, Lambda invocations, and Fargate task launches such as Managed Workflows for Apache Airflow, Outposts lifecycle operations, and the AWS Support Center.

For the time being, Amazon has disabled the DynamoDB DNS Planner and the DNS Enactor automation worldwide while it works to fix the race condition and add protections to prevent the application of incorrect DNS plans. Engineers are also making changes to EC2 and its network load balancer.

A cautionary tale

Ookla outlined a contributing factor not mentioned by Amazon: a concentration of customers who route their connectivity through the US-East-1 endpoint and an inability to route around the region. Ookla explained:

The affected US‑EAST‑1 is AWS’s oldest and most heavily used hub. Regional concentration means even global apps often anchor identity, state or metadata flows there. When a regional dependency fails as was the case in this event, impacts propagate worldwide because many “global” stacks route through Virginia at some point.

Modern apps chain together managed services like storage, queues, and serverless functions. If DNS cannot reliably resolve a critical endpoint (for example, the DynamoDB API involved here), errors cascade through upstream APIs and cause visible failures in apps users do not associate with AWS. That is precisely what Downdetector recorded across Snapchat, Roblox, Signal, Ring, HMRC, and others.

The event serves as a cautionary tale for all cloud services: More important than preventing race conditions and similar bugs is eliminating single points of failure in network design.

“The way forward,” Ookla said, “is not zero failure but contained failure, achieved through multi-region designs, dependency diversity, and disciplined incident readiness, with regulatory oversight that moves toward treating the cloud as systemic components of national and economic resilience.”

A single point of failure triggered the Amazon outage affecting millions Read More »

nation-state-hackers-deliver-malware-from-“bulletproof”-blockchains

Nation-state hackers deliver malware from “bulletproof” blockchains

Hacking groups—at least one of which works on behalf of the North Korean government—have found a new and inexpensive way to distribute malware from “bulletproof” hosts: stashing them on public cryptocurrency blockchains.

In a Thursday post, members of the Google Threat Intelligence Group said the technique provides the hackers with their own “bulletproof” host, a term that describes cloud platforms that are largely immune from takedowns by law enforcement and pressure from security researchers. More traditionally, these hosts are located in countries without treaties agreeing to enforce criminal laws from the US and other nations. These services often charge hefty sums and cater to criminals spreading malware or peddling child sexual abuse material and wares sold in crime-based flea markets.

Next-gen, DIY hosting that can’t be tampered with

Since February, Google researchers have observed two groups turning to a newer technique to infect targets with credential stealers and other forms of malware. The method, known as EtherHiding, embeds the malware in smart contracts, which are essentially apps that reside on blockchains for Ethereum and other cryptocurrencies. Two or more parties then enter into an agreement spelled out in the contract. When certain conditions are met, the apps enforce the contract terms in a way that, at least theoretically, is immutable and independent of any central authority.

“In essence, EtherHiding represents a shift toward next-generation bulletproof hosting, where the inherent features of blockchain technology are repurposed for malicious ends,” Google researchers Blas Kojusner, Robert Wallace, and Joseph Dobson wrote. “This technique underscores the continuous evolution of cyber threats as attackers adapt and leverage new technologies to their advantage.”

There’s a wide array of advantages to EtherHiding over more traditional means of delivering malware, which besides bulletproof hosting include leveraging compromised servers.

    • The decentralization prevents takedowns of the malicious smart contracts because the mechanisms in the blockchains bar the removal of all such contracts.
    • Similarly, the immutability of the contracts prevents the removal or tampering with the malware by anyone.
    • Transactions on Ethereum and several other blockchains are effectively anonymous, protecting the hackers’ identities.
    • Retrieval of malware from the contracts leaves no trace of the access in event logs, providing stealth
    • The attackers can update malicious payloads at anytime

Nation-state hackers deliver malware from “bulletproof” blockchains Read More »

ars-live-recap:-is-the-ai-bubble-about-to-pop?-ed-zitron-weighs-in.

Ars Live recap: Is the AI bubble about to pop? Ed Zitron weighs in.


Despite connection hiccups, we covered OpenAI’s finances, nuclear power, and Sam Altman.

On Tuesday of last week, Ars Technica hosted a live conversation with Ed Zitron, host of the Better Offline podcast and one of tech’s most vocal AI critics, to discuss whether the generative AI industry is experiencing a bubble and when it might burst. My Internet connection had other plans, though, dropping out multiple times and forcing Ars Technica’s Lee Hutchinson to jump in as an excellent emergency backup host.

During the times my connection cooperated, Zitron and I covered OpenAI’s financial issues, lofty infrastructure promises, and why the AI hype machine keeps rolling despite some arguably shaky economics underneath. Lee’s probing questions about per-user costs revealed a potential flaw in AI subscription models: Companies can’t predict whether a user will cost them $2 or $10,000 per month.

You can watch a recording of the event on YouTube or in the window below.

Our discussion with Ed Zitron. Click here for transcript.

“A 50 billion-dollar industry pretending to be a trillion-dollar one”

I started by asking Zitron the most direct question I could: “Why are you so mad about AI?” His answer got right to the heart of his critique: the disconnect between AI’s actual capabilities and how it’s being sold. “Because everybody’s acting like it’s something it isn’t,” Zitron said. “They’re acting like it’s this panacea that will be the future of software growth, the future of hardware growth, the future of compute.”

In one of his newsletters, Zitron describes the generative AI market as “a 50 billion dollar revenue industry masquerading as a one trillion-dollar one.” He pointed to OpenAI’s financial burn rate (losing an estimated $9.7 billion in the first half of 2025 alone) as evidence that the economics don’t work, coupled with a heavy dose of pessimism about AI in general.

Donald Trump listens as Nvidia CEO Jensen Huang speaks at the White House during an event on “Investing in America” on April 30, 2025, in Washington, DC. Credit: Andrew Harnik / Staff | Getty Images News

“The models just do not have the efficacy,” Zitron said during our conversation. “AI agents is one of the most egregious lies the tech industry has ever told. Autonomous agents don’t exist.”

He contrasted the relatively small revenue generated by AI companies with the massive capital expenditures flowing into the sector. Even major cloud providers and chip makers are showing strain. Oracle reportedly lost $100 million in three months after installing Nvidia’s new Blackwell GPUs, which Zitron noted are “extremely power-hungry and expensive to run.”

Finding utility despite the hype

I pushed back against some of Zitron’s broader dismissals of AI by sharing my own experience. I use AI chatbots frequently for brainstorming useful ideas and helping me see them from different angles. “I find I use AI models as sort of knowledge translators and framework translators,” I explained.

After experiencing brain fog from repeated bouts of COVID over the years, I’ve also found tools like ChatGPT and Claude especially helpful for memory augmentation that pierces through brain fog: describing something in a roundabout, fuzzy way and quickly getting an answer I can then verify. Along these lines, I’ve previously written about how people in a UK study found AI assistants useful accessibility tools.

Zitron acknowledged this could be useful for me personally but declined to draw any larger conclusions from my one data point. “I understand how that might be helpful; that’s cool,” he said. “I’m glad that that helps you in that way; it’s not a trillion-dollar use case.”

He also shared his own attempts at using AI tools, including experimenting with Claude Code despite not being a coder himself.

“If I liked [AI] somehow, it would be actually a more interesting story because I’d be talking about something I liked that was also onerously expensive,” Zitron explained. “But it doesn’t even do that, and it’s actually one of my core frustrations, it’s like this massive over-promise thing. I’m an early adopter guy. I will buy early crap all the time. I bought an Apple Vision Pro, like, what more do you say there? I’m ready to accept issues, but AI is all issues, it’s all filler, no killer; it’s very strange.”

Zitron and I agree that current AI assistants are being marketed beyond their actual capabilities. As I often say, AI models are not people, and they are not good factual references. As such, they cannot replace human decision-making and cannot wholesale replace human intellectual labor (at the moment). Instead, I see AI models as augmentations of human capability: as tools rather than autonomous entities.

Computing costs: History versus reality

Even though Zitron and I found some common ground about AI hype, I expressed a belief that criticism over the cost and power requirements of operating AI models will eventually not become an issue.

I attempted to make that case by noting that computing costs historically trend downward over time, referencing the Air Force’s SAGE computer system from the 1950s: a four-story building that performed 75,000 operations per second while consuming two megawatts of power. Today, pocket-sized phones deliver millions of times more computing power in a way that would be impossible, power consumption-wise, in the 1950s.

The blockhouse for the Semi-Automatic Ground Environment at Stewart Air Force Base, Newburgh, New York. Credit: Denver Post via Getty Images

“I think it will eventually work that way,” I said, suggesting that AI inference costs might follow similar patterns of improvement over years and that AI tools will eventually become commodity components of computer operating systems. Basically, even if AI models stay inefficient, AI models of a certain baseline usefulness and capability will still be cheaper to train and run in the future because the computing systems they run on will be faster, cheaper, and less power-hungry as well.

Zitron pushed back on this optimism, saying that AI costs are currently moving in the wrong direction. “The costs are going up, unilaterally across the board,” he said. Even newer systems like Cerebras and Grok can generate results faster but not cheaper. He also questioned whether integrating AI into operating systems would prove useful even if the technology became profitable, since AI models struggle with deterministic commands and consistent behavior.

The power problem and circular investments

One of Zitron’s most pointed criticisms during the discussion centered on OpenAI’s infrastructure promises. The company has pledged to build data centers requiring 10 gigawatts of power capacity (equivalent to 10 nuclear power plants, I once pointed out) for its Stargate project in Abilene, Texas. According to Zitron’s research, the town currently has only 350 megawatts of generating capacity and a 200-megawatt substation.

“A gigawatt of power is a lot, and it’s not like Red Alert 2,” Zitron said, referencing the real-time strategy game. “You don’t just build a power station and it happens. There are months of actual physics to make sure that it doesn’t kill everyone.”

He believes many announced data centers will never be completed, calling the infrastructure promises “castles on sand” that nobody in the financial press seems willing to question directly.

An orange, cloudy sky backlights a set of electrical wires on large pylons, leading away from the cooling towers of a nuclear power plant.

After another technical blackout on my end, I came back online and asked Zitron to define the scope of the AI bubble. He says it has evolved from one bubble (foundation models) into two or three, now including AI compute companies like CoreWeave and the market’s obsession with Nvidia.

Zitron highlighted what he sees as essentially circular investment schemes propping up the industry. He pointed to OpenAI’s $300 billion deal with Oracle and Nvidia’s relationship with CoreWeave as examples. “CoreWeave, they literally… They funded CoreWeave, became their biggest customer, then CoreWeave took that contract and those GPUs and used them as collateral to raise debt to buy more GPUs,” Zitron explained.

When will the bubble pop?

Zitron predicted the bubble would burst within the next year and a half, though he acknowledged it could happen sooner. He expects a cascade of events rather than a single dramatic collapse: An AI startup will run out of money, triggering panic among other startups and their venture capital backers, creating a fire-sale environment that makes future fundraising impossible.

“It’s not gonna be one Bear Stearns moment,” Zitron explained. “It’s gonna be a succession of events until the markets freak out.”

The crux of the problem, according to Zitron, is Nvidia. The chip maker’s stock represents 7 to 8 percent of the S&P 500’s value, and the broader market has become dependent on Nvidia’s continued hyper growth. When Nvidia posted “only” 55 percent year-over-year growth in January, the market wobbled.

“Nvidia’s growth is why the bubble is inflated,” Zitron said. “If their growth goes down, the bubble will burst.”

He also warned of broader consequences: “I think there’s a depression coming. I think once the markets work out that tech doesn’t grow forever, they’re gonna flush the toilet aggressively on Silicon Valley.” This connects to his larger thesis: that the tech industry has run out of genuine hyper-growth opportunities and is trying to manufacture one with AI.

“Is there anything that would falsify your premise of this bubble and crash happening?” I asked. “What if you’re wrong?”

“I’ve been answering ‘What if you’re wrong?’ for a year-and-a-half to two years, so I’m not bothered by that question, so the thing that would have to prove me right would’ve already needed to happen,” he said. Amid a longer exposition about Sam Altman, Zitron said, “The thing that would’ve had to happen with inference would’ve had to be… it would have to be hundredths of a cent per million tokens, they would have to be printing money, and then, it would have to be way more useful. It would have to have efficacy that it does not have, the hallucination problems… would have to be fixable, and on top of this, someone would have to fix agents.”

A positivity challenge

Near the end of our conversation, I wondered if I could flip the script, so to speak, and see if he could say something positive or optimistic, although I chose the most challenging subject possible for him. “What’s the best thing about Sam Altman,” I asked. “Can you say anything nice about him at all?”

“I understand why you’re asking this,” Zitron started, “but I wanna be clear: Sam Altman is going to be the reason the markets take a crap. Sam Altman has lied to everyone. Sam Altman has been lying forever.” He continued, “Like the Pied Piper, he’s led the markets into an abyss, and yes, people should have known better, but I hope at the end of this, Sam Altman is seen for what he is, which is a con artist and a very successful one.”

Then he added, “You know what? I’ll say something nice about him, he’s really good at making people say, ‘Yes.’”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Ars Live recap: Is the AI bubble about to pop? Ed Zitron weighs in. Read More »

thousands-of-customers-imperiled-after-nation-state-ransacks-f5’s-network

Thousands of customers imperiled after nation-state ransacks F5’s network

Customers position BIG-IP at the very edge of their networks for use as load balancers and firewalls, and for inspection and encryption of data passing into and out of networks. Given BIG-IP’s network position and its role in managing traffic for web servers, previous compromises have allowed adversaries to expand their access to other parts of an infected network.

F5 said that investigations by two outside intrusion-response firms have yet to find any evidence of supply-chain attacks. The company attached letters from firms IOActive and NCC Group attesting that analyses of source code and build pipeline uncovered no signs that a “threat actor modified or introduced any vulnerabilities into the in-scope items.” The firms also said they didn’t identify any evidence of critical vulnerabilities in the system. Investigators, which also included Mandiant and CrowdStrike, found no evidence that data from its CRM, financial, support case management, or health systems was accessed.

The company released updates for its BIG-IP, F5OS, BIG-IQ, and APM products. CVE designations and other details are here. Two days ago, F5 rotated BIG-IP signing certificates, though there was no immediate confirmation that the move is in response to the breach.

The US Cybersecurity and Infrastructure Security agency has warned that federal agencies that rely on the appliance face an “imminent threat” from the thefts, which “pose an unacceptable risk.” The agency went on to direct federal agencies under its control to take “emergency action.” The UK’s National Cyber Security Center issued a similar directive.

CISA has ordered all federal agencies it oversees to immediately take inventory of all BIG-IP devices in networks they run or in networks that outside providers run on their behalf. The agency went on to direct agencies to install the updates and follow a threat-hunting guide that F5 has also issued. BIG-IP users in private industry should do the same.

Thousands of customers imperiled after nation-state ransacks F5’s network Read More »

anthropic’s-claude-haiku-4.5-matches-may’s-frontier-model-at-fraction-of-cost

Anthropic’s Claude Haiku 4.5 matches May’s frontier model at fraction of cost

And speaking of cost, Haiku 4.5 is included for subscribers of the Claude web and app plans. Through the API (for developers), the small model is priced at $1 per million input tokens and $5 per million output tokens. That compares to Sonnet 4.5 at $3 per million input and $15 per million output tokens, and Opus 4.1 at $15 per million input and $75 per million output tokens.

The model serves as a cheaper drop-in replacement for two older models, Haiku 3.5 and Sonnet 4. “Users who rely on AI for real-time, low-latency tasks like chat assistants, customer service agents, or pair programming will appreciate Haiku 4.5’s combination of high intelligence and remarkable speed,” Anthropic writes.

Claude 4.5 Haiku answers the classic Ars Technica AI question,

Claude 4.5 Haiku answers the classic Ars Technica AI question, “Would the color be called ‘magenta’ if the town of Magenta didn’t exist?”

On SWE-bench Verified, a test that measures performance on coding tasks, Haiku 4.5 scored 73.3 percent compared to Sonnet 4’s similar performance level (72.7 percent). The model also reportedly surpasses Sonnet 4 at certain tasks like using computers, according to Anthropic’s benchmarks. Claude Sonnet 4.5, released in late September, remains Anthropic’s frontier model and what the company calls “the best coding model available.”

Haiku 4.5 also surprisingly edges up close to what OpenAI’s GPT-5 can achieve in this particular set of benchmarks (as seen in the chart above), although since the results are self-reported and potentially cherry-picked to match a model’s strengths, one should always take them with a grain of salt.

Still, making a small, capable coding model may have unexpected advantages for agentic coding setups like Claude Code. Anthropic designed Haiku 4.5 to work alongside Sonnet 4.5 in multi-model workflows. In such a configuration, Anthropic says, Sonnet 4.5 could break down complex problems into multi-step plans, then coordinate multiple Haiku 4.5 instances to complete subtasks in parallel, like spinning off workers to get things done faster.

For more details on the new model, Anthropic released a system card and documentation for developers.

Anthropic’s Claude Haiku 4.5 matches May’s frontier model at fraction of cost Read More »

chatgpt-erotica-coming-soon-with-age-verification,-ceo-says

ChatGPT erotica coming soon with age verification, CEO says

On Tuesday, OpenAI CEO Sam Altman announced that the company will allow verified adult users to have erotic conversations with ChatGPT starting in December. The change represents a shift in how OpenAI approaches content restrictions, which the company had loosened in February but then dramatically tightened after an August lawsuit from parents of a teen who died by suicide after allegedly receiving encouragement from ChatGPT.

“In December, as we roll out age-gating more fully and as part of our ‘treat adult users like adults’ principle, we will allow even more, like erotica for verified adults,” Altman wrote in his post on X (formerly Twitter). The announcement follows OpenAI’s recent hint that it would allow developers to create “mature” ChatGPT applications once the company implements appropriate age verification and controls.

Altman explained that OpenAI had made ChatGPT “pretty restrictive to make sure we were being careful with mental health issues” but acknowledged this approach made the chatbot “less useful/enjoyable to many users who had no mental health problems.” The CEO said the company now has new tools to better detect when users are experiencing mental distress, allowing OpenAI to relax restrictions in most cases.

Striking the right balance between freedom for adults and safety for users has been a difficult balancing act for OpenAI, which has vacillated between permissive and restrictive chat content controls over the past year.

In February, the company updated its Model Spec to allow erotica in “appropriate contexts.” But a March update made GPT-4o so agreeable that users complained about its “relentlessly positive tone.” By August, Ars reported on cases where ChatGPT’s sycophantic behavior had validated users’ false beliefs to the point of causing mental health crises, and news of the aforementioned suicide lawsuit hit not long after.

Aside from adjusting the behavioral outputs for its previous GPT-40 AI language model, new model changes have also created some turmoil among users. Since the launch of GPT-5 in early August, some users have been complaining that the new model feels less engaging than its predecessor, prompting OpenAI to bring back the older model as an option. Altman said the upcoming release will allow users to choose whether they want ChatGPT to “respond in a very human-like way, or use a ton of emoji, or act like a friend.”

ChatGPT erotica coming soon with age verification, CEO says Read More »

feds-seize-$15-billion-from-alleged-forced-labor-scam-built-on-“human-suffering”

Feds seize $15 billion from alleged forced labor scam built on “human suffering”

Federal prosecutors have seized $15 billion from the alleged kingpin of an operation that used imprisoned laborers to trick unsuspecting people into making investments in phony funds, often after spending months faking romantic relationships with the victims.

Such “pig butchering” scams have operated for years. They typically work when members of the operation initiate conversations with people on social media and then spend months messaging them. Often, the scammers pose as attractive individuals who feign romantic interest for the victim.

Forced labor, phone farms, and human suffering

Eventually, conversations turn to phony investment funds with the end goal of convincing the victim to transfer large amounts of bitcoin. In many cases, the scammers are trafficked and held against their will in compounds surrounded by fences and barbed wire.

On Tuesday, federal prosecutors unsealed an indictment against Chen Zhi, the founder and chairman of a multinational business conglomerate based in Cambodia. It alleged that Zhi led such a forced-labor scam operation, which, with the help of unnamed co-conspirators, netted billions of dollars from victims.

“The defendant CHEN ZHI and his co-conspirators designed the compounds to maximize profits and personally ensured that they had the necessary infrastructure to reach as many victims as possible,” prosecutors wrote in the court document, filed in US District Court for the Eastern District of New York. The indictment continued:

For example, in or about 2018, Co-Conspirator-1 was involved in procuring millions of mobile telephone numbers and account passwords from an illicit online marketplace. In or about 2019, Co-Conspirator-3 helped oversee construction of the Golden Fortune compound. CHEN himself maintained documents describing and depicting “phone farms,” automated call centers used to facilitate cryptocurrency investment fraud and other cybercrimes, including the below image:

Credit: Justice Department

Prosecutors said Zhi is the founder and chairman of Prince Group, a Cambodian corporate conglomerate that ostensibly operated dozens of legitimate business entities in more than 30 countries. In secret, however, Zhi and top executives built Prince Group into one of Asia’s largest transnational criminal organizations. Zhi’s whereabouts are unknown.

Feds seize $15 billion from alleged forced labor scam built on “human suffering” Read More »

nvidia-sells-tiny-new-computer-that-puts-big-ai-on-your-desktop

Nvidia sells tiny new computer that puts big AI on your desktop

On Tuesday, Nvidia announced it will begin taking orders for the DGX Spark, a $4,000 desktop AI computer that wraps one petaflop of computing performance and 128GB of unified memory into a form factor small enough to sit on a desk. Its biggest selling point is likely its large integrated memory that can run larger AI models than consumer GPUs.

Nvidia will begin taking orders for the DGX Spark on Wednesday, October 15, through its website, with systems also available from manufacturing partners and select US retail stores.

The DGX Spark, which Nvidia previewed as “Project DIGITS” in January and formally named in May, represents Nvidia’s attempt to create a new category of desktop computer workstation specifically for AI development.

With the Spark, Nvidia seeks to address a problem facing some AI developers: Many AI tasks exceed the memory and software capabilities of standard PCs and workstations (more on that below), forcing them to shift their work to cloud services or data centers. However, the actual market for a desktop AI workstation remains uncertain, particularly given the upfront cost versus cloud alternatives, which allow developers to pay as they go.

Nvidia’s Spark reportedly includes enough memory to run larger-than-typical AI models for local tasks, with up to 200 billion parameters and fine-tune models containing up to 70 billion parameters without requiring remote infrastructure. Potential uses include running larger open-weights language models and media synthesis models such as AI image generators.

According to Nvidia, users can customize Black Forest Labs’ Flux.1 models for image generation, build vision search and summarization agents using Nvidia’s Cosmos Reason vision language model, or create chatbots using the Qwen3 model optimized for the DGX Spark platform.

Big memory in a tiny box

Nvidia has squeezed a lot into a 2.65-pound box that measures 5.91 x 5.91 x 1.99 inches and uses 240 watts of power. The system runs on Nvidia’s GB10 Grace Blackwell Superchip, includes ConnectX-7 200Gb/s networking, and uses NVLink-C2C technology that provides five times the bandwidth of PCIe Gen 5. It also includes the aforementioned 128GB of unified memory that is shared between system and GPU tasks.

Nvidia sells tiny new computer that puts big AI on your desktop Read More »