Biz & IT

wipers-from-russia’s-most-cut-throat-hackers-rain-destruction-on-ukraine

Wipers from Russia’s most cut-throat hackers rain destruction on Ukraine

One of the world’s most ruthless and advanced hacking groups, the Russian state-controlled Sandworm, launched a series of destructive cyberattacks in the country’s ongoing war against neighboring Ukraine, researchers reported Thursday.

In April, the group targeted a Ukrainian university with two wipers, a form of malware that aims to permanently destroy sensitive data and often the infrastructure storing it. One wiper, tracked under the name Sting, targeted fleets of Windows computers by scheduling a task named DavaniGulyashaSdeshka, a phrase derived from Russian slang that loosely translates to “eat some goulash,” researchers from ESET said. The other wiper is tracked as Zerlot.

A not-so-common target

Then, in June and September, Sandworm unleashed multiple wiper variants against a host of Ukrainian critical infrastructure targets, including organizations active in government, energy, and logistics. The targets have long been in the crosshairs of Russian hackers. There was, however, a fourth, less common target—organizations in Ukraine’s grain industry.

“Although all four have previously been documented as targets of wiper attacks at some point since 2022, the grain sector stands out as a not-so-frequent target,” ESET said. “Considering that grain export remains one of Ukraine’s main sources of revenue, such targeting likely reflects an attempt to weaken the country’s war economy.”

Wipers have been a favorite tool of Russian hackers since at least 2012, with the spreading of the NotPetya worm. The self-replicating malware originally targeted Ukraine, but eventually caused international chaos when it spread globally in a matter of hours. The worm resulted in tens of billions of dollars in financial damages after it shut down thousands of organizations, many for days or weeks.

Wipers from Russia’s most cut-throat hackers rain destruction on Ukraine Read More »

google-plans-secret-ai-military-outpost-on-tiny-island-overrun-by-crabs

Google plans secret AI military outpost on tiny island overrun by crabs

Christmas Island Shire President Steve Pereira told Reuters that the council is examining community impacts before approving construction. “There is support for it, providing this data center actually does put back into the community with infrastructure, employment, and adding economic value to the island,” Pereira said.

That’s great, but what about the crabs?

Christmas Island’s annual crab migration is a natural phenomenon that Sir David Attenborough reportedly once described as one of his greatest TV moments when he visited the site in 1990.

Every year, millions of crabs emerge from the forest and swarm across roads, streams, rocks, and beaches to reach the ocean, where each female can produce up to 100,000 eggs. The tiny baby crabs that survive take about nine days to march back inland to the safety of the plateau.

While Google is seeking environmental approvals for its subsea cables, the timing could prove delicate for Christmas Island’s most famous residents. According to Parks Australia, the island’s annual red crab migration has already begun for 2025, with a major spawning event expected in just a few weeks, around November 15–16.

During peak migration times, sections of roads close at short notice as crabs move between forest and sea, and the island has built special crab bridges over roads to protect the migrating masses.

Parks Australia notes that while the migration happens annually, few baby crabs survive the journey from sea to forest most years, as they’re often eaten by fish, manta rays, and whale sharks. The successful migrations that occur only once or twice per decade (when large numbers of babies actually survive) are critical for maintaining the island’s red crab population.

How Google’s facility might coexist with 100 million marching crustaceans remains to be seen. But judging by the size of the event, it seems clear that it’s the crab’s world, and we’re just living in it.

Google plans secret AI military outpost on tiny island overrun by crabs Read More »

5-ai-developed-malware-families-analyzed-by-google-fail-to-work-and-are-easily-detected

5 AI-developed malware families analyzed by Google fail to work and are easily detected

The assessments provide a strong counterargument to the exaggerated narratives being trumpeted by AI companies, many seeking new rounds of venture funding, that AI-generated malware is widespread and part of a new paradigm that poses a current threat to traditional defenses.

A typical example is Anthropic, which recently reported its discovery of a threat actor that used its Claude LLM to “develop, market, and distribute several variants of ransomware, each with advanced evasion capabilities, encryption, and anti-recovery mechanisms.” The company went on to say: “Without Claude’s assistance, they could not implement or troubleshoot core malware components, like encryption algorithms, anti-analysis techniques, or Windows internals manipulation.”

Startup ConnectWise recently said that generative AI was “lowering the bar of entry for threat actors to get into the game.” The post cited a separate report from OpenAI that found 20 separate threat actors using its ChatGPT AI engine to develop malware for tasks including identifying vulnerabilities, developing exploit code, and debugging that code. BugCrowd, meanwhile, said that in a survey of self-selected individuals, “74 percent of hackers agree that AI has made hacking more accessible, opening the door for newcomers to join the fold.”

In some cases, the authors of such reports note the same limitations noted in this article. Wednesday’s report from Google says that in its analysis of AI tools used to develop code for managing command and control channels and obfuscating its operations “we did not see evidence of successful automation or any breakthrough capabilities.” OpenAI said much the same thing. Still, these disclaimers are rarely made prominently and are often downplayed in the resulting frenzy to portray AI-assisted malware as posing a near-term threat.

Google’s report provides at least one other useful finding. One threat actor that exploited the company’s Gemini AI model was able to bypass its guardrails by posing as white-hat hackers doing research for participation in a capture-the-flag game. These competitive exercises are designed to teach and demonstrate effective cyberattack strategies to both participants and onlookers.

Such guardrails are built into all mainstream LLMs to prevent them from being used maliciously, such as in cyberattacks and self-harm. Google said it has since better fine-tuned the countermeasure to resist such ploys.

Ultimately, the AI-generated malware that has surfaced to date suggests that it’s mostly experimental, and the results aren’t impressive. The events are worth monitoring for developments that show AI tools producing new capabilities that were previously unknown. For now, though, the biggest threats continue to predominantly rely on old-fashioned tactics.

5 AI-developed malware families analyzed by Google fail to work and are easily detected Read More »

openai-signs-massive-ai-compute-deal-with-amazon

OpenAI signs massive AI compute deal with Amazon

On Monday, OpenAI announced it has signed a seven-year, $38 billion deal to buy cloud services from Amazon Web Services to power products like ChatGPT and Sora. It’s the company’s first big computing deal after a fundamental restructuring last week that gave OpenAI more operational and financial freedom from Microsoft.

The agreement gives OpenAI access to hundreds of thousands of Nvidia graphics processors to train and run its AI models. “Scaling frontier AI requires massive, reliable compute,” OpenAI CEO Sam Altman said in a statement. “Our partnership with AWS strengthens the broad compute ecosystem that will power this next era and bring advanced AI to everyone.”

OpenAI will reportedly use Amazon Web Services immediately, with all planned capacity set to come online by the end of 2026 and room to expand further in 2027 and beyond. Amazon plans to roll out hundreds of thousands of chips, including Nvidia’s GB200 and GB300 AI accelerators, in data clusters built to power ChatGPT’s responses, generate AI videos, and train OpenAI’s next wave of models.

Wall Street apparently liked the deal, because Amazon shares hit an all-time high on Monday morning. Meanwhile, shares for long-time OpenAI investor and partner Microsoft briefly dipped following the announcement.

Massive AI compute requirements

It’s no secret that running generative AI models for hundreds of millions of people currently requires a lot of computing power. Amid chip shortages over the past few years, finding sources of that computing muscle has been tricky. OpenAI is reportedly working on its own GPU hardware to help alleviate the strain.

But for now, the company needs to find new sources of Nvidia chips, which accelerate AI computations. Altman has previously said that the company plans to spend $1.4 trillion to develop 30 gigawatts of computing resources, an amount that is enough to roughly power 25 million US homes, according to Reuters.

OpenAI signs massive AI compute deal with Amazon Read More »

two-windows-vulnerabilities,-one-a-0-day,-are-under-active-exploitation

Two Windows vulnerabilities, one a 0-day, are under active exploitation

Two Windows vulnerabilities—one a zero-day that has been known to attackers since 2017 and the other a critical flaw that Microsoft initially tried and failed to patch recently—are under active exploitation in widespread attacks targeting a swath of the Internet, researchers say.

The zero-day went undiscovered until March, when security firm Trend Micro said it had been under active exploitation since 2017, by as many as 11 separate advanced persistent threats (APTs). These APT groups, often with ties to nation-states, relentlessly attack specific individuals or groups of interest. Trend Micro went on to say that the groups were exploiting the vulnerability, then tracked as ZDI-CAN-25373, to install various known post-exploitation payloads on infrastructure located in nearly 60 countries, with the US, Canada, Russia, and Korea being the most common.

A large-scale, coordinated operation

Seven months later, Microsoft still hasn’t patched the vulnerability, which stems from a bug in the Windows Shortcut binary format. The Windows component makes opening apps or accessing files easier and faster by allowing a single binary file to invoke them without having to navigate to their locations. In recent months, the ZDI-CAN-25373 tracking designation has been changed to CVE-2025-9491.

On Thursday, security firm Arctic Wolf reported that it observed a China-aligned threat group, tracked as UNC-6384, exploiting CVE-2025-9491 in attacks against various European nations. The final payload is a widely used remote access trojan known as PlugX. To better conceal the malware, the exploit keeps the binary file encrypted in the RC4 format until the final step in the attack.

“The breadth of targeting across multiple European nations within a condensed timeframe suggests either a large-scale coordinated intelligence collection operation or deployment of multiple parallel operational teams with shared tooling but independent targeting,” Arctic Wolf said. “The consistency in tradecraft across disparate targets indicates centralized tool development and operational security standards even if execution is distributed across multiple teams.”

Two Windows vulnerabilities, one a 0-day, are under active exploitation Read More »

chatgpt-maker-reportedly-eyes-$1-trillion-ipo-despite-major-quarterly-losses

ChatGPT maker reportedly eyes $1 trillion IPO despite major quarterly losses

An OpenAI spokesperson told Reuters that “an IPO is not our focus, so we could not possibly have set a date,” adding that the company is “building a durable business and advancing our mission so everyone benefits from AGI.”

Revenue grows as losses mount

The IPO preparations follow a restructuring of OpenAI completed on October 28 that reduced the company’s reliance on Microsoft, which has committed to investments of $13 billion and now owns about 27 percent of the company. OpenAI was most recently valued around $500 billion in private markets.

OpenAI started as a nonprofit in 2015, then added a for-profit arm a few years later with nonprofit oversight. Under the new structure, OpenAI is still controlled by a nonprofit, now called the OpenAI Foundation, but it gives the nonprofit a 26 percent stake in OpenAI Group and a warrant for additional shares if the company hits certain milestones.

A successful OpenAI IPO could represent a substantial gain for investors, including Microsoft, SoftBank, Thrive Capital, and Abu Dhabi’s MGX. But even so, OpenAI faces an uphill financial battle ahead. The ChatGPT maker expects to reach about $20 billion in revenue by year-end, according to people familiar with the company’s finances who spoke with Reuters, but its quarterly losses are significant.

Microsoft’s earnings filing on Wednesday offered a glimpse at the scale of those losses. The company reported that its share of OpenAI losses reduced Microsoft’s net income by $3.1 billion in the quarter that ended September 30. Since Microsoft owns 27 percent of OpenAI under the new structure, that suggests OpenAI lost about $11.5 billion during the quarter, as noted by The Register. That quarterly loss figure exceeds half of OpenAI’s expected revenue for the entire year.

ChatGPT maker reportedly eyes $1 trillion IPO despite major quarterly losses Read More »

npm-flooded-with-malicious-packages-downloaded-more-than-86,000-times

NPM flooded with malicious packages downloaded more than 86,000 times

Attackers are exploiting a major weakness that has allowed them access to the NPM code repository with more than 100 credential-stealing packages since August, mostly without detection.

The finding, laid out Wednesday by security firm Koi, brings attention to an NPM practice that allows installed packages to automatically pull down and run unvetted packages from untrusted domains. Koi said a campaign it tracks as PhantomRaven has exploited NPM’s use of “Remote Dynamic Dependences” to flood NPM with 126 malicious packages that have been downloaded more than 86,000 times. Some 80 of those packages remained available as of Wednesday morning, Koi said.

A blind spot

“PhantomRaven demonstrates how sophisticated attackers are getting [better] at exploiting blind spots in traditional security tooling,” Koi’s Oren Yomtov wrote. “Remote Dynamic Dependencies aren’t visible to static analysis.”

Remote Dynamic Dependencies provide greater flexibility in accessing dependencies—the code libraries that are mandatory for many other packages to work. Normally, dependencies are visible to the developer installing the package. They’re usually downloaded from NPM’s trusted infrastructure.

RDD works differently. It allows a package to download dependencies from untrusted websites, even those that connect over HTTP, which is unencrypted. The PhantomRaven attackers exploited this leniency by including code in the 126 packages uploaded to NPM. The code downloads malicious dependencies from URLs, including http://packages.storeartifact.com/npm/unused-imports. Koi said these dependencies are “invisible” to developers and many security scanners. Instead, they show the package contains “0 Dependencies.” An NPM feature causes these invisible downloads to be automatically installed.

Compounding the weakness, the dependencies are downloaded “fresh” from the attacker server each time a package is installed, rather than being cached, versioned, or otherwise static, as Koi explained:

NPM flooded with malicious packages downloaded more than 86,000 times Read More »

nvidia-hits-record-$5-trillion-mark-as-ceo-dismisses-ai-bubble-concerns

Nvidia hits record $5 trillion mark as CEO dismisses AI bubble concerns

Partnerships and government contracts fuel optimism

At the GTC conference on Tuesday, Nvidia’s CEO went out of his way to repeatedly praise Donald Trump and his policies for accelerating domestic tech investment while warning that excluding China from Nvidia’s ecosystem could limit US access to half the world’s AI developers. The overall event stressed Nvidia’s role as an American company, with Huang even nodding to Trump’s signature slogan in his sign-off by thanking the audience for “making America great again.”

Trump’s cooperation is paramount for Nvidia because US export controls have effectively blocked Nvidia’s AI chips from China, costing the company billions of dollars in revenue. Bob O’Donnell of TECHnalysis Research told Reuters that “Nvidia clearly brought their story to DC to both educate and gain favor with the US government. They managed to hit most of the hottest and most influential topics in tech.”

Beyond the political messaging, Huang announced a series of partnerships and deals that apparently helped ease investor concerns about Nvidia’s future. The company announced collaborations with Uber Technologies, Palantir Technologies, and CrowdStrike Holdings, among others. Nvidia also revealed a $1 billion investment in Nokia to support the telecommunications company’s shift toward AI and 6G networking.

The agreement with Uber will power a fleet of 100,000 self-driving vehicles with Nvidia technology, with automaker Stellantis among the first to deliver the robotaxis. Palantir will pair Nvidia’s technology with its Ontology platform to use AI techniques for logistics insights, with Lowe’s as an early adopter. Eli Lilly plans to build what Nvidia described as the most powerful supercomputer owned and operated by a pharmaceutical company, relying on more than 1,000 Blackwell AI accelerator chips.

The $5 trillion valuation surpasses the total cryptocurrency market value and equals roughly half the size of the pan European Stoxx 600 equities index, Reuters notes. At current prices, Huang’s stake in Nvidia would be worth about $179.2 billion, making him the world’s eighth-richest person.

Nvidia hits record $5 trillion mark as CEO dismisses AI bubble concerns Read More »

openai-data-suggests-1-million-users-discuss-suicide-with-chatgpt-weekly

OpenAI data suggests 1 million users discuss suicide with ChatGPT weekly

Earlier this month, the company unveiled a wellness council to address these concerns, though critics noted the council did not include a suicide prevention expert. OpenAI also recently rolled out controls for parents of children who use ChatGPT. The company says it’s building an age prediction system to automatically detect children using ChatGPT and impose a stricter set of age-related safeguards.

Rare but impactful conversations

The data shared on Monday appears to be part of the company’s effort to demonstrate progress on these issues, although it also shines a spotlight on just how deeply AI chatbots may be affecting the health of the public at large.

In a blog post on the recently released data, OpenAI says these types of conversations in ChatGPT that might trigger concerns about “psychosis, mania, or suicidal thinking” are “extremely rare,” and thus difficult to measure. The company estimates that around 0.07 percent of users active in a given week and 0.01 percent of messages indicate possible signs of mental health emergencies related to psychosis or mania. For emotional attachment, the company estimates around 0.15 percent of users active in a given week and 0.03 percent of messages indicate potentially heightened levels of emotional attachment to ChatGPT.

OpenAI also claims that on an evaluation of over 1,000 challenging mental health-related conversations, the new GPT-5 model was 92 percent compliant with its desired behaviors, compared to 27 percent for a previous GPT-5 model released on August 15. The company also says its latest version of GPT-5 holds up to OpenAI’s safeguards better in long conversations. OpenAI has previously admitted that its safeguards are less effective during extended conversations.

In addition, OpenAI says it’s adding new evaluations to attempt to measure some of the most serious mental health issues facing ChatGPT users. The company says its baseline safety testing for its AI language models will now include benchmarks for emotional reliance and non-suicidal mental health emergencies.

Despite the ongoing mental health concerns, OpenAI CEO Sam Altman announced on October 14 that the company will allow verified adult users to have erotic conversations with ChatGPT starting in December. The company had loosened ChatGPT content restrictions in February but then dramatically tightened them after the August lawsuit. Altman explained that OpenAI had made ChatGPT “pretty restrictive to make sure we were being careful with mental health issues” but acknowledged this approach made the chatbot “less useful/enjoyable to many users who had no mental health problems.”

If you or someone you know is feeling suicidal or in distress, please call the Suicide Prevention Lifeline number, 1-800-273-TALK (8255), which will put you in touch with a local crisis center.

OpenAI data suggests 1 million users discuss suicide with ChatGPT weekly Read More »

a-single-point-of-failure-triggered-the-amazon-outage-affecting-millions

A single point of failure triggered the Amazon outage affecting millions

In turn, the delay in network state propagations spilled over to a network load balancer that AWS services rely on for stability. As a result, AWS customers experienced connection errors from the US-East-1 region. AWS network functions affected included the creating and modifying Redshift clusters, Lambda invocations, and Fargate task launches such as Managed Workflows for Apache Airflow, Outposts lifecycle operations, and the AWS Support Center.

For the time being, Amazon has disabled the DynamoDB DNS Planner and the DNS Enactor automation worldwide while it works to fix the race condition and add protections to prevent the application of incorrect DNS plans. Engineers are also making changes to EC2 and its network load balancer.

A cautionary tale

Ookla outlined a contributing factor not mentioned by Amazon: a concentration of customers who route their connectivity through the US-East-1 endpoint and an inability to route around the region. Ookla explained:

The affected US‑EAST‑1 is AWS’s oldest and most heavily used hub. Regional concentration means even global apps often anchor identity, state or metadata flows there. When a regional dependency fails as was the case in this event, impacts propagate worldwide because many “global” stacks route through Virginia at some point.

Modern apps chain together managed services like storage, queues, and serverless functions. If DNS cannot reliably resolve a critical endpoint (for example, the DynamoDB API involved here), errors cascade through upstream APIs and cause visible failures in apps users do not associate with AWS. That is precisely what Downdetector recorded across Snapchat, Roblox, Signal, Ring, HMRC, and others.

The event serves as a cautionary tale for all cloud services: More important than preventing race conditions and similar bugs is eliminating single points of failure in network design.

“The way forward,” Ookla said, “is not zero failure but contained failure, achieved through multi-region designs, dependency diversity, and disciplined incident readiness, with regulatory oversight that moves toward treating the cloud as systemic components of national and economic resilience.”

A single point of failure triggered the Amazon outage affecting millions Read More »

nation-state-hackers-deliver-malware-from-“bulletproof”-blockchains

Nation-state hackers deliver malware from “bulletproof” blockchains

Hacking groups—at least one of which works on behalf of the North Korean government—have found a new and inexpensive way to distribute malware from “bulletproof” hosts: stashing them on public cryptocurrency blockchains.

In a Thursday post, members of the Google Threat Intelligence Group said the technique provides the hackers with their own “bulletproof” host, a term that describes cloud platforms that are largely immune from takedowns by law enforcement and pressure from security researchers. More traditionally, these hosts are located in countries without treaties agreeing to enforce criminal laws from the US and other nations. These services often charge hefty sums and cater to criminals spreading malware or peddling child sexual abuse material and wares sold in crime-based flea markets.

Next-gen, DIY hosting that can’t be tampered with

Since February, Google researchers have observed two groups turning to a newer technique to infect targets with credential stealers and other forms of malware. The method, known as EtherHiding, embeds the malware in smart contracts, which are essentially apps that reside on blockchains for Ethereum and other cryptocurrencies. Two or more parties then enter into an agreement spelled out in the contract. When certain conditions are met, the apps enforce the contract terms in a way that, at least theoretically, is immutable and independent of any central authority.

“In essence, EtherHiding represents a shift toward next-generation bulletproof hosting, where the inherent features of blockchain technology are repurposed for malicious ends,” Google researchers Blas Kojusner, Robert Wallace, and Joseph Dobson wrote. “This technique underscores the continuous evolution of cyber threats as attackers adapt and leverage new technologies to their advantage.”

There’s a wide array of advantages to EtherHiding over more traditional means of delivering malware, which besides bulletproof hosting include leveraging compromised servers.

    • The decentralization prevents takedowns of the malicious smart contracts because the mechanisms in the blockchains bar the removal of all such contracts.
    • Similarly, the immutability of the contracts prevents the removal or tampering with the malware by anyone.
    • Transactions on Ethereum and several other blockchains are effectively anonymous, protecting the hackers’ identities.
    • Retrieval of malware from the contracts leaves no trace of the access in event logs, providing stealth
    • The attackers can update malicious payloads at anytime

Nation-state hackers deliver malware from “bulletproof” blockchains Read More »

ars-live-recap:-is-the-ai-bubble-about-to-pop?-ed-zitron-weighs-in.

Ars Live recap: Is the AI bubble about to pop? Ed Zitron weighs in.


Despite connection hiccups, we covered OpenAI’s finances, nuclear power, and Sam Altman.

On Tuesday of last week, Ars Technica hosted a live conversation with Ed Zitron, host of the Better Offline podcast and one of tech’s most vocal AI critics, to discuss whether the generative AI industry is experiencing a bubble and when it might burst. My Internet connection had other plans, though, dropping out multiple times and forcing Ars Technica’s Lee Hutchinson to jump in as an excellent emergency backup host.

During the times my connection cooperated, Zitron and I covered OpenAI’s financial issues, lofty infrastructure promises, and why the AI hype machine keeps rolling despite some arguably shaky economics underneath. Lee’s probing questions about per-user costs revealed a potential flaw in AI subscription models: Companies can’t predict whether a user will cost them $2 or $10,000 per month.

You can watch a recording of the event on YouTube or in the window below.

Our discussion with Ed Zitron. Click here for transcript.

“A 50 billion-dollar industry pretending to be a trillion-dollar one”

I started by asking Zitron the most direct question I could: “Why are you so mad about AI?” His answer got right to the heart of his critique: the disconnect between AI’s actual capabilities and how it’s being sold. “Because everybody’s acting like it’s something it isn’t,” Zitron said. “They’re acting like it’s this panacea that will be the future of software growth, the future of hardware growth, the future of compute.”

In one of his newsletters, Zitron describes the generative AI market as “a 50 billion dollar revenue industry masquerading as a one trillion-dollar one.” He pointed to OpenAI’s financial burn rate (losing an estimated $9.7 billion in the first half of 2025 alone) as evidence that the economics don’t work, coupled with a heavy dose of pessimism about AI in general.

Donald Trump listens as Nvidia CEO Jensen Huang speaks at the White House during an event on “Investing in America” on April 30, 2025, in Washington, DC. Credit: Andrew Harnik / Staff | Getty Images News

“The models just do not have the efficacy,” Zitron said during our conversation. “AI agents is one of the most egregious lies the tech industry has ever told. Autonomous agents don’t exist.”

He contrasted the relatively small revenue generated by AI companies with the massive capital expenditures flowing into the sector. Even major cloud providers and chip makers are showing strain. Oracle reportedly lost $100 million in three months after installing Nvidia’s new Blackwell GPUs, which Zitron noted are “extremely power-hungry and expensive to run.”

Finding utility despite the hype

I pushed back against some of Zitron’s broader dismissals of AI by sharing my own experience. I use AI chatbots frequently for brainstorming useful ideas and helping me see them from different angles. “I find I use AI models as sort of knowledge translators and framework translators,” I explained.

After experiencing brain fog from repeated bouts of COVID over the years, I’ve also found tools like ChatGPT and Claude especially helpful for memory augmentation that pierces through brain fog: describing something in a roundabout, fuzzy way and quickly getting an answer I can then verify. Along these lines, I’ve previously written about how people in a UK study found AI assistants useful accessibility tools.

Zitron acknowledged this could be useful for me personally but declined to draw any larger conclusions from my one data point. “I understand how that might be helpful; that’s cool,” he said. “I’m glad that that helps you in that way; it’s not a trillion-dollar use case.”

He also shared his own attempts at using AI tools, including experimenting with Claude Code despite not being a coder himself.

“If I liked [AI] somehow, it would be actually a more interesting story because I’d be talking about something I liked that was also onerously expensive,” Zitron explained. “But it doesn’t even do that, and it’s actually one of my core frustrations, it’s like this massive over-promise thing. I’m an early adopter guy. I will buy early crap all the time. I bought an Apple Vision Pro, like, what more do you say there? I’m ready to accept issues, but AI is all issues, it’s all filler, no killer; it’s very strange.”

Zitron and I agree that current AI assistants are being marketed beyond their actual capabilities. As I often say, AI models are not people, and they are not good factual references. As such, they cannot replace human decision-making and cannot wholesale replace human intellectual labor (at the moment). Instead, I see AI models as augmentations of human capability: as tools rather than autonomous entities.

Computing costs: History versus reality

Even though Zitron and I found some common ground about AI hype, I expressed a belief that criticism over the cost and power requirements of operating AI models will eventually not become an issue.

I attempted to make that case by noting that computing costs historically trend downward over time, referencing the Air Force’s SAGE computer system from the 1950s: a four-story building that performed 75,000 operations per second while consuming two megawatts of power. Today, pocket-sized phones deliver millions of times more computing power in a way that would be impossible, power consumption-wise, in the 1950s.

The blockhouse for the Semi-Automatic Ground Environment at Stewart Air Force Base, Newburgh, New York. Credit: Denver Post via Getty Images

“I think it will eventually work that way,” I said, suggesting that AI inference costs might follow similar patterns of improvement over years and that AI tools will eventually become commodity components of computer operating systems. Basically, even if AI models stay inefficient, AI models of a certain baseline usefulness and capability will still be cheaper to train and run in the future because the computing systems they run on will be faster, cheaper, and less power-hungry as well.

Zitron pushed back on this optimism, saying that AI costs are currently moving in the wrong direction. “The costs are going up, unilaterally across the board,” he said. Even newer systems like Cerebras and Grok can generate results faster but not cheaper. He also questioned whether integrating AI into operating systems would prove useful even if the technology became profitable, since AI models struggle with deterministic commands and consistent behavior.

The power problem and circular investments

One of Zitron’s most pointed criticisms during the discussion centered on OpenAI’s infrastructure promises. The company has pledged to build data centers requiring 10 gigawatts of power capacity (equivalent to 10 nuclear power plants, I once pointed out) for its Stargate project in Abilene, Texas. According to Zitron’s research, the town currently has only 350 megawatts of generating capacity and a 200-megawatt substation.

“A gigawatt of power is a lot, and it’s not like Red Alert 2,” Zitron said, referencing the real-time strategy game. “You don’t just build a power station and it happens. There are months of actual physics to make sure that it doesn’t kill everyone.”

He believes many announced data centers will never be completed, calling the infrastructure promises “castles on sand” that nobody in the financial press seems willing to question directly.

An orange, cloudy sky backlights a set of electrical wires on large pylons, leading away from the cooling towers of a nuclear power plant.

After another technical blackout on my end, I came back online and asked Zitron to define the scope of the AI bubble. He says it has evolved from one bubble (foundation models) into two or three, now including AI compute companies like CoreWeave and the market’s obsession with Nvidia.

Zitron highlighted what he sees as essentially circular investment schemes propping up the industry. He pointed to OpenAI’s $300 billion deal with Oracle and Nvidia’s relationship with CoreWeave as examples. “CoreWeave, they literally… They funded CoreWeave, became their biggest customer, then CoreWeave took that contract and those GPUs and used them as collateral to raise debt to buy more GPUs,” Zitron explained.

When will the bubble pop?

Zitron predicted the bubble would burst within the next year and a half, though he acknowledged it could happen sooner. He expects a cascade of events rather than a single dramatic collapse: An AI startup will run out of money, triggering panic among other startups and their venture capital backers, creating a fire-sale environment that makes future fundraising impossible.

“It’s not gonna be one Bear Stearns moment,” Zitron explained. “It’s gonna be a succession of events until the markets freak out.”

The crux of the problem, according to Zitron, is Nvidia. The chip maker’s stock represents 7 to 8 percent of the S&P 500’s value, and the broader market has become dependent on Nvidia’s continued hyper growth. When Nvidia posted “only” 55 percent year-over-year growth in January, the market wobbled.

“Nvidia’s growth is why the bubble is inflated,” Zitron said. “If their growth goes down, the bubble will burst.”

He also warned of broader consequences: “I think there’s a depression coming. I think once the markets work out that tech doesn’t grow forever, they’re gonna flush the toilet aggressively on Silicon Valley.” This connects to his larger thesis: that the tech industry has run out of genuine hyper-growth opportunities and is trying to manufacture one with AI.

“Is there anything that would falsify your premise of this bubble and crash happening?” I asked. “What if you’re wrong?”

“I’ve been answering ‘What if you’re wrong?’ for a year-and-a-half to two years, so I’m not bothered by that question, so the thing that would have to prove me right would’ve already needed to happen,” he said. Amid a longer exposition about Sam Altman, Zitron said, “The thing that would’ve had to happen with inference would’ve had to be… it would have to be hundredths of a cent per million tokens, they would have to be printing money, and then, it would have to be way more useful. It would have to have efficacy that it does not have, the hallucination problems… would have to be fixable, and on top of this, someone would have to fix agents.”

A positivity challenge

Near the end of our conversation, I wondered if I could flip the script, so to speak, and see if he could say something positive or optimistic, although I chose the most challenging subject possible for him. “What’s the best thing about Sam Altman,” I asked. “Can you say anything nice about him at all?”

“I understand why you’re asking this,” Zitron started, “but I wanna be clear: Sam Altman is going to be the reason the markets take a crap. Sam Altman has lied to everyone. Sam Altman has been lying forever.” He continued, “Like the Pied Piper, he’s led the markets into an abyss, and yes, people should have known better, but I hope at the end of this, Sam Altman is seen for what he is, which is a con artist and a very successful one.”

Then he added, “You know what? I’ll say something nice about him, he’s really good at making people say, ‘Yes.’”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Ars Live recap: Is the AI bubble about to pop? Ed Zitron weighs in. Read More »