astrobotic

nasa-built-a-moon-rover-but-can’t-afford-to-get-it-to-the-launch-pad

NASA built a Moon rover but can’t afford to get it to the launch pad

NASA completed assembling the VIPER rover last month at the Johnson Space Center in Houston.

Enlarge / NASA completed assembling the VIPER rover last month at the Johnson Space Center in Houston.

NASA has spent $450 million designing and building a first-of-its-kind robot to drive into eternally dark craters at the Moon’s south pole, but the agency announced Wednesday it will cancel the rover due to delays and cost overruns.

“NASA intends to discontinue the VIPER mission,” said Nicky Fox, head of the agency’s science mission directorate. “Decisions like this are never easy, and we haven’t made this one, in any way, lightly. In this case, the projected remaining expenses for VIPER would have resulted in either having to cancel or disrupt many other missions in our Commercial Lunar Payload Services (CLPS) line.”

NASA has terminated science missions after development delays and cost overruns before, but it’s rare to cancel a mission with a spacecraft that is already built.

The Volatiles Investigating Polar Exploration Rover (VIPER) mission was supposed to be a robotic scout for NASA’s Artemis program, which aims to return astronauts to the lunar surface in the next few years. VIPER was originally planned to launch in late 2023 and was slated to fly to the Moon aboard a commercial lander provided by Pittsburgh-based Astrobotic, which won a contract from NASA in 2020 to deliver the VIPER rover to the lunar surface. Astrobotic is one of 14 companies in the pool of contractors for NASA’s CLPS program, with the goal of transporting government-sponsored science payloads to the Moon.

But VIPER has been delayed at least two years—the most recent schedule projected a launch in September 2025—causing its cost to grow from $433 million to more than $609 million. The ballooning costs automatically triggered a NASA review to determine whether to proceed with the mission or cancel it. Ultimately, officials said they determined NASA couldn’t pay the extra costs for VIPER without affecting other Moon missions.

“Therefore, we’ve made the decision to forego this particular mission, the VIPER mission, in order to be able to sustain the entire program,” Fox said.

“We’re disappointed,” said John Thornton, CEO of Astrobotic. “It’s certainly difficult news… VIPER has been a great team to work with, and we’re disappointed we won’t get the chance to fly them to the Moon.”

NASA said it will consider “expressions of interest” submitted by US industry and international partners by August 1 for use of the existing VIPER rover at no cost to the government. If NASA can’t find anyone to take over VIPER who can pay to get it to the Moon, the agency plans to disassemble the rover and harvest instruments and components for future lunar missions.

Scientists were dismayed by VIPER’s cancellation.

“It’s absurd, to be honest with you,” said Clive Neal, a planetary geologist at the University of Notre Dame. “It made no sense to me in terms of the economics. You’re canceling a mission that is complete, built, ready to go. It’s in the middle of testing.”

“This is a bad mistake,” wrote Phil Metzger, a planetary physicist at the University of Central Florida, in a post on X. “This was the premier mission to measure lateral and vertical variations of lunar ice in the soil. It would have been revolutionary. Other missions don’t replace what is lost here.”

Built with nowhere to go

Engineers at NASA’s Johnson Space Center in Houston finished assembling the VIPER rover last month, and managers gave approval to put the craft through environmental testing to make sure VIPER could withstand the acoustics and vibrations of launch and the extreme temperature swings it would encounter in space.

Instead, NASA has canceled the mission after spending $450 million to get it to this point. “This is a very tough decision, but it is a decision based on budgetary concerns in a very constrained budget environment,” Fox told reporters Wednesday.

VIPER is about the size of a golf cart, with four wheels, headlights, a drill, and three science instruments to search for water ice in depressions near the Moon’s south pole that have been shaded from sunlight for billions of years. This has allowed these so-called permanently shadowed regions to become cold traps, allowing water ice to accumulate at or near the surface, where it could be accessible for future astronauts to use as drinking water or an oxygen source or to convert into electricity and rocket fuel.

But first, scientists need to know exactly where the water is located and how easy it is to reach. VIPER was supposed to be the next step in mapping resources on the Moon, providing ground truth measurements to corroborate remote sensing data from satellites in lunar orbit.

But late parts deliveries delayed construction of the VIPER rover, and in 2022, NASA ordered additional testing of Astrobotic’s Griffin lunar lander to improve the chances of a successful landing with VIPER. This delayed VIPER’s launch from late 2023 until late 2024, and at the beginning of this year, more supply chain issues with the VIPER rover and the Griffin lander pushed back the launch until September 2025.

This most recent delay raised the projected cost of VIPER more than 30 percent over the original cost of the mission, prompting a NASA termination review. While the rover is now fully assembled, NASA still needed to put it through a lengthy series of tests, complete development of the ground systems to control VIPER on the Moon, and deliver the craft to Astrobotic for integration onto the Griffin lander.

The remaining work to complete VIPER and operate it for 100 days on the lunar surface would have cost around $84 million, according to Kearns.

NASA built a Moon rover but can’t afford to get it to the launch pad Read More »

rocket-report:-starship-could-fly-again-in-may;-ariane-6-coming-together

Rocket Report: Starship could fly again in May; Ariane 6 coming together

Eating their lunch —

“I think we’re really going to focus on getting reentry right.”

Nine kerosene-fueled Rutherford engines power Rocket Lab's Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Enlarge / Nine kerosene-fueled Rutherford engines power Rocket Lab’s Electron launch vehicle off the pad at Wallops Island, Virginia, early Thursday.

Welcome to Edition 6.36 of the Rocket Report! SpaceX wants to launch the next Starship test flight as soon as early May, the company’s president and chief operating officer said this week. The third Starship test flight last week went well enough that the Federal Aviation Administration—yes, the FAA, the target of many SpaceX fans’ frustrations—anticipates a simpler investigation and launch licensing process than SpaceX went through before its previous Starship flights. However, it looks like we’ll have to wait a little longer for Starship to start launching real satellites.

As always, we welcome reader submissions, and if you don’t want to miss an issue, please subscribe using the box below (the form will not appear on AMP-enabled versions of the site). Each report will include information on small-, medium-, and heavy-lift rockets, as well as a quick look ahead at the next three launches on the calendar.

Starship could threaten small launch providers. Officials from several companies operating or developing small satellite launch vehicles are worried that SpaceX’s giant Starship rocket could have a big impact on their marketability, Space News reports. Starship’s ability to haul more than 100 metric tons of payload mass into low-Earth orbit will be attractive not just for customers with heavy satellites but also for those with smaller spacecraft. Aggregating numerous smallsats on Starship will mean lower prices than dedicated small satellite launch companies can offer and could encourage customers to build larger satellites with cheaper parts, further eroding business opportunities for small launch providers.

Well, yeah … SpaceX’s dedicated rideshare missions are already reshaping the small satellite launch market. The price per kilogram of payload on a Falcon 9 rocket launching a Transporter mission is less than the price per unit on a smaller rocket, like Rocket Lab’s Electron, Firefly’s Alpha, or Europe’s Vega. Companies operating only in the smallsat launch market tout the benefits of their services, often pointing to their ability to deliver payloads into bespoke orbits, rather than dropping off bunches of satellites into more standardized orbits. But the introduction of Orbital Transfer Vehicles for last-mile delivery services has made SpaceX’s Transporter missions, and potentially Starship rideshares, more attractive. “With Starship, OTVs can become the best option for smallsats,” said Marino Fragnito, senior vice president and head of the Vega business unit at Arianespace. If Starship is able to achieve the very low per-kilogram launch prices proposed for it, “then it will be difficult for small launch vehicles,” Fragnito said.

Rocket Lab launches again from Virginia. Rocket Lab’s fourth launch from Wallops Island, Virginia, and the company’s first there in nine months, took off early Thursday with a classified payload for the National Reconnaissance Office, the US government’s spy satellite agency, Space News reports. A two-stage Electron rocket placed the NRO’s payload into low-Earth orbit, and officials declared it a successful mission. The NRO did not disclose any details about the payload, but in a post-launch statement, the agency suggested the mission was conducting technology demonstrations of some kind. “The knowledge gained from this research will advance innovation and enable the development of critical new technology,” said Chris Scolose, director of the NRO.

A steady customer for Rocket Lab … The National Reconnaissance Office has become a regular customer of Rocket Lab. The NRO has historically launched larger spacecraft, such as massive bus-sized spy satellites, but like the Space Force, is beginning to launch larger numbers of small satellites. This mission, designated NROL-123 by the NRO, was the fifth and last mission under a Rapid Acquisition of a Small Rocket (RASR) contract between NRO and Rocket Lab, dating back to 2020. It was also Rocket Lab’s second launch in nine days, following an Electron flight last week from its primary base in New Zealand. Overall, it was the 46th launch of a light-class Electron rocket since it debuted in 2017. Rocket Lab is building a launch pad for its next-generation Neutron rocket at Wallops. (submitted by EllPeaTea)

The easiest way to keep up with Eric Berger’s space reporting is to sign up for his newsletter, we’ll collect his stories in your inbox.

Night flight for Astrobotic’s Xodiac. The Xodiac rocket, a small terrestrial vertical takeoff and vertical landing technology testbed, made its first night flight, Astrobotic says in a statement. The liquid-fueled Xodiac is designed for vertical hops and can host prototype sensors and other payloads, particularly instruments in development to assist in precision landings on other worlds. This first tethered night flight of Xodiac in Mojave, California, was in preparation for upcoming flight testing with the NASA TechLeap Prize’s Nighttime Precision Landing Challenge. These flights will begin in April, allowing NASA to test the ability of sensors to map a landing field designed to simulate the Moon’s surface in near-total darkness.

Building on the legacy of Masten … Xodiac has completed more than 160 successful flights, dating back to the vehicle’s original owner, Masten Space Systems. Masten filed for bankruptcy in 2022, and the company was acquired by Astrobotic a couple of months later. Astrobotic’s primary business area is in developing and flying robotic Moon landers, so it has a keen interest in mastering automated landing and navigation technologies like those it is testing with NASA on Xodiac. David Masten, founder of Masten Space Systems, is now chief engineer for Astrobotic’s propulsion and test department. “The teams will demonstrate their systems over the LSPG (Lunar Surface Proving Ground) at night to simulate landing on the Moon during the lunar night or in shadowed craters.” (submitted by Ken the Bin)

Rocket Report: Starship could fly again in May; Ariane 6 coming together Read More »

nasa-urged-astrobotic-not-to-send-its-hamstrung-spacecraft-toward-the-moon

NASA urged Astrobotic not to send its hamstrung spacecraft toward the Moon

A camera on Astrobotic's Peregrine spacecraft captured this view of a crescent Earth during its mission.

Enlarge / A camera on Astrobotic’s Peregrine spacecraft captured this view of a crescent Earth during its mission.

Astrobotic knew its first space mission would be rife with risks. After all, the company’s Peregrine spacecraft would attempt something never done before—landing a commercial spacecraft on the surface of the Moon.

The most hazardous part of the mission, actually landing on the Moon, would happen more than a month after Peregrine’s launch. But the robotic spacecraft never made it that far. During Peregrine’s startup sequence after separation from its United Launch Alliance Vulcan rocket, one of the spacecraft’s propellant tanks ruptured, spewing precious nitrogen tetroxide into space. The incident left Peregrine unable to land on the Moon, and it threatened to kill the spacecraft within hours of liftoff.

What a wild adventure we were just on, not the outcome we were hoping for,” said John Thornton, CEO of Astrobotic.

Astrobotic’s control team, working out of the company’s headquarters in Pittsburgh, swung into action to save the spacecraft. The propellant leak abated, and engineers wrestled control of the spacecraft to point its solar arrays toward the Sun, allowing its battery to recharge. Over time, Peregrine’s situation stabilized, although it didn’t have enough propellant remaining to attempt a descent to the lunar surface.

Peregrine continued on a trajectory out to 250,000 miles (400,000 kilometers) from Earth, about the same distance as the Moon’s orbit. Astrobotic’s original flight plan would have taken Peregrine on one long elliptical loop around Earth, then the spacecraft would have reached the Moon during its second orbit.

On its way back toward Earth, Peregrine was on a flight path that would bring it back into the atmosphere, where it would burn up on reentry. That meant Astrobotic had a decision to make. With Peregrine stabilized, should they attempt an engine burn to divert the spacecraft away from Earth onto a trajectory that could bring it to the vicinity of the Moon? Or should Astrobotic keep Peregrine in line to reenter Earth’s atmosphere and avoid the risk of sending a crippled spacecraft out to the Moon?

Making lemonade out of lemons

This was the first time Astrobotic had flown a space mission, and its control team had much to learn. The malfunction that caused the propellant leak appears to have been with a valve that did not properly reseat during the propulsion system’s initialization sequence. This valve activated to pressurize the fuel and oxidizer tanks with helium.

When the valve didn’t reseat, it sent a “rush of helium” into the oxidizer system, Thornton said. “I describe it as a rush because it was very, very fast. “Within a little over a minute, the pressure had risen to the point in the oxidizer side that it was well beyond the proof limit of the propulsion tank. We believe at that point the tank ruptured and led to, unfortunately, a catastrophic loss of propellant … for the primary mission.”

Thornton described the glum mood of Astrobotic’s team after the propellant leak.

“We were coming from the highest high of a perfect launch and came down to the lowest low, when we found out that the spacecraft no longer had the helium and no longer had the propulsion needed to attempt the Moon landing,” he said. “What happened next, I think, was pretty remarkable and inspiring.”

In a press briefing Friday, Thornton outlined the obstacles Astrobotic’s controllers overcame to keep Peregrine alive. Without a healthy propulsion system, the spacecraft’s solar panels were not pointed at the Sun. With a few minutes to spare, one of Astrobotic’s engineers, John Shaffer, devised a solution to reorient the spacecraft to start recharging its battery.

As Peregrine’s oxidizer tank lost pressure, the leak rate slowed. At first, it looked like the spacecraft might have only hours of propellant remaining. Then, Astrobotic reported on January 15 that the leak had “practically stopped.” Mission controllers powered up the science payloads aboard the Peregrine lander, proving the instruments worked and demonstrating the spacecraft could have returned data from the lunar surface if it landed.

The small propulsive impulse from the leaking oxidizer drove Peregrine slightly off course, putting it on a course to bring it back into Earth’s atmosphere. This set up Astrobotic for a “very difficult decision,” Thornton said.

Astrobotic's first lunar lander, named Peregrine, at the company's Pittsburgh headquarters.

Enlarge / Astrobotic’s first lunar lander, named Peregrine, at the company’s Pittsburgh headquarters.

Nudging Peregrine off its collision course with Earth would have required the spacecraft to fire its main engines, and even if that worked, the lander would have needed to perform more maneuvers to get close to the Moon. A landing was still out of the question, but Thornton said there was a small chance Astrobotic could have guided Peregrine toward a flyby or impact with the Moon.

“The thing we were weighing was, ‘Should we send this back to Earth, or should we take the risk to operate it in cislunar space and see if we can send this out farther?'” Thornton said.

NASA urged Astrobotic not to send its hamstrung spacecraft toward the Moon Read More »

the-situation-with-astrobotic’s-lunar-lander-appears-to-be-quite-dire

The situation with Astrobotic’s lunar lander appears to be quite dire

Pointing problems —

“We do not expect every launch and landing to be successful.”

Updated

Astrobotic's Peregrine lander is seen recently encapsulated inside the Vulcan rocket's payload fairing.

Enlarge / Astrobotic’s Peregrine lander is seen recently encapsulated inside the Vulcan rocket’s payload fairing.

On Monday morning, the new Vulcan rocket made a smashing debut, launching from Cape Canaveral Space Force Station in Florida and performing flawlessly. After 50 minutes of flight, the rocket’s upper stage deployed its primary payload—the Peregrine lunar lander—into a Moon-bound trajectory. United Launch Alliance declared complete success with its new rocket.

After the deployment of the spacecraft, its developer, Pittsburgh-based Astrobotic, also said its ground controllers had successfully established contact with Peregrine. All seemed well as the spacecraft entered a highly elliptical orbit that will bring it toward the Moon in the coming weeks.

However, later on Monday morning, about six hours after liftoff, Astrobotic released an updated statement. While the vehicle’s avionics systems, including the primary command and data handling unit and the thermal, propulsion, and power controllers, had all powered on and performed as expected, there was a problem.

“After successful propulsion systems activation, Peregrine entered a safe operational state,” the company said. “Unfortunately, an anomaly then occurred, which prevented Astrobotic from achieving a stable sun-pointing orientation. The team is responding in real time as the situation unfolds and will be providing updates as more data is obtained and analyzed.”

Batteries are draining

Less than an hour after its initial statement on the anomaly, Astrobotic issued a second update that sounded fairly ominous.

“We continue to gather data and report our best assessment of what we see,” the company said. “The team believes that the likely cause of the unstable sun-pointing is a propulsion anomaly that, if proven true, threatens the ability of the spacecraft to soft land on the Moon.”

Peregrine will need its main engine to control the spacecraft’s descent down to the lunar surface. Based on additional information provided by the company, it appears that time is running out to fix the problem.

“As the team fights to troubleshoot the issue, the spacecraft battery is reaching operationally low levels,” Astrobotic said. “Just before entering a known period of communication outage, the team developed and executed an improvised maneuver to reorient the solar panels toward the Sun. Shortly after this maneuver, the spacecraft entered an expected period of communication loss.”

According to NASA’s Deep Space Network website, Peregrine reestablished communication with the controllers on Earth by around 11: 30 am ET. The communication then stopped again about 15 minutes later.

Taking shots on goal

If engineers can address the pointing problem and get Peregrine powered back up, there is time to work on the propulsion issue. Due to the spacecraft’s circuitous route to the Moon, Peregrine is not due to land there until February 23.

The spacecraft was privately built and largely funded by NASA through its Commercial Lunar Payload Services Program. The US space agency paid $108 million for the delivery of several science experiments to the Moon, including a radiation sensor, spectrometers, and a laser retroreflector array on board Peregrine. Astrobotic has also sold some payload space to private companies.

With this commercial program, NASA chose to procure a lunar delivery service rather than building a lander on its own. This cost the agency significantly less but entailed more risk. The agency also has funded a lander built by another company, Intuitive Machines, that could launch next month on a Falcon 9 rocket. About 10 more commercial lunar payload missions are in the pipeline.

The former leader of NASA’s scientific programs, Thomas Zurbuchen, has previously said this innovative lunar program was designed with speed in mind and that the agency would tolerate some failures as it takes “shots on goal” in attempting to land on the Moon. “We do not expect every launch and landing to be successful.”

This story has been updated to reflect the issuance of a second statement by Astrobotic.

The situation with Astrobotic’s lunar lander appears to be quite dire Read More »

ula’s-vulcan-rocket-shot-for-the-moon-on-debut-launch—and-hit-a-bullseye

ULA’s Vulcan rocket shot for the Moon on debut launch—and hit a bullseye

The first Vulcan rocket fires off its launch pad in Florida.

Enlarge / The first Vulcan rocket fires off its launch pad in Florida.

United Launch Alliance

CAPE CANAVERAL, Florida—Right out of the gate, United Launch Alliance’s new Vulcan rocket chased perfection.

The Vulcan launcher hit its marks after lifting off from Florida’s Space Coast for the first time early Monday, successfully deploying a commercial robotic lander on a journey to the Moon and keeping ULA’s unblemished success record intact.

“Yeehaw! I am so thrilled, I can’t tell you how much!” exclaimed Tory Bruno, ULA’s president and CEO, shortly after Vulcan’s departure from Cape Canaveral. “I am so proud of this team. Oh my gosh, this has been years of hard work. So far, this has been an absolutely beautiful mission.”

This was a pivotal moment for ULA, a 50-50 joint venture between Boeing and Lockheed Martin. The Vulcan rocket will replace ULA’s mainstay rockets, the Atlas V and Delta IV, with lineages dating back to the dawn of the Space Age. ULA has contracts for more than 70 Vulcan missions in its backlog, primarily for the US military and Amazon’s Project Kuiper broadband network.

The Vulcan rocket lived up to the moment Monday. It took nearly a decade for ULA to develop it, some four years longer than anticipated, but the first flight took off at the opening of the launch window on the first launch attempt.

Standing 202 feet (61.6 meters) tall, the Vulcan rocket ignited its two BE-4 main engines in the final seconds of a smooth countdown. A few moments later, two strap-on solid rocket boosters flashed to life to propel the Vulcan rocket off its launch pad at 2: 18 am EST (07: 18 UTC).

On the money

The BE-4 engines and solid-fueled boosters combined to generate more than 2 million pounds of thrust, vaulting Vulcan off the launch pad and through a thin cloud layer. A little over a minute after launch, Vulcan accelerated faster than the speed of sound, then jettisoned its strap-on boosters to fall into the Atlantic Ocean.

Then it was all BE-4. Each of these engines can produce more than a half-million pounds of thrust, consuming a mixture of liquified natural gas—essentially methane—and liquid oxygen. They are built by Blue Origin, the space company founded by billionaire Jeff Bezos. This was the first time BE-4s have flown on a rocket.

Rob Gagnon, ULA’s telemetry commentator, calmly called out mission milestones. “BE-4s continue to operate nominally… Vehicle is continuing to fly down the center of the range track, everything looking good… Nice and smooth operation of the booster.”

The BE-4s fired for five minutes, then shut down to allow Vulcan’s first stage booster to fall away from the rocket’s hydrogen-fueled Centaur upper stage. Two RL10 engines ignited to continue the push into orbit, then switched off as the upper stage coasted over the Atlantic and Africa. A restart of the Centaur upper stage 43 minutes into the flight gave the rocket enough velocity to send Astrobotic’s Peregrine lunar lander toward the Moon.

The nearly 1.5-ton spacecraft separated from Vulcan’s Centaur upper stage around 50 minutes after liftoff. “We have spacecraft separation, right on time,” Gagnon announced.

With Astrobotic’s lander deployed, a third engine firing on the Centaur upper stage moved the rocket off its Moon-bound trajectory and onto a course into heliocentric orbit. “We have now achieved Earth escape,” Gagnon said.

The spent rocket stage will become a human-made artificial satellite of the Sun. A plate on the side of the Centaur upper stage contains small capsules holding the cremated remains of more than 200 people, a “memorial spaceflight” arranged by a Houston-based private company named Celestis.

ULA’s Vulcan rocket shot for the Moon on debut launch—and hit a bullseye Read More »