animals

meet-veronika,-the-tool-using-cow

Meet Veronika, the tool-using cow

Each time, Veronika used her tongue to lift and position the broom in her mouth, clamping down with her teeth for a stable grip. This enabled her to use the broom to scratch otherwise hard-to-reach areas on the rear half of her body. Veronika seemed to prefer the brush end to the stick end (i.e., the exploitation of distinct properties of a single object for different functions) although which end she used depended on body area. For example, she used the brush end to scratch her upper body using a scrubbing motion, while using the stick end to scratch more sensitive lower areas like her udders and belly skin flaps using precisely targeted gentle forward pushes. She also anticipated the need to adjust her grip.

The authors conclude that this behavior demonstrates “goal-directed, context-sensitive tooling,” as well as versatility in her tool-use anticipation, and fine-motor targeting. Veronika’s scratching behavior is likely motivated by the desire to relieve itching from insect bites, but her open, complex environment, compared to most livestock, and regular interactions with humans enabled her unusual cognitive abilities to emerge.

The implication is that this kind of technical problem-solving is not confined to species with large brains and hands or beaks. “[Veronika] did not fashion tools like the cow in Gary Larson’s cartoon, but she selected, adjusted, and used one with notable dexterity and flexibility,” the authors wrote. “Perhaps the real absurdity lies not in imagining a tool-using cow, but in assuming such a thing could never exist.”

DOI: Current Biology, 2025. 10.1016/j.cub.2025.11.059 (About DOIs).

Meet Veronika, the tool-using cow Read More »

these-dogs-eavesdrop-on-their-owners-to-learn-new-words

These dogs eavesdrop on their owners to learn new words

Next, the entire experiment was repeated with one key variation: This time, during the training protocol, rather than addressing the dogs directly when naming new toys, the dogs merely watched while their owners talked to another person while naming the toys, never directly addressing the dogs at all.

The result: 80 percent of the dogs correctly chose the toys in the direct address condition, and 100 percent did so in the overhearing condition. Taken together, the results demonstrate that GWL dogs can learn new object labels just by overhearing interactions, regardless of whether the dogs are active participants in the interactions or passive listeners—much like what has been observed in young children around a year-and-a-half old.

To learn whether temporal continuity (a nonsocial factor) or the lack thereof affects label learning in GWL dogs, the authors also devised a third experimental variation. The owner would show the dog a new toy, place it in a bucket, let the dog take the toy out of the bucket, and then place the toy back in. Then the owner would lift the bucket to prevent the dog from seeing what was inside and repeatedly use the toy name in a sentence while looking back and forth from the dog to the bucket. This was followed by the usual testing phase. The authors concluded that the dogs didn’t need temporal continuity to form object-label mappings. And when the same dogs were re-tested two weeks later, those mappings had not decayed; the dogs remembered.

But GWL dogs are extremely rare, and the findings don’t extend to typical dogs, as the group discovered when they ran both versions of the experiment using 10 non-GWL border collies. There was no evidence of actual learning in these typical dogs; the authors suggest their behavior reflects a doggy preference for novelty when it comes to toy selection, not the ability to learn object-label mappings.

“Our findings show that the socio-cognitive processes enabling word learning from overheard speech are not uniquely human,” said co-author Shany Dror of ELTE and VetMedUni universities. “Under the right conditions, some dogs present behaviors strikingly similar to those of young children. These dogs provide an exceptional model for exploring some of the cognitive abilities that enabled humans to develop language. But we do not suggest that all dogs learn in this way—far from it.”

Science, 2025. DOI: 10.1126/science.adq5474 (About DOIs).

These dogs eavesdrop on their owners to learn new words Read More »

research-roundup:-6-cool-stories-we-almost-missed

Research roundup: 6 cool stories we almost missed


The assassination of a Hungarian duke, why woodpeckers grunt when they peck, and more.

Skull of remains found in a 13th century Dominican monastery on Margaret Island, Budapest, Hungary Credit: Eötvös Loránd University

It’s a regrettable reality that there is never enough time to cover all the interesting scientific stories we come across each month. In the past, we’ve featured year-end roundups of cool science stories we (almost) missed. This year, we’re experimenting with a monthly collection. November’s list includes forensic details of the medieval assassination of a Hungarian duke, why woodpeckers grunt when they peck, and more evidence that X’s much-maligned community notes might actually help combat the spread of misinformation after all.

An assassinated medieval Hungarian duke

The observed perimortem lesions on the human remains (CL=cranial lesion, PL= Postcranial lesion). The drawing of the skeleton was generated using OpenAI’s image generation tools (DALL·E) via ChatGPT.

Credit: Tamás Hajdu et al., 2026

Back in 1915, archaeologists discovered the skeletal remains of a young man in a Dominican monastery on Margaret Island in Budapest, Hungary. The remains were believed to be those of Duke Bela of Masco, grandson of the medieval Hungarian King Bela IV. Per historical records, the young duke was brutally assassinated in 1272 by a rival faction and his mutilated remains were recovered by the duke’s sister and niece and buried in the monastery.

The identification of the remains was based on a contemporary osteological analysis, but they were subsequently lost and only rediscovered in 2018. A paper published in the journal Forensic Science International: Genetics has now confirmed that identification and shed more light on precisely how the duke died. (A preprint is available on bioRxiv.]

An interdisciplinary team of researchers performed various kinds of bioarchaeological analysis on the remains. including genetic testing, proteomics, 3D modeling, and radiocarbon dating. The resulting data definitively proves that the skeleton is indeed that of Duke Bela of Masco.

The authors were also able to reconstruct the manner of the duke’s death, concluding that this was a coordinated attack by three people. One attacked from the front while the other two attacked from the left and right sides, and the duke was facing his assassins and tried to defend himself. The weapons used were most likely a saber and a long sword, and the assassins kept raining down blows even after the duke had fallen to the ground. The authors concluded that while the attack was clearly planned, it was also personal and fueled by rage or hate.

DOI: Forensic Science International: Genetics, 2025. 10.1016/j.fsigen.2025.103381  (About DOIs).

Why woodpeckers grunt when they peck

A male Pileated woodpecker foraging on a t

Woodpeckers energetically drum away at tree trunks all day long with their beaks and yet somehow never seem to get concussions, despite the fact that such drumming can produce deceleration forces as high as 1,200 g’s. (Humans suffer concussions with a sudden deceleration of just 100 g’s.) While popular myth holds that woodpecker heads are structured in such a way to absorb the shock, and there has been some science to back that up, more recent research found that their heads act more like hammers than shock absorbers. A paper published in the Journal of Experimental Biology sheds further light on the biomechanics of how woodpeckers essentially turn themselves into hammers and reveals that the birds actually grunt as they strike wood.

The authors caught eight wild downy woodpeckers and recorded them drilling and tapping on pieces of hardwood in the lab for three days, while also measuring electrical signals in their heads, necks, abdomens, tails, and leg muscles. Analyzing the footage, they found that woodpeckers use their hip flexors and front neck muscles to propel themselves forward as they peck while tipping their heads back and bracing themselves using muscles at the base of the skull and back of the neck. The birds use abdominal muscles for stability and brace for impact using their tail muscles to anchor their bodies against a tree. As for the grunting, the authors noted that it’s a type of breathing pattern used by tennis players (and martial artists) to boost the power of a strike.

DOI: Journal of Experimental Biology, 2025. 10.1242/jeb.251167  (About DOIs).

Raisins turn water into wine

wine glass half filled with raisins

Credit: Kyoto University

Fermentation has been around in some form for millennia, relying on alcohol-producing yeasts like Saccharomyces cerevisiae; cultured S. cerevisiae is still used by winemakers today. It’s long been thought that winemakers in ancient times stored fresh crushed grapes in jars and relied on natural fermentation to work its magic, but recent studies have called this into question by demonstrating that S. cerevisiae colonies usually don’t form on fresh grape skins. But the yeast does like raisins, as Kyoto University researchers recently discovered. They’ve followed up that earlier work with a paper published in Scientific Reports, demonstrating that it’s possible to use raisins to turn water into wine.

The authors harvested fresh grapes and dried them for 28 days. Some were dried using an incubator, some were sun-dried, and a third batch was dried using a combination of the two methods. The researchers then added the resulting raisins to bottles of water—three samples for each type of drying process—sealed the bottles, and stored them at room temperature for two weeks. One incubator-dried sample and two combo samples successfully fermented, but all three of the sun-dried samples did so, and at higher ethanol concentrations. Future research will focus on identifying the underlying molecular mechanisms. And for those interested in trying this at home, the authors warn that it only works with naturally sun-dried raisins, since store-bought varieties have oil coatings that block fermentation.

DOI: Scientific Reports, 2025. 10.1038/s41598-025-23715-3  (About DOIs).

An octopus-inspired pigment

An octopus camouflages itself with the seafloor.

Credit: Charlotte Seid

Octopuses, cuttlefish, and several other cephalopods can rapidly shift the colors in their skin thanks to that skin’s unique complex structure, including layers of chromatophores, iridophores, and leucophores. A color-shifting natural pigment called xanthommatin also plays a key role, but it’s been difficult to study because it’s hard to harvest enough directly from animals, and lab-based methods of making the pigment are labor-intensive and don’t yield much. Scientists at the University of San Diego have developed a new method for making xanthommatin in substantially larger quantities, according to a paper published in Nature Biotechnology.

The issue is that trying to get microbes to make foreign compounds creates a metabolic burden, and the microbes hence resist the process, hindering yields. The USD team figured out how to trick the cells into producing more xanthommatin by genetically engineering them in such a way that making the pigment was essential to a cell’s survival. They achieved yields of between 1 and 3 grams per liter, compared to just five milligrams of pigment per liter using traditional approaches. While this work is proof of principle, the authors foresee such future applications as photoelectronic devices and thermal coatings, dyes, natural sunscreens, color-changing paints, and environmental sensors. It could also be used to make other kinds of chemicals and help industries shift away from older methods that rely on fossil fuel-based materials.

DOI: Nature Biotechnology, 2025. 10.1038/s41587-025-02867-7  (About DOIs).

A body-swap robot

Participant standing on body-swap balance robot

Credit: Sachi Wickramasinghe/UBC Media Relations

Among the most serious risks facing older adults is falling. According to the authors of a paper published in Science Robotics, standing upright requires the brain to coordinate signals from the eyes, inner ears, and feet to counter gravity, and there’s a natural lag in how fast this information travels back and forth between brain and muscles. Aging and certain diseases like diabetic neuropathy and multiple sclerosis can further delay that vital communication; the authors liken it to steering a car with a wheel that responds half a second late. And it’s a challenge to directly study the brain under such conditions.

That’s why researchers at the University of British Columbia built a large “body swap” robotic platform. Subjects stood on force plates attached to a motor-driven backboard to reproduce the physical forces at play when standing upright: gravity, inertia, and “viscosity,” which in this case describes the damping effect of muscles and joints that allow us to lean without falling. The platform is designed to subtly alter those forces and also add a 200-millisecond delay.

The authors tested 20 participants and found that lowering inertia and making the viscosity negative resulted in similar instability to that which resulted from a signal delay. They then brought in ten new subjects to study whether adjusting body mechanics could compensate for information delays. They found that adding inertia and viscosity could at least partially counter the instability that arose from signal delay—essentially giving the body a small mechanical boost to help the brain maintain balance. The eventual goal is to design wearables that offer gentle resistance when an older person starts to lose their balance, and/or help patients with MS, for example, adjust to slower signal feedback.

DOI: Science Robotics, 2025. 10.1126/scirobotics.adv0496  (About DOIs).

X community notes might actually work

cropped image of phone screen showing an X post with a community note underneath

Credit: Huaxia Rui

Earlier this year, Elon Musk claimed that X’s community notes feature needed tweaking because it was being gamed by “government & legacy media” to contradict Trump—despite vigorously defending the robustness of the feature against such manipulation in the past. A growing body of research seems to back Musk’s earlier stance.

For instance, last year Bloomberg pointed to several studies suggesting that crowdsourcing worked just as well as using professional fact-checkers when assessing the accuracy of news stories. The latest evidence that crowd-sourcing fact checks can be effective at curbing misinformation comes from a paper published in the journal Information Systems Research, which found that X posts with public corrections were 32 percent more likely to be deleted by authors.

Co-author Huaxia Rui of the University of Rochester pointed out that community notes must meet a threshold before they will appear publicly on posts, while those that do not remain hidden from public view. Seeing a prime opportunity in the arrangement, Rui et al. analyzed 264,600 X posts that had received at least one community note and compared those just above and just below that threshold. The posts were collected from two different periods: June through August 2024, right before the US presidential election (when misinformation typically surges), and the post-election period of January and February 2025.

The fact that roughly one-third of authors responded to public community notes by deleting the post suggests that the built-in dynamics of social media (e.g., status, visibility, peer feedback) might actually help improve the spread of misinformation as intended. The authors concluded that crowd-checking “strikes a balance between First Amendment rights and the urgent need to curb misinformation.” Letting AI write the community notes, however, is probably still a bad idea.

DOI: Information Systems Research, 2025. 10.1287/isre.2024.1609  (About DOIs).

Photo of Jennifer Ouellette

Jennifer is a senior writer at Ars Technica with a particular focus on where science meets culture, covering everything from physics and related interdisciplinary topics to her favorite films and TV series. Jennifer lives in Baltimore with her spouse, physicist Sean M. Carroll, and their two cats, Ariel and Caliban.

Research roundup: 6 cool stories we almost missed Read More »

why-imperfection-could-be-key-to-turing-patterns-in-nature

Why imperfection could be key to Turing patterns in nature

In essence, it’s a type of symmetry breaking. Any two processes that act as activator and inhibitor will produce periodic patterns and can be modeled using Turing’s diffusion function. The challenge is moving from Turing’s admittedly simplified model to pinpointing the precise mechanisms serving in the activator and inhibitor roles.

This is especially challenging in biology. Per the authors of this latest paper, the classical approach to a Turing mechanism balances reaction and diffusion using a single length scale, but biological patterns often incorporate multiscale structures, grain-like textures, or certain inherent imperfections. And the resulting patterns are often much blurrier than those found in nature.

Can you say “diffusiopherosis”?

Simulated hexagon and stripe patterns obtained by diffusiophoretic assembly of two types of cells on top of the chemical patterns. Credit: Siamak Mirfendereski and Ankur Gupta/CU Boulder

In 2023, UCB biochemical engineers Ankur Gupta and Benjamin Alessio developed a new model that added diffusiopherosis into the mix. It’s a process by which colloids are transported via differences in solute concentration gradients—the same process by which soap diffuses out of laundry in water, dragging particles of dirt out of the fabric. Gupta and Alessio successfully used their new model to simulate the distinctive hexagon pattern (alternating purple and black) on the ornate boxfish, native to Australia, achieving much sharper outlines than the model originally proposed by Turing.

The problem was that the simulations produced patterns that were too perfect: hexagons that were all the same size and shape and an identical distance apart. Animal patterns in nature, by contrast, are never perfectly uniform. So Gupta and his UCB co-author on this latest paper, Siamak Mirfendereski, figured out how to tweak the model to get the pattern outputs they desired. All they had to do was define specific sizes for individual cells. For instance, larger cells create thicker outlines, and when they cluster, they produce broader patterns. And sometimes the cells jam up and break up a stripe. Their revised simulations produced patterns and textures very similar to those found in nature.

“Imperfections are everywhere in nature,” said Gupta. “We proposed a simple idea that can explain how cells assemble to create these variations. We are drawing inspiration from the imperfect beauty of [a] natural system and hope to harness these imperfections for new kinds of functionality in the future.” Possible future applications include “smart” camouflage fabrics that can change color to better blend with the surrounding environment, or more effective targeted drug delivery systems.

Matter, 2025. DOI: 10.1016/j.matt.2025.102513 (About DOIs).

Why imperfection could be key to Turing patterns in nature Read More »

the-case-of-the-coke-snorting-chihuahua

The case of the coke-snorting Chihuahua

Every dog owner knows that canines are natural scavengers and that vigilance is required to ensure they don’t eat toxic substances. But accidental ingestions still happen—like the chihuahua who vets discovered had somehow managed to ingest a significant quantity of cocaine, according to a case study published in the journal Frontiers in Veterinary Science.

There have been several studies investigating the bad effects cocaine can have on the cardiovascular systems of both humans and animals. However, these controlled studies are primarily done in laboratory settings and often don’t match the messier clinical realities. “Case reports are crucial in veterinary medicine by providing real-world examples,” said co-author Jake Johnson of North Carolina State University. “They capture clinical scenarios that larger studies might miss, preserve unusual presentations for future reference, and help build our collective understanding of rare presentations, ultimately improving emergency preparedness and treatment protocols.”

In the case of a male 2-year-old chihuahua, the dog presented as lethargic and unresponsive. His owners had found him with his tongue sticking out and unable to focus visually. The chihuahua was primarily an outdoor dog but was also allowed inside, and all its vaccines were up to date. Examination revealed bradycardia, i.e., a slow heart rate, a blue tinge to the dog’s mucus membranes—often a sign of too much unoxygenated hemoglobin circulating through the system—and dilated pupils. The dog’s symptoms faded after the vet administered a large dose of atropine, followed by epinephrine.

Then the dog was moved to a veterinary teaching hospital for further evaluation and testing. A urine test was positive for cocaine with traces of fentanyl, confirmed with liquid chromatography testing. The authors estimate the dog could have snorted (or ingested) as much as 96 mg of the drug. Apparently the Chihuahua had a history of ingesting things it shouldn’t, but the owners reported no prescription medications missing at home. They also did not have any controlled substances or illegal drugs like cocaine in the home.

The case of the coke-snorting Chihuahua Read More »

monkeys-are-better-yodelers-than-humans,-study-finds

Monkeys are better yodelers than humans, study finds

Monkey see, monkey yodel?

That’s how it works for humans, but when it comes to the question of yodeling animals, it depends on how you define yodeling, according to bioacoustician Tecumseh Fitch of the University of Vienna in Austria, who co-authored this latest paper. Plenty of animal vocalizations use repeated sudden changes in pitch (including birds), and a 2023 study found that toothed whales can produce vocal registers through their noses for echolocation and communication.

There haven’t been as many studies of vocal registers in non-human primates, but researchers have found, for example, that the “coo” call of the Japanese macaque is similar to a human falsetto; the squeal of a Syke monkey is similar to the human “modal” register; and the Diana monkey produces alarm calls that are similar to “vocal fry” in humans.

It’s known that non-human primates have something humans have lost over the course of evolution: very thin, light vocal membranes just above the vocal folds. Scientists have pondered the purpose of those membranes, and a 2022 study concluded that this membrane was crucial for producing sounds. The co-authors of this latest paper wanted to test their hypothesis that the membranes serve as an additional oscillator to enable such non-human primates to achieve the equivalent of human voice registers. That, in turn, would render them capable in principle of producing a wider range of calls—perhaps even a yodel.

The team studied many species, including black and gold howler monkeys, tufted capuchins, black-capped squirrel monkeys, and Peruvian spider monkeys. They took CT scans of excised monkey larynxes housed at the Japan Monkey Center, as well as two excised larynxes from tufted capuchin monkeys at Kyoto University. They also made live recordings of monkey calls at the La Senda Verde animal refuge in the Bolivian Andes, using non-invasive EGG to monitor vocal fold vibrations.

Monkeys are better yodelers than humans, study finds Read More »

let-us-spray:-river-dolphins-launch-pee-streams-into-air

Let us spray: River dolphins launch pee streams into air

According to Amazonian folklore, the area’s male river dolphins are shapeshifters (encantade), transforming at night into handsome young men who seduce and impregnate human women. The legend’s origins may lie in the fact that dolphins have rather human-like genitalia. A group of Canadian biologists didn’t spot any suspicious shapeshifting behavior over the four years they spent monitoring a dolphin population in central Brazil, but they did document 36 cases of another human-like behavior: what appears to be some sort of cetacean pissing contest.

Specifically, the male dolphins rolled over onto their backs, displayed their male members, and launched a stream of urine as high as 3 feet into the air. This usually occurred when other males were around, who seemed fascinated in turn by the arching streams of pee, even chasing after them with their snouts. It’s possibly a form of chemical sensory communication and not merely a need to relieve themselves, according to the biologists, who described their findings in a paper published in the journal Behavioral Processes. As co-author Claryana Araújo-Wang of CetAsia Research Group in Ontario, Canada, told New Scientist, “We were really shocked, as it was something we had never seen before.”

Spraying urine is a common behavior in many animal species, used to mark territory, defend against predators, communicate with other members of one’s species, or as a means of mate selection since it has been suggested that the chemicals in the urine carry useful information about physical health or social dominance.

Let us spray: River dolphins launch pee streams into air Read More »

peeing-is-contagious-among-chimps

Peeing is contagious among chimps

Those results supported the initial hypothesis that chimps tended to urinate in sync rather than randomly. Further analysis showed that the closer a chimp was to another peeing chimp, the more likely the probability of that chimp peeing as well—evidence of social contagion. Finally, Onishi et al. wanted to explore whether social relationships (like socially close pairs, evidenced by mutual grooming and similar behaviors) influenced contagious urination. The only social factor that proved relevant was dominance, with less-dominant chimps being more prone to contagious urination.

There may still be other factors influencing the behavior, and more experimental research is needed on potential sensory cues and social triggers in order to identify possible underlying mechanisms for the phenomenon. Furthermore, this study was conducted with a captive chimp population; to better understand potential evolutionary roots, there should be research on wild chimp populations, looking at possible links between contagious urination and factors like ranging patterns, territory use, and so forth.

“This was an unexpected and fascinating result, as it opens up multiple possibilities for interpretation,” said coauthor Shinya Yamamoto, also of Kyoto University. “For instance, it could reflect hidden leadership in synchronizing group activities, the reinforcement of social bonds, or attention bias among lower-ranking individuals. These findings raise intriguing questions about the social functions of this behavior.”

DOI: Current Biology, 2025. 10.1016/j.cub.2024.11.052 (About DOIs).

Peeing is contagious among chimps Read More »

this-elephant-figured-out-how-to-use-a-hose-to-shower

This elephant figured out how to use a hose to shower

And the hose-showering behavior was “lateralized,” that is, Mary preferred targeting her left body side more than her right. (Yes, Mary is a “left-trunker.”) Mary even adapted her showering behavior depending on the diameter of the hose: she preferred showering with a 24-mm hose over a 13-mm hose and preferred to use her trunk to shower rather than a 32-mm hose.

It’s not known where Mary learned to use a hose, but the authors suggest that elephants might have an intuitive understanding of how hoses work because of the similarity to their trunks. “Bathing and spraying themselves with water, mud, or dust are very common behaviors in elephants and important for body temperature regulation as well as skin care,” they wrote. “Mary’s behavior fits with other instances of tool use in elephants related to body care.”

Perhaps even more intriguing was Anchali’s behavior. While Anchali did not use the hose to shower, she nonetheless exhibited complex behavior in manipulating the hose: lifting it, kinking the hose, regrasping the kink, and compressing the kink. The latter, in particular, often resulted in reduced water flow while Mary was showering. Anchali eventually figured out how to further disrupt the water flow by placing her trunk on the hose and lowering her body onto it. Control experiments were inconclusive about whether Anchali was deliberately sabotaging Mary’s shower; the two elephants had been at odds and behaved aggressively toward each other at shower times. But similar cognitively complex behavior has been observed in elephants.

“When Anchali came up with a second behavior that disrupted water flow to Mary, I became pretty convinced that she is trying to sabotage Mary,” Brecht said. “Do elephants play tricks on each other in the wild? When I saw Anchali’s kink and clamp for the first time, I broke out in laughter. So, I wonder, does Anchali also think this is funny, or is she just being mean?

Current Biology, 2024. DOI: 10.1016/j.cub.2024.10.017  (About DOIs).

This elephant figured out how to use a hose to shower Read More »

dna-confirms-these-19th-century-lions-ate-humans

DNA confirms these 19th century lions ate humans

For several months in 1898, a pair of male lions turned the Tsavo region of Kenya into their own human hunting grounds, killing many construction workers who were building the Kenya-Uganda railway.  A team of scientists has now identified exactly what kinds of prey the so-called “Tsavo Man-Eaters” fed upon, based on DNA analysis of hairs collected from the lions’ teeth, according to a recent paper published in the journal Current Biology. They found evidence of various species the lions had consumed, including humans.

The British began construction of a railway bridge over the Tsavo River in March 1898, with Lieutenant-Colonel John Henry Patterson leading the project. But mere days after Patterson arrived on site, workers started disappearing or being killed. The culprits: two maneless male lions, so emboldened that they often dragged workers from their tents at night to eat them. At their peak, they were killing workers almost daily—including an attack on the district officer, who narrowly escaped with claw lacerations on his back. (His assistant, however, was killed.)

Patterson finally managed to shoot and kill one of the lions on December 9 and the second 20 days later. The lion pelts decorated Patterson’s home as rugs for 25 years before being sold to Chicago’s Field Museum of Natural History in 1924. The skins were restored and used to reconstruct the lions, which are now on permanent display at the museum, along with their skulls.

Tale of the teeth

The Tsavo Man-Eaters naturally fascinated scientists, although the exact number of people they killed and/or consumed remains a matter of debate. Estimates run anywhere from 28–31 victims to 100 or more, with a 2009 study that analyzed isotopic signatures of the lions’ bone collagen and hair keratin favoring the lower range.

DNA confirms these 19th century lions ate humans Read More »

study:-cats-in-little-crocheted-hats-shed-light-on-feline-chronic-pain

Study: Cats in little crocheted hats shed light on feline chronic pain

For the fashion-forward cat —

The custom-made caps hold electrodes in place and reduce motion artifacts during EEGs.

A cat wearing a crocheted hat custom-made to record brain activity

Enlarge / “When you spend more time putting electrodes back on than you do actually recording the EEGs, you get creative.”

Alienor Delsart

Our feline overlords aren’t particularly known for obeying commands from mere humans, which can make it difficult to study their behaviors in controlled laboratory settings. So a certain degree of ingenuity is required to get usable results—like crocheting adorable little hats for kitties taking part in electroencephalogram (EEG) experiments. That’s what researchers at the University of Montreal in Quebec, Canada, did to learn more about assessing chronic pain in cats—and they succeeded. According to their recent paper published in the Journal of Neuroscience Methods, it’s the first time scientists have recorded the electrical activity in the brains of conscious cats.

According to the authors, one-quarter of adult cats suffer from osteoarthritis and chronic pain that worsens with age. There are currently limited treatment options, namely, non-steroidal anti-inflammatory drugs, which can have significant side effects for the cats. An injectable monoclonal antibody tailored for cats has recently been developed to neutralize excessive nerve growth factor, but other alternative treatment options like supplements and regenerative medicine have yet to be tested. Nor has the effectiveness of certain smells or lighting in altering pain perception in felines been tested.

That was the Montreal team’s primary objective for their experiments. Initially, they tried to place electrodes on the heads of 11 awake adult cats with osteoarthritis, but the cats kept shaking off the electrodes.

“When you spend more time putting electrodes back on than you do actually recording the EEGs, you get creative,” co-author Aliénor Delsart of the University of Montreal told New Scientist. So he and his co-authors tapped a graduate student with crocheting skills to make the little hats. Not only did the hats hold the electrodes in place, but the cats also stopped trying to chew the wires.

With that problem solved, the real experiments could begin, designed to record brain activity of cats in response to smelling certain substances or seeing different wavelengths of colored light. The kitty subjects were housed as a group in an environment with lighting, temperature, and humidity controls, along with perches, beds, scratching posts, and cat toys.

Electrodes were attached with no need to shave the cats’ hair, thanks to a conductive paste to improve electrode/skin contact. First they recorded the basal activity before moving to exposure to sensory stimuli: a grapefruit smell for olfactory stimulation, and red, blue, and green lighting in a darkened room for visual stimulation.

Granted, there were still a few motion artifacts in that data; two cats were excluded from the data analysis for that reason. And the authors acknowledged the small sample size and largely descriptive nature of their analysis, which they deemed appropriate for what is essentially a test of the feasibility of their approach. The study met the group’s primary objectives: to assess whether the EEG method was feasible with conscious cats and whether the resulting analytical methods were an efficient means to characterize how the cats responded to specific sensory stimuli. “This opens new avenues for investigating chronic pain mechanisms and developing novel therapeutic strategies,” the authors concluded.

Journal of Neuroscience Methods, 2024. DOI: 10.1016/j.jneumeth.2024.110254  (About DOIs).

Study: Cats in little crocheted hats shed light on feline chronic pain Read More »

can’t-stop-your-cat-from-scratching-the-furniture?-science-has-some-tips

Can’t stop your cat from scratching the furniture? Science has some tips

two adorable kittens (one tabby, one tuxedo) on a little scratching post base.

Enlarge / Ariel and Caliban learned as kittens that scratching posts were fair game for their natural claw-sharpening instincts.

Sean Carroll

Ah, cats. We love our furry feline overlords despite the occasional hairball and their propensity to scratch the furniture to sharpen their claws. The latter is perfectly natural kitty behavior, but overly aggressive scratching is usually perceived as a behavioral problem. Veterinarians frown on taking extreme measures like declawing or even euthanizing such “problematic” cats. But there are alternative science-backed strategies for reducing or redirecting the scratching behavior, according to the authors of a new paper published in the journal Frontiers in Veterinary Science.

This latest study builds on the group’s prior research investigating the effects of synthetic feline facial pheromones on undesirable scratching in cats, according to co-author Yasemin Salgirli Demirbas, a veterinary researcher at Ankara University in Turkey. “From the beginning, our research team agreed that it was essential to explore broader factors that might exacerbate this issue, such as those influencing stress and, consequently, scratching behavior in cats,” she told Ars. “What’s new in this study is our focus on the individual, environmental, and social dynamics affecting the level of scratching behavior. This perspective aims to enhance our understanding of how human and animal welfare are interconnected in different scenarios.”

The study investigated the behavior of 1,211 cats, with data collected via an online questionnaire completed by the cats’ caregivers. The first section collected information about the caregivers, while the second asked about the cats’ daily routines, social interactions, environments, behaviors, and temperaments. The third and final section gathered information about the frequency and intensity of undesirable scratching behavior in the cats based on a helpful “scratching index.”

The team concluded that there are several factors that influence the scratching behavior of cats, including environmental factors, high levels of certain kinds of play, and increased nocturnal activity. But stress seems to be the leading driver. “Cats might scratch more as a way to relieve stress or mark their territory, especially if they feel threatened or insecure,” said Demirbas. And the top source of such stress, the study found, is the presence of small children in the home.

A corrugated fiberboard scratching pad can redirect your cat's unwanted scratching away from the furniture.

Enlarge / A corrugated fiberboard scratching pad can redirect your cat’s unwanted scratching away from the furniture.

Can’t stop your cat from scratching the furniture? Science has some tips Read More »