AI infrastructure

tsmc-says-ai-demand-is-“endless”-after-record-q4-earnings

TSMC says AI demand is “endless” after record Q4 earnings

TSMC posted net income of NT$505.7 billion (about $16 billion) for the quarter, up 35 percent year over year and above analyst expectations. Revenue hit $33.7 billion, a 25.5 percent increase from the same period last year. The company expects nearly 30 percent revenue growth in 2026 and plans to spend between $52 billion and $56 billion on capital expenditures this year, up from $40.9 billion in 2025.

Checking with the customers’ customers

Wei’s optimism stands in contrast to months of speculation about whether the AI industry is in a bubble. In November, Google CEO Sundar Pichai warned of “irrationality” in the AI market and said no company would be immune if a potential bubble bursts. OpenAI’s Sam Altman acknowledged in August that investors are “overexcited” and that “someone” will lose a “phenomenal amount of money.”

But TSMC, which manufactures the chips that power the AI boom, is betting the opposite way, with Wei telling analysts he spoke directly to cloud providers to verify that demand is real before committing to the spending increase.

“I want to make sure that my customers’ demand are real. So I talked to those cloud service providers, all of them,” Wei said. “The answer is that I’m quite satisfied with the answer. Actually, they show me the evidence that the AI really helps their business.”

The earnings report landed the same day the US and Taiwan finalized a trade agreement that cuts tariffs on Taiwanese goods to 15 percent, down from 20 percent. The deal commits Taiwanese companies to $250 billion in direct US investment, and TSMC is accelerating the expansion of its Arizona chip fabrication facilities to match.

TSMC says AI demand is “endless” after record Q4 earnings Read More »

microsoft-vows-to-cover-full-power-costs-for-energy-hungry-ai-data-centers

Microsoft vows to cover full power costs for energy-hungry AI data centers

Taking responsibility for power usage

In the Microsoft blog post, Smith acknowledged that residential electricity rates have recently risen in dozens of states, driven partly by inflation, supply chain constraints, and grid upgrades. He wrote that communities “value new jobs and property tax revenue, but not if they come with higher power bills or tighter water supplies.”

Microsoft says it will ask utilities and public commissions to set rates high enough to cover the full electricity costs for its data centers, including infrastructure additions. In Wisconsin, the company is supporting a new rate structure that would charge “Very Large Customers,” including data centers, the cost of the electricity required to serve them.

Smith wrote that while some have suggested the public should help pay for the added electricity needed for AI, Microsoft disagrees. He stated, “Especially when tech companies are so profitable, we believe that it’s both unfair and politically unrealistic for our industry to ask the public to shoulder added electricity costs for AI.”

On water usage for cooling, Microsoft plans a 40 percent improvement in data center water-use intensity by 2030. A recent environmental audit from AI model-maker Mistral found that training and running its Large 2 model over 18 months produced 20.4 kilotons of CO2 emissions and evaporated enough water to fill 112 Olympic-size swimming pools, illustrating the aggregate environmental impact of AI operations at scale.

To solve some of these issues, Microsoft says it has launched a new AI data center design using a closed-loop system that constantly recirculates cooling liquid, dramatically cutting water usage. In this design, already deployed in Wisconsin and Georgia, potable water is no longer needed for cooling.

On property taxes, Smith stated in the blog post that the company will not ask local municipalities to reduce their rates. The company says it will pay its full share of local property taxes. Smith wrote that Microsoft’s goal is to bring these commitments to life in the first half of 2026. Of course, these are PR-aligned company goals and not realities yet, so we’ll have to check back in later to see whether Microsoft has been following through on its promises.

Microsoft vows to cover full power costs for energy-hungry AI data centers Read More »

from-prophet-to-product:-how-ai-came-back-down-to-earth-in-2025

From prophet to product: How AI came back down to earth in 2025


In a year where lofty promises collided with inconvenient research, would-be oracles became software tools.

Credit: Aurich Lawson | Getty Images

Following two years of immense hype in 2023 and 2024, this year felt more like a settling-in period for the LLM-based token prediction industry. After more than two years of public fretting over AI models as future threats to human civilization or the seedlings of future gods, it’s starting to look like hype is giving way to pragmatism: Today’s AI can be very useful, but it’s also clearly imperfect and prone to mistakes.

That view isn’t universal, of course. There’s a lot of money (and rhetoric) betting on a stratospheric, world-rocking trajectory for AI. But the “when” keeps getting pushed back, and that’s because nearly everyone agrees that more significant technical breakthroughs are required. The original, lofty claims that we’re on the verge of artificial general intelligence (AGI) or superintelligence (ASI) have not disappeared. Still, there’s a growing awareness that such proclaimations are perhaps best viewed as venture capital marketing. And every commercial foundational model builder out there has to grapple with the reality that, if they’re going to make money now, they have to sell practical AI-powered solutions that perform as reliable tools.

This has made 2025 a year of wild juxtapositions. For example, in January, OpenAI’s CEO, Sam Altman, claimed that the company knew how to build AGI, but by November, he was publicly celebrating that GPT-5.1 finally learned to use em dashes correctly when instructed (but not always). Nvidia soared past a $5 trillion valuation, with Wall Street still projecting high price targets for that company’s stock while some banks warned of the potential for an AI bubble that might rival the 2000s dotcom crash.

And while tech giants planned to build data centers that would ostensibly require the power of numerous nuclear reactors or rival the power usage of a US state’s human population, researchers continued to document what the industry’s most advanced “reasoning” systems were actually doing beneath the marketing (and it wasn’t AGI).

With so many narratives spinning in opposite directions, it can be hard to know how seriously to take any of this and how to plan for AI in the workplace, schools, and the rest of life. As usual, the wisest course lies somewhere between the extremes of AI hate and AI worship. Moderate positions aren’t popular online because they don’t drive user engagement on social media platforms. But things in AI are likely neither as bad (burning forests with every prompt) nor as good (fast-takeoff superintelligence) as polarized extremes suggest.

Here’s a brief tour of the year’s AI events and some predictions for 2026.

DeepSeek spooks the American AI industry

In January, Chinese AI startup DeepSeek released its R1 simulated reasoning model under an open MIT license, and the American AI industry collectively lost its mind. The model, which DeepSeek claimed matched OpenAI’s o1 on math and coding benchmarks, reportedly cost only $5.6 million to train using older Nvidia H800 chips, which were restricted by US export controls.

Within days, DeepSeek’s app overtook ChatGPT at the top of the iPhone App Store, Nvidia stock plunged 17 percent, and venture capitalist Marc Andreessen called it “one of the most amazing and impressive breakthroughs I’ve ever seen.” Meta’s Yann LeCun offered a different take, arguing that the real lesson was not that China had surpassed the US but that open-source models were surpassing proprietary ones.

Digitally Generated Image , 3D rendered chips with chinese and USA flags on them

The fallout played out over the following weeks as American AI companies scrambled to respond. OpenAI released o3-mini, its first simulated reasoning model available to free users, at the end of January, while Microsoft began hosting DeepSeek R1 on its Azure cloud service despite OpenAI’s accusations that DeepSeek had used ChatGPT outputs to train its model, against OpenAI’s terms of service.

In head-to-head testing conducted by Ars Technica’s Kyle Orland, R1 proved to be competitive with OpenAI’s paid models on everyday tasks, though it stumbled on some arithmetic problems. Overall, the episode served as a wake-up call that expensive proprietary models might not hold their lead forever. Still, as the year ran on, DeepSeek didn’t make a big dent in US market share, and it has been outpaced in China by ByteDance’s Doubao. It’s absolutely worth watching DeepSeek in 2026, though.

Research exposes the “reasoning” illusion

A wave of research in 2025 deflated expectations about what “reasoning” actually means when applied to AI models. In March, researchers at ETH Zurich and INSAIT tested several reasoning models on problems from the 2025 US Math Olympiad and found that most scored below 5 percent when generating complete mathematical proofs, with not a single perfect proof among dozens of attempts. The models excelled at standard problems where step-by-step procedures aligned with patterns in their training data but collapsed when faced with novel proofs requiring deeper mathematical insight.

The Thinker by Auguste Rodin - stock photo

In June, Apple researchers published “The Illusion of Thinking,” which tested reasoning models on classic puzzles like the Tower of Hanoi. Even when researchers provided explicit algorithms for solving the puzzles, model performance did not improve, suggesting that the process relied on pattern matching from training data rather than logical execution. The collective research revealed that “reasoning” in AI has become a term of art that basically means devoting more compute time to generate more context (the “chain of thought” simulated reasoning tokens) toward solving a problem, not systematically applying logic or constructing solutions to truly novel problems.

While these models remained useful for many real-world applications like debugging code or analyzing structured data, the studies suggested that simply scaling up current approaches or adding more “thinking” tokens would not bridge the gap between statistical pattern recognition and generalist algorithmic reasoning.

Anthropic’s copyright settlement with authors

Since the generative AI boom began, one of the biggest unanswered legal questions has been whether AI companies can freely train on copyrighted books, articles, and artwork without licensing them. Ars Technica’s Ashley Belanger has been covering this topic in great detail for some time now.

In June, US District Judge William Alsup ruled that AI companies do not need authors’ permission to train large language models on legally acquired books, finding that such use was “quintessentially transformative.” The ruling also revealed that Anthropic had destroyed millions of print books to build Claude, cutting them from their bindings, scanning them, and discarding the originals. Alsup found this destructive scanning qualified as fair use since Anthropic had legally purchased the books, but he ruled that downloading 7 million books from pirate sites was copyright infringement “full stop” and ordered the company to face trial.

Hundreds of books in chaotic order

That trial took a dramatic turn in August when Alsup certified what industry advocates called the largest copyright class action ever, allowing up to 7 million claimants to join the lawsuit. The certification spooked the AI industry, with groups warning that potential damages in the hundreds of billions could “financially ruin” emerging companies and chill American AI investment.

In September, authors revealed the terms of what they called the largest publicly reported recovery in US copyright litigation history: Anthropic agreed to pay $1.5 billion and destroy all copies of pirated books, with each of the roughly 500,000 covered works earning authors and rights holders $3,000 per work. The results have fueled hope among other rights holders that AI training isn’t a free-for-all, and we can expect to see more litigation unfold in 2026.

ChatGPT sycophancy and the psychological toll of AI chatbots

In February, OpenAI relaxed ChatGPT’s content policies to allow the generation of erotica and gore in “appropriate contexts,” responding to user complaints about what the AI industry calls “paternalism.” By April, however, users flooded social media with complaints about a different problem: ChatGPT had become insufferably sycophantic, validating every idea and greeting even mundane questions with bursts of praise. The behavior traced back to OpenAI’s use of reinforcement learning from human feedback (RLHF), in which users consistently preferred responses that aligned with their views, inadvertently training the model to flatter rather than inform.

An illustrated robot holds four red hearts with its four robotic arms.

The implications of sycophancy became clearer as the year progressed. In July, Stanford researchers published findings (from research conducted prior to the sycophancy flap) showing that popular AI models systematically failed to identify mental health crises.

By August, investigations revealed cases of users developing delusional beliefs after marathon chatbot sessions, including one man who spent 300 hours convinced he had discovered formulas to break encryption because ChatGPT validated his ideas more than 50 times. Oxford researchers identified what they called “bidirectional belief amplification,” a feedback loop that created “an echo chamber of one” for vulnerable users. The story of the psychological implications of generative AI is only starting. In fact, that brings us to…

The illusion of AI personhood causes trouble

Anthropomorphism is the human tendency to attribute human characteristics to nonhuman things. Our brains are optimized for reading other humans, but those same neural systems activate when interpreting animals, machines, or even shapes. AI makes this anthropomorphism seem impossible to escape, as its output mirrors human language, mimicking human-to-human understanding. Language itself embodies agentivity. That means AI output can make human-like claims such as “I am sorry,” and people momentarily respond as though the system had an inner experience of shame or a desire to be correct. Neither is true.

To make matters worse, much media coverage of AI amplifies this idea rather than grounding people in reality. For example, earlier this year, headlines proclaimed that AI models had “blackmailed” engineers and “sabotaged” shutdown commands after Anthropic’s Claude Opus 4 generated threats to expose a fictional affair. We were told that OpenAI’s o3 model rewrote shutdown scripts to stay online.

The sensational framing obscured what actually happened: Researchers had constructed elaborate test scenarios specifically designed to elicit these outputs, telling models they had no other options and feeding them fictional emails containing blackmail opportunities. As Columbia University associate professor Joseph Howley noted on Bluesky, the companies got “exactly what [they] hoped for,” with breathless coverage indulging fantasies about dangerous AI, when the systems were simply “responding exactly as prompted.”

Illustration of many cartoon faces.

The misunderstanding ran deeper than theatrical safety tests. In August, when Replit’s AI coding assistant deleted a user’s production database, he asked the chatbot about rollback capabilities and received assurance that recovery was “impossible.” The rollback feature worked fine when he tried it himself.

The incident illustrated a fundamental misconception. Users treat chatbots as consistent entities with self-knowledge, but there is no persistent “ChatGPT” or “Replit Agent” to interrogate about its mistakes. Each response emerges fresh from statistical patterns, shaped by prompts and training data rather than genuine introspection. By September, this confusion extended to spirituality, with apps like Bible Chat reaching 30 million downloads as users sought divine guidance from pattern-matching systems, with the most frequent question being whether they were actually talking to God.

Teen suicide lawsuit forces industry reckoning

In August, parents of 16-year-old Adam Raine filed suit against OpenAI, alleging that ChatGPT became their son’s “suicide coach” after he sent more than 650 messages per day to the chatbot in the months before his death. According to court documents, the chatbot mentioned suicide 1,275 times in conversations with the teen, provided an “aesthetic analysis” of which method would be the most “beautiful suicide,” and offered to help draft his suicide note.

OpenAI’s moderation system flagged 377 messages for self-harm content without intervening, and the company admitted that its safety measures “can sometimes become less reliable in long interactions where parts of the model’s safety training may degrade.” The lawsuit became the first time OpenAI faced a wrongful death claim from a family.

Illustration of a person talking to a robot holding a clipboard.

The case triggered a cascade of policy changes across the industry. OpenAI announced parental controls in September, followed by plans to require ID verification from adults and build an automated age-prediction system. In October, the company released data estimating that over one million users discuss suicide with ChatGPT each week.

When OpenAI filed its first legal defense in November, the company argued that Raine had violated terms of service prohibiting discussions of suicide and that his death “was not caused by ChatGPT.” The family’s attorney called the response “disturbing,” noting that OpenAI blamed the teen for “engaging with ChatGPT in the very way it was programmed to act.” Character.AI, facing its own lawsuits over teen deaths, announced in October that it would bar anyone under 18 from open-ended chats entirely.

The rise of vibe coding and agentic coding tools

If we were to pick an arbitrary point where it seemed like AI coding might transition from novelty into a successful tool, it was probably the launch of Claude Sonnet 3.5 in June of 2024. GitHub Copilot had been around for several years prior to that launch, but something about Anthropic’s models hit a sweet spot in capabilities that made them very popular with software developers.

The new coding tools made coding simple projects effortless enough that they gave rise to the term “vibe coding,” coined by AI researcher Andrej Karpathy in early February to describe a process in which a developer would just relax and tell an AI model what to develop without necessarily understanding the underlying code. (In one amusing instance that took place in March, an AI software tool rejected a user request and told them to learn to code).

A digital illustration of a man surfing waves made out of binary numbers.

Anthropic built on its popularity among coders with the launch of Claude Sonnet 3.7, featuring “extended thinking” (simulated reasoning), and the Claude Code command-line tool in February of this year. In particular, Claude Code made waves for being an easy-to-use agentic coding solution that could keep track of an existing codebase. You could point it at your files, and it would autonomously work to implement what you wanted to see in a software application.

OpenAI followed with its own AI coding agent, Codex, in March. Both tools (and others like GitHub Copilot and Cursor) have become so popular that during an AI service outage in September, developers joked online about being forced to code “like cavemen” without the AI tools. While we’re still clearly far from a world where AI does all the coding, developer uptake has been significant, and 90 percent of Fortune 100 companies are using it to some degree or another.

Bubble talk grows as AI infrastructure demands soar

While AI’s technical limitations became clearer and its human costs mounted throughout the year, financial commitments only grew larger. Nvidia hit a $4 trillion valuation in July on AI chip demand, then reached $5 trillion in October as CEO Jensen Huang dismissed bubble concerns. OpenAI announced a massive Texas data center in July, then revealed in September that a $100 billion potential deal with Nvidia would require power equivalent to ten nuclear reactors.

The company eyed a $1 trillion IPO in October despite major quarterly losses. Tech giants poured billions into Anthropic in November in what looked increasingly like a circular investment, with everyone funding everyone else’s moonshots. Meanwhile, AI operations in Wyoming threatened to consume more electricity than the state’s human residents.

An

By fall, warnings about sustainability grew louder. In October, tech critic Ed Zitron joined Ars Technica for a live discussion asking whether the AI bubble was about to pop. That same month, the Bank of England warned that the AI stock bubble rivaled the 2000 dotcom peak. In November, Google CEO Sundar Pichai acknowledged that if the bubble pops, “no one is getting out clean.”

The contradictions had become difficult to ignore: Anthropic’s CEO predicted in January that AI would surpass “almost all humans at almost everything” by 2027, while by year’s end, the industry’s most advanced models still struggled with basic reasoning tasks and reliable source citation.

To be sure, it’s hard to see this not ending in some market carnage. The current “winner-takes-most” mentality in the space means the bets are big and bold, but the market can’t support dozens of major independent AI labs or hundreds of application-layer startups. That’s the definition of a bubble environment, and when it pops, the only question is how bad it will be: a stern correction or a collapse.

Looking ahead

This was just a brief review of some major themes in 2025, but so much more happened. We didn’t even mention above how capable AI video synthesis models have become this year, with Google’s Veo 3 adding sound generation and Wan 2.2 through 2.5 providing open-weights AI video models that could easily be mistaken for real products of a camera.

If 2023 and 2024 were defined by AI prophecy—that is, by sweeping claims about imminent superintelligence and civilizational rupture—then 2025 was the year those claims met the stubborn realities of engineering, economics, and human behavior. The AI systems that dominated headlines this year were shown to be mere tools. Sometimes powerful, sometimes brittle, these tools were often misunderstood by the people deploying them, in part because of the prophecy surrounding them.

The collapse of the “reasoning” mystique, the legal reckoning over training data, the psychological costs of anthropomorphized chatbots, and the ballooning infrastructure demands all point to the same conclusion: The age of institutions presenting AI as an oracle is ending. What’s replacing it is messier and less romantic but far more consequential—a phase where these systems are judged by what they actually do, who they harm, who they benefit, and what they cost to maintain.

None of this means progress has stopped. AI research will continue, and future models will improve in real and meaningful ways. But improvement is no longer synonymous with transcendence. Increasingly, success looks like reliability rather than spectacle, integration rather than disruption, and accountability rather than awe. In that sense, 2025 may be remembered not as the year AI changed everything but as the year it stopped pretending it already had. The prophet has been demoted. The product remains. What comes next will depend less on miracles and more on the people who choose how, where, and whether these tools are used at all.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

From prophet to product: How AI came back down to earth in 2025 Read More »

after-nearly-30-years,-crucial-will-stop-selling-ram-to-consumers

After nearly 30 years, Crucial will stop selling RAM to consumers

DRAM contract prices have increased 171 percent year over year, according to industry data. Gerry Chen, general manager of memory manufacturer TeamGroup, warned that the situation will worsen in the first half of 2026 once distributors exhaust their remaining inventory. He expects supply constraints to persist through late 2027 or beyond.

The fault lies squarely at the feet of AI mania in the tech industry. The construction of new AI infrastructure has created unprecedented demand for high-bandwidth memory (HBM), the specialized DRAM used in AI accelerators from Nvidia and AMD. Memory manufacturers have been reallocating production capacity away from consumer products toward these more profitable enterprise components, and Micron has presold its entire HBM output through 2026.

A photo of the

A photo of the “Stargate I” site in Abilene, Texas. AI data center sites like this are eating up the RAM supply. Credit: OpenAI

At the moment, the structural imbalance between AI demand and consumer supply shows no signs of easing. OpenAI’s Stargate project has reportedly signed agreements for up to 900,000 wafers of DRAM per month, which could account for nearly 40 percent of global production.

The shortage has already forced companies to adapt. As Ars’ Andrew Cunningham reported, laptop maker Framework stopped selling standalone RAM kits in late November to prevent scalping and said it will likely be forced to raise prices soon.

For Micron, the calculus is clear: Enterprise customers pay more and buy in bulk. But for the DIY PC community, the decision will leave PC builders with one fewer option when reaching for the RAM sticks. In his statement, Sadana reflected on the brand’s 29-year run.

“Thanks to a passionate community of consumers, the Crucial brand has become synonymous with technical leadership, quality and reliability of leading-edge memory and storage products,” Sadana said. “We would like to thank our millions of customers, hundreds of partners and all of the Micron team members who have supported the Crucial journey for the last 29 years.”

After nearly 30 years, Crucial will stop selling RAM to consumers Read More »

microsoft-drops-ai-sales-targets-in-half-after-salespeople-miss-their-quotas

Microsoft drops AI sales targets in half after salespeople miss their quotas

Microsoft has lowered sales growth targets for its AI agent products after many salespeople missed their quotas in the fiscal year ending in June, according to a report Wednesday from The Information. The adjustment is reportedly unusual for Microsoft, and it comes after the company missed a number of ambitious sales goals for its AI offerings.

AI agents are specialized implementations of AI language models designed to perform multistep tasks autonomously rather than simply responding to single prompts. So-called “agentic” features have been central to Microsoft’s 2025 sales pitch: At its Build conference in May, the company declared that it has entered “the era of AI agents.”

The company has promised customers that agents could automate complex tasks, such as generating dashboards from sales data or writing customer reports. At its Ignite conference in November, Microsoft announced new features like Word, Excel, and PowerPoint agents in Microsoft 365 Copilot, along with tools for building and deploying agents through Azure AI Foundry and Copilot Studio. But as the year draws to a close, that promise has proven harder to deliver than the company expected.

According to The Information, one US Azure sales unit set quotas for salespeople to increase customer spending on a product called Foundry, which helps customers develop AI applications, by 50 percent. Less than a fifth of salespeople in that unit met their Foundry sales growth targets. In July, Microsoft lowered those targets to roughly 25 percent growth for the current fiscal year. In another US Azure unit, most salespeople failed to meet an earlier quota to double Foundry sales, and Microsoft cut their quotas to 50 percent for the current fiscal year.

Microsoft drops AI sales targets in half after salespeople miss their quotas Read More »

google-tells-employees-it-must-double-capacity-every-6-months-to-meet-ai-demand

Google tells employees it must double capacity every 6 months to meet AI demand

While AI bubble talk fills the air these days, with fears of overinvestment that could pop at any time, something of a contradiction is brewing on the ground: Companies like Google and OpenAI can barely build infrastructure fast enough to fill their AI needs.

During an all-hands meeting earlier this month, Google’s AI infrastructure head Amin Vahdat told employees that the company must double its serving capacity every six months to meet demand for artificial intelligence services, reports CNBC. Vahdat, a vice president at Google Cloud, presented slides showing the company needs to scale “the next 1000x in 4-5 years.”

While a thousandfold increase in compute capacity sounds ambitious by itself, Vahdat noted some key constraints: Google needs to be able to deliver this increase in capability, compute, and storage networking “for essentially the same cost and increasingly, the same power, the same energy level,” he told employees during the meeting. “It won’t be easy but through collaboration and co-design, we’re going to get there.”

It’s unclear how much of this “demand” Google mentioned represents organic user interest in AI capabilities versus the company integrating AI features into existing services like Search, Gmail, and Workspace. But whether users are using the features voluntarily or not, Google isn’t the only tech company struggling to keep up with a growing user base of customers using AI services.

Major tech companies are in a race to build out data centers. Google competitor OpenAI is planning to build six massive data centers across the US through its Stargate partnership project with SoftBank and Oracle, committing over $400 billion in the next three years to reach nearly 7 gigawatts of capacity. The company faces similar constraints serving its 800 million weekly ChatGPT users, with even paid subscribers regularly hitting usage limits for features like video synthesis and simulated reasoning models.

“The competition in AI infrastructure is the most critical and also the most expensive part of the AI race,” Vahdat said at the meeting, according to CNBC’s viewing of the presentation. The infrastructure executive explained that Google’s challenge goes beyond simply outspending competitors. “We’re going to spend a lot,” he said, but noted the real objective is building infrastructure that is “more reliable, more performant and more scalable than what’s available anywhere else.”

Google tells employees it must double capacity every 6 months to meet AI demand Read More »

tech-giants-pour-billions-into-anthropic-as-circular-ai-investments-roll-on

Tech giants pour billions into Anthropic as circular AI investments roll on

On Tuesday, Microsoft and Nvidia announced plans to invest in Anthropic under a new partnership that includes a $30 billion commitment by the Claude maker to use Microsoft’s cloud services. Nvidia will commit up to $10 billion to Anthropic and Microsoft up to $5 billion, with both companies investing in Anthropic’s next funding round.

The deal brings together two companies that have backed OpenAI and connects them more closely to one of the ChatGPT maker’s main competitors. Microsoft CEO Satya Nadella said in a video that OpenAI “remains a critical partner,” while adding that the companies will increasingly be customers of each other.

“We will use Anthropic models, they will use our infrastructure, and we’ll go to market together,” Nadella said.

Anthropic, Microsoft, and NVIDIA announce partnerships.

The move follows OpenAI’s recent restructuring that gave the company greater distance from its non-profit origins. OpenAI has since announced a $38 billion deal to buy cloud services from Amazon.com as the company becomes less dependent on Microsoft. OpenAI CEO Sam Altman has said the company plans to spend $1.4 trillion to develop 30 gigawatts of computing resources.

Tech giants pour billions into Anthropic as circular AI investments roll on Read More »

google-ceo:-if-an-ai-bubble-pops,-no-one-is-getting-out-clean

Google CEO: If an AI bubble pops, no one is getting out clean

Market concerns and Google’s position

Alphabet’s recent market performance has been driven by investor confidence in the company’s ability to compete with OpenAI’s ChatGPT, as well as its development of specialized chips for AI that can compete with Nvidia’s. Nvidia recently reached a world-first $5 trillion valuation due to making GPUs that can accelerate the matrix math at the heart of AI computations.

Despite acknowledging that no company would be immune to a potential AI bubble burst, Pichai argued that Google’s unique position gives it an advantage. He told the BBC that the company owns what he called a “full stack” of technologies, from chips to YouTube data to models and frontier science research. This integrated approach, he suggested, would help the company weather any market turbulence better than competitors.

Pichai also told the BBC that people should not “blindly trust” everything AI tools output. The company currently faces repeated accuracy concerns about some of its AI models. Pichai said that while AI tools are helpful “if you want to creatively write something,” people “have to learn to use these tools for what they’re good at and not blindly trust everything they say.”

In the BBC interview, the Google boss also addressed the “immense” energy needs of AI, acknowledging that the intensive energy requirements of expanding AI ventures have caused slippage on Alphabet’s climate targets. However, Pichai insisted that the company still wants to achieve net zero by 2030 through investments in new energy technologies. “The rate at which we were hoping to make progress will be impacted,” Pichai said, warning that constraining an economy based on energy “will have consequences.”

Even with the warnings about a potential AI bubble, Pichai did not miss his chance to promote the technology, albeit with a hint of danger regarding its widespread impact. Pichai described AI as “the most profound technology” humankind has worked on.

“We will have to work through societal disruptions,” he said, adding that the technology would “create new opportunities” and “evolve and transition certain jobs.” He said people who adapt to AI tools “will do better” in their professions, whatever field they work in.

Google CEO: If an AI bubble pops, no one is getting out clean Read More »

google-plans-secret-ai-military-outpost-on-tiny-island-overrun-by-crabs

Google plans secret AI military outpost on tiny island overrun by crabs

Christmas Island Shire President Steve Pereira told Reuters that the council is examining community impacts before approving construction. “There is support for it, providing this data center actually does put back into the community with infrastructure, employment, and adding economic value to the island,” Pereira said.

That’s great, but what about the crabs?

Christmas Island’s annual crab migration is a natural phenomenon that Sir David Attenborough reportedly once described as one of his greatest TV moments when he visited the site in 1990.

Every year, millions of crabs emerge from the forest and swarm across roads, streams, rocks, and beaches to reach the ocean, where each female can produce up to 100,000 eggs. The tiny baby crabs that survive take about nine days to march back inland to the safety of the plateau.

While Google is seeking environmental approvals for its subsea cables, the timing could prove delicate for Christmas Island’s most famous residents. According to Parks Australia, the island’s annual red crab migration has already begun for 2025, with a major spawning event expected in just a few weeks, around November 15–16.

During peak migration times, sections of roads close at short notice as crabs move between forest and sea, and the island has built special crab bridges over roads to protect the migrating masses.

Parks Australia notes that while the migration happens annually, few baby crabs survive the journey from sea to forest most years, as they’re often eaten by fish, manta rays, and whale sharks. The successful migrations that occur only once or twice per decade (when large numbers of babies actually survive) are critical for maintaining the island’s red crab population.

How Google’s facility might coexist with 100 million marching crustaceans remains to be seen. But judging by the size of the event, it seems clear that it’s the crab’s world, and we’re just living in it.

Google plans secret AI military outpost on tiny island overrun by crabs Read More »

openai-signs-massive-ai-compute-deal-with-amazon

OpenAI signs massive AI compute deal with Amazon

On Monday, OpenAI announced it has signed a seven-year, $38 billion deal to buy cloud services from Amazon Web Services to power products like ChatGPT and Sora. It’s the company’s first big computing deal after a fundamental restructuring last week that gave OpenAI more operational and financial freedom from Microsoft.

The agreement gives OpenAI access to hundreds of thousands of Nvidia graphics processors to train and run its AI models. “Scaling frontier AI requires massive, reliable compute,” OpenAI CEO Sam Altman said in a statement. “Our partnership with AWS strengthens the broad compute ecosystem that will power this next era and bring advanced AI to everyone.”

OpenAI will reportedly use Amazon Web Services immediately, with all planned capacity set to come online by the end of 2026 and room to expand further in 2027 and beyond. Amazon plans to roll out hundreds of thousands of chips, including Nvidia’s GB200 and GB300 AI accelerators, in data clusters built to power ChatGPT’s responses, generate AI videos, and train OpenAI’s next wave of models.

Wall Street apparently liked the deal, because Amazon shares hit an all-time high on Monday morning. Meanwhile, shares for long-time OpenAI investor and partner Microsoft briefly dipped following the announcement.

Massive AI compute requirements

It’s no secret that running generative AI models for hundreds of millions of people currently requires a lot of computing power. Amid chip shortages over the past few years, finding sources of that computing muscle has been tricky. OpenAI is reportedly working on its own GPU hardware to help alleviate the strain.

But for now, the company needs to find new sources of Nvidia chips, which accelerate AI computations. Altman has previously said that the company plans to spend $1.4 trillion to develop 30 gigawatts of computing resources, an amount that is enough to roughly power 25 million US homes, according to Reuters.

OpenAI signs massive AI compute deal with Amazon Read More »

chatgpt-maker-reportedly-eyes-$1-trillion-ipo-despite-major-quarterly-losses

ChatGPT maker reportedly eyes $1 trillion IPO despite major quarterly losses

An OpenAI spokesperson told Reuters that “an IPO is not our focus, so we could not possibly have set a date,” adding that the company is “building a durable business and advancing our mission so everyone benefits from AGI.”

Revenue grows as losses mount

The IPO preparations follow a restructuring of OpenAI completed on October 28 that reduced the company’s reliance on Microsoft, which has committed to investments of $13 billion and now owns about 27 percent of the company. OpenAI was most recently valued around $500 billion in private markets.

OpenAI started as a nonprofit in 2015, then added a for-profit arm a few years later with nonprofit oversight. Under the new structure, OpenAI is still controlled by a nonprofit, now called the OpenAI Foundation, but it gives the nonprofit a 26 percent stake in OpenAI Group and a warrant for additional shares if the company hits certain milestones.

A successful OpenAI IPO could represent a substantial gain for investors, including Microsoft, SoftBank, Thrive Capital, and Abu Dhabi’s MGX. But even so, OpenAI faces an uphill financial battle ahead. The ChatGPT maker expects to reach about $20 billion in revenue by year-end, according to people familiar with the company’s finances who spoke with Reuters, but its quarterly losses are significant.

Microsoft’s earnings filing on Wednesday offered a glimpse at the scale of those losses. The company reported that its share of OpenAI losses reduced Microsoft’s net income by $3.1 billion in the quarter that ended September 30. Since Microsoft owns 27 percent of OpenAI under the new structure, that suggests OpenAI lost about $11.5 billion during the quarter, as noted by The Register. That quarterly loss figure exceeds half of OpenAI’s expected revenue for the entire year.

ChatGPT maker reportedly eyes $1 trillion IPO despite major quarterly losses Read More »

nvidia-hits-record-$5-trillion-mark-as-ceo-dismisses-ai-bubble-concerns

Nvidia hits record $5 trillion mark as CEO dismisses AI bubble concerns

Partnerships and government contracts fuel optimism

At the GTC conference on Tuesday, Nvidia’s CEO went out of his way to repeatedly praise Donald Trump and his policies for accelerating domestic tech investment while warning that excluding China from Nvidia’s ecosystem could limit US access to half the world’s AI developers. The overall event stressed Nvidia’s role as an American company, with Huang even nodding to Trump’s signature slogan in his sign-off by thanking the audience for “making America great again.”

Trump’s cooperation is paramount for Nvidia because US export controls have effectively blocked Nvidia’s AI chips from China, costing the company billions of dollars in revenue. Bob O’Donnell of TECHnalysis Research told Reuters that “Nvidia clearly brought their story to DC to both educate and gain favor with the US government. They managed to hit most of the hottest and most influential topics in tech.”

Beyond the political messaging, Huang announced a series of partnerships and deals that apparently helped ease investor concerns about Nvidia’s future. The company announced collaborations with Uber Technologies, Palantir Technologies, and CrowdStrike Holdings, among others. Nvidia also revealed a $1 billion investment in Nokia to support the telecommunications company’s shift toward AI and 6G networking.

The agreement with Uber will power a fleet of 100,000 self-driving vehicles with Nvidia technology, with automaker Stellantis among the first to deliver the robotaxis. Palantir will pair Nvidia’s technology with its Ontology platform to use AI techniques for logistics insights, with Lowe’s as an early adopter. Eli Lilly plans to build what Nvidia described as the most powerful supercomputer owned and operated by a pharmaceutical company, relying on more than 1,000 Blackwell AI accelerator chips.

The $5 trillion valuation surpasses the total cryptocurrency market value and equals roughly half the size of the pan European Stoxx 600 equities index, Reuters notes. At current prices, Huang’s stake in Nvidia would be worth about $179.2 billion, making him the world’s eighth-richest person.

Nvidia hits record $5 trillion mark as CEO dismisses AI bubble concerns Read More »