starliner

after-months-of-mulling,-nasa-will-decide-on-starliner-return-this-weekend

After months of mulling, NASA will decide on Starliner return this weekend

Standby for news —

“The agency flight readiness review is where any formal dissents are presented and reconciled.”

A high-resolution commercial Earth-imaging satellite owned by Maxar captured this view of the International Space Station on June 7 with Boeing's Starliner capsule docked at the lab's forward port (lower right).

Enlarge / A high-resolution commercial Earth-imaging satellite owned by Maxar captured this view of the International Space Station on June 7 with Boeing’s Starliner capsule docked at the lab’s forward port (lower right).

Senior NASA leaders, including the agency’s administrator, Bill Nelson, will meet Saturday in Houston to decide whether Boeing’s Starliner spacecraft is safe enough to ferry astronauts Butch Wilmore and Suni Williams back to Earth from the International Space Station.

The Flight Readiness Review (FRR) is expected to conclude with NASA’s most consequential safety decision in nearly a generation. One option is to clear the Starliner spacecraft to undock from the space station in early September with Wilmore and Williams onboard, as their flight plan initially laid out, or to bring the capsule home without its crew.

As of Thursday, the two veteran astronauts have been on the space station for 77 days, nearly 10 times longer than their planned stay of eight days. Wilmore and Williams were the first people to launch and dock at the space station aboard a Starliner spacecraft, but multiple thrusters failed and the capsule leaked helium from its propulsion system as it approached the orbiting complex on June 6.

That led to months of testing—in space and on the ground—data reviews, and modeling for engineers to try to understand the root cause of the thruster problems. Engineers believe the thrusters overheated, causing Teflon seals to bulge and block the flow of propellant to the small control jets, resulting in losing thrust. The condition of the thrusters improved once Starliner docked at the station when they weren’t repeatedly firing, as they need to do when the spacecraft is flying alone.

However, engineers and managers have not yet reached a consensus about whether the same problem could recur, or get worse, during the capsule’s journey back to Earth. In a worst-case scenario, if too many thrusters fail, the spacecraft would be unable to point in the proper direction for a critical braking burn to guide the capsule back into the atmosphere toward landing.

The suspect thrusters are located on Starliner’s service module, which will perform the deorbit burn and then separate from the astronaut-carrying crew module before reentry. A separate set of small engines will fine-tune Starliner’s trajectory during descent.

If NASA managers decide it’s not worth the risk, Wilmore and Williams would extend their stay on the space station until at least February of next year, when they would return to Earth inside a Dragon spacecraft provided by SpaceX, Boeing’s rival in NASA’s commercial crew program. This would eliminate the threat that thruster problems on the Starliner spacecraft might pose to the crew’s safety during the trip to Earth, but it comes with myriad side effects.

These effects include disrupting crew activities on the space station by bumping two astronauts off the next SpaceX flight, exposing Wilmore and Williams to additional radiation during their time in space, and dealing a debilitating blow to Boeing’s Starliner program.

If Boeing’s capsule cannot return to Earth with its two astronauts, NASA may not certify Starliner for operational crew missions without an additional test flight. In that case, Boeing probably wouldn’t be able to complete all six of its planned operational crew missions under a $4.2 billion NASA contract before the International Space Station is due for retirement in 2030.

FRR-eedom to speak

The Flight Readiness Review at NASA’s Johnson Space Center in Houston will begin Saturday morning. Ken Bowersox, a former astronaut and head of NASA’s Space Operations Mission Directorate, will chair the meeting. NASA Administrator Bill Nelson will participate, too. If there’s no unanimous agreement around the table at the FRR, a final decision on what to do could be elevated above Bowersox to NASA’s associate administrator, Jim Free or to Nelson.

“The agency flight readiness review is where any formal dissents are presented and reconciled,” NASA said in a statement Thursday. “Other agency leaders who routinely participate in launch and return readiness reviews for crewed missions include NASA’s administrator, deputy administrator, associate administrator, various agency center directors, the Flight Operations Directorate, and agency technical authorities.”

NASA has scheduled a press conference for no earlier than 1 pm ET (17: 00 UTC) Saturday to announce the agency’s decision and next steps, the agency said.

Lower-level managers will meet Friday in a so-called Program Control Board to discuss their findings and views before the FRR. At a previous Program Control Board meeting, managers disagreed on whether the agency was ready to sign off that the Starliner spacecraft was safe enough to return its astronauts to Earth.

There’s one new piece of information that engineers will brief to the Program Control Board on Friday:

“Engineering teams have been working to evaluate a new model that represents the thruster mechanics and is designed to more accurately predict performance during the return phase of flight,” NASA said. “This data could help teams better understand system redundancy from undock to service module separation. Ongoing efforts to complete the new modeling, characterize spacecraft performance data, refine integrated risk assessments, and determine community recommendations will fold into the agency-level review.”

After months of mulling, NASA will decide on Starliner return this weekend Read More »

nasa-is-about-to-make-its-most-important-safety-decision-in-nearly-a-generation

NASA is about to make its most important safety decision in nearly a generation

Boeing's Starliner spacecraft, seen docked at the International Space Station through the window of a SpaceX Dragon spacecraft.

Enlarge / Boeing’s Starliner spacecraft, seen docked at the International Space Station through the window of a SpaceX Dragon spacecraft.

As soon as this week, NASA officials will make perhaps the agency’s most consequential safety decision in human spaceflight in 21 years.

NASA astronauts Butch Wilmore and Suni Williams are nearly 10 weeks into a test flight that was originally set to last a little more than one week. The two retired US Navy test pilots were the first people to fly into orbit on Boeing’s Starliner spacecraft when it launched on June 5. Now, NASA officials aren’t sure Starliner is safe enough to bring the astronauts home.

Three of the managers at the center of the pending decision, Ken Bowersox and Steve Stich from NASA and Boeing’s LeRoy Cain, either had key roles in the ill-fated final flight of Space Shuttle Columbia in 2003 or felt the consequences of the accident.

At that time, officials misjudged the risk. Seven astronauts died, and the Space Shuttle Columbia was destroyed as it reentered the atmosphere over Texas. Bowersox, Stich, and Cain weren’t the people making the call on the health of Columbia‘s heat shield in 2003, but they had front-row seats to the consequences.

Bowersox was an astronaut on the International Space Station when NASA lost Columbia. He and his crewmates were waiting to hitch a ride home on the next Space Shuttle mission, which was delayed two-and-a-half years in the wake of the Columbia accident. Instead, Bowersox’s crew came back to Earth later that year on a Russian Soyuz capsule. After retiring from the astronaut corps, Bowersox worked at SpaceX and is now the head of NASA’s spaceflight operations directorate.

Stich and Cain were NASA flight directors in 2003, and they remain well-respected in human spaceflight circles. Stich is now the manager of NASA’s commercial crew program, and Cain is now a Boeing employee and chair of the company’s Starliner mission director. For the ongoing Starliner mission, Bowersox, Stich, and Cain are in the decision-making chain.

All three joined NASA in the late 1980s, soon after the Challenger accident. They have seen NASA attempt to reshape its safety culture after both of NASA’s fatal Space Shuttle tragedies. After Challenger, NASA’s astronaut office had a more central role in safety decisions, and the agency made efforts to listen to dissent from engineers. Still, human flaws are inescapable, and NASA’s culture was unable to alleviate them during Columbia‘s last flight in 2003.

NASA knew launching a Space Shuttle in cold weather reduced the safety margin on its solid rocket boosters, which led to the Challenger accident. And shuttle managers knew foam routinely fell off the external fuel tank. In a near-miss, one of these foam fragments hit a shuttle booster but didn’t damage it, just two flights prior to Columbia‘s STS-107 mission.

“I have wondered if some in management roles today that were here when we lost Challenger and Columbia remember that in both of those tragedies, there were those that were not comfortable proceeding,” Milt Heflin, a retired NASA flight director who spent 47 years at the agency, wrote in an email to Ars. “Today, those memories are still around.”

“I suspect Stich and Cain are paying attention to the right stuff,” Heflin wrote.

The question facing NASA’s leadership today? Should the two astronauts return to Earth from the International Space Station in Boeing’s Starliner spacecraft, with its history of thruster failures and helium leaks, or should they come home on a SpaceX Dragon capsule?

Under normal conditions, the first option is the choice everyone at NASA would like to make. It would be least disruptive to operations at the space station and would potentially maintain a clearer future for Boeing’s Starliner program, which NASA would like to become operational for regular crew rotation flights to the station.

But some people at NASA aren’t convinced this is the right call. Engineers still don’t fully understand why five of the Starliner spacecraft’s thrusters overheated and lost power as the capsule approached the space station for docking in June. Four of these five control jets are now back in action with near-normal performance, but managers would like to be sure the same thrusters—and maybe more—won’t fail again as Starliner departs the station and heads for reentry.

NASA is about to make its most important safety decision in nearly a generation Read More »

nasa-likely-to-significantly-delay-the-launch-of-crew-9-due-to-starliner-issues

NASA likely to significantly delay the launch of Crew 9 due to Starliner issues

Boeing's Starliner spacecraft is lifted to be placed atop an Atlas V rocket for its first crewed launch.

Enlarge / Boeing’s Starliner spacecraft is lifted to be placed atop an Atlas V rocket for its first crewed launch.

United Launch Alliance

NASA is planning to significantly delay the launch of the Crew 9 mission to the International Space Station due to ongoing concerns about the Starliner spacecraft currently attached to the station.

While the space agency has not said anything publicly, sources say NASA should announce the decision this week. Officials are contemplating moving the Crew-9 mission from its current date of August 18 to September 24, a significant slip.

Nominally, this Crew Dragon mission will carry NASA astronauts Zena Cardman, spacecraft commander; Nick Hague, pilot; and Stephanie Wilson, mission specialist; as well as Roscosmos cosmonaut Alexander Gorbunov, for a six-month journey to the space station. However, NASA has been considering alternatives to the crew lineup—possibly launching with two astronauts instead of four—due to ongoing discussions about the viability of Starliner to safely return astronauts Butch Wilmore and Suni Williams to Earth.

As of late last week, NASA still had not decided whether the Starliner vehicle, which is built and operated by Boeing, should be used to fly its two crew members home. During its launch and ascent to the space station two months ago, five small thrusters on the Starliner spacecraft failed. After extensive ground testing of the thrusters, as well as some brief in-space firings, NASA had planned to make a decision last week on whether to return Starliner with crew. However, a Flight Readiness Review planned for last Thursday was delayed after internal disagreements at NASA about the safety of Starliner.

At issue is the performance of the small reaction control system thrusters in proximity to the space station. If the right combination of them fail before Starliner has moved sufficiently far from the station, Starliner could become uncontrollable and collide with the space station. The thrusters are also needed later in the flight back to Earth to set up the critical de-orbit burn and entry in Earth’s atmosphere.

Software struggles

NASA has quietly been studying the possibility of crew returning in a Dragon for more than a month. As NASA and Boeing engineers have yet to identify a root cause of the thruster failure, the possibility of Wilmore and Williams returning on a Dragon spacecraft has increased in the last 10 days. NASA has consistently said that ‘crew safety’ will be its No. 1 priority in deciding how to proceed.

The Crew 9 delay is relevant to the Starliner dilemma for a couple of reasons. One, it gives NASA more time to determine the flight-worthiness of Starliner. However, there is also another surprising reason for the delay—the need to update Starliner’s flight software. Three separate, well-placed sources have confirmed to Ars that the current flight software on board Starliner cannot perform an automated undocking from the space station and entry into Earth’s atmosphere.

At first blush, this seems absurd. After all, Boeing’s Orbital Flight Test 2 mission in May 2022 was a fully automated test of the Starliner vehicle. During this mission, the spacecraft flew up to the space station without crew on board and then returned to Earth six days later. Although the 2022 flight test was completed by a different Starliner vehicle, it clearly demonstrated the ability of the program’s flight software to autonomously dock and return to Earth. Boeing did not respond to a media query about why this capability was removed for the crew flight test.

NASA likely to significantly delay the launch of Crew 9 due to Starliner issues Read More »

nasa-says-it-is-“evaluating-all-options”-for-the-safe-return-of-starliner-crew

NASA says it is “evaluating all options” for the safe return of Starliner crew

Boeing's Starliner spacecraft is seen docked at the International Space Station on June 13.

Enlarge / Boeing’s Starliner spacecraft is seen docked at the International Space Station on June 13.

It has now been eight weeks since Boeing’s Starliner spacecraft launched into orbit on an Atlas V rocket, bound for the International Space Station. At the time NASA officials said the two crew members, Butch Wilmore and Suni Williams, could return to Earth as soon as June 14, just eight days later.

Yes, there had been some problems on Starliner’s ride to the space station that involved helium leaks and failing thrusters. But officials said they were relatively minor and sought to downplay them. “Those are pretty small, really, issues to deal with,” Mark Nappi, vice president and manager of Boeing’s Commercial Crew Program, said during a post-docking news conference. “We’ll figure them out for the next mission. I don’t see these as significant at all.”

But days turned to weeks, and weeks turned to months as NASA and Boeing continued to study the two technical problems. Of these issues, the more pressing concern was the failure of multiple reaction control system thrusters that are essential to steering Starliner during its departure from the space station and setting up a critical engine burn to enter Earth’s atmosphere.

In the last few weeks, ground teams from NASA and Boeing completed testing of a thruster on a test stand at White Sands, New Mexico. Then, last weekend, Boeing and NASA fired the spacecraft’s thrusters in orbit to check their performance while docked at the space station. NASA has said preliminary results from these tests were helpful.

Dragon becomes a real option

One week ago, the last time NASA officials spoke to the media, the agency’s program manager for commercial crew, Steve Stich, would not be drawn into discussing what would happen should NASA conclude that Starliner’s thrusters were not reliable enough for the return journey to Earth.

“Our prime option is to complete the mission,” Stich said one week ago. “There are a lot of good reasons to complete this mission and bring Butch and Suni home on Starliner. Starliner was designed, as a spacecraft, to have the crew in the cockpit.”

For a long time, it seemed almost certain that the astronauts would return to Earth inside Starliner. However, there has been a lot of recent activity at NASA, Boeing, and SpaceX that suggests that Wilmore and Williams could come home aboard a Crew Dragon spacecraft rather than Starliner. Due to the critical importance of this mission, Ars is sharing what we know as of Thursday afternoon.

One informed source said it was greater than a 50-50 chance that the crew would come back on Dragon. Another source said it was significantly more likely than not they would. To be clear, NASA has not made a final decision. This probably will not happen until at least next week. It is likely that Jim Free, NASA’s associate administrator, will make the call.

Asked if it was now more likely than not that Starliner’s crew would return on Dragon, NASA spokesperson Josh Finch told Ars on Thursday evening, ” NASA is evaluating all options for the return of agency astronauts Butch Wilmore and Suni Williams from the International Space Station as safely as possible. No decisions have been made and the agency will continue to provide updates on its planning.”

NASA says it is “evaluating all options” for the safe return of Starliner crew Read More »

boeing’s-starliner-has-cost-at-least-twice-as-much-as-spacex’s-crew-dragon

Boeing’s Starliner has cost at least twice as much as SpaceX’s Crew Dragon

$$$ —

“Risk remains that we may record additional losses in future periods.”

A Starliner spacecraft departs Boeing's spacecraft processing facility before the program's first orbital test flight in 2019.

Enlarge / A Starliner spacecraft departs Boeing’s spacecraft processing facility before the program’s first orbital test flight in 2019.

Boeing announced another financial charge Wednesday for its troubled Starliner commercial crew program, bringing the company’s total losses on Starliner to $1.6 billion.

In its quarterly earnings report, Boeing registered a $125 million loss on the Starliner program, blaming delays on the spacecraft’s still-ongoing Crew Flight Test, the program’s first mission to carry astronauts into orbit. This is not the first time Boeing has reported a financial loss on Starliner. Including the new charge announced Wednesday, Boeing has now suffered an overall loss on the program of nearly $1.6 billion since 2016.

These losses have generally been caused by schedule delays and additional work to solve problems on Starliner. When NASA awarded Boeing a $4.2 billion contract to complete development of the Starliner spacecraft a decade ago, the aerospace contractor projected the capsule would be ready to fly astronauts by the end of 2017.

It turns out the Crew Flight Test didn’t launch until June 5, 2024.

In a separate announcement Wednesday, Boeing named Kelly Ortberg as the company’s CEO, effective August 8. He will replace Dave Calhoun, whose tenure as Boeing’s chief executive was marred by scandals with the 737 MAX passenger airplane. Ortberg was previously CEO of Rockwell Collins, now known as Collins Aerospace, a major supplier of avionics and other parts for the aerospace industry.

Boeing is on the hook

When NASA selected Boeing and SpaceX to develop the Starliner and Crew Dragon spacecraft for astronaut missions, the agency signed fixed-price agreements with each contractor. These fixed-price contracts mean the contractors, not the government, are responsible for paying for cost overruns.

So, with each Starliner delay since 2016, Boeing’s financial statements registered new losses. It will be Boeing’s burden to pay for solutions to problems discovered on Starliner’s ongoing crew test flight. That’s why Boeing warned investors Wednesday that it could lose more money on the Starliner program in the coming months and years.

“Risk remains that we may record additional losses in future periods,” Boeing wrote in an SEC filing.

Taking into account the financial loss revealed Wednesday, NASA and Boeing have committed at least $6.7 billion to the Starliner program since 2010, including expenses for spacecraft development, testing, and the government’s payment for six operational crew flights with Starliner.

It’s instructive to compare these costs with those of SpaceX’s Crew Dragon program, which started flying astronauts in 2020. All of NASA’s contracts with SpaceX for a similar scope of work on the Crew Dragon program totaled more than $3.1 billion, but any expenses paid by SpaceX are unknown because it is a privately held company.

SpaceX has completed all six of its original crew flights for NASA, while Boeing is at least a year away from starting operational service with Starliner. In light of Boeing’s delays, NASA extended SpaceX’s commercial crew contract to cover eight additional round-trip flights to the space station through the end of the 2020s.

Boeing’s leaders blame the structure of fixed-price contracts for the losses on the Starliner program. The aerospace giant has similar fixed-price contracts with the Pentagon to develop new two new Air Force One presidential transport aircraft, Air Force refueling tankers, refueling drones, and trainer airplanes. Boeing has reported losses on those programs, too.

SpaceX, meanwhile, has excelled with fixed-price contracts, which NASA uses on several elements of the Artemis program aiming to land astronauts on the Moon. For example, NASA selected SpaceX and Blue Origin, Jeff Bezos’s space company, for fixed-price contracts to develop human-rated lunar landers. SpaceX also won a fixed-price contract to provide NASA with a vehicle to deorbit the International Space Station at the end of its life.

Decision time

The first crew mission aboard Boeing’s Starliner spacecraft is expected to end sometime in August with the return of NASA astronauts Butch Wilmore and Suni Williams from the International Space Station. A successful conclusion of the test flight would pave the way for Boeing to start launching its backlog of six operational crew missions to the space station.

But it hasn’t been that simple. The Starliner test flight was initially expected to stay at the space station for at least eight days. Before the launch in June, NASA and Boeing officials left open the possibility for a mission extension, but managers didn’t anticipate Starliner to still be docked at the space station more than 50 days later.

Mission managers ordered Starliner to stay at the station through the rest of June and July while engineers investigated problems in the spacecraft’s propulsion system. There are helium leaks in Starliner’s service module, and the craft’s small maneuvering thrusters overheated during the final approach for docking at the space station.

NASA, which oversees Boeing’s commercial crew contract, is getting close to clearing Starliner for return to Earth, perhaps as soon as next week. On Saturday, ground controllers commanded Starliner to test-fire its maneuvering thrusters, and 27 of the 28 jets appeared to function normally despite overheating earlier in the mission. Despite the leaks, the spacecraft also has ample helium to pressurize its propulsion system, NASA officials said.

Before giving final approval for Starliner to undock from the space station and return to Earth, senior NASA leaders will convene a readiness review to go over the results of the investigation into the propulsion issues.

Boeing has some work to do to find a long-term fix for the helium leaks and overheating thrusters on future Starliner missions. NASA officials hoped a flawless Starliner test flight would allow the agency to formally certify the capsule for regular six-month expeditions to the space station by the end of the year, allowing Boeing to launch the first operational Starliner flight, known as Starliner-1, in February 2025.

Last week, NASA announced a six-month delay for the Starliner-1 mission to allow more time to solve the problems the spacecraft experienced on the crew test flight.

Boeing’s Starliner has cost at least twice as much as SpaceX’s Crew Dragon Read More »

nasa-nears-decision-on-what-to-do-with-boeing’s-troubled-starliner-spacecraft

NASA nears decision on what to do with Boeing’s troubled Starliner spacecraft

Boeing's Strainer spacecraft is seen docked at the International Space Station in this picture taken July 3.

Enlarge / Boeing’s Strainer spacecraft is seen docked at the International Space Station in this picture taken July 3.

The astronauts who rode Boeing’s Starliner spacecraft to the International Space Station last month still don’t know when they will return to Earth.

Astronauts Butch Wilmore and Suni Williams have been in space for 51 days, six weeks longer than originally planned, as engineers on the groundwork through problems with Starliner’s propulsion system.

The problems are twofold. The spacecraft’s reaction control thrusters overheated, and some of them shut off as Starliner approached the space station June 6. A separate, although perhaps related, problem involves helium leaks in the craft’s propulsion system.

On Thursday, NASA and Boeing managers said they still plan to bring Wilmore and Williams home on the Starliner spacecraft. In the last few weeks, ground teams completed testing of a thruster on a test stand at White Sands, New Mexico. This weekend, Boeing and NASA plan to fire the spacecraft’s thrusters in orbit to check their performance while docked at the space station.

“I think we’re starting to close in on those final pieces of flight rationale to make sure that we can come home safely, and that’s our primary focus right now,” Stich said.

The problems have led to speculation that NASA might decide to return Wilmore and Williams to Earth in a SpaceX Crew Dragon spacecraft. There’s one Crew Dragon currently docked at the station, and another one is slated to launch with a fresh crew next month. Steve Stich, manager of NASA’s commercial crew program, said the agency has looked at backup plans to bring the Starliner crew home on a SpaceX capsule, but the main focus is still to have the astronauts fly home aboard Starliner.

“Our prime option is to complete the mission,” Stich said. “There are a lot of good reasons to complete this mission and bring Butch and Suni home on Starliner. Starliner was designed, as a spacecraft, to have the crew in the cockpit.”

Starliner launched from Cape Canaveral Space Force Station in Florida on June 5. Wilmore and Williams are the first astronauts to fly into space on Boeing’s commercial crew capsule, and this test flight is intended to pave the way for future operational flights to rotate crews of four to and from the International Space Station.

Once NASA fully certifies Starliner for operational missions, the agency will have two human-rated spaceships for flights to the station. SpaceX’s Crew Dragon has been flying astronauts since 2020.

Tests, tests, and more tests

NASA has extended the duration of the Starliner test flight to conduct tests and analyze data in an effort to gain confidence in the spacecraft’s ability to safely bring its crew home and to better understand the root causes of the overheating thrusters and helium leaks. These problems are inside Starliner’s service module, which is jettisoned to burn up in the atmosphere during reentry, while the reusable crew module, with the astronauts inside, parachutes to an airbag-cushioned landing.

The most important of these tests was a series of test-firings of a Starliner thruster on the ground. This thruster was taken from a set of hardware slated to fly on a future Starlink mission, and engineers put it through a stress test, firing it numerous times to replicate the sequence of pulses it would see in flight. The testing simulated two sequences of flying up to the space station, and five sequences the thruster would execute during undocking and a deorbit burn for return to Earth.

“This thruster has seen quite a bit of pulses, maybe even more than what we would anticipate we would see during a flight, and more aggressive in terms of two uphills and five downhills,” Stich said. “What we did see in the thruster is the same kind of thrust degradation that we’re seeing on orbit. In a number of the thrusters (on Starliner), we’re seeing reduced thrust, which is important.”

Starliner’s flight computer shut off five of the spacecraft’s 28 reaction control system thrusters, produced by Aerojet Rocketdyne, during the rendezvous with the space station last month. Four of the five thrusters were recovered after overheating and losing thrust, but officials have declared one of the thrusters unusable.

The thruster tested on the ground showed similar behavior. Inspections of the thruster at White Sands showed bulging in a Teflon seal in an oxidizer valve, which could restrict the flow of nitrogen tetroxide propellant. The thrusters, each generating about 85 pounds of thrust, consume the nitrogen tetroxide, or NTO, oxidizer and mix it with hydrazine fuel for combustion.

A poppet valve, similar to an inflation valve on a tire, is designed to open and close to allow nitrogen tetroxide to flow into the thruster.

“That poppet has a Teflon seal at the end of it,” Nappi said. “Through the heating and natural vacuum that occurs with the thruster firing, that poppet seal was deformed and actually bulged out a little bit.”

Stich said engineers are evaluating the integrity of the Teflon seal to determine if it could remain intact through the undocking and deorbit burn of the Starliner spacecraft. The thrusters aren’t needed while Starliner is attached to the space station.

“Could that particular seal survive the rest of the flight? That’s the important part,” Stich said.

NASA nears decision on what to do with Boeing’s troubled Starliner spacecraft Read More »

nasa-update-on-starliner-thruster-issues:-this-is-fine

NASA update on Starliner thruster issues: This is fine

Boeing's Starliner spacecraft on final approach to the International Space Station last month.

Enlarge / Boeing’s Starliner spacecraft on final approach to the International Space Station last month.

Before clearing Boeing’s Starliner crew capsule to depart the International Space Station and head for Earth, NASA managers want to ensure the spacecraft’s problematic control thrusters can help guide the ship’s two-person crew home.

The two astronauts who launched June 5 on the Starliner spacecraft’s first crew test flight agree with the managers, although they said Wednesday that they’re comfortable with flying the capsule back to Earth if there’s any emergency that might require evacuation of the space station.

NASA astronauts Butch Wilmore and Suni Williams were supposed to return to Earth weeks ago, but managers are keeping them at the station as engineers continue probing thruster problems and helium leaks that have plagued the mission since its launch.

“This is a tough business that we’re in,” Wilmore, Starliner’s commander, told reporters Wednesday in a news conference from the space station. “Human spaceflight is not easy in any regime, and there have been multiple issues with any spacecraft that’s ever been designed, and that’s the nature of what we do.”

Five of the 28 reaction control system thrusters on Starliner’s service module dropped offline as the spacecraft approached the space station last month. Starliner’s flight software disabled the five control jets when they started overheating and losing thrust. Four of the thrusters were later recovered, although some couldn’t reach their full power levels as Starliner came in for docking.

Wilmore, who took over manual control for part of Starliner’s approach to the space station, said he could sense the spacecraft’s handling qualities diminish as thrusters temporarily failed. “You could tell it was degraded, but still, it was impressive,” he said. Starliner ultimately docked to the station in autopilot mode.

In mid-June, the Starliner astronauts hot-fired the thrusters again, and their thrust levels were closer to normal.

“What we want to know is that the thrusters can perform; if whatever their percentage of thrust is, we can put it into a package that will get us a deorbit burn,” said Williams, a NASA astronaut serving as Starliner’s pilot. “That’s the main purpose that we need [for] the service module: to get us a good deorbit burn so that we can come back.”

These small thrusters aren’t necessary for the deorbit burn itself, which will use a different set of engines to slow Starliner’s velocity enough for it to drop out of orbit and head for landing. But Starliner needs enough of the control jets working to maneuver into the proper orientation for the deorbit firing.

This test flight is the first time astronauts have flown in space on Boeing’s Starliner spacecraft, following years of delays and setbacks. Starliner is NASA’s second human-rated commercial crew capsule, and it’s poised to join SpaceX’s Crew Dragon in a rotation of missions ferrying astronauts to and from the space station through the rest of the decade.

But first, Boeing and NASA need to safely complete the Starliner test flight and resolve the thruster problems and helium leaks plaguing the spacecraft before moving forward with operational crew rotation missions. There’s a Crew Dragon spacecraft currently docked to the station, but Steve Stich, NASA’s commercial crew program manager, told reporters Wednesday that, right now, Wilmore and Williams still plan to come home on Starliner.

“The beautiful thing about the commercial crew program is that we have two vehicles, two different systems, that we could use to return crew,” Stich said. “So we have a little bit more time to go through the data and then make a decision as to whether we need to do anything different. But the prime option today is to return Butch and Suni on Starliner. Right now, we don’t see any reason that wouldn’t be the case.”

Mark Nappi, Boeing’s Starliner program manager, said officials identified more than 30 actions to investigate five “small” helium leaks and the thruster problems on Starliner’s service module. “All these items are scheduled to be completed by the end of next week,” Nappi said.

“It’s a test flight, and the first with crew, and we’re just taking a little extra time to make sure that we understand everything before we commit to deorbit,” Stich said.

NASA update on Starliner thruster issues: This is fine Read More »

nasa-orders-more-tests-on-starliner,-but-says-crew-isn’t-stranded-in-space

NASA orders more tests on Starliner, but says crew isn’t stranded in space

Boeing's Starliner spacecraft is seen docked at the International Space Station on June 13.

Enlarge / Boeing’s Starliner spacecraft is seen docked at the International Space Station on June 13.

NASA and Boeing officials pushed back Friday on headlines that the commercial Starliner crew capsule is stranded at the International Space Station but said they need more time to analyze data before formally clearing the spacecraft for undocking and reentry.

Two NASA astronauts, commander Butch Wilmore and pilot Suni Williams, will spend at least a few more weeks on the space station as engineers on the ground conduct thruster tests to better understand issues with the Starliner propulsion system in orbit. Wilmore and Williams launched June 5 aboard an Atlas V rocket and docked at the station the next day, completing the first segment of Starliner’s first test flight with astronauts.

NASA managers originally planned for the Starliner spacecraft to remain docked at the space station for at least eight days, although they left open the possibility of a mission extension. The test flight is now likely to last at least a month and a half, and perhaps longer, as engineers wrestle with helium leaks and thruster glitches on Starliner’s service module.

Batteries on this Starliner spacecraft were initially only certified for a 45-day mission duration, but NASA officials said they are looking at extending the limit after confirming the batteries are functioning well.

“We have the luxury of time,” said Ken Bowersox, associate administrator for NASA’s space operations mission directorate. “We’re still in the middle of a test mission. We’re still pressing forward.”

Previously, NASA and Boeing officials delayed Starliner’s reentry and landing from mid-June, then from June 26, and now they have bypassed a potential landing opportunity in early July. Last week, NASA said in a statement that the agency’s top leadership will meet to formally review the readiness of Starliner for reentry, something that wasn’t part of the original plan.

“We’re not stuck on ISS”

Steve Stich, manager of NASA’s commercial crew program, said Friday that he wanted to clear up “misunderstandings” that led to headlines claiming the Starliner spacecraft was stuck or stranded at the space station.

“I want to make it very clear that Butch and Suni are not stranded in space,” Stich said. “Our plan is to continue to return them on Starliner and return them home at the right time. We have a little bit more work to do to get there for the final return, but they’re safe on (the) space station.”

With Starliner docked, the space station currently hosts three different crew spacecraft, including SpaceX’s Crew Dragon and Russia’s Soyuz. There are no serious plans under consideration to bring Wilmore and Williams home on a different spacecraft.

“Obviously, we have the luxury of having multiple vehicles, and we work contingency plans for lots of different cases, but right now, we’re really focused on returning Butch and Suni on Starliner,” Stich said.

“We’re not stuck on the ISS,” said Mark Nappi, Boeing’s vice president in charge of the Starliner program. “It’s pretty painful to read the things that are out there. We’ve gotten a really good test flight that’s been accomplished so far, and it’s being viewed rather negatively.”

Stich said NASA officials should have “more frequent interaction” with reporters to fill in gaps of information on the Starliner test flight. NASA’s written updates are not always timely, and often lack details and context.

NASA officials have cleared the Starliner spacecraft for an emergency return to Earth if astronauts need to evacuate the space station for safety or medical reasons. But NASA hasn’t yet approved Starliner for reentry and landing under “nominal” conditions.

“When it is a contingency situation, we’re ready to put the crew on the spacecraft and bring them home as a lifeboat,” Bowersox said. “For the nominal entry, we want to look at the data more before we make the final call to put the crew aboard the vehicle, and it’s a serious enough call that we’ll bring the senior management team together (for approval).”

NASA orders more tests on Starliner, but says crew isn’t stranded in space Read More »

nasa-indefinitely-delays-return-of-starliner-to-review-propulsion-data

NASA indefinitely delays return of Starliner to review propulsion data

You can check out any time you like —

“We are letting the data drive our decision.”

Boeing's Starliner capsule lifts off aboard United Launch Alliance's Atlas V rocket.

Enlarge / Boeing’s Starliner capsule lifts off aboard United Launch Alliance’s Atlas V rocket.

In an update released late Friday evening, NASA said it was “adjusting” the date of the Starliner spacecraft’s return to Earth from June 26 to an unspecified time in July.

The announcement followed two days of long meetings to review the readiness of the spacecraft, developed by Boeing, to fly NASA astronauts Butch Wilmore and Suni Williams to Earth. According to sources, these meetings included high-level participation from senior leaders at the agency, including Associate Administrator Jim Free.

This “Crew Flight Test,” which launched on June 5 atop an Atlas V rocket, was originally due to undock and return to Earth on June 14. However, as engineers from NASA and Boeing studied data from the vehicle’s problematic flight to the International Space Station, they have waved off several return opportunities.

On Friday night they did so again, citing the need to spend more time reviewing data.

“Taking our time”

“We are taking our time and following our standard mission management team process,” said Steve Stich, manager of NASA’s Commercial Crew Program, in the NASA update. “We are letting the data drive our decision making relative to managing the small helium system leaks and thruster performance we observed during rendezvous and docking.”

Just a few days ago, on Tuesday, officials from NASA and Boeing set a return date to Earth for June 26. But that was before a series of meetings on Thursday and Friday during which mission managers were to review findings about two significant issues with the Starliner spacecraft: five separate leaks in the helium system that pressurizes Starliner’s propulsion system and the failure of five of the vehicle’s 28 reaction-control system thrusters as Starliner approached the station.

The NASA update did not provide any information about deliberations during these meetings, but it is clear that the agency’s leaders were not able to get comfortable with all contingencies that Wilmore and Williams might encounter during a return flight to Earth, including safely undocking from the space station, maneuvering away, performing a de-orbit burn, separating the crew capsule from the service module, and then flying through the planet’s atmosphere before landing under parachutes in a New Mexico desert.

Spacecraft has a 45-day limit

Now, the NASA and Boeing engineering teams will take some more time. Sources said NASA considered June 30 as a possible return date, but the agency is also keen to perform a pair of spacewalks outside the station. These spacewalks, presently planned for June 24 and July 2, will now go ahead. Starliner will make its return to Earth sometime afterward, likely no earlier than the July 4 holiday.

“We are strategically using the extra time to clear a path for some critical station activities while completing readiness for Butch and Suni’s return on Starliner and gaining valuable insight into the system upgrades we will want to make for post-certification missions,” Stich said.

In some sense, it is helpful for NASA and Boeing to have Starliner docked to the space station for a longer period of time. They can gather more data about the performance of the vehicle on long-duration missions—eventually Starliner will fly operational missions that will enable astronauts to stay on orbit for six months at a time.

However, this vehicle is only rated for a 45-day stay at the space station, and that clock began ticking on June 6. Moreover, it is not optimal that NASA feels the need to continue delaying the vehicle to get comfortable with its performance on the return journey to Earth. During a pair of news conferences since Starliner docked to the station, officials have downplayed the overall seriousness of these issues—repeatedly saying Starliner is cleared to come home “in case of an emergency.” But they have yet to fully explain why they are not yet comfortable with releasing Starliner to fly back to Earth under normal circumstances.

NASA indefinitely delays return of Starliner to review propulsion data Read More »

nasa-delays-starliner-return-a-few-more-days-to-study-data

NASA delays Starliner return a few more days to study data

Coming to a White Sands near you —

“I would not characterize it as frustration. I would characterize it as learning.”

Boeing's Starliner spacecraft approaches the International Space Station on Thursday.

Enlarge / Boeing’s Starliner spacecraft approaches the International Space Station on Thursday.

NASA TV

NASA and Boeing will take an additional four days to review all available data about the performance of the Starliner spacecraft before clearing the vehicle to return to Earth, officials said Tuesday.

Based on the new schedule, which remains pending ahead of final review meetings later this week, Starliner would undock at 10: 10 pm ET on Tuesday, June 25, from the International Space Station (02: 10 UTC on June 26). This would set up a landing at 4: 51 ET on June 26 (08: 51 UTC) at the White Sands Test Facility in New Mexico.

During a news conference on Tuesday, the program manager for NASA’s Commercial Crew Program, Steve Stich, said the four-day delay in the spacecraft’s return would “give our team a little bit more time to look at the data, do some analysis, and make sure we’re really ready to come home.”

Working two major issues

NASA is still trying to clear two major hardware issues that occurred during the spacecraft’s flight to the International Space Station nearly two weeks ago: five separate leaks in the helium system that pressurizes Starliner’s propulsion system and the failure of five of the vehicle’s 28 reaction-control system thrusters as Starliner approached the station.

Since then, engineers from NASA and Boeing have been studying these two problems. They took an important step toward better understanding both on Saturday, June 15, when Starliner was powered up for a thruster test.

During this test, engineers found that helium leak rates inside Starliner’s Service Module were lower than the last time the vehicle was powered on. Although the precise cause of the leak is not fully understood—it is possibly due to a seal in the flange between the thruster and manifold—the lower leak rate gave engineers confidence they could manage the loss of helium. Even before this decrease in the leak, Starliner had large reserves of helium, officials said.

The test of the reaction control system thrusters also went well, Stich said. Four of the five thrusters operated normally, and they are expected to be available for the undocking of Starliner later this month. These thrusters, which are fairly low-powered, are primarily used for small maneuvers. They will also be needed for the de-orbit burn that will set Starliner on its return path to Earth. Starliner can perform this burn without a full complement of thrusters, but Stich did not say how many could be safely lost.

First operational mission when?

NASA is being cautious about Starliner because this is the first crewed flight of the vehicle, which NASA funded to provide transportation services to the International Space Station. The goal is to provide regular flights of four astronauts to the space station for six-month rotations. This initial test flight, carrying NASA astronauts Butch Wilmore and Suni Williams, is intended to provide data to certify the vehicle for operational missions.

The first opportunity for Boeing to fly one of these operational missions is early 2025, likely in February or March. NASA will soon need to decide whether to give this slot to Starliner or SpaceX’s Dragon vehicle for the Crew-10 mission—NASA’s 10th operational flight on Dragon.

Given the technical problems that cropped up on the current test flight, it seems likely that NASA will push Starliner’s operational mission to the next available slot, likely in August or September of 2025. However, Stich said Tuesday no decision has been made and that NASA needs to study the results of this test flight.

“We haven’t looked too much ahead to Starliner-1,” he said. “We’ve got to go address the helium leaks. We’re not gonna go fly another mission like this with the helium leaks, and we’ve got to go understand what the rendezvous profile is doing that’s causing the thrusters to have low thrust, and then be deselected by the flight control team.”

Although Starliner’s first crewed flight has challenged NASA and Boeing, Stich said the process has not been frustrating. “I would not characterize it as frustration,” he said Tuesday. “I would characterize it as learning.”

NASA delays Starliner return a few more days to study data Read More »

countdown-begins-for-third-try-launching-boeing’s-starliner-crew-capsule

Countdown begins for third try launching Boeing’s Starliner crew capsule

Going today? —

Astronauts Butch Wilmore and Suni Williams have been in prelaunch quarantine for six weeks.

Astronauts Suni Williams and Butch Wilmore, wearing their Boeing spacesuits, leave NASA's crew quarters during a launch attempt May 6.

Enlarge / Astronauts Suni Williams and Butch Wilmore, wearing their Boeing spacesuits, leave NASA’s crew quarters during a launch attempt May 6.

Fresh off repairs at the launch pad in Florida, United Launch Alliance engineers restarted the countdown overnight for the third attempt to send an Atlas V rocket and Boeing’s Starliner spacecraft on a test flight to the International Space Station.

NASA astronauts Butch Wilmore and Suni Williams were expected to awake early Wednesday, put on their blue pressure suits, and head to the launch pad at Cape Canaveral Space Force Station to board the Starliner capsule on top of the 172-foot-tall Atlas V rocket.

Once more through the door

Wilmore and Williams have done this twice before in hopes of launching into space on the first crew flight of Boeing’s Starliner spacecraft. A faulty valve on the Atlas V rocket prevented liftoff May 6, then engineers discovered a helium leak on the Starliner capsule itself. After several weeks of troubleshooting, NASA and Boeing officials decided to proceed with another launch attempt Saturday.

Everything seemed to be coming together for Boeing’s long-delayed crew test flight until a computer problem triggered an automatic hold in the countdown less than four minutes before liftoff. Technicians from United Launch Alliance (ULA), the Atlas V rocket’s builder and operator, traced the problem to a failed power distribution source connected to a ground computer responsible for controlling the final phase of the countdown.

The instantaneous launch opportunity Wednesday is set for 10: 52 am EDT (14: 52 UTC), when the launch site at Cape Canaveral passes underneath the space station’s orbital plane. Forecasters predict a 90 percent chance of good weather for launch. You can watch NASA’s live coverage in the video embedded below.

The countdown began late Tuesday night with the power-up of the Atlas V rocket, which was set to be filled with cryogenic liquid hydrogen and liquid oxygen propellants around 5 am EDT (09: 00 UTC). Kerosene fuel was loaded into the Atlas V’s first-stage booster prior to the mission’s first launch attempt in early May.

The two Starliner astronauts departed crew quarters at NASA’s Kennedy Space Center for the 20-minute drive to the launch pad, where they arrived shortly before 8 am EDT (12: 00 UTC) to climb into their seats inside the Starliner capsule. After pressure checks of the astronauts’ suits and Starliner’s crew cabin, ground teams will evacuate the pad about an hour before launch.

Assuming all systems are “go” for launch, the Atlas V will ignite its Russian-made RD-180 main engine and two solid-fueled boosters to vault away from Cape Canaveral and head northeast over the Atlantic Ocean. Wilmore and Williams will be not only the first people to fly in space on Boeing’s Starliner, but also the first astronauts to ride on an Atlas V rocket, which has flown 99 times before with satellites for the US military, NASA, and commercial customers.

The rocket’s Centaur upper stage will deploy Starliner into space around 15 minutes after liftoff. A critical burn by Starliner’s engines will happen around 31 minutes into the flight to finish the task of placing it into low-Earth orbit, setting it up for an automated docking at the International Space Station at 12: 15 pm EDT (16: 15 UTC) Thursday.

The two-person crew will stay on the station for at least a week, although a mission extension is likely if the mission is going well. Officials may decide to extend the mission to complete more tests or to wait for optimal weather conditions at Starliner’s primary and backup landing sites in New Mexico and Arizona. When weather conditions look favorable, Starliner will undock from the space station and head for landing under parachutes.

The crew test flight is a prerequisite to Boeing’s crew capsule becoming operational for NASA, which awarded multibillion-dollar commercial crew contracts to Boeing and SpaceX in 2014. SpaceX’s Crew Dragon started flying astronauts in 2020, while Boeing’s project has been stricken by years of delays.

Wilmore and Williams, both former US Navy test pilots, will take over manual control of Starliner at several points during the test flight. They will evaluate the spacecraft’s flying characteristics and accommodations for future flights, which will carry four astronauts at a time rather than two.

“The expectation from the media should not be perfection,” Wilmore told Ars earlier this year. “This is a test flight. Flying and operating in space is hard. It’s really hard, and we’re going to find some stuff. That’s expected. It’s the first flight where we are integrating the full capabilities of this spacecraft.”

Countdown begins for third try launching Boeing’s Starliner crew capsule Read More »

boeing’s-starliner-test-flight-scrubbed-again-after-hold-in-final-countdown

Boeing’s Starliner test flight scrubbed again after hold in final countdown

Hold Hold Hold —

The ground launch sequencer computer called a hold at T-minus 3 minutes, 50 seconds.

NASA commander Butch Wilmore exits the Starliner spacecraft Saturday following the scrubbed launch attempt.

Enlarge / NASA commander Butch Wilmore exits the Starliner spacecraft Saturday following the scrubbed launch attempt.

A computer controlling the Atlas V rocket’s countdown triggered an automatic hold less than four minutes prior to liftoff of Boeing’s commercial Starliner spacecraft Saturday, keeping the crew test flight on the ground at least a few more days.

NASA astronauts Butch Wilmore and Suni Williams were already aboard the spacecraft when the countdown stopped due to a problem with a ground computer. “Hold. Hold. Hold,” a member of Atlas V launch team called out on an audio feed.

With the hold, the mission missed an instantaneous launch opportunity at 12: 25 pm EDT (16: 25 UTC), and later Saturday, NASA announced teams will forego a launch opportunity Sunday. The next chance to send Starliner into orbit will be 10: 52 am EDT (14: 52 UTC) Wednesday. The mission has one launch opportunity every one-to-two days, when the International Space Station’s orbital track moves back into proper alignment with the Atlas V rocket’s launch pad in Florida.

Wilmore and Williams will take the Starliner spacecraft on its first crew flight into low-Earth orbit. The capsule will dock with the International Space Station around a day after launch, spend at least a week there, then return to a parachute-assisted landing at one of two landing zones in New Mexico or Arizona. Once operational, Boeing’s Starliner will join SpaceX’s Crew Dragon capsule to give NASA two independent human-rated spacecraft for transporting astronauts to and from the space station.

It’s been a long road to get here with the Starliner spacecraft, and there’s more work to do before the capsule’s long-delayed first flight with astronauts.

Technicians from United Launch Alliance, builder of the Atlas V rocket, will begin troubleshooting the computer glitch at the launch pad Saturday evening, after draining propellant from the launch vehicle. Early indications suggest that a card in one of three computers governing the final minutes of the Atlas V’s countdown didn’t boot up as quickly as anticipated.

“You can imagine a large rack that is a big computer where the functions of the computer as a controller are broken up separately into individual cards or printed wire circuit boards with their logic devices,” said Tory Bruno, ULA’s president and CEO. “They’re all standalone, but together it’s an integrated controller.”

The computers are located at the launch pad inside a shelter near the base of the Atlas V rocket at Cape Canaveral Space Force Station. All three computers must be fully functioning in the final phase of the countdown to ensure triple redundancy. At the moment of liftoff, these computers control things like retracting umbilical lines and releasing bolts holding the rocket to its mobile launch platform.

Two of the computers activated as the final countdown sequence began at T-minus 4 minutes. A single card in the third computer took about six more seconds to come online, although it did boot up eventually, Bruno said.

“Two came up normally and the third one came up, but it was slow to come up, and that tripped a red line,” he said.

A disappointment

Wilmore and Williams, both veteran astronauts and former US Navy test pilots, exited the Starliner spacecraft with the help of Boeing’s ground team. They returned to NASA crew quarters at the nearby Kennedy Space Center to wait for the next launch attempt.

The schedule for the next try will depend on what ULA workers find when they access the computers at the launch pad. Officials initially said they could start another launch countdown early Sunday if they found a simple solution to the computer problem, such as swapping out a faulty card. The computers are networked together, but the architecture is designed with replaceable cards, each responsible for different functions during the countdown, to allow for a quick fix without having to replace the entire unit, Bruno said.

United Launch Alliance's Atlas V rocket and Boeing's Starliner spacecraft at Cape Canaveral Space Force Station, Florida.

Enlarge / United Launch Alliance’s Atlas V rocket and Boeing’s Starliner spacecraft at Cape Canaveral Space Force Station, Florida.

Later Saturday, NASA announced the launch won’t happen Sunday, giving teams additional time to assess the computer issue. The next launch opportunities are Wednesday and Thursday.

Bruno said ULA’s engineers suspect a hardware problem or a network communication glitch caused the computer issue during Saturday’s countdown. That is what ULA’s troubleshooting team will try to determine overnight. NASA said officials will share another update Sunday.

If it doesn’t get off the ground by Thursday, the Starliner test flight could face a longer delay to allow time for ULA to change out limited-life batteries on the Atlas V rocket. Bruno said the battery swap would take about 10 days.

Saturday’s aborted countdown was the latest in a string of delays for Boeing’s Starliner program. The spacecraft’s first crew test flight is running seven years behind the schedule Boeing announced when NASA awarded the company a $4.2 billion contract for the crew capsule in 2014. Put another way, Boeing has arrived at this moment nine years after the company originally said the spacecraft could be operational, when the program was first announced in 2010.

“Of course, this is emotionally disappointing,” said Mike Fincke, a NASA astronaut and a backup to Wilmore and Williams on the crew test flight. “I know Butch and Suni didn’t sound disappointed when we heard them on the loops, and it’s because it comes back to professionalism.”

NASA and Boeing were on the cusp of launching the Starliner test flight May 6, but officials called off the launch attempt due to a valve problem on the Atlas V rocket. Engineers later discovered a helium leak on the Starliner spacecraft’s service module, but managers agreed to proceed with the launch Saturday if the leak did not worsen during the countdown.

A check of the helium system Saturday morning showed the leak rate had decreased from a prior measurement, and it was no longer a constraint to launch. Instead, a different problem emerged to keep Starliner on Earth.

“Everybody is a little disappointed, but you kind of roll your sleeves up and get right back to work,” said Steve Stich, manager of NASA’s commercial crew program.

Boeing’s Starliner test flight scrubbed again after hold in final countdown Read More »