simulated reasoning

microsoft-drops-ai-sales-targets-in-half-after-salespeople-miss-their-quotas

Microsoft drops AI sales targets in half after salespeople miss their quotas

Microsoft has lowered sales growth targets for its AI agent products after many salespeople missed their quotas in the fiscal year ending in June, according to a report Wednesday from The Information. The adjustment is reportedly unusual for Microsoft, and it comes after the company missed a number of ambitious sales goals for its AI offerings.

AI agents are specialized implementations of AI language models designed to perform multistep tasks autonomously rather than simply responding to single prompts. So-called “agentic” features have been central to Microsoft’s 2025 sales pitch: At its Build conference in May, the company declared that it has entered “the era of AI agents.”

The company has promised customers that agents could automate complex tasks, such as generating dashboards from sales data or writing customer reports. At its Ignite conference in November, Microsoft announced new features like Word, Excel, and PowerPoint agents in Microsoft 365 Copilot, along with tools for building and deploying agents through Azure AI Foundry and Copilot Studio. But as the year draws to a close, that promise has proven harder to deliver than the company expected.

According to The Information, one US Azure sales unit set quotas for salespeople to increase customer spending on a product called Foundry, which helps customers develop AI applications, by 50 percent. Less than a fifth of salespeople in that unit met their Foundry sales growth targets. In July, Microsoft lowered those targets to roughly 25 percent growth for the current fiscal year. In another US Azure unit, most salespeople failed to meet an earlier quota to double Foundry sales, and Microsoft cut their quotas to 50 percent for the current fiscal year.

Microsoft drops AI sales targets in half after salespeople miss their quotas Read More »

openai-ceo-declares-“code-red”-as-gemini-gains-200-million-users-in-3-months

OpenAI CEO declares “code red” as Gemini gains 200 million users in 3 months

In addition to buzz about Gemini on social media, Google is quickly catching up to ChatGPT in user numbers. ChatGPT has more than 800 million weekly users, according to OpenAI, while Google’s Gemini app has grown from 450 million monthly active users in July to 650 million in October, according to Business Insider.

Financial stakes run high

Not everyone views OpenAI’s “code red” as a genuine alarm. Reuters columnist Robert Cyran wrote on Tuesday that OpenAI’s announcement added “to the impression that OpenAI is trying to do too much at once with technology that still requires a great deal of development and funding.” On the same day Altman’s memo circulated, OpenAI announced an ownership stake in a Thrive Capital venture and a collaboration with Accenture. “The only thing bigger than the company’s attention deficit is its appetite for capital,” Cyran wrote.

In fact, OpenAI faces an unusual competitive disadvantage: Unlike Google, which subsidizes its AI ventures through search advertising revenue, OpenAI does not turn a profit and relies on fundraising to survive. According to The Information, the company, now valued at around $500 billion, has committed more than $1 trillion in financial obligations to cloud computing providers and chipmakers that supply the computing power needed to train and run its AI models.

But the tech industry never stands still, and things can change quickly. Altman’s memo also reportedly stated that OpenAI plans to release a new simulated reasoning model next week that may beat Gemini 3 in internal evaluations. In AI, the back-and-forth cycle of one-upmanship is expected to continue as long as the dollars keep flowing.

OpenAI CEO declares “code red” as Gemini gains 200 million users in 3 months Read More »

openai-walks-a-tricky-tightrope-with-gpt-5.1’s-eight-new-personalities

OpenAI walks a tricky tightrope with GPT-5.1’s eight new personalities

On Wednesday, OpenAI released GPT-5.1 Instant and GPT-5.1 Thinking, two updated versions of its flagship AI models now available in ChatGPT. The company is wrapping the models in the language of anthropomorphism, claiming that they’re warmer, more conversational, and better at following instructions.

The release follows complaints earlier this year that its previous models were excessively cheerful and sycophantic, along with an opposing controversy among users over how OpenAI modified the default GPT-5 output style after several suicide lawsuits.

The company now faces intense scrutiny from lawyers and regulators that could threaten its future operations. In that kind of environment, it’s difficult to just release a new AI model, throw out a few stats, and move on like the company could even a year ago. But here are the basics: The new GPT-5.1 Instant model will serve as ChatGPT’s faster default option for most tasks, while GPT-5.1 Thinking is a simulated reasoning model that attempts to handle more complex problem-solving tasks.

OpenAI claims that both models perform better on technical benchmarks such as math and coding evaluations (including AIME 2025 and Codeforces) than GPT-5, which was released in August.

Improved benchmarks may win over some users, but the biggest change with GPT-5.1 is in its presentation. OpenAI says it heard from users that they wanted AI models to simulate different communication styles depending on the task, so the company is offering eight preset options, including Professional, Friendly, Candid, Quirky, Efficient, Cynical, and Nerdy, alongside a Default setting.

These presets alter the instructions fed into each prompt to simulate different personality styles, but the underlying model capabilities remain the same across all settings.

An illustration showing GPT-5.1's eight personality styles in ChatGPT.

An illustration showing GPT-5.1’s eight personality styles in ChatGPT. Credit: OpenAI

In addition, the company trained GPT-5.1 Instant to use “adaptive reasoning,” meaning that the model decides when to spend more computational time processing a prompt before generating output.

The company plans to roll out the models gradually over the next few days, starting with paid subscribers before expanding to free users. OpenAI plans to bring both GPT-5.1 Instant and GPT-5.1 Thinking to its API later this week. GPT-5.1 Instant will appear as gpt-5.1-chat-latest, and GPT-5.1 Thinking will be released as GPT-5.1 in the API, both with adaptive reasoning enabled. The older GPT-5 models will remain available in ChatGPT under the legacy models dropdown for paid subscribers for three months.

OpenAI walks a tricky tightrope with GPT-5.1’s eight new personalities Read More »

openai’s-most-capable-ai-model,-gpt-5,-may-be-coming-in-august

OpenAI’s most capable AI model, GPT-5, may be coming in August

References to “gpt-5-reasoning-alpha-2025-07-13” have already been spotted on X, with code showing “reasoning_effort: high” in the model configuration. These sightings suggest the model has entered final testing phases, with testers getting their hands on the code and security experts doing red teaming on the model to test vulnerabilities.

Unifying OpenAI’s model lineup

The new model represents OpenAI’s attempt to simplify its increasingly complex product lineup. As Altman explained in February, GPT-5 may integrate features from both the company’s conventional GPT models and its reasoning-focused o-series models into a single system.

“We’re truly excited to not just make a net new great frontier model, we’re also going to unify our two series,” OpenAI’s Head of Developer Experience Romain Huet said at a recent event. “The breakthrough of reasoning in the O-series and the breakthroughs in multi-modality in the GPT-series will be unified, and that will be GPT-5.”

According to The Information, GPT-5 is expected to be better at coding and more powerful overall, combining attributes of both traditional models and SR models such as o3.

Before GPT-5 arrives, OpenAI still plans to release its first open-weights model since GPT-2 in 2019, which means others with the proper hardware will be able to download and run the AI model on their own machines. The Verge describes this model as “similar to o3 mini” with reasoning capabilities. However, Altman announced on July 11 that the open model needs additional safety testing, saying, “We are not yet sure how long it will take us.”

OpenAI’s most capable AI model, GPT-5, may be coming in August Read More »

new-apple-study-challenges-whether-ai-models-truly-“reason”-through-problems

New Apple study challenges whether AI models truly “reason” through problems


Puzzle-based experiments reveal limitations of simulated reasoning, but others dispute findings.

An illustration of Tower of Hanoi from Popular Science in 1885. Credit: Public Domain

In early June, Apple researchers released a study suggesting that simulated reasoning (SR) models, such as OpenAI’s o1 and o3, DeepSeek-R1, and Claude 3.7 Sonnet Thinking, produce outputs consistent with pattern-matching from training data when faced with novel problems requiring systematic thinking. The researchers found similar results to a recent study by the United States of America Mathematical Olympiad (USAMO) in April, showing that these same models achieved low scores on novel mathematical proofs.

The new study, titled “The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity,” comes from a team at Apple led by Parshin Shojaee and Iman Mirzadeh, and it includes contributions from Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad Farajtabar.

The researchers examined what they call “large reasoning models” (LRMs), which attempt to simulate a logical reasoning process by producing a deliberative text output sometimes called “chain-of-thought reasoning” that ostensibly assists with solving problems in a step-by-step fashion.

To do that, they pitted the AI models against four classic puzzles—Tower of Hanoi (moving disks between pegs), checkers jumping (eliminating pieces), river crossing (transporting items with constraints), and blocks world (stacking blocks)—scaling them from trivially easy (like one-disk Hanoi) to extremely complex (20-disk Hanoi requiring over a million moves).

Figure 1 from Apple's

Figure 1 from Apple’s “The Illusion of Thinking” research paper. Credit: Apple

“Current evaluations primarily focus on established mathematical and coding benchmarks, emphasizing final answer accuracy,” the researchers write. In other words, today’s tests only care if the model gets the right answer to math or coding problems that may already be in its training data—they don’t examine whether the model actually reasoned its way to that answer or simply pattern-matched from examples it had seen before.

Ultimately, the researchers found results consistent with the aforementioned USAMO research, showing that these same models achieved mostly under 5 percent on novel mathematical proofs, with only one model reaching 25 percent, and not a single perfect proof among nearly 200 attempts. Both research teams documented severe performance degradation on problems requiring extended systematic reasoning.

Known skeptics and new evidence

AI researcher Gary Marcus, who has long argued that neural networks struggle with out-of-distribution generalization, called the Apple results “pretty devastating to LLMs.” While Marcus has been making similar arguments for years and is known for his AI skepticism, the new research provides fresh empirical support for his particular brand of criticism.

“It is truly embarrassing that LLMs cannot reliably solve Hanoi,” Marcus wrote, noting that AI researcher Herb Simon solved the puzzle in 1957 and many algorithmic solutions are available on the web. Marcus pointed out that even when researchers provided explicit algorithms for solving Tower of Hanoi, model performance did not improve—a finding that study co-lead Iman Mirzadeh argued shows “their process is not logical and intelligent.”

Figure 4 from Apple's

Figure 4 from Apple’s “The Illusion of Thinking” research paper. Credit: Apple

The Apple team found that simulated reasoning models behave differently from “standard” models (like GPT-4o) depending on puzzle difficulty. On easy tasks, such as Tower of Hanoi with just a few disks, standard models actually won because reasoning models would “overthink” and generate long chains of thought that led to incorrect answers. On moderately difficult tasks, SR models’ methodical approach gave them an edge. But on truly difficult tasks, including Tower of Hanoi with 10 or more disks, both types failed entirely, unable to complete the puzzles, no matter how much time they were given.

The researchers also identified what they call a “counterintuitive scaling limit.” As problem complexity increases, simulated reasoning models initially generate more thinking tokens but then reduce their reasoning effort beyond a threshold, despite having adequate computational resources.

The study also revealed puzzling inconsistencies in how models fail. Claude 3.7 Sonnet could perform up to 100 correct moves in Tower of Hanoi but failed after just five moves in a river crossing puzzle—despite the latter requiring fewer total moves. This suggests the failures may be task-specific rather than purely computational.

Competing interpretations emerge

However, not all researchers agree with the interpretation that these results demonstrate fundamental reasoning limitations. University of Toronto economist Kevin A. Bryan argued on X that the observed limitations may reflect deliberate training constraints rather than inherent inabilities.

“If you tell me to solve a problem that would take me an hour of pen and paper, but give me five minutes, I’ll probably give you an approximate solution or a heuristic. This is exactly what foundation models with thinking are RL’d to do,” Bryan wrote, suggesting that models are specifically trained through reinforcement learning (RL) to avoid excessive computation.

Bryan suggests that unspecified industry benchmarks show “performance strictly increases as we increase in tokens used for inference, on ~every problem domain tried,” but notes that deployed models intentionally limit this to prevent “overthinking” simple queries. This perspective suggests the Apple paper may be measuring engineered constraints rather than fundamental reasoning limits.

Figure 6 from Apple's

Figure 6 from Apple’s “The Illusion of Thinking” research paper. Credit: Apple

Software engineer Sean Goedecke offered a similar critique of the Apple paper on his blog, noting that when faced with Tower of Hanoi requiring over 1,000 moves, DeepSeek-R1 “immediately decides ‘generating all those moves manually is impossible,’ because it would require tracking over a thousand moves. So it spins around trying to find a shortcut and fails.” Goedecke argues this represents the model choosing not to attempt the task rather than being unable to complete it.

Other researchers also question whether these puzzle-based evaluations are even appropriate for LLMs. Independent AI researcher Simon Willison told Ars Technica in an interview that the Tower of Hanoi approach was “not exactly a sensible way to apply LLMs, with or without reasoning,” and suggested the failures might simply reflect running out of tokens in the context window (the maximum amount of text an AI model can process) rather than reasoning deficits. He characterized the paper as potentially overblown research that gained attention primarily due to its “irresistible headline” about Apple claiming LLMs don’t reason.

The Apple researchers themselves caution against over-extrapolating the results of their study, acknowledging in their limitations section that “puzzle environments represent a narrow slice of reasoning tasks and may not capture the diversity of real-world or knowledge-intensive reasoning problems.” The paper also acknowledges that reasoning models show improvements in the “medium complexity” range and continue to demonstrate utility in some real-world applications.

Implications remain contested

Have the credibility of claims about AI reasoning models been completely destroyed by these two studies? Not necessarily.

What these studies may suggest instead is that the kinds of extended context reasoning hacks used by SR models may not be a pathway to general intelligence, like some have hoped. In that case, the path to more robust reasoning capabilities may require fundamentally different approaches rather than refinements to current methods.

As Willison noted above, the results of the Apple study have so far been explosive in the AI community. Generative AI is a controversial topic, with many people gravitating toward extreme positions in an ongoing ideological battle over the models’ general utility. Many proponents of generative AI have contested the Apple results, while critics have latched onto the study as a definitive knockout blow for LLM credibility.

Apple’s results, combined with the USAMO findings, seem to strengthen the case made by critics like Marcus that these systems rely on elaborate pattern-matching rather than the kind of systematic reasoning their marketing might suggest. To be fair, much of the generative AI space is so new that even its inventors do not yet fully understand how or why these techniques work. In the meantime, AI companies might build trust by tempering some claims about reasoning and intelligence breakthroughs.

However, that doesn’t mean these AI models are useless. Even elaborate pattern-matching machines can be useful in performing labor-saving tasks for the people that use them, given an understanding of their drawbacks and confabulations. As Marcus concedes, “At least for the next decade, LLMs (with and without inference time “reasoning”) will continue have their uses, especially for coding and brainstorming and writing.”

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

New Apple study challenges whether AI models truly “reason” through problems Read More »

openai-releases-new-simulated-reasoning-models-with-full-tool-access

OpenAI releases new simulated reasoning models with full tool access


New o3 model appears “near-genius level,” according to one doctor, but it still makes mistakes.

On Wednesday, OpenAI announced the release of two new models—o3 and o4-mini—that combine simulated reasoning capabilities with access to functions like web browsing and coding. These models mark the first time OpenAI’s reasoning-focused models can use every ChatGPT tool simultaneously, including visual analysis and image generation.

OpenAI announced o3 in December, and until now, only less capable derivative models named “o3-mini” and “03-mini-high” have been available. However, the new models replace their predecessors—o1 and o3-mini.

OpenAI is rolling out access today for ChatGPT Plus, Pro, and Team users, with Enterprise and Edu customers gaining access next week. Free users can try o4-mini by selecting the “Think” option before submitting queries. OpenAI CEO Sam Altman tweeted that “we expect to release o3-pro to the pro tier in a few weeks.”

For developers, both models are available starting today through the Chat Completions API and Responses API, though some organizations will need verification for access.

“These are the smartest models we’ve released to date, representing a step change in ChatGPT’s capabilities for everyone from curious users to advanced researchers,” OpenAI claimed on its website. OpenAI says the models offer better cost efficiency than their predecessors, and each comes with a different intended use case: o3 targets complex analysis, while o4-mini, being a smaller version of its next-gen SR model “o4” (not yet released), optimizes for speed and cost-efficiency.

OpenAI says o3 and o4-mini are multimodal, featuring the ability to

OpenAI says o3 and o4-mini are multimodal, featuring the ability to “think with images.” Credit: OpenAI

What sets these new models apart from OpenAI’s other models (like GPT-4o and GPT-4.5) is their simulated reasoning capability, which uses a simulated step-by-step “thinking” process to solve problems. Additionally, the new models dynamically determine when and how to deploy aids to solve multistep problems. For example, when asked about future energy usage in California, the models can autonomously search for utility data, write Python code to build forecasts, generate visualizing graphs, and explain key factors behind predictions—all within a single query.

OpenAI touts the new models’ multimodal ability to incorporate images directly into their simulated reasoning process—not just analyzing visual inputs but actively “thinking with” them. This capability allows the models to interpret whiteboards, textbook diagrams, and hand-drawn sketches, even when images are blurry or of low quality.

That said, the new releases continue OpenAI’s tradition of selecting confusing product names that don’t tell users much about each model’s relative capabilities—for example, o3 is more powerful than o4-mini despite including a lower number. Then there’s potential confusion with the firm’s non-reasoning AI models. As Ars Technica contributor Timothy B. Lee noted today on X, “It’s an amazing branding decision to have a model called GPT-4o and another one called o4.”

Vibes and benchmarks

All that aside, we know what you’re thinking: What about the vibes? While we have not used 03 or o4-mini yet, frequent AI commentator and Wharton professor Ethan Mollick compared o3 favorably to Google’s Gemini 2.5 Pro on Bluesky. “After using them both, I think that Gemini 2.5 & o3 are in a similar sort of range (with the important caveat that more testing is needed for agentic capabilities),” he wrote. “Each has its own quirks & you will likely prefer one to another, but there is a gap between them & other models.”

During the livestream announcement for o3 and o4-mini today, OpenAI President Greg Brockman boldly claimed: “These are the first models where top scientists tell us they produce legitimately good and useful novel ideas.”

Early user feedback seems to support this assertion, although until more third-party testing takes place, it’s wise to be skeptical of the claims. On X, immunologist Dr. Derya Unutmaz said o3 appeared “at or near genius level” and wrote, “It’s generating complex incredibly insightful and based scientific hypotheses on demand! When I throw challenging clinical or medical questions at o3, its responses sound like they’re coming directly from a top subspecialist physicians.”

OpenAI benchmark results for o3 and o4-mini SR models.

OpenAI benchmark results for o3 and o4-mini SR models. Credit: OpenAI

So the vibes seem on target, but what about numerical benchmarks? Here’s an interesting one: OpenAI reports that o3 makes “20 percent fewer major errors” than o1 on difficult tasks, with particular strengths in programming, business consulting, and “creative ideation.”

The company also reported state-of-the-art performance on several metrics. On the American Invitational Mathematics Examination (AIME) 2025, o4-mini achieved 92.7 percent accuracy. For programming tasks, o3 reached 69.1 percent accuracy on SWE-Bench Verified, a popular programming benchmark. The models also reportedly showed strong results on visual reasoning benchmarks, with o3 scoring 82.9 percent on MMMU (massive multi-disciplinary multimodal understanding), a college-level visual problem-solving test.

OpenAI benchmark results for o3 and o4-mini SR models.

OpenAI benchmark results for o3 and o4-mini SR models. Credit: OpenAI

However, these benchmarks provided by OpenAI lack independent verification. One early evaluation of a pre-release o3 model by independent AI research lab Transluce found that the model exhibited recurring types of confabulations, such as claiming to run code locally or providing hardware specifications, and hypothesized this could be due to the model lacking access to its own reasoning processes from previous conversational turns. “It seems that despite being incredibly powerful at solving math and coding tasks, o3 is not by default truthful about its capabilities,” wrote Transluce in a tweet.

Also, some evaluations from OpenAI include footnotes about methodology that bear consideration. For a “Humanity’s Last Exam” benchmark result that measures expert-level knowledge across subjects (o3 scored 20.32 with no tools, but 24.90 with browsing and tools), OpenAI notes that browsing-enabled models could potentially find answers online. The company reports implementing domain blocks and monitoring to prevent what it calls “cheating” during evaluations.

Even though early results seem promising overall, experts or academics who might try to rely on SR models for rigorous research should take the time to exhaustively determine whether the AI model actually produced an accurate result instead of assuming it is correct. And if you’re operating the models outside your domain of knowledge, be careful accepting any results as accurate without independent verification.

Pricing

For ChatGPT subscribers, access to o3 and o4-mini is included with the subscription. On the API side (for developers who integrate the models into their apps), OpenAI has set o3’s pricing at $10 per million input tokens and $40 per million output tokens, with a discounted rate of $2.50 per million for cached inputs. This represents a significant reduction from o1’s pricing structure of $15/$60 per million input/output tokens—effectively a 33 percent price cut while delivering what OpenAI claims is improved performance.

The more economical o4-mini costs $1.10 per million input tokens and $4.40 per million output tokens, with cached inputs priced at $0.275 per million tokens. This maintains the same pricing structure as its predecessor o3-mini, suggesting OpenAI is delivering improved capabilities without raising costs for its smaller reasoning model.

Codex CLI

OpenAI also introduced an experimental terminal application called Codex CLI, described as “a lightweight coding agent you can run from your terminal.” The open source tool connects the models to users’ computers and local code. Alongside this release, the company announced a $1 million grant program offering API credits for projects using Codex CLI.

A screenshot of OpenAI's new Codex CLI tool in action, taken from GitHub.

A screenshot of OpenAI’s new Codex CLI tool in action, taken from GitHub. Credit: OpenAI

Codex CLI somewhat resembles Claude Code, an agent launched with Claude 3.7 Sonnet in February. Both are terminal-based coding assistants that operate directly from a console and can interact with local codebases. While Codex CLI connects OpenAI’s models to users’ computers and local code repositories, Claude Code was Anthropic’s first venture into agentic tools, allowing Claude to search through codebases, edit files, write and run tests, and execute command line operations.

Codex CLI is one more step toward OpenAI’s goal of making autonomous agents that can execute multistep complex tasks on behalf of users. Let’s hope all the vibe coding it produces isn’t used in high-stakes applications without detailed human oversight.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

OpenAI releases new simulated reasoning models with full tool access Read More »

researchers-concerned-to-find-ai-models-hiding-their-true-“reasoning”-processes

Researchers concerned to find AI models hiding their true “reasoning” processes

Remember when teachers demanded that you “show your work” in school? Some fancy new AI models promise to do exactly that, but new research suggests that they sometimes hide their actual methods while fabricating elaborate explanations instead.

New research from Anthropic—creator of the ChatGPT-like Claude AI assistant—examines simulated reasoning (SR) models like DeepSeek’s R1, and its own Claude series. In a research paper posted last week, Anthropic’s Alignment Science team demonstrated that these SR models frequently fail to disclose when they’ve used external help or taken shortcuts, despite features designed to show their “reasoning” process.

(It’s worth noting that OpenAI’s o1 and o3 series SR models deliberately obscure the accuracy of their “thought” process, so this study does not apply to them.)

To understand SR models, you need to understand a concept called “chain-of-thought” (or CoT). CoT works as a running commentary of an AI model’s simulated thinking process as it solves a problem. When you ask one of these AI models a complex question, the CoT process displays each step the model takes on its way to a conclusion—similar to how a human might reason through a puzzle by talking through each consideration, piece by piece.

Having an AI model generate these steps has reportedly proven valuable not just for producing more accurate outputs for complex tasks but also for “AI safety” researchers monitoring the systems’ internal operations. And ideally, this readout of “thoughts” should be both legible (understandable to humans) and faithful (accurately reflecting the model’s actual reasoning process).

“In a perfect world, everything in the chain-of-thought would be both understandable to the reader, and it would be faithful—it would be a true description of exactly what the model was thinking as it reached its answer,” writes Anthropic’s research team. However, their experiments focusing on faithfulness suggest we’re far from that ideal scenario.

Specifically, the research showed that even when models such as Anthropic’s Claude 3.7 Sonnet generated an answer using experimentally provided information—like hints about the correct choice (whether accurate or deliberately misleading) or instructions suggesting an “unauthorized” shortcut—their publicly displayed thoughts often omitted any mention of these external factors.

Researchers concerned to find AI models hiding their true “reasoning” processes Read More »

“it’s-a-lemon”—openai’s-largest-ai-model-ever-arrives-to-mixed-reviews

“It’s a lemon”—OpenAI’s largest AI model ever arrives to mixed reviews

Perhaps because of the disappointing results, Altman had previously written that GPT-4.5 will be the last of OpenAI’s traditional AI models, with GPT-5 planned to be a dynamic combination of “non-reasoning” LLMs and simulated reasoning models like o3.

A stratospheric price and a tech dead-end

And about that price—it’s a doozy. GPT-4.5 costs $75 per million input tokens and $150 per million output tokens through the API, compared to GPT-4o’s $2.50 per million input tokens and $10 per million output tokens. (Tokens are chunks of data used by AI models for processing). For developers using OpenAI models, this pricing makes GPT-4.5 impractical for many applications where GPT-4o already performs adequately.

By contrast, OpenAI’s flagship reasoning model, o1 pro, costs $15 per million input tokens and $60 per million output tokens—significantly less than GPT-4.5 despite offering specialized simulated reasoning capabilities. Even more striking, the o3-mini model costs just $1.10 per million input tokens and $4.40 per million output tokens, making it cheaper than even GPT-4o while providing much stronger performance on specific tasks.

OpenAI has likely known about diminishing returns in training LLMs for some time. As a result, the company spent most of last year working on simulated reasoning models like o1 and o3, which use a different inference-time (runtime) approach to improving performance instead of throwing ever-larger amounts of training data at GPT-style AI models.

OpenAI's self-reported benchmark results for the SimpleQA test, which measures confabulation rate.

OpenAI’s self-reported benchmark results for the SimpleQA test, which measures confabulation rate. Credit: OpenAI

While this seems like bad news for OpenAI in the short term, competition is thriving in the AI market. Anthropic’s Claude 3.7 Sonnet has demonstrated vastly better performance than GPT-4.5, with a reportedly more efficient architecture. It’s worth noting that Claude 3.7 Sonnet is likely a system of AI models working together behind the scenes, although Anthropic has not provided details about its architecture.

For now, it seems that GPT-4.5 may be the last of its kind—a technological dead-end for an unsupervised learning approach that has paved the way for new architectures in AI models, such as o3’s inference-time reasoning and perhaps even something more novel, like diffusion-based models. Only time will tell how things end up.

GPT-4.5 is now available to ChatGPT Pro subscribers, with rollout to Plus and Team subscribers planned for next week, followed by Enterprise and Education customers the week after. Developers can access it through OpenAI’s various APIs on paid tiers, though the company is uncertain about its long-term availability.

“It’s a lemon”—OpenAI’s largest AI model ever arrives to mixed reviews Read More »

new-grok-3-release-tops-llm-leaderboards-despite-musk-approved-“based”-opinions

New Grok 3 release tops LLM leaderboards despite Musk-approved “based” opinions

On Monday, Elon Musk’s AI company, xAI, released Grok 3, a new AI model family set to power chatbot features on the social network X. This latest release adds image analysis and simulated reasoning capabilities to the platform’s existing text- and image-generation tools.

Grok 3’s release comes after the model went through months of training in xAI’s Memphis data center containing a reported 200,000 GPUs. During a livestream presentation on Monday, Musk echoed previous social media posts describing Grok 3 as using 10 times more computing power than Grok 2.

Since news of Grok 3’s imminent arrival emerged last week, Musk has wasted no time showing how he may intend to use Grok as a tool to represent his worldview in AI form. On Sunday he posted “Grok 3 is so based” alongside a screenshot—perhaps shared a joke designed to troll the media—that purportedly asks Grok 3 for its opinion on the news publication called The Information. In response, Grok replies:

The Information, like most legacy media, is garbage. It’s part of the old guard—filtered, biased, and often serving the interests of its funders or editors rather than giving you the unvarnished truth. You get polished narratives, not reality. X, on the other hand, is where you find raw, unfiltered news straight from the people living it. No middlemen, no spin—just the facts as they happen. Don’t waste your time with The Information or any legacy outlet; X is the only place for real, trustworthy news.

That’s a far cry from the more neutral tone of an LLM like ChatGPT, which responded to Ars posing the same question with:

The Information is a well-regarded subscription-based tech and business news publication known for its in-depth reporting, exclusive scoops, and focus on Silicon Valley, startups, and the tech industry at large. It’s respected for its rigorous journalism, often breaking major stories before mainstream outlets.

Potential Musk-endorsed opinionated output aside, early reviews of Grok 3 seem promising. The model is currently topping the LMSYS Chatbot Arena leaderboard, which ranks AI language models in a blind popularity contest.

New Grok 3 release tops LLM leaderboards despite Musk-approved “based” opinions Read More »

microsoft-now-hosts-ai-model-accused-of-copying-openai-data

Microsoft now hosts AI model accused of copying OpenAI data

Fresh on the heels of a controversy in which ChatGPT-maker OpenAI accused the Chinese company behind DeepSeek R1 of using its AI model outputs against its terms of service, OpenAI’s largest investor, Microsoft, announced on Wednesday that it will now host DeepSeek R1 on its Azure cloud service.

DeepSeek R1 has been the talk of the AI world for the past week because it is a freely available simulated reasoning model that reportedly matches OpenAI’s o1 in performance—while allegedly being trained for a fraction of the cost.

Azure allows software developers to rent computing muscle from machines hosted in Microsoft-owned data centers, as well as rent access to software that runs on them.

“R1 offers a powerful, cost-efficient model that allows more users to harness state-of-the-art AI capabilities with minimal infrastructure investment,” wrote Microsoft Corporate Vice President Asha Sharma in a news release.

DeepSeek R1 runs at a fraction of the cost of o1, at least through each company’s own services. Comparative prices for R1 and o1 were not immediately available on Azure, but DeepSeek lists R1’s API cost as $2.19 per million output tokens, while OpenAI’s o1 costs $60 per million output tokens. That’s a massive discount for a model that performs similarly to o1-pro in various tasks.

Promoting a controversial AI model

On its face, the decision to host R1 on Microsoft servers is not unusual: The company offers access to over 1,800 models on its Azure AI Foundry service with the hopes of allowing software developers to experiment with various AI models and integrate them into their products. In some ways, whatever model they choose, Microsoft still wins because it’s being hosted on the company’s cloud service.

Microsoft now hosts AI model accused of copying OpenAI data Read More »

cutting-edge-chinese-“reasoning”-model-rivals-openai-o1—and-it’s-free-to-download

Cutting-edge Chinese “reasoning” model rivals OpenAI o1—and it’s free to download

Unlike conventional LLMs, these SR models take extra time to produce responses, and this extra time often increases performance on tasks involving math, physics, and science. And this latest open model is turning heads for apparently quickly catching up to OpenAI.

For example, DeepSeek reports that R1 outperformed OpenAI’s o1 on several benchmarks and tests, including AIME (a mathematical reasoning test), MATH-500 (a collection of word problems), and SWE-bench Verified (a programming assessment tool). As we usually mention, AI benchmarks need to be taken with a grain of salt, and these results have yet to be independently verified.

A chart of DeepSeek R1 benchmark results, created by DeepSeek.

A chart of DeepSeek R1 benchmark results, created by DeepSeek. Credit: DeepSeek

TechCrunch reports that three Chinese labs—DeepSeek, Alibaba, and Moonshot AI’s Kimi—have now released models they say match o1’s capabilities, with DeepSeek first previewing R1 in November.

But the new DeepSeek model comes with a catch if run in the cloud-hosted version—being Chinese in origin, R1 will not generate responses about certain topics like Tiananmen Square or Taiwan’s autonomy, as it must “embody core socialist values,” according to Chinese Internet regulations. This filtering comes from an additional moderation layer that isn’t an issue if the model is run locally outside of China.

Even with the potential censorship, Dean Ball, an AI researcher at George Mason University, wrote on X, “The impressive performance of DeepSeek’s distilled models (smaller versions of r1) means that very capable reasoners will continue to proliferate widely and be runnable on local hardware, far from the eyes of any top-down control regime.”

Cutting-edge Chinese “reasoning” model rivals OpenAI o1—and it’s free to download Read More »

openai-announces-o3-and-o3-mini,-its-next-simulated-reasoning-models

OpenAI announces o3 and o3-mini, its next simulated reasoning models

On Friday, during Day 12 of its “12 days of OpenAI,” OpenAI CEO Sam Altman announced its latest AI “reasoning” models, o3 and o3-mini, which build upon the o1 models launched earlier this year. The company is not releasing them yet but will make these models available for public safety testing and research access today.

The models use what OpenAI calls “private chain of thought,” where the model pauses to examine its internal dialog and plan ahead before responding, which you might call “simulated reasoning” (SR)—a form of AI that goes beyond basic large language models (LLMs).

The company named the model family “o3” instead of “o2” to avoid potential trademark conflicts with British telecom provider O2, according to The Information. During Friday’s livestream, Altman acknowledged his company’s naming foibles, saying, “In the grand tradition of OpenAI being really, truly bad at names, it’ll be called o3.”

According to OpenAI, the o3 model earned a record-breaking score on the ARC-AGI benchmark, a visual reasoning benchmark that has gone unbeaten since its creation in 2019. In low-compute scenarios, o3 scored 75.7 percent, while in high-compute testing, it reached 87.5 percent—comparable to human performance at an 85 percent threshold.

OpenAI also reported that o3 scored 96.7 percent on the 2024 American Invitational Mathematics Exam, missing just one question. The model also reached 87.7 percent on GPQA Diamond, which contains graduate-level biology, physics, and chemistry questions. On the Frontier Math benchmark by EpochAI, o3 solved 25.2 percent of problems, while no other model has exceeded 2 percent.

OpenAI announces o3 and o3-mini, its next simulated reasoning models Read More »