Ryzen

review:-ryzen-ai-cpu-makes-this-the-fastest-the-framework-laptop-13-has-ever-been

Review: Ryzen AI CPU makes this the fastest the Framework Laptop 13 has ever been


With great power comes great responsibility and subpar battery life.

The latest Framework Laptop 13, which asks you to take the good with the bad. Credit: Andrew Cunningham

The latest Framework Laptop 13, which asks you to take the good with the bad. Credit: Andrew Cunningham

At this point, the Framework Laptop 13 is a familiar face, an old friend. We have reviewed this laptop five other times, and in that time, the idea of a repairable and upgradeable laptop has gone from a “sounds great if they can pull it off” idea to one that’s become pretty reliable and predictable. And nearly four years out from the original version—which shipped with an 11th-generation Intel Core processor—we’re at the point where an upgrade will get you significant boosts to CPU and GPU performance, plus some other things.

We’re looking at the Ryzen AI 300 version of the Framework Laptop today, currently available for preorder and shipping in Q2 for people who buy one now. The laptop starts at $1,099 for a pre-built version and $899 for a RAM-less, SSD-less, Windows-less DIY version, and we’ve tested the Ryzen AI 9 HX 370 version that starts at $1,659 before you add RAM, an SSD, or an OS.

This board is a direct upgrade to Framework’s Ryzen 7040-series board from mid-2023, with most of the same performance benefits we saw last year when we first took a look at the Ryzen AI 300 series. It’s also, if this matters to you, the first Framework Laptop to meet Microsoft’s requirements for its Copilot+ PC initiative, giving users access to some extra locally processed AI features (including but not limited to Recall) with the promise of more to come.

For this upgrade, Ryzen AI giveth, and Ryzen AI taketh away. This is the fastest the Framework Laptop 13 has ever been (at least, if you spring for the Ryzen AI 9 HX 370 chip that our review unit shipped with). If you’re looking to do some light gaming (or non-Nvidia GPU-accelerated computing), the Radeon 890M GPU is about as good as it gets. But you’ll pay for it in battery life—never a particularly strong point for Framework, and less so here than in most of the Intel versions.

What’s new, Framework?

This Framework update brings the return of colorful translucent accessories, parts you can also add to an older Framework Laptop if you want. Credit: Andrew Cunningham

We’re going to focus on what makes this particular Framework Laptop 13 different from the past iterations. We talk more about the build process and the internals in our review of the 12th-generation Intel Core version, and we ran lots of battery tests with the new screen in our review of the Intel Core Ultra version. We also have coverage of the original Ryzen version of the laptop, with the Ryzen 7 7840U and Radeon 780M GPU installed.

Per usual, every internal refresh of the Framework Laptop 13 comes with another slate of external parts. Functionally, there’s not a ton of exciting stuff this time around—certainly nothing as interesting as the higher-resolution 120 Hz screen option we got with last year’s Intel Meteor Lake update—but there’s a handful of things worth paying attention to.

Functionally, Framework has slightly improved the keyboard, with “a new key structure” on the spacebar and shift keys that “reduce buzzing when your speakers are cranked up.” I can’t really discern a difference in the feel of the keyboard, so this isn’t a part I’d run out to add to my own Framework Laptop, but it’s a fringe benefit if you’re buying an all-new laptop or replacing your keyboard for some other reason.

Keyboard legends have also been tweaked; pre-built Windows versions get Microsoft’s dedicated (and, within limits, customizable) Copilot key, while DIY editions come with a Framework logo on the Windows/Super key (instead of the word “super”) and no Copilot key.

Cosmetically, Framework is keeping the dream of the late ’90s alive with translucent plastic parts, namely the bezel around the display and the USB-C Expansion Modules. I’ll never say no to additional customization options, though I still think that “silver body/lid with colorful bezel/ports” gives the laptop a rougher, unfinished-looking vibe.

Like the other Ryzen Framework Laptops (both 13 and 16), not all of the Ryzen AI board’s four USB-C ports support all the same capabilities, so you’ll want to arrange your ports carefully.

Framework’s recommendations for how to configure the Ryzen AI laptop’s expansion modules. Credit: Framework

Framework publishes a graphic to show you which ports do what; if you’re looking at the laptop from the front, ports 1 and 3 are on the back, and ports 2 and 4 are toward the front. Generally, ports 1 and 3 are the “better” ones, supporting full USB4 speeds instead of USB 3.2 and DisplayPort 2.0 instead of 1.4. But USB-A modules should go in ports 2 or 4 because they’ll consume extra power in bays 1 and 3. All four do support display output, though, which isn’t the case for the Ryzen 7040 Framework board, and all four continue to support USB-C charging.

The situation has improved from the 7040 version of the Framework board, where not all of the ports could do any kind of display output. But it still somewhat complicates the laptop’s customizability story relative to the Intel versions, where any expansion card can go into any port.

I will also say that this iteration of the Framework laptop hasn’t been perfectly stable for me. The problems are intermittent but persistent, despite using the latest BIOS version (3.03 as of this writing) and driver package available from Framework. I had a couple of total-system freezes/crashes, occasional problems waking from sleep, and sporadic rendering glitches in Microsoft Edge. These weren’t problems I’ve had with the other Ryzen AI laptops I’ve used so far or with the Ryzen 7040 version of the Framework 13. They also persisted across two separate clean installs of Windows.

It’s possible/probable that some combination of firmware and driver updates can iron out these problems, and they generally didn’t prevent me from using the laptop the way I wanted to use it, but I thought it was worth mentioning since my experience with new Framework boards has usually been a bit better than this.

Internals and performance

“Ryzen AI” is AMD’s most recent branding update for its high-end laptop chips, but you don’t actually need to care about AI to appreciate the solid CPU and GPU speed upgrades compared to the last-generation Ryzen Framework or older Intel versions of the laptop.

Our Framework Laptop board uses the fastest processor offering: a Ryzen AI 9 HX 370 with four of AMD’s Zen 5 CPU cores, eight of the smaller, more power-efficient Zen 5c cores, and a Radeon 890M integrated GPU with 16 of AMD’s RDNA 3.5 graphics cores.

There are places where the Intel Arc graphics in the Core Ultra 7/Meteor Lake version of the Framework Laptop are still faster than what AMD can offer, though your experience may vary depending on the games or apps you’re trying to use. Generally, our benchmarks show the Arc GPU ahead by a small amount, but it’s not faster across the board.

Relative to other Ryzen AI systems, the Framework Laptop’s graphics performance also suffers somewhat because socketed DDR5 DIMMs don’t run as fast as RAM that’s been soldered to the motherboard. This is one of the trade-offs you’re probably OK with making if you’re looking at a Framework Laptop in the first place, but it’s worth mentioning.

A few actual game benchmarks. Ones with ray-tracing features enabled tend to favor Intel’s Arc GPU, while the Radeon 890M pulls ahead in some other games.

But the new Ryzen chip’s CPU is dramatically faster than Meteor Lake at just about everything, as well as the older Ryzen 7 7840U in the older Framework board. This is the fastest the Framework Laptop has ever been, and it’s not particularly close (but if you’re waffling between the Ryzen AI version, the older AMD version that Framework sells for a bit less money or the Core Ultra 7 version, wait to see the battery life results before you spend any money). Power efficiency has also improved for heavy workloads, as demonstrated by our Handbrake video encoding tests—the Ryzen AI chip used a bit less power under heavy load and took less time to transcode our test video, so it uses quite a bit less power overall to do the same work.

Power efficiency tests under heavy load using the Handbrake transcoding tool. Test uses CPU for encoding and not hardware-accelerated GPU-assisted encoding.

We didn’t run specific performance tests on the Ryzen AI NPU, but it’s worth noting that this is also Framework’s first laptop with a neural processing unit (NPU) fast enough to support the full range of Microsoft’s Copilot+ PC features—this was one of the systems I used to test Microsoft’s near-final version of Windows Recall, for example. Intel’s other Core Ultra 100 chips, all 200-series Core Ultra chips other than the 200V series (codenamed Lunar Lake), and AMD’s Ryzen 7000- and 8000-series processors often include NPUs, but they don’t meet Microsoft’s performance requirements.

The Ryzen AI chips are also the only Copilot+ compatible processors on the market that Framework could have used while maintaining the Laptop’s current level of upgradeability. Qualcomm’s Snapdragon X Elite and Plus chips don’t support external RAM—at least, Qualcomm only lists support for soldered-down LPDDR5X in its product sheets—and Intel’s Core Ultra 200V processors use RAM integrated into the processor package itself. So if any of those features appeal to you, this is the only Framework Laptop you can buy to take advantage of them.

Battery and power

Battery tests. The Ryzen AI 300 doesn’t do great, though it’s similar to the last-gen Ryzen Framework.

When paired with the higher-resolution screen option and Framework’s 61 WHr battery, the Ryzen AI version of the laptop lasted around 8.5 hours in a PCMark Modern Office battery life test with the screen brightness set to a static 200 nits. This is a fair bit lower than the Intel Core Ultra version of the board, and it’s even worse when compared to what a MacBook Air or a more typical PC laptop will give you. But it’s holding roughly even with the older Ryzen version of the Framework board despite being much faster.

You can improve this situation somewhat by opting for the cheaper, lower-resolution screen; we didn’t test it with the Ryzen AI board, and Framework won’t sell you the lower-resolution screen with the higher-end chip. But for upgraders using the older panel, the higher-res screen reduced battery life by between 5 and 15 percent in past testing of older Framework Laptops. The slower Ryzen AI 5 and Ryzen AI 7 versions will also likely last a little longer, though Framework usually only sends us the highest-end versions of its boards to test.

A routine update

This combo screwdriver-and-spudger is still the only tool you need to take a Framework Laptop apart. Credit: Andrew Cunningham

It’s weird that my two favorite laptops right now are probably Apple’s MacBook Air and the Framework Laptop 13, but that’s where I am. They represent opposite visions of computing, each of which appeals to a different part of my brain: The MacBook Air is the personal computer at its most appliance-like, the thing you buy (or recommend) if you just don’t want to think about your computer that much. Framework embraces a more traditionally PC-like approach, favoring open standards and interoperable parts; the result is more complicated and chaotic but also more flexible. It’s the thing you buy when you like thinking about your computer.

Framework Laptop buyers continue to pay a price for getting a more repairable and modular laptop. Battery life remains OK at best, and Framework doesn’t seem to have substantially sped up its firmware or driver releases since we talked with them about it last summer. You’ll need to be comfortable taking things apart, and you’ll need to make sure you put the right expansion modules in the right bays. And you may end up paying more than you would to get the same specs from a different laptop manufacturer.

But what you get in return still feels kind of magical, and all the more so because Framework has now been shipping product for four years. The Ryzen AI version of the laptop is probably the one I’d recommend if you were buying a new one, and it’s also a huge leap forward for anyone who bought into the first-generation Framework Laptop a few years ago and is ready for an upgrade. It’s by far the fastest CPU (and, depending on the app, the fastest or second-fastest GPU) Framework has shipped in the Laptop 13. And it’s nice to at least have the option of using Copilot+ features, even if you’re not actually interested in the ones Microsoft is currently offering.

If none of the other Framework Laptops have interested you yet, this one probably won’t, either. But it’s yet another improvement in what has become a steady, consistent sequence of improvements. Mediocre battery life is hard to excuse in a laptop, but if that’s not what’s most important to you, Framework is still offering something laudable and unique.

The good

  • Framework still gets all of the basics right—a matte 3:2 LCD that’s pleasant to look at, a nice-feeling keyboard and trackpad, and a design
  • Fastest CPU ever in the Framework Laptop 13, and the fastest or second-fastest integrated GPU
  • First Framework Laptop to support Copilot+ features in Windows, if those appeal to you at all
  • Fun translucent customization options
  • Modular, upgradeable, and repairable—more so than with most laptops, you’re buying a laptop that can change along with your needs and which will be easy to refurbish or hand down to someone else when you’re ready to replace it
  • Official support for both Windows and Linux

The bad

  • Occasional glitchiness that may or may not be fixed with future firmware or driver updates
  • Some expansion modules are slower or have higher power draw if you put them in the wrong place
  • Costs more than similarly specced laptops from other OEMs
  • Still lacks certain display features some users might require or prefer—in particular, there are no OLED, touchscreen, or wide-color-gamut options

The ugly

  • Battery life remains an enduring weak point.

Photo of Andrew Cunningham

Andrew is a Senior Technology Reporter at Ars Technica, with a focus on consumer tech including computer hardware and in-depth reviews of operating systems like Windows and macOS. Andrew lives in Philadelphia and co-hosts a weekly book podcast called Overdue.

Review: Ryzen AI CPU makes this the fastest the Framework Laptop 13 has ever been Read More »

amd-says-top-tier-ryzen-9900x3d-and-9950x3d-cpus-arrive-march-12-for-$599-and-$699

AMD says top-tier Ryzen 9900X3D and 9950X3D CPUs arrive March 12 for $599 and $699

Like the 7950X3D and 7900X3D, these new X3D chips combine a pair of AMD’s CPU chiplets, one that has the extra 64MB of cache stacked underneath it and one that doesn’t. For the 7950X3D, you get eight cores with extra cache and eight without; for the 7900X3D, you get eight cores with extra cache and four without.

It’s up to AMD’s chipset software to decide what kinds of apps get to run on each kind of CPU core. Non-gaming workloads prioritize the normal CPU cores, which are generally capable of slightly higher peak clock speeds, while games that benefit disproportionately from the extra cache are run on those cores instead. AMD’s software can “park” the non-V-Cache CPU cores when you’re playing games to ensure they’re not accidentally being run on less-suitable CPU cores.

We didn’t have issues with this core parking technology when we initially tested the 7950X3D and 7900X3D, and AMD has steadily made improvements since then to make sure that core parking is working properly. The new 9000-series X3D chips should benefit from that work, too. To get the best results, AMD officially recommends a fresh and fully updated Windows install, along with the newest BIOS for your motherboard and the newest AMD chipset drivers; swapping out another Ryzen CPU for an X3D model (or vice versa) without reinstalling Windows can occasionally lead to CPUs being parked (or not parked) when they are supposed to be (or not supposed to be).

AMD says top-tier Ryzen 9900X3D and 9950X3D CPUs arrive March 12 for $599 and $699 Read More »

amd’s-new-laptop-cpu-lineup-is-a-mix-of-new-silicon-and-new-names-for-old-silicon

AMD’s new laptop CPU lineup is a mix of new silicon and new names for old silicon

AMD’s CES announcements include a tease about next-gen graphics cards, a new flagship desktop CPU, and a modest refresh of its processors for handheld gaming PCs. But the company’s largest announcement, by volume, is about laptop processors.

Today the company is expanding the Ryzen AI 300 lineup with a batch of updated high-end chips with up to 16 CPU cores and some midrange options for cheaper Copilot+ PCs. AMD has repackaged some of its high-end desktop chips for gaming laptops, including the first Ryzen laptop CPU with 3D V-Cache enabled. And there’s also a new-in-name-only Ryzen 200 series, another repackaging of familiar silicon to address lower-budget laptops.

Ryzen AI 300 is back, along with high-end Max and Max+ versions

Ryzen AI is back, with Max and Max+ versions that include huge integrated GPUs. Credit: AMD

We came away largely impressed by the initial Ryzen AI 300 processors in August 2024, and new processors being announced today expand the lineup upward and downward.

AMD is announcing the Ryzen AI 7 350 and Ryzen AI 5 340 today, along with identically specced Pro versions of the same chips with a handful of extra features for large businesses and other organizations.

Midrange Ryzen AI processors should expand Copilot+ features into somewhat cheaper x86 PCs.

Credit: AMD

The 350 includes eight CPU cores split evenly between large Zen 5 cores and smaller, slower but more efficient Zen 5C cores, plus a Radeon 860M with eight integrated graphics cores (down from a peak of 16 for the Ryzen AI 9). The 340 has six CPU cores, again split evenly between Zen 5 and Zen 5C, and a Radeon 840M with four graphics cores. But both have the same 50 TOPS NPUs as the higher-end Ryzen AI chips, qualifying both for the Copilot+ label.

For consumers, AMD is launching three high-end chips across the new “Ryzen AI Max+” and “Ryzen AI Max” families. Compared to the existing Strix Point-based Ryzen AI processors, Ryzen AI Max+ and Max include more CPU cores, and all of their cores are higher-performing Zen 5 cores, with no Zen 5C cores mixed in. The integrated graphics also get significantly more powerful, with as many as 40 cores built in—these chips seem to be destined for larger thin-and-light systems that could benefit from more power but don’t want to make room for a dedicated GPU.

AMD’s new laptop CPU lineup is a mix of new silicon and new names for old silicon Read More »

amd-launches-new-ryzen-9000x3d-cpus-for-pcs-that-play-games-and-work-hard

AMD launches new Ryzen 9000X3D CPUs for PCs that play games and work hard

AMD’s batch of CES announcements this year includes just two new products for desktop PC users: the new Ryzen 9 9950X3D and 9900X3D. Both will be available at some point in the first quarter of 2025.

Both processors include additional CPU cores compared to the 9800X3D that launched in November. The 9900X3D includes 12 Zen 5 CPU cores with a maximum clock speed of 5.5 GHz, and the 9950X3D includes 16 cores with a maximum clock speed of 5.7 GHz. Both include 64MB of extra L3 cache compared to the regular 9900X and 9950X, for a total cache of 144MB and 140MB, respectively; games in particular tend to benefit disproportionately from this extra cache memory.

But the 9950X3D and 9900X3D aren’t being targeted at people who build PCs primarily to game—the company says their game performance is usually within 1 percent of the 9800X3D. These processors are for people who want peak game performance when they’re playing something but also need lots of CPU cores for chewing on CPU-heavy workloads during the workday.

AMD estimates that the Ryzen 9 9950X3D is about 8 percent faster than the 7950X3D when playing games and about 13 percent faster in professional content creation apps. These modest gains are more or less in line with the small performance bump we’ve seen in other Ryzen 9000-series desktop CPUs.

AMD launches new Ryzen 9000X3D CPUs for PCs that play games and work hard Read More »

old-and-new-ryzen-cpus-get-a-speed-boost-from-optional-windows-update

Old and new Ryzen CPUs get a speed boost from optional Windows update

will you upgrade from windows 10 yet —

And it turns out that old Ryzen CPUs benefit almost as much as newer ones.

AMD's Ryzen 7 7700X.

Enlarge / AMD’s Ryzen 7 7700X.

Andrew Cunningham

Among AMD’s explanations for the somewhat underwhelming Ryzen 9000 performance reports from reviewers earlier this month: that the upcoming Windows 11 24H2 update would bring some improvements to the CPU scheduler that would boost the performance of the new CPUs and their Zen 5-based architecture.

But rather than make Ryzen owners wait for the 24H2 update to come out later this fall (or make them install a beta version of a major OS update), AMD and Microsoft have backported the scheduler improvements to Windows 11 23H2. Users of Ryzen 5000, 7000, and 9000 CPUs can install the KB5041587 update by going to Windows Update in Settings, selecting Advanced Options, and then Optional Updates.

“We expect the performance uplift to be very similar between 24H2 and 23H2 with KB5041587 installed,” an AMD representative told Ars.

In current versions of Windows 11 23H2, the CPU scheduler optimizations are only available using Windows’ built-in Administrator account. The update enables them for typical user accounts, too.

Older AMD CPUs benefit, too

AMD’s messaging has focused mainly on how the 24H2 update (and 23H2 with the KB5041587 update installed) improves Ryzen 9000 performance; across a handful of provided benchmarks, the company says speeds can improve by anything between zero and 13 percent over Windows 11 23H2. There are also benefits for users of CPUs that use the older Zen 4 (Ryzen 7000/8000G) and Zen 3 (Ryzen 5000) architectures, but AMD hasn’t been specific about how much either of these older architectures would improve.

The Hardware Unboxed YouTube channel has done some early game testing with the current builds of the 24H2 update, and there’s good news for Ryzen 7000 CPU owners and less good news for AMD. The channel found that, on average, across dozens of games, average frame rates increased by about 10 percent for a Zen 4-based Ryzen 7 7700X. Ryzen 7 9700X improved more, as AMD said it would, but only by 11 percent. At default settings, the 9700X is only 2 or 3 percent faster than the nearly 2-year-old 7700X in these games, whether you’re running the 24H2 update or not.

This early data suggests that both Ryzen 7000 and Ryzen 5000 owners will see at least a marginal benefit from upgrading to Windows 11 24H2, which is a nice thing to get for free with a software update. But there are caveats. Hardware Unboxed tested for CPU performance strictly in games running at 1080p on a high-end Nvidia GeForce RTX 4090—one of the few scenarios in any modern gaming PC where your CPU might limit your performance before your GPU would. If you play at a higher resolution like 1440p or 4K, your GPU will usually go back to being the bottleneck, and CPU performance improvements won’t be as noticeable.

The update is also taking already-high frame rates and making them even higher; one game went from an average frame rate of 142 FPS to 158 FPS on the 7700X, and from 167 to 181 FPS on the 9700X, for example. Even side by side, it’s an increase that will be difficult for most people to see. Other kinds of workloads may benefit, too—AMD said that the Procyon Office benchmark ran about 6 percent faster under Windows 11 24H2—but we don’t have definitive data on real-world workloads yet.

We wouldn’t expect performance to improve much, if at all, in either heavily multi-threaded workloads where all the CPU cores are actively engaged at once or in exclusively single-threaded workloads that run continuously on a single-core. AMD’s numbers for both single- and multi-threaded versions of the Cinebench benchmark, which simulates these kinds of workloads, were exactly the same in Windows 11 23H2 and 24H2 for Ryzen 9000.

Finally, it’s worth noting that the Ryzen 7 9700X was held back quite a bit by its new, lower 65 W TDP in our testing, compared to the 105 W TDP of the Ryzen 7 7700X. Both CPUs performed similarly in games Hardware Unboxed tested, both before and after the 24H2 update. But the 9700X is still the cooler and more efficient chip, and it’s capable of higher speeds if you either set its TDP to 105 W manually or use features like Precision Boost Overdrive to adjust its power limits. How both CPUs perform out of the box is important, but comparing the 9700X to the 7700X at stock settings is a worst-case scenario for Ryzen 9000’s generation-over-generation performance increases.

Windows 11 24H2: Coming soon but available now

Microsoft has disclosed a few details of the underpinnings of the 24H2 update, which looks the same as older Windows 11 releases but includes a new compiler, a new kernel, and a new scheduler under the hood. Microsoft talked about these specifically in the context of improving Arm CPU performance and the speed of translated x86 apps because it was gearing up to push Microsoft Surface devices and other Copilot+ PCs with new Qualcomm Snapdragon chips in them. Still, we’ll hopefully see some subtle benefits for other CPU architectures, too.

The 24H2 update is still technically a preview, available via Microsoft’s Windows Insider Release Preview channel. Users can either download it from Windows Update or as an ISO file if they want to make a USB installer to upgrade multiple systems. But Microsoft and PC OEMs have been shipping the 24H2 update on the Surfaces and other PCs for weeks now, and you shouldn’t have many problems with it in day-to-day use at this point. For those who would rather wait, the update should begin rolling out to the general public this fall.

Old and new Ryzen CPUs get a speed boost from optional Windows update Read More »

amd-explains,-promises-partial-fixes-for-ryzen-9000-performance-problems

AMD explains, promises partial fixes for Ryzen 9000 performance problems

We (and other testers) have had issues getting the Ryzen 9000 series to behave normally.

Enlarge / We (and other testers) have had issues getting the Ryzen 9000 series to behave normally.

Andrew Cunningham

AMD recently released its Ryzen 9000-series processors, which brought the company’s new Zen 5 CPU architecture to desktops for the first time. But we (and multiple other reviewers) had issues getting the chips’ performance to match up to AMD’s promises, something that the company wasn’t able to fully resolve before the processors launched to the public.

AMD has since put out statements explaining some of the discrepancies and promising at least partial fixes for some of them.

A Windows problem

The main fix for slower-than-expected game performance, the company says, will come with the Windows 11 24H2 update later this year, which will include “optimized AMD-specific branch prediction code” that improves Ryzen 9000’s performance by between 3 and 13 percent in an AMD-provided cross-section of games and benchmarks (though a handful of tests also showed no change). AMD says that these improvements will also benefit Zen 3- and Zen 4-based Ryzen processors, but that “the biggest boost” will be reserved for Ryzen 9000 and Zen 5.

Apparently, this branch prediction code improvement is already available in current Windows builds if you’re running games and apps in Administrator mode, which AMD used to run its tests. From AMD’s post, it’s unclear whether it was running games from within the normally disabled Administrator account, as has been reported elsewhere, or if it was merely running them in Administrator mode from within a standard user account.

In any case, even a standard user account with Administrator permissions spends most of its time running in a standard user mode, throwing up a User Account Control elevation message when Administrator privileges are needed for something. For security reasons, Windows only runs software in Administrator mode when it’s required, generally to install an app for the first time or make other system-wide changes. Virtually no one will be running games with Administrator privileges or while logged in as Administrator, which makes it an odd testing choice. Regardless, the 24H2 update should make those branch prediction improvements available to standard user accounts running in user mode.

The Windows 11 24H2 update should be released to the general public this fall, though Windows Insiders can also get it from the Insider Preview channel or by downloading an ISO. The 24H2 update is already the default version of Windows on Copilot+ PCs and on the Ryzen AI-powered Asus laptop we tested recently, so for most people it should be stable and reliable enough for day-to-day use.

There’s no word on whether or when these changes might come to Windows 10. But as with Intel’s Thread Director, which is not optimized for Windows 10, I wouldn’t count on AMD or Microsoft working very hard to bring significant performance improvements to a last-generation operating system that is just over a year away from its end-of-support date, even if it is still Steam’s most popular Windows version by a handful of percentage points.

AMD explains, promises partial fixes for Ryzen 9000 performance problems Read More »

for-the-second-time-in-two-years,-amd-blows-up-its-laptop-cpu-numbering-system

For the second time in two years, AMD blows up its laptop CPU numbering system

this again —

AMD reverses course on “decoder ring” numbering system for laptop CPUs.

AMD's Ryzen 9 AI 300 series is a new chip and a new naming scheme.

Enlarge / AMD’s Ryzen 9 AI 300 series is a new chip and a new naming scheme.

AMD

Less than two years ago, AMD announced that it was overhauling its numbering scheme for laptop processors. Each digit in its four-digit CPU model numbers picked up a new meaning, which, with the help of a detailed reference sheet, promised to inform buyers of exactly what it was they were buying.

One potential issue with this, as we pointed out at the time, was that this allowed AMD to change over the first and most important of those four digits every single year that it decided to re-release a processor, regardless of whether that chip actually included substantive improvements or not. Thus a “Ryzen 7730U” from 2023 would look two generations newer than a Ryzen 5800U from 2021, despite being essentially identical.

AMD is partially correcting this today by abandoning the self-described “decoder ring” naming system and resetting it to something more conventional.

For its new Ryzen AI laptop processors, codenamed “Strix Point,” AMD is still using the same broad Ryzen 3/5/7/9 number to communicate general performance level plus a one- or two-letter suffix to denote general performance and power level (U for ultraportables, HX for higher-performance chips, and so on). A new three-digit processor number will inform buyers of the chip’s generation in the first digit and denote the specific SKU using the last two digits.

AMD is changing how it numbers its laptop CPUs again.

Enlarge / AMD is changing how it numbers its laptop CPUs again.

AMD

In other words, the company is essentially hitting the undo button.

Like Intel, AMD is shifting from four-digit numbers to three digits. The Strix Point processor numbers will start with the 300 series, which AMD says is because this is the third generation of Ryzen laptop processors with a neural processing unit (NPU) included. Current 7040-series and 8040-series processors with NPUs are not being renamed retroactively, and AMD plans to stop using the 7000- and 8000-series numbering for processor introductions going forward.

AMD wouldn’t describe exactly how it would approach CPU model numbers for new products that used older architectures but did say that new processors that didn’t meet the 40+ TOPS requirement for Microsoft’s Copilot+ program would simply use the “Ryzen” name instead of the new “Ryzen AI” branding. That would include older architectures with slower NPUs, like the current 7040 and 8040-series chips.

Desktop CPUs are, once again, totally unaffected by this change. Desktop processors’ four-digit model numbers and alphabetic suffixes generally tell you all you need to know about their underlying architecture; the new Ryzen 9000 desktop CPUs and the Zen 5 architecture were also announced today.

It seems like a lot of work to do to end up basically where we started, especially when the people at AMD who make and market the desktop chips have been getting by just fine with older model numbers for newly released products when appropriate. But to be fair to AMD, there just isn’t a great way to do processor model numbers in a simple and consistent way, at least not given current market realities:

  • PC OEMs that seem to demand or expect “new” product from chipmakers every year, even though chip companies tend to take somewhere between one and three years to release significantly updated designs.
  • The fact that casual and low-end users don’t actually benefit a ton from performance enhancements, keeping older chips viable for longer.
  • Different subsections of the market that must be filled with slightly different chips (consider chips with vPro versus similar chips without it).
  • The need to “bin” chips—that is, disable small parts of a given silicon CPU or GPU die and then sell the results as a lower-end product—to recoup manufacturing costs and minimize waste.

Apple may come the closest to what the “ideal” would probably be—one number for the overarching chip generation (M1, M3, etc.), one word like “Pro” or “Max” to communicate the general performance level, and a straightforward description of the number of CPU and GPU cores included, to leave flexibility for binning chips. But as usual, Apple occupies a unique position: it’s the only company putting its own processors into its own systems, and the company usually only updates a product when there’s something new to put in it, rather than reflexively announcing new models every time another CES or back-to-school season or Windows version rolls around.

In reverting to more traditional model numbers, AMD has at least returned to a system that people who follow CPUs will be broadly familiar with. It’s not perfect, and it leaves plenty of room for ambiguity as the product lineup gets more complicated. But it’s in the same vein as Intel’s rebranding of 13th-gen Core chips, the whole “Intel Processor” thing, or Qualcomm’s unfriendly eight-digit model numbers for its Snapdragon X Plus and Elite chips. AMD’s new nomenclature is a devil, but at least it’s one we know.

For the second time in two years, AMD blows up its laptop CPU numbering system Read More »

amd’s-next-gen-ryzen-9000-desktop-chips-and-the-zen-5-architecture-arrive-in-july

AMD’s next-gen Ryzen 9000 desktop chips and the Zen 5 architecture arrive in July

ryzen again —

But AMD says AM4 will hang around for budget PCs well into 2025.

  • AMD is announcing Ryzen 9000 and Zen 5, the second CPU architecture for its AM5 platform.

    AMD

  • AMD’s Ryzen 9 9950X heads up the new Ryzen 9000 family.

    AMD

  • There are three other variants here, with 12, 8, and 6 Zen 5 CPU cores. The Ryzen 7000 series launched with chips at the same tiers.

    AMD

  • AMD is also announcing a pair of high-end chipsets, though they don’t offer much that’s new; 600-series boards should all support Ryzen 9000 after a BIOS update.

    AMD

  • The Zen 5 CPU architecture powers the Ryzen 9000 series.

    AMD

  • A handful of architectural highlights from Zen 5.

    AMD

  • The performance improvements with Zen 5 are occasionally quite impressive, but on average we’re looking at a 16 percent increase over Zen 4 at the same clock speeds. That’s decent, but not as good as the move from Zen 3 to Zen 4.

    AMD

It’s been almost two years since AMD introduced its Ryzen 7000 series desktop CPUs and the Zen 4 CPU architecture. Today, AMD is announcing the first concrete details about their successors. The Ryzen 9000 CPUs begin shipping in July.

At a high level, the Ryzen 9000 series and Zen 5 architecture offer mostly incremental improvements over Ryzen 7000 (Ryzen 8000 on the desktop is used exclusively for Zen 4-based G-series CPUs with more powerful integrated GPUs). AMD says that Zen 5 is roughly 16 percent faster than Zen 4 at the same clock speeds, depending on the workload—certainly not nothing, and there are some workloads that perform much better. But that number is far short of the 29 percent jump between Zen 3 and Zen 4.

AMD and Intel have both compensated for mild single-core performance improvements in the past by adding more cores, but Ryzen 9000 doesn’t do that. From the 9600X to the 9950X, the chips offer between 6 and 16 full-size Zen 5 cores, the same as every desktop lineup since Zen 2 and the Ryzen 3000 series. De-lidded shots of the processors indicate that they’re still using a total of two or three separate chiplets: one or two CPU chiplets with up to 8 cores each, and a separate I/O die to handle connectivity. The CPU chiplets are manufactured on a TSMC N4 process, an upgrade from the 5nm process used for Ryzen 7000, while the I/O die is still made with a 6nm TSMC process.

Ryzen 9000 has the same layout as the last few generations of Ryzen desktop CPU—two CPU chiplets with up to eight cores each, and an I/O die to handle connectivity.

Enlarge / Ryzen 9000 has the same layout as the last few generations of Ryzen desktop CPU—two CPU chiplets with up to eight cores each, and an I/O die to handle connectivity.

AMD

These chips include no Zen 5c E-cores, as older rumors suggested. Zen 5c is a version of Zen 5 that is optimized to take up less space in a silicon die, at the expense of higher clock speeds; Zen 5c cores are making their debut in the Ryzen AI 300-series laptop chips AMD also announced today. Boosting the number of E-cores has helped Intel match and surpass AMD’s multi-core performance, though Ryzen’s power consumption and efficiency have both outdone Intel’s throughout the 12th-, 13th-, and 14th-generation Core product cycles. Apple also uses a mix of P-cores and E-cores in its  high-end desktop CPU designs.

Ryzen 9000 doesn’t include any kind of neural processing unit (NPU), nor does AMD mention whether the Ryzen 7000’s RDNA 2-based integrated GPU has been upgraded or improved.

AMD is also announcing new X870 and X870E motherboard chipsets to accompany the new processors; as with the X670, the E-series chipset is actually a pair of chipsets on the same motherboard, boosting the number of available USB ports, M.2 slots, and PCIe slots.

The only real improvement here seems to be that all X870-series boards support USB4 and higher EXPO memory overclocking speeds by default. The chipsets also support PCIe 5.0 speeds for the main PCIe slot and M.2 slot, though the X670 chipsets already did this.

The processors’ power requirements aren’t changing, so users with 600-series motherboards ought to be able to use Ryzen 9000 CPUs with little to no performance penalty following a BIOS update.

  • AMD plans to keep the AM4 socket around as a budget platform until at least 2025, according to this slide.

    AMD

  • To that end, it’s announcing a couple more riffs on the old Zen 3-based Ryzen 5000 series, to entice budget builders and upgraders. Pricing hasn’t been announced.

    AMD

Ryzen 9000 doesn’t seem likely to resolve the biggest issues with the AM5 platform, namely the high costs relative to current-gen Intel systems, the high cost relative to AM4-based systems today, and even the high cost relative to AM4-based systems at the same point in the AM4 socket’s lifespan. Motherboards remain more expensive, DDR5 memory remains more expensive, and there are still no AM5 processors available for significantly less than $200.

According to AMD’s own timeline, it plans to keep the AM4 socket around until at least 2025. AM4 is still a surprisingly decent budget platform given that the socket was introduced eight years ago, and AMD does, in fact, continue to trickle out new Ryzen 5000-series CPUs to give buyers and upgrades more options. But it still means that system builders either need to choose between an expensive platform that has a future or a cheaper platform that’s more or less a dead end.

Listing image by AMD

AMD’s next-gen Ryzen 9000 desktop chips and the Zen 5 architecture arrive in July Read More »

ryzen-8000g-review:-an-integrated-gpu-that-can-beat-a-graphics-card,-for-a-price

Ryzen 8000G review: An integrated GPU that can beat a graphics card, for a price

The most interesting thing about AMD's Ryzen 7 8700G CPU is the Radeon 780M GPU that's attached to it.

Enlarge / The most interesting thing about AMD’s Ryzen 7 8700G CPU is the Radeon 780M GPU that’s attached to it.

Andrew Cunningham

Put me on the short list of people who can get excited about the humble, much-derided integrated GPU.

Yes, most of them are afterthoughts, designed for office desktops and laptops that will spend most of their lives rendering 2D images to a single monitor. But when integrated graphics push forward, it can open up possibilities for people who want to play games but can only afford a cheap desktop (or who have to make do with whatever their parents will pay for, which was the big limiter on my PC gaming experience as a kid).

That, plus an unrelated but accordant interest in building small mini-ITX-based desktops, has kept me interested in AMD’s G-series Ryzen desktop chips (which it sometimes calls “APUs,” to distinguish them from the Ryzen CPUs). And the Ryzen 8000G chips are a big upgrade from the 5000G series that immediately preceded them (this makes sense, because as we all know the number 8 immediately follows the number 5).

We’re jumping up an entire processor socket, one CPU architecture, three GPU architectures, and up to a new generation of much faster memory; especially for graphics, it’s a pretty dramatic leap. It’s an integrated GPU that can credibly beat the lowest tier of currently available graphics cards, replacing a $100–$200 part with something a lot more energy-efficient.

As with so many current-gen Ryzen chips, still-elevated pricing for the socket AM5 platform and the DDR5 memory it requires limit the 8000G series’ appeal, at least for now.

From laptop to desktop

AMD's first Ryzen 8000 desktop processors are what the company used to call

Enlarge / AMD’s first Ryzen 8000 desktop processors are what the company used to call “APUs,” a combination of a fast integrated GPU and a reasonably capable CPU.

AMD

The 8000G chips use the same Zen 4 CPU architecture as the Ryzen 7000 desktop chips, but the way the rest of the chip is put together is pretty different. Like past APUs, these are actually laptop silicon (in this case, the Ryzen 7040/8040 series, codenamed Phoenix and Phoenix 2) repackaged for a desktop processor socket.

Generally, the real-world impact of this is pretty mild; in most ways, the 8700G and 8600G will perform a lot like any other Zen 4 CPU with the same number of cores (our benchmarks mostly bear this out). But to the extent that there is a difference, the Phoenix silicon will consistently perform just a little worse, because it has half as much L3 cache. AMD’s Ryzen X3D chips revolve around the performance benefits of tons of cache, so you can see why having less would be detrimental.

The other missing feature from the Ryzen 7000 desktop chips is PCI Express 5.0 support—Ryzen 8000G tops out at PCIe 4.0. This might, maybe, one day in the distant future, eventually lead to some kind of user-observable performance difference. Some recent GPUs use an 8-lane PCIe 4.0 interface instead of the typical 16 lanes, which limits performance slightly. But PCIe 5.0 SSDs remain rare (and PCIe 4.0 peripherals remain extremely fast), so it probably shouldn’t top your list of concerns.

The Ryzen 5 8500G is a lot different from the 8700G and 8600G, since some of the CPU cores in the Phoenix 2 chips are based on Zen 4c rather than Zen 4. These cores have all the same capabilities as regular Zen 4 ones—unlike Intel’s E-cores—but they’re optimized to take up less space rather than hit high clock speeds. They were initially made for servers, where cramming lots of cores into a small amount of space is more important than having a smaller number of faster cores, but AMD is also using them to make some of its low-end consumer chips physically smaller and presumably cheaper to produce. AMD didn’t send us a Ryzen 8500G for review, so we can’t see exactly how Phoenix 2 stacks up in a desktop.

The 8700G and 8600G chips are also the only ones that come with AMD’s “Ryzen AI” feature, the brand AMD is using to refer to processors with a neural processing unit (NPU) included. Sort of like GPUs or video encoding/decoding blocks, these are additional bits built into the chip that handle things that CPUs can’t do very efficiently—in this case, machine learning and AI workloads.

Most PCs still don’t have NPUs, and as such they are only barely used in current versions of Windows (Windows 11 offers some webcam effects that will take advantage of NPU acceleration, but for now that’s mostly it). But expect this to change as they become more common and as more AI-accelerated text, image, and video creating and editing capabilities are built into modern operating systems.

The last major difference is the GPU. Ryzen 7000 includes a pair of RDNA2 compute units that perform more or less like Intel’s desktop integrated graphics: good enough to render your desktop on a monitor or two, but not much else. The Ryzen 8000G chips include up to 12 RDNA3 CUs, which—as we’ve already seen in laptops and portable gaming systems like the Asus ROG Ally that use the same silicon—is enough to run most games, if just barely in some cases.

That gives AMD’s desktop APUs a unique niche. You can use them in cases where you can’t afford a dedicated GPU—for a time during the big graphics card shortage in 2020 and 2021, a Ryzen 5700G was actually one of the only ways to build a budget gaming PC. Or you can use them in cases where a dedicated GPU won’t fit, like super-small mini ITX-based desktops.

The main argument that AMD makes is the affordability one, comparing the price of a Ryzen 8700G to the price of an Intel Core i5-13400F and a GeForce GTX 1650 GPU (this card is nearly five years old, but it remains Nvidia’s newest and best GPU available for less than $200).

Let’s check on performance first, and then we’ll revisit pricing.

Ryzen 8000G review: An integrated GPU that can beat a graphics card, for a price Read More »