renewable energy

coal-likely-to-go-away-even-without-epa’s-power-plant-regulations

Coal likely to go away even without EPA’s power plant regulations


Set to be killed by Trump, the rules mostly lock in existing trends.

In April last year, the Environmental Protection Agency released its latest attempt to regulate the carbon emissions of power plants under the Clean Air Act. It’s something the EPA has been required to do since a 2007 Supreme Court decision that settled a case that started during the Clinton administration. The latest effort seemed like the most aggressive yet, forcing coal plants to retire or install carbon capture equipment and making it difficult for some natural gas plants to operate without capturing carbon or burning green hydrogen.

Yet, according to a new analysis published in Thursday’s edition of Science, they wouldn’t likely have a dramatic effect on the US’s future emissions even if they were to survive a court challenge. Instead, the analysis suggests the rules serve more like a backstop to prevent other policy changes and increased demand from countering the progress that would otherwise be made. This is just as well, given that the rules are inevitably going to be eliminated by the incoming Trump administration.

A long time coming

The net result of a number of Supreme Court decisions is that greenhouse gasses are pollutants under the Clean Air Act, and the EPA needed to determine whether they posed a threat to people. George W. Bush’s EPA dutifully performed that analysis but sat on the results until its second term ended, leaving it to the Obama administration to reach the same conclusion. The EPA went on to formulate rules for limiting carbon emissions on a state-by-state basis, but these were rapidly made irrelevant because renewable power and natural gas began displacing coal even without the EPA’s encouragement.

Nevertheless, the Trump administration replaced those rules with ones designed to accomplish even less, which were thrown out by a court just before Biden’s inauguration. Meanwhile, the Supreme Court stepped in to rule on the now-even-more-irrelevant Obama rules, determining that the EPA could only regulate carbon emissions at the level of individual power plants rather than at the level of the grid.

All of that set the stage for the latest EPA rules, which were formulated by the Biden administration’s EPA. Forced by the court to regulate individual power plants, the EPA allowed coal plants that were set to retire within the decade to continue to operate as they have. Anything that would remain operational longer would need to either switch fuels or install carbon capture equipment. Similarly, natural gas plants were regulated based on how frequently they were operational; those that ran less than 40 percent of the time could face significant new regulations. More than that, and they’d have to capture carbon or burn a fuel mixture that is primarily hydrogen produced without carbon emissions.

While the Biden EPA’s rules are currently making their way through the courts, they’re sure to be pulled in short order by the incoming Trump administration, making the court case moot. Nevertheless, people had started to analyze their potential impact before it was clear there would be an incoming Trump administration. And the analysis is valuable in the sense that it will highlight what will be lost when the rules are eliminated.

By some measures, the answer is not all that much. But the answer is also very dependent upon whether the Trump administration engages in an all-out assault on renewable energy.

Regulatory impact

The work relies on the fact that various researchers and organizations have developed models to explore how the US electric grid can economically meet demand under different conditions, including different regulatory environments. The researchers obtained nine of them and ran them with and without the EPA’s proposed rules to determine their impact.

On its own, eliminating the rules has a relatively minor impact. Without the rules, the US grid’s 2040 carbon dioxide emissions would end up between 60 and 85 percent lower than they were in 2005. With the rules, the range shifts to between 75 and 85 percent—in essence, the rules reduce the uncertainty about the outcomes that involve the least change.

That’s primarily because of how they’re structured. Mostly, they target coal plants, as these account for nearly half of the US grid’s emissions despite supplying only about 15 percent of its power. They’ve already been closing at a rapid clip, and would likely continue to do so even without the EPA’s encouragement.

Natural gas plants, the other major source of carbon emissions, would primarily respond to the new rules by operating less than 40 percent of the time, thus avoiding stringent regulation while still allowing them to handle periods where renewable power underproduces. And we now have a sufficiently large fleet of natural gas plants that demand can be met without a major increase in construction, even with most plants operating at just 40 percent of their rated capacity. The continued growth of renewables and storage also contributes to making this possible.

One irony of the response seen in the models is that it suggests that two key pieces of the Inflation Reduction Act (IRA) are largely irrelevant. The IRA provides benefits for the deployment of carbon capture and the production of green hydrogen (meaning hydrogen produced without carbon emissions). But it’s likely that, even with these credits, the economics wouldn’t favor the use of these technologies when alternatives like renewables plus storage are available. The IRA also provides tax credits for deploying renewables and storage, pushing the economics even further in their favor.

Since not a lot changes, the rules don’t really affect the cost of electricity significantly. Their presence boosts costs by an estimated 0.5 to 3.7 percent in 2050 compared to a scenario where the rules aren’t implemented. As a result, the wholesale price of electricity changes by only two percent.

A backstop

That said, the team behind the analysis argues that, depending on other factors, the rules could play a significant role. Trump has suggested he will target all of Biden’s energy policies, and that would include the IRA itself. Its repeal could significantly slow the growth of renewable energy in the US, as could continued problems with expanding the grid to incorporate new renewable capacity.

In addition, the US is seeing demand for electricity rise at a faster pace in 2023 than in the decade leading up to it. While it’s still unclear whether that’s a result of new demand or simply weather conditions boosting the use of electricity in heating and cooling, there are several factors that could easily boost the use of electricity in coming years: the electrification of transport, rising data center use, and the electrification of appliances and home heating.

Should these raise demand sufficiently, then it could make continued coal use economical in the absence of the EPA rules. “The rules … can be viewed as backstops against higher emissions outcomes under futures with improved coal plant economics,” the paper suggests, “which could occur with higher demand, slower renewables deployment from interconnection and permitting delays, or higher natural gas prices.”

And it may be the only backstop we have. The report also notes that a number of states have already set aggressive emissions reduction targets, including some for net zero by 2050. But these don’t serve as a substitute for federal climate policy, given that the states that are taking these steps use very little coal in the first place.

Science, 2025. DOI: 10.1126/science.adt5665  (About DOIs).

Photo of John Timmer

John is Ars Technica’s science editor. He has a Bachelor of Arts in Biochemistry from Columbia University, and a Ph.D. in Molecular and Cell Biology from the University of California, Berkeley. When physically separated from his keyboard, he tends to seek out a bicycle, or a scenic location for communing with his hiking boots.

Coal likely to go away even without EPA’s power plant regulations Read More »

desalination-system-adjusts-itself-to-work-with-renewable-power

Desalination system adjusts itself to work with renewable power


Instead of needing constant power, new system adjusts to use whatever is available.

Image of a small tanker truck parked next to a few shipping container shaped structures, which are connected by pipes to storage tanks.

Mobile desalination plants might be easier to operate with renewable power. Credit: Ismail BELLAOUALI

Fresh water we can use for drinking or agriculture is only about 3 percent of the global water supply, and nearly 70 percent of that is trapped in glaciers and ice caps. So far, that was enough to keep us going, but severe draughts have left places like Jordan, Egypt, sub-Saharan Africa, Spain, and California with limited access to potable water.

One possible solution is to tap into the remaining 97 percent of the water we have on Earth. The problem is that this water is saline, and we need to get the salt out of it to make it drinkable. Desalination is also an energy-expensive process. But MIT researchers led by Jonathan Bessette might have found an answer to that. They built an efficient, self-regulating water desalination system that runs on solar power alone with no need for batteries or a connection to the grid.

Probing the groundwaters

Oceans are the most obvious source of water for desalination. But they are a good option only for a small portion of people who live in coastal areas. Most of the global population—more or less 60 percent—lives farther than 100 kilometers from the coast, which makes using desalinated ocean water infeasible. So, Bessette and his team focused on groundwater instead.

“In terms of global demand, about 50 percent of low- to middle-income countries rely on groundwater,” Bessette says. This groundwater is trapped in underground reservoirs, abundant, and, in most places, present at depths below 300 meters. It comes mostly from the rain that penetrates the ground and fills empty spaces left by fractured rock formations. Sadly, as the rainwater seeps down it also picks up salts from the soil on its way. As a result, in New Mexico, for example, around 75 percent of groundwater is brackish, meaning less salty than seawater, but still too salty to drink.

Getting rid of the salt

We already have the ability to get the salt back out. “There are two broad categories within desalination technologies. The first is thermal and the other is based on using membranes,” Bessette explains.

Thermal desalination is something we figured out ages ago. You just boil the water and condense the steam, which leaves the salt behind. Boiling, however, needs lots of energy. Bringing 1 liter of room temperature water to 100° Celsius costs around 330 kilojoules of energy, assuming there’s no heat lost in the process. If you want a sense of how much energy that is, stop using your electric kettle for a month and see how your bill shrinks.

“So, around 100 years ago we developed reverse osmosis and electrodialysis, which are two membrane-based desalination technologies. This way, we reduced the power consumption by a factor of 10,” Bessette claims.

Reverse osmosis is a pressure-driven process; you push the water through a membrane that works like a very fine sieve that lets the molecules of water pass but stops other things like salts. Technologically advanced implementations of this idea are widely used at industrial facilities such as the Sydney Desalination Plant in Australia. Reverse osmosis today is the go-to technology when you want to desalinate water at scale. But it has its downsides.

“The issue is reverse osmosis requires a lot of pretreatment. We have to treat the water down to a pretty good quality, making sure the physical, chemical, or biological foul doesn’t end up on the membrane before we do the desalination process,” says Bessette. Another thing is that reverse osmosis relies on pressure, so it requires a steady supply of power to maintain this pressure, which is difficult to achieve in places where the grid is not reliable. Sensitivity to power fluctuations also makes it challenging to use with renewable energy sources like wind or solar. This is why to make their system work on solar energy alone, Bessette’s team went for electrodialysis.

Synching with the Sun

“Unlike reverse osmosis, electrodialysis is an electrically driven process,” Bessette says. The membranes are arranged in such a way that the water is not pushed through them but flows along them. On both sides of those membranes are positive and negative electrodes that create an electric field, which draws salt ions through the membranes and out of the water.

Off-grid desalination systems based on electrodialysis operate at constant power levels like toasters or other appliances, which means they require batteries to even out renewable energy’s fluctuations. Using batteries, in most cases, made them too expensive for the low-income communities that need them the most. Bessette and his colleagues solved that by designing a clever control system.

The two most important parameters in electrodialysis desalination are the flow rate of the water and the power you apply to the electrodes. To make the process efficient, you need to match those two. The advantage of electrodialysis is that it can operate at different power levels. When you have more available power, you can just pump more water through the system. When you have less power, you can slow the system down by reducing the water flow rate. You’ll produce less freshwater, but you won’t break anything this way.

Bessette’s team simplified the control down to two feedback loops. The first outer loop was tracking the power coming from the solar panels. On a sunny day, when the panels generated plenty of power, it fed more water into the system; when there was less power, it fed less water. The second inner loop tracked flow rate. When the flow rate was high, it applied more power to the electrodes; when it was low, it applied less power. The trick was to apply maximum available power while avoiding splitting the water into hydrogen and oxygen.

Once Bessette and his colleagues figured out the control system, they built a prototype desalination device. And it worked, with very little supervision, for half a year.

Water production at scale

Bessette’s prototype system, complete with solar panels, pumps, electronics, and an electrodialysis stack with all the electrodes and membranes, was compact enough to fit in a trailer. They took this trailer to the Brackish Groundwater National Research Facility in Alamogordo, New Mexico, and ran it for six months. On average, it desalinated around 5,000 liters of water per day—enough for a community of roughly 2,000 people.

“The nice thing with our technology is it is more of a control method. The concept can be scaled anywhere from this small community treatment system all the way to large-scale plants,” Bessette says. He said his team is now busy building an equivalent of a single water treatment train, a complete water desalination unit designed for big municipal water supplies. “Multiple such [systems] are implemented in such plants to increase the scale of water desalination process,” Bessette says. But he also thinks about small-scale solutions that can be fitted on a pickup truck and deployed rapidly in crisis scenarios like natural disasters.

“We’re also working on building a company. Me, two other staff engineers, and our professor. We’re really hoping to bring this technology to market and see that it reaches a lot of people. Our aim is to provide clean drinking water to folks in remote regions around the world,” Bessette says.

Nature Water, 2024.  DOI: 10.1038/s44221-024-00314-6

Photo of Jacek Krywko

Jacek Krywko is a freelance science and technology writer who covers space exploration, artificial intelligence research, computer science, and all sorts of engineering wizardry.

Desalination system adjusts itself to work with renewable power Read More »

for-the-first-time-since-1882,-uk-will-have-no-coal-fired-power-plants

For the first time since 1882, UK will have no coal-fired power plants

Into the black —

A combination of government policy and economics spells the end of UK’s coal use.

Image of cooling towers and smoke stacks against a dusk sky.

Enlarge / The Ratcliffe-on-Soar plant is set to shut down for good today.

On Monday, the UK will see the closure of its last operational coal power plant, Ratcliffe-on-Soar, which has been operating since 1968. The closure of the plant, which had a capacity of 2,000 megawatts, will bring an end to the history of the country’s coal use, which started with the opening of the first coal-fired power station in 1882. Coal played a central part in the UK’s power system in the interim, in some years providing over 90 percent of its total electricity.

But a number of factors combined to place coal in a long-term decline: the growth of natural gas-powered plants and renewables, pollution controls, carbon pricing, and a government goal to hit net-zero greenhouse gas emissions by 2050.

From boom to bust

It’s difficult to overstate the importance of coal to the UK grid. It was providing over 90 percent of the UK’s electricity as recently as 1956. The total amount of power generated continued to climb well after that, reaching a peak of 212 terawatt hours of production by 1980. And the construction of new coal plants was under consideration as recently as the late 2000s. According to the organization Carbon Brief’s excellent timeline of coal use in the UK, continuing the use of coal with carbon capture was given consideration.

But several factors slowed the use of fuel ahead of any climate goals set out by the UK, some of which have parallels to the US’s situation. The European Union, which included the UK at the time, instituted new rules to address acid rain, which raised the cost of coal plants. In addition, the exploitation of oil and gas deposits in the North Sea provided access to an alternative fuel. Meanwhile, major gains in efficiency and the shift of some heavy industry overseas cut demand in the UK significantly.

Through their effect on coal use, these changes also lowered employment in coal mining. The mining sector has sometimes been a significant force in UK politics, but the decline of coal reduced the number of people employed in the sector, reducing its political influence.

These had all reduced the use of coal even before governments started taking any aggressive steps to limit climate change. But, by 2005, the EU implemented a carbon trading system that put a cost on emissions. By 2008, the UK government adopted national emissions targets, which have been maintained and strengthened since then by both Labour and Conservative governments up until Rishi Sunak, who was voted out of office before he had altered the UK’s trajectory. What started as a pledge for a 60 percent reduction in greenhouse gas emissions by 2050 now requires the UK to hit net zero by that date.

Renewables, natural gas, and efficiency have all squeezed coal off the UK grid.

Enlarge / Renewables, natural gas, and efficiency have all squeezed coal off the UK grid.

These have included a floor on the price of carbon that ensures fossil-powered plants pay a cost for emissions that’s significant enough to promote the transition to renewables, even if prices in the EU’s carbon trading scheme are too low for that. And that transition has been rapid, with the total generations by renewables nearly tripling in the decade since 2013, heavily aided by the growth of offshore wind.

How to clean up the power sector

The trends were significant enough that, in 2015, the UK announced that it would target the end of coal in 2025, despite the fact that the first coal-free day on the grid wouldn’t come until two years after. But two years after that landmark, however, the UK was seeing entire weeks where no coal-fired plants were active.

To limit the worst impacts of climate change, it will be critical for other countries to follow the UK’s lead. So it’s worthwhile to consider how a country that was committed to coal relatively recently could manage such a rapid transition. There are a few UK-specific factors that won’t be possible to replicate everywhere. The first is that most of its coal infrastructure was quite old—Ratcliffe-on-Soar dates from the 1960s—and so it required replacement in any case. Part of the reason for its aging coal fleet was the local availability of relatively cheap natural gas, something that might not be true elsewhere, which put economic pressure on coal generation.

Another key factor is that the ever-shrinking number of people employed by coal power didn’t exert significant pressure on government policies. Despite the existence of a vocal group of climate contrarians in the UK, the issue never became heavily politicized. Both Labour and Conservative governments maintained a fact-based approach to climate change and set policies accordingly. That’s notably not the case in countries like the US and Australia.

But other factors are going to be applicable to a wide variety of countries. As the UK was moving away from coal, renewables became the cheapest way to generate power in much of the world. Coal is also the most polluting source of electrical power, providing ample reasons for regulation that have little to do with climate. Forcing coal users to pay even a fraction of its externalized costs on human health and the environment serve to make it even less economical compared to alternatives.

If these later factors can drive a move away from coal despite government inertia, then it can pay significant dividends in the fight to limit climate change. Inspired in part by the success in moving its grid off coal, the new Labour government in the UK has moved up its timeline for decarbonizing its power sector to 2030 (up from the previous Conservative government’s target of 2035).

For the first time since 1882, UK will have no coal-fired power plants Read More »

us-grid-adds-batteries-at-10x-the-rate-of-natural-gas-in-first-half-of-2024

US grid adds batteries at 10x the rate of natural gas in first half of 2024

In transition —

By year’s end, 96 percent of the US’s grid additions won’t add carbon to the atmosphere.

US grid adds batteries at 10x the rate of natural gas in first half of 2024

While solar power is growing at an extremely rapid clip, in absolute terms, the use of natural gas for electricity production has continued to outpace renewables. But that looks set to change in 2024, as the US Energy Information Agency (EIA) has run the numbers on the first half of the year and found that wind, solar, and batteries were each installed at a pace that dwarfs new natural gas generators. And the gap is expected to get dramatically larger before the year is over.

Solar, batteries booming

According to the EIA’s numbers, about 20 GW of new capacity was added in the first half of this year, and solar accounts for 60 percent of it. Over a third of the solar additions occurred in just two states, Texas and Florida. There were two projects that went live that were rated at over 600 MW of capacity, one in Texas, the other in Nevada.

Next up is batteries: The US saw 4.2 additional gigawatts of battery capacity during this period, meaning over 20 percent of the total new capacity. (Batteries are treated as the equivalent of a generating source by the EIA since they can dispatch electricity to the grid on demand, even if they can’t do so continuously.) Texas and California alone accounted for over 60 percent of these additions; throw in Arizona and Nevada, and you’re at 93 percent of the installed capacity.

The clear pattern here is that batteries are going where the solar is, allowing the power generated during the peak of the day to be used to meet demand after the sun sets. This will help existing solar plants avoid curtailing power production during the lower-demand periods in the spring and fall. In turn, this will improve the economic case for installing additional solar in states where its production can already regularly exceed demand.

Wind power, by contrast, is running at a more sedate pace, with only 2.5 GW of new capacity during the first six months of 2024. And for likely the last time this decade, additional nuclear power was placed on the grid, at the fourth 1.1 GW reactor (and second recent build) at the Vogtle site in Georgia. The only other additions came from natural gas-powered facilities, but these totaled just 400 MW, or just 2 percent of the total of new capacity.

Wind, solar, and batteries are the key contributors to new capacity in 2024.

Enlarge / Wind, solar, and batteries are the key contributors to new capacity in 2024.

The EIA has also projected capacity additions out to the end of 2024 based on what’s in the works, and the overall shape of things doesn’t change much. However, the pace of installation goes up as developers rush to get their project operational within the current tax year. The EIA expects a bit over 60 GW of new capacity to be installed by the end of the year, with 37 GW of that coming in the form of solar power. Battery growth continues at a torrid pace, with 15 GW expected, or roughly a quarter of the total capacity additions for the year.

Wind will account for 7.1 GW of new capacity, and natural gas 2.6 GW. Throw in the contribution from nuclear, and 96 percent of the capacity additions of 2024 are expected to operate without any carbon emissions. Even if you choose to ignore the battery additions, the fraction of carbon-emitting capacity added remains extremely small, at only 6 percent.

Gradual shifts on the grid

Obviously, these numbers represent the peak production of these sources. Over a year, solar produces at about 25 percent of its rated capacity in the US, and wind at about 35 percent. The former number will likely decrease over time as solar becomes inexpensive enough to make economic sense in places that don’t receive as much sunshine. By contrast, wind’s capacity factor may increase as more offshore wind farms get completed. For natural gas, many of the newer plants are being designed to operate erratically so that they can provide power when renewables are under-producing.

A clearer sense of what’s happening comes from looking at the generating sources that are being retired. The US saw 5.1 GW of capacity drop off the grid in the first half of 2024, and aside from a 0.2 GW of “other,” all of it was fossil fuel-powered, including 2.1 GW of coal capacity and 2.7 GW of natural gas. The latter includes a large 1.4 GW natural gas plant in Massachusetts.

But total retirements are expected to be just 7.5 GWO this year—less than was retired in the first half of 2023. That’s likely because the US saw electricity use rise by 5 percent in the first half of 2025, based on numbers the EIA released on Friday (note that this link will take you to more recent data a month from now). It’s unclear how much of that was due to weather—a lot of the country saw heat that likely boosted demand for air conditioning—and how much could be accounted for by rising use in data centers and for the electrification of transit and appliances.

That data release includes details on where the US got its electricity during the first half of 2024. The changes aren’t dramatic compared to where they were when we looked at things last month. Still, what has changed over the past month is good news for renewables. In May, wind and solar production were up 8.4 percent compared to the same period the year before. By June, they were up by over 12 percent.

Given the EIA’s expectations for the rest of the year, the key question is likely to be whether the pace of new solar installations is going to be enough to offset the drop in production that will occur as the US shifts to the winter months.

US grid adds batteries at 10x the rate of natural gas in first half of 2024 Read More »

us-solar-production-soars-by-25-percent-in-just-one-year

US solar production soars by 25 percent in just one year

Solar sailing —

2024 is seeing the inevitable outcome of the building boom in solar farms.

A single construction person set in the midst of a sea of solar panels.

With the plunging price of photovoltaics, the construction of solar plants has boomed in the US. Last year, for example, the US’s Energy Information Agency expected that over half of the new generating capacity would be solar, with a lot of it coming online at the very end of the year for tax reasons. Yesterday, the EIA released electricity generation numbers for the first five months of 2024, and that construction boom has seemingly made itself felt: generation by solar power has shot up by 25 percent compared to just one year earlier.

The EIA breaks down solar production according to the size of the plant. Large grid-scale facilities have their production tracked, giving the EIA hard numbers. For smaller installations, like rooftop solar on residential and commercial buildings, the agency has to estimate the amount produced, since the hardware often resides behind the metering equipment, so only shows up via lower-than-expected consumption.

In terms of utility-scale production, the first five months of 2024 saw it rise by 29 percent compared to the same period in the year prior. Small-scale solar was “only” up by 18 percent, with the combined number rising by 25.3 percent.

Most other generating sources were largely flat, year over year. This includes coal, nuclear, and hydroelectric, all of which changed by 2 percent or less. Wind was up by 4 percent, while natural gas rose by 5 percent. Because natural gas is the largest single source of energy on the grid, however, its 5 percent rise represents a lot of electrons—slightly more than the total increase in wind and solar.

US electricity sources for January through May of 2024. Note that the numbers do not add up to 100 percent due to the omission of minor contributors like geothermal and biomass.

Enlarge / US electricity sources for January through May of 2024. Note that the numbers do not add up to 100 percent due to the omission of minor contributors like geothermal and biomass.

John Timmer

Overall, energy use was up by about 4 percent compared to the same period in 2023. This could simply be a matter of changing weather conditions that require more heating or cooling. But there have been several trends that should increase electricity usage: the rise of bitcoin mining, the growth of data centers, and the electrification of appliances and transport. So far, that hasn’t shown up in the actual electricity usage in the US, which has stayed largely flat for decades. It could be possible that 2024 is the year when usage starts going up again.

More to come

It’s worth noting that this data all comes from before some of the most productive months of the year for solar power; overall, the EIA is predicting that solar production could rise by as much as 42 percent in 2024.

So, where does this leave the US’s efforts to decarbonize? If we combine nuclear, hydro, wind, and solar under the umbrella of carbon-free power sources, then these account for about 45 percent of US electricity production so far this year. Within that category, wind and solar now produce more than three times hydroelectric, and roughly the same amount as nuclear.

Wind and solar have also produced 1.3 times as much electricity as coal so far in 2024, with solar alone now producing about half as much as coal. That said, natural gas still produces twice as much electricity as wind and solar combined, indicating we still have a long way to go to decarbonize our grid.

When you look at the generating facilities that will be built over the next 12 months, it's difficult not to see a pattern.

Enlarge / When you look at the generating facilities that will be built over the next 12 months, it’s difficult not to see a pattern.

Still, we can expect solar’s productivity to climb even before the year is out. That’s in part because we don’t yet have numbers for June, the month that contains the longest day of the year. But it’s also because the construction boom shows no sign of stopping. As noted here, solar and wind deployments are expected to dwarf everything else over the coming year. The items in gray on the map primarily represent battery storage, which will allow us to make better use of those renewables, as well.

By contrast, facilities that are scheduled for retirement over the next year largely consist of coal and natural gas plants.

US solar production soars by 25 percent in just one year Read More »

will-space-based-solar-power-ever-make-sense?

Will space-based solar power ever make sense?

Artist's depiction of an astronaut servicing solar panels against the black background of space.

Is space-based solar power a costly, risky pipe dream? Or is it a viable way to combat climate change? Although beaming solar power from space to Earth could ultimately involve transmitting gigawatts, the process could be made surprisingly safe and cost-effective, according to experts from Space Solar, the European Space Agency, and the University of Glasgow.

But we’re going to need to move well beyond demonstration hardware and solve a number of engineering challenges if we want to develop that potential.

Designing space-based solar

Beaming solar energy from space is not new; telecommunications satellites have been sending microwave signals generated by solar power back to Earth since the 1960s. But sending useful amounts of power is a different matter entirely.

“The idea [has] been around for just over a century,” said Nicol Caplin, deep space exploration scientist at the ESA, on a Physics World podcast. “The original concepts were indeed sci-fi. It’s sort of rooted in science fiction, but then, since then, there’s been a trend of interest coming and going.”

Researchers are scoping out multiple designs for space-based solar power. Matteo Ceriotti, senior lecturer in space systems engineering at the University of Glasgow, wrote in The Conversation that many designs have been proposed.

The Solaris initiative is exploring two possible technologies, according to Sanjay Vijendran, lead for the Solaris initiative at the ESA: one that involves beaming microwaves from a station in geostationary orbit down to a receiver on Earth and another that involves using immense mirrors in a lower orbit to reflect sunlight down onto solar farms. He said he thinks that both of these solutions are potentially valuable. Microwave technology has drawn wider interest and was the main focus of these interviews. It has enormous potential, although high-frequency radio waves can also be used.

“You really have a source of 24/7 clean power from space,” Vijendran said. The power can be transmitted regardless of weather conditions because of the frequency of the microwaves.

“A 1-gigawatt power plant in space would be comparable to the top five solar farms on earth. A power plant with a capacity of 1 gigawatt could power around 875,000 households for one year,” said Andrew Glester, host of the Physics World podcast.

But we’re not ready to deploy anything like this. “It will be a big engineering challenge,” Caplin said. There are a number of physical hurdles involved in successfully building a solar power station in space.

Using microwave technology, the solar array for an orbiting power station that generates a gigawatt of power would have to be over 1 square kilometer in size, according to a Nature article by senior reporter Elizabeth Gibney. “That’s more than 100 times the size of the International Space Station, which took a decade to build.” It would also need to be assembled robotically, since the orbiting facility would be uncrewed.

The solar cells would need to be resilient to space radiation and debris. They would also need to be efficient and lightweight, with a power-to-weight ratio 50 times more than the typical silicon solar cell, Gibney wrote. Keeping the cost of these cells down is another factor that engineers have to take into consideration. Reducing the losses during power transmission is another challenge, Gibney wrote. The energy conversion rate needs to be improved to 10–15 percent, according to the ESA. This would require technical advances.

Space Solar is working on a satellite design called CASSIOPeiA, which Physics World describes as looking “like a spiral staircase, with the photovoltaic panels being the ‘treads’ and the microwave transmitters—rod-shaped dipoles—being the ‘risers.’” It has a helical shape with no moving parts.

“Our system’s comprised of hundreds of thousands of the same dinner-plate-sized power modules. Each module has the PV which converts the sun’s energy into DC electricity,” said Sam Adlen, CEO of Space Solar.

“That DC power then drives electronics to transmit the power… down toward Earth from dipole antennas. That power up in space is converted to [microwaves] and beamed down in a coherent beam down to the Earth where it’s received by a rectifying antenna, reconverted into electricity, and input to the grid.”

Adlen said that robotics technologies for space applications, such as in-orbit assembly, are advancing rapidly.

Ceriotti wrote that SPS-ALPHA, another design, has a large solar-collector structure that includes many heliostats, which are modular small reflectors that can be moved individually. These concentrate sunlight onto separate power-generating modules, after which it’s transmitted back to Earth by yet another module.

Will space-based solar power ever make sense? Read More »

bipartisan-consensus-in-favor-of-renewable-power-is-ending

Bipartisan consensus in favor of renewable power is ending

End of an era —

The change is most pronounced in those over 50 years old.

Image of solar panels on a green grassy field, with blue sky in the background.

One of the most striking things about the explosion of renewable power that’s happening in the US is that much of it is going on in states governed by politicians who don’t believe in the problem wind and solar are meant to address. Acceptance of the evidence for climate change tends to be lowest among Republicans, yet many of the states where renewable power has boomed—wind in Wyoming and Iowa, solar in Texas—are governed by Republicans.

That’s partly because, up until about 2020, there was a strong bipartisan consensus in favor of expanding wind and solar power, with support above 75 percent among both parties. Since then, however, support among Republicans has dropped dramatically, approaching 50 percent, according to polling data released this week.

Renewables enjoyed solid Republican support until recently.

Renewables enjoyed solid Republican support until recently.

To a certain extent, none of this should be surprising. The current leader of the Republican Party has been saying that wind turbines cause cancer and offshore wind is killing whales. And conservative-backed groups have been spreading misinformation in order to drum up opposition to solar power facilities.

Meanwhile, since 2022, the Inflation Reduction Act has been promoted as one of the Biden administration’s signature accomplishments and has driven significant investments in renewable power, much of it in red states. Negative partisanship is undoubtedly contributing to this drop in support.

One striking thing about the new polling data, gathered by the Pew Research Center, is how dramatically it skews with age. When given a choice between expanding fossil fuel production or expanding renewable power, Republicans under the age of 30 favored renewables by a 2-to-1 margin. Republicans over 30, in contrast, favored fossil fuels by margins that increased with age, topping out at a three-to-one margin in favor of fossil fuels among those in the 65-and-over age group. The decline in support occurred in those over 50 starting in 2020; support held steady among younger groups until 2024, when the 30–49 age group started moving in favor of fossil fuels.

Among younger Republicans, support for renewable energy remains high.

Among younger Republicans, support for renewable energy remains high.

Democrats, by contrast, break in favor of renewables by 75 points, with little difference across age groups and no indication of significant change over time. They’re also twice as likely to think a solar farm will help the local economy than Republicans are.

Similar differences were apparent when Pew asked about policies meant to encourage the sale of electric vehicles, with 83 percent of Republicans opposed to having half of cars sold be electric in 2032. By contrast, nearly two-thirds of Democrats favored this policy.

There’s also a rural/urban divide apparent (consistent with Republicans getting more support from rural voters). Forty percent of urban residents felt that a solar farm would improve the local economy; only 25 percent of rural residents agreed. Rural residents were also more likely to say solar farms made the landscape unattractive and take up too much space. (Suburban participants were consistently in between rural and urban participants.)

What’s behind these changes? The single biggest factor appears to be negative partisanship combined with the election of Joe Biden.

For Republicans, 2020 represented an inflection point in terms of support for different types of energy. That wasn't true for Democrats.

For Republicans, 2020 represented an inflection point in terms of support for different types of energy. That wasn’t true for Democrats.

Among Republicans, support for every single form of power started to change in 2020—fossil fuels, renewables, and nuclear. Among Democrats, that’s largely untrue. Their high level of support for renewable power and aversion to fossil fuels remained largely unchanged. The lone exception is nuclear power, where support rose among both Democrats and Republicans (the Biden administration has adopted a number of pro-nuclear policies).

This isn’t to say that non-political factors are playing no role. The rapid expansion of renewable power means that many more people are seeing facilities open near them, and viewing that as an indication of a changing society. Some degree of backlash was almost inevitable and, in this case, the close ties between conservative lobbyists and fossil fuel interests were ready to take advantage of it.

Bipartisan consensus in favor of renewable power is ending Read More »

40%-of-us-electricity-is-now-emissions-free

40% of US electricity is now emissions-free

Decarbonizing, but slowly —

Good news as natural gas, coal, and solar see the biggest changes.

Image of electric power lines with a power plant cooling tower in the background.

Just before the holiday break, the US Energy Information Agency released data on the country’s electrical generation. Because of delays in reporting, the monthly data runs through October, so it doesn’t provide a complete picture of the changes we’ve seen in 2023. But some of the trends now seem locked in for the year: wind and solar are likely to be in a dead heat with coal, and all carbon-emissions-free sources combined will account for roughly 40 percent of US electricity production.

Tracking trends

Having data through October necessarily provides an incomplete picture of 2023. There are several factors that can cause the later months of the year to differ from the earlier ones. Some forms of generation are seasonal—notably solar, which has its highest production over the summer months. Weather can also play a role, as unusually high demand for heating in the winter months could potentially require that older fossil fuel plants be brought online. It also influences production from hydroelectric plants, creating lots of year-to-year variation.

Finally, everything’s taking place against a backdrop of booming construction of solar and natural gas. So, it’s entirely possible that we will have built enough new solar over the course of the year to offset the seasonal decline at the end of the year.

Let’s look at the year-to-date data to get a sense of the trends and where things stand. We’ll then check the monthly data for October to see if any of those trends show indications of reversing.

The most important takeaway is that energy use is largely flat. Overall electricity production year-to-date is down by just over one percent from 2022, though demand was higher this October compared to last year. This is in keeping with a general trend of flat-to-declining electricity use as greater efficiency is offsetting factors like population growth and expanding electrification.

That’s important because it means that any newly added capacity will displace the use of existing facilities. And, at the moment, that displacement is happening to coal.

Can’t hide the decline

At this point last year, coal had produced nearly 20 percent of the electricity in the US. This year, it’s down to 16.2 percent, and only accounts for 15.5 percent of October’s production. Wind and solar combined are presently at 16 percent of year-to-date production, meaning they’re likely to be in a dead heat with coal this year and easily surpass it next year.

Year-to-date, wind is largely unchanged since 2022, accounting for about 10 percent of total generation, and it’s up to over 11 percent in the October data, so that’s unlikely to change much by the end of the year. Solar has seen a significant change, going from five to six percent of the total electricity production (this figure includes both utility-scale generation and the EIA’s estimate of residential production). And it’s largely unchanged in October alone, suggesting that new construction is offsetting some of the seasonal decline.

Coal is being squeezed out by natural gas, with an assist from renewables.

Enlarge / Coal is being squeezed out by natural gas, with an assist from renewables.

Eric Bangeman/Ars Technica

Hydroelectric production has dropped by about six percent since last year, causing it to slip from 6.1 percent to 5.8 percent of the total production. Depending on the next couple of months, that may allow solar to pass hydro on the list of renewables.

Combined, the three major renewables account for about 22 percent of year-to-date electricity generation, up about 0.5 percent since last year. They’re up by even more in the October data, placing them well ahead of both nuclear and coal.

Nuclear itself is largely unchanged, allowing it to pass coal thanks to the latter’s decline. Its output has been boosted by a new, 1.1 Gigawatt reactor that come online this year (a second at the same site, Vogtle in Georgia, is set to start commercial production at any moment). But that’s likely to be the end of new nuclear capacity for this decade; the challenge will be keeping existing plants open despite their age and high costs.

If we combine nuclear and renewables under the umbrella of carbon-free generation, then that’s up by nearly 1 percent since 2022 and is likely to surpass 40 percent for the first time.

The only thing that’s keeping carbon-free power from growing faster is natural gas, which is the fastest-growing source of generation at the moment, going from 40 percent of the year-to-date total in 2022 to 43.3 percent this year. (It’s actually slightly below that level in the October data.) The explosive growth of natural gas in the US has been a big environmental win, since it creates the least particulate pollution of all the fossil fuels, as well as the lowest carbon emissions per unit of electricity. But its use is going to need to start dropping soon if the US is to meet its climate goals, so it will be critical to see whether its growth flat lines over the next few years.

Outside of natural gas, however, all the trends in US generation are good, especially considering that the rise of renewable production would have seemed like an impossibility a decade ago. Unfortunately, the pace is currently too slow for the US to have a net-zero electric grid by the end of the decade.

40% of US electricity is now emissions-free Read More »

government-makes-an-app-to-cut-down-government’s-role-in-solar-permitting

Government makes an app to cut down government’s role in solar permitting

Aerial view of houses with roof-top solar panels.

Enlarge / NREL has taken some of the hassle out of getting permits for projects like these.

Can government agencies develop software to help cut bureaucratic red tape through automation? The answer is “yes,” according to the promising results achieved by the National Renewable Energy Laboratory (NREL), which has saved thousands of hours of labor for local governments by creating a tool called SolarAPP+ (Solar Automated Permit Processing Plus) for residential solar permits.

“We estimate that automatic SolarAPP+ permitting saved around 9,900 hours of… staff time in 2022,” NREL staff wrote in the report, “SolarAPP+ Performance Review (2022 Data). “Based on median timelines, a typical SolarAPP+ project is permitted and inspected 13 business days sooner than traditional projects… SolarAPP+ has eliminated over 134,000 days in permitting-related delays.”

SolarAPP+ automates over 100 compliance checks in the permitting process that are usually the responsibility of city, county, or town employees, according to Jeff Cook, SolarAPP+ program lead at NREL and first author of the report. It can be more accurate, thorough, and efficient than a time-pressured local government employee would be.

Saving time and money

Sometimes, the cost of permitting can be higher than the cost of solar hardware, Cook said. It depends on the specifics of the project.

“We knew that residential rooftop solar volume was increasing across the country,” Cook said. “It took us… 20 years to get to a million PV installations. And I think we got to 2 million PV installations just a few years later. And so there’s a lot of solar volume out there. And the problem is that each one of those systems needs to be reviewed for code compliance. And so if you need a human to review that, you’ve got a million applications.”

“When regulations make it unnecessarily difficult for people to quickly install solar and storage systems, it hurts everyone,” said Senator Scott Wiener (D-Calif.) in a press statement. “It hurts those who want to install solar. And it hurts communities across California, which are being negatively impacted by climate change. We need to make it easier for people to use renewable energy—that’s just a no-brainer. Expediting solar permitting is something we can do to make this a reality.”

A coalition of stakeholders from the solar industry, the US Department of Energy, and the building code-development community requested that NREL develop the software, Cook said. The organizations represented included UL Solutions and the Interstate Renewable Energy Council. (UL Solutions is a company that addresses a broad range of safety issues; initially, it focused on fire and electrical safety.)

“What we identified is the community need for the software and we identified that there was a gap in the private sector,” Cook said. “There was no incentive to do it from any active members of the private sector, but a real potential opportunity or value to the public good if such a software existed and was publicly available and free for a local government to adopt.”

Cook estimates that hundreds of thousands of hours in plan review time would have been required to manually approve all of the residential solar permits in the United States in recent years. Approving a permit for a residential solar project can take local government staff 15 minutes to an hour, and around 30 percent of the applications are later revised.

A flood of applications

“It just inundates the staff with work that they have to do,” Cook said.

“We are seeing about 750 residential requests over the past 12 months, which is about double the number of applications we saw two years ago,” said Kate Gallego, mayor of Phoenix, at the SolarAPP+ Industry Roundtable. “When I ask people in industry what we can do to speed up deployment of solar, they ask, ‘Can you do permitting faster?’ We’re at about 30 days now. We want to get that permitted as fast as possible, but we don’t want to sacrifice safety, and we want to make sure we’re not just doing it quickly, but well. That’s why this partnership was very attractive to me.”

Up to five separate departments may review the permits—the ones that oversee structural, electrical, fire, planning, and zoning decisions, Cook said.

“There’s usually a queue,” Cook said. “Just because it takes the jurisdiction only 15 minutes to review doesn’t mean that you send it to them today—they review it an hour later and get back to you. The average is, across the country, a seven-day turnaround, but it can be 30 days plus. It really varies across the country depending on how much volume of solar is in that space.”

Government makes an app to cut down government’s role in solar permitting Read More »