paleontology

robo-dinosaur-scares-grasshoppers-to-shed-light-on-why-dinos-evolved-feathers

Robo-dinosaur scares grasshoppers to shed light on why dinos evolved feathers

What’s the point of half a wing? —

The feathers may have helped dinosaurs frighten and flush out prey.

Grasshoppers, beware! Robopteryx is here to flush you from your hiding place.

Enlarge / Grasshoppers, beware! Robopteryx is here to flush you from your hiding place.

Jinseok Park, Piotr Jablonski et al., 2024

Scientists in South Korea built a robotic dinosaur and used it to startle grasshoppers to learn more about why dinosaurs evolved feathers, according to a recent paper published in the journal Scientific Reports. The results suggest that certain dinosaurs may have employed a hunting strategy in which they flapped their proto-wings to flush out prey, and this behavior may have led to the evolution of larger and stiffer feathers.

As reported previously, feathers are the defining feature of birds, but that wasn’t always the case. For millions of years, various species of dinosaurs sported feathers, some of which have left behind fossilized impressions. For the most part, the feathers we’ve found have been attached to smaller dinosaurs, many of them along the lineage that gave rise to birds—although in 2012, scientists discovered three nearly complete skeletons of a “gigantic” feathered dinosaur species, Yutyrannus huali, related to the ancestors of Tyrannosaurus Rex.

Various types of dino-feathers have been found in the fossil record over the last 30 years, such as so-called pennaceous feathers (present in most modern birds). These were found on distal forelimbs of certain species like Caudipteryx, serving as proto-wings that were too small to use for flight, as well as around the tip of the tail as plumage. Paleontologists remain unsure of the function of pennaceous feathers—what use could there be for half a wing? A broad range of hypotheses have been proposed: foraging or hunting, pouncing or immobilizing prey, brooding, gliding, or wing-assisted incline running, among others.

Caudipteryx zoui skeleton at the Löwentor Museum in Stuttgart, Germany.” height=”475″ src=”https://cdn.arstechnica.net/wp-content/uploads/2024/02/dino2-640×475.jpg” width=”640″>

Enlarge / Mounted Caudipteryx zoui skeleton at the Löwentor Museum in Stuttgart, Germany.

Co-author Jinseok Park of Seoul National University in South Korea and colleagues thought the pennaceous feathers might have been used to flush out potential prey from hiding places so they could be more easily caught. It’s a strategy employed by certain modern bird species, like roadrunners, and typically involves a visual display of the plumage on wings and tails.

There is evidence that this flush-pursuit hunting strategy evolved multiple times. According to Park et al., it’s based on the “rare enemy effect,” i.e., certain prey (like insects) wouldn’t be capable of responding to different predators in different ways and would not respond effectively to an unusual flush-pursuit strategy. Rather than escaping a predator, the insects fly toward their own demise. “The use of plumage to flush prey could have increased the frequency of chase after escaping prey, thus amplifying the importance of plumage in drag-based or lift-based maneuvering for a successful pursuit,” the authors wrote.  “This, in turn, could have led to the larger and stiffer feathers for faster movements and more visual flush displays.”

To test their hypothesis, Park et al. constructed a robot dinosaur they dubbed “Robopteryx,” using Caudipteryx as a model. They built the robot’s body out of aluminum, with the proto-wings and tail plumage made from black paper and plastic ribbing. The head was made of black polystyrene, the wing folds were made of black elastic stocking, and the whole contraption was covered in felt. They scanned the scientific literature on Caudipteryx to determine resting posture angles and motion ranges. The motion of the forelimbs and tail was controlled by a mechanism controlled by custom software running on a mobile phone.

Robopteryx faces off against a grasshopper and prepares to flap its wings.

Enlarge / Robopteryx faces off against a grasshopper and prepares to flap its wings.

Jinseok Park, Piotr Jablonski et al., 2024

Park et al. then conducted experiments with the robot performing motions consistent with a flush display using the band-winged grasshopper (a likely prey), which has relatively simple neural circuits. They placed a wooden stick with scale marks next to the grasshopper and photographed it to record its body orientation relative to the robot, and then made the robot’s forelimbs and tail flap to mimic a flush display. If the grasshopper escaped, they ended the individual test; if the grasshopper didn’t respond, they slowly moved the robot closer and closer using a long beam. The team also attached electrodes to grasshoppers in the lab to measure neural spikes as the insects were shown projected Cauderyx animations of a flush display on a flat-screen monitor.

The results: around half the grasshoppers fled in response to Robopteryx without feathers, compared to over 90 percent when feathered wings flapped. They also measured stronger neural signals when feathers were present. For Park et al., this is solid evidence in support of their hypothesis that a flush-pursuit hunting strategy may have been a factor in the evolution of pennaceous feathers. “Our results emphasize the significance of considering sensory aspects of predator-prey interactions in the studies of major evolutionary innovations among predatory species,” the authors wrote.

Not everyone is convinced by these results. “It seems to me to be very unlikely that a structure as complex as a pennaceous feather would evolve for such a specific behavioral role,” Steven Salisbury of the University of Queensland in Australia, who was not involved with the research, told New Scientist. “I am sure there are lots of ways to scare grasshoppers other than to flap some feathers at it. You can have feathers to scare grasshoppers and you can have them to insulate and incubate eggs. They’re good for display, the stabilization of body position when running, and, of course, for gliding and powered flight. Feathers help for all sorts of things.”

Scientific Reports, 2024. DOI: 10.1038/s41598-023-50225-x  (About DOIs).

Robo-dinosaur scares grasshoppers to shed light on why dinos evolved feathers Read More »

our-oldest-microbial-ancestors-were-way-ahead-of-their-time

Our oldest microbial ancestors were way ahead of their time

Going Golgi —

Specialized internal structures were present over 1.5 billion years ago.

computer generated image of membrane structures inside a cell

Enlarge / The Golgi apparatus, shown here in light green, may have been involved in building internal structures in cells.

ARTUR PLAWGO / SCIENCE PHOTO LIBRARY

Before Neanderthals and Denisovans, before vaguely humanoid primates, proto-mammals, or fish that crawled out of the ocean to become the first terrestrial animals, our earliest ancestors were microbes.

More complex organisms like ourselves descend from eukaryotes, which have a nuclear membrane around their DNA (as opposed to prokaryotes, which don’t). Eukaryotes were thought to have evolved a few billion years ago, during the late Palaeoproterozoic period, and started diversifying by around 800 million years ago. Their diversification was not well understood. Now, a team of researchers led by UC Santa Barbara paleontologist Leigh Ann Riedman discovered eukaryote microfossils that are 1.64 billion years old, yet had already diversified and had surprisingly sophisticated features.

“High levels of eukaryotic species richness and morphological disparity suggest that although late Palaeoproterozoic [fossils] preserve our oldest record of eukaryotes, the eukaryotic clade has a much deeper history,” Riedman and her team said in a study recently published in Papers in Paleontology.

Really, really, really old tricks

During the late Palaeoproterozoic, eukaryotes most likely evolved in the wake of several major changes on Earth, including a drastic increase in atmospheric oxygen and shifts in ocean chemistry. This could have been anywhere from 3 billion to 2.3 billion years ago. Riedman’s team explored the layers of sedimentary rock in the Limbunya region of Australia’s Birrindudu basin. The fossils they unearthed included a total of 26 taxa, as well as 10 species that had not been described before. One of them is Limbunyasphaera operculata, a species of the new genus Limbunyasphera.

What makes L. operculata so distinct is that it has a feature that appears to be evidence of a survival mechanism used by modern eukaryotes. There are some extant microbes that form a protective cyst so they can make it through harsh conditions. When things are more tolerable, they produce an enzyme that dissolves a part of the cyst wall into an opening, or pylome, that makes it possible for them to creep out. This opening also has a lid, or operculum. These were both observed in L. operculata.

While splits in fossilized single-cell organisms may be the result of taphonomic processes that break the cell wall, complex structures such as a pylome and operculum are not found in prokaryotic organisms, and therefore suggest that a species must be eukaryotic.

Didn’t know they could do that

Some of the previously known species of extinct eukaryotes also surprised the scientists with unexpectedly advanced features. Satka favosa had a vesicle in the cell that was enclosed by a membrane with platelike structures. Another species, Birrindudutuba brigandinia, also had plates identified around its vesicles, although none of its plates were as diverse in shape as those seen in different S. favosa individuals. Those plates came in a large variety of shapes and sizes, which could mean that what has been termed S. favosa is more than one species.

The plated vesicle of S. favosa is what led Riedman to determine that the species must have been eukaryotic, because the plates are possible indicators that Golgi bodies existed in these organisms. After the endoplasmic reticulum of a cell synthesizes proteins and lipids, Golgi bodies process and package those substances depending on where they have to go next. Riedman and her team think that Golgi or Golgi-like bodies transported materials within the cell to form plates around vesicles, such as the ones seen in S. favosa. The hypothetical Golgi bodies themselves are not thought to have had these plates.

This sort of complex sorting of cellular contents is a feature of all modern eukaryotes. “Taxa including Satka favosa… are considered [eukaryotes] because they have a complex, platy vesicle construction,” the researchers said in the study. These new fossils suggest that it arose pretty early in their history.

Eukaryotes have evidently been much more complex and diverse than we thought for hundreds of millions of years longer than we thought. There might be even older samples out there. While fossil evidence of eukaryotes from near their origin eludes us, samples upwards of a billion years old, such as those found by Riedman and her team, are telling us more than ever about their—and therefore our—evolution.

Papers in Paleontology, 2023.  DOI: 10.1002/spp2.1538

Our oldest microbial ancestors were way ahead of their time Read More »

megalodon-wasn’t-as-chonky-as-a-great-white-shark,-experts-say

Megalodon wasn’t as chonky as a great white shark, experts say

Still a pretty impressive size —

Fresh evidence points to megalodon being longer, more slender than previous depictions.

These are the kinds of shark teeth discovered in burial sites and other ceremonial remains of the inland Maya communities. From left to right, there's a fossilized megalodon tooth, great white shark tooth, and bull shark tooth.

Enlarge / These are the kinds of shark teeth discovered in burial sites and other ceremonial remains of the inland Maya communities. From left to right, there’s a fossilized megalodon tooth, great white shark tooth, and bull shark tooth.

Antiquity

The megalodon, a giant shark that went extinct some 3.6 million years ago, is famous for its utterly enormous jaws and correspondingly huge teeth. Recent studies have proposed that the megalodon was robust species of shark akin to today’s great white sharks, only three times longer. And just like the great white shark inspired Jaws, the megalodon has also inspired a 1997 novel and a blockbuster film (2018’s The Meg)—not to mention a controversial bit of “docu-fiction” on the Discovery Channel.  But now a team of 26 shark experts are challenging the great white shark comparison, arguing that the super-sized creature’s body was more slender and possibly even longer than researchers previously thought in a new paper published in the journal Paleontologia Electronica.

“Our study suggests that the modern great white shark may not necessarily serve as a good modern analogue for assessing at least certain aspects of its biology, including its size,” co-author Kenshu Shimada, a palaeobiologist at DePaul University in Chicago, told The Guardian. “The reality is that we need the discovery of at least one complete megalodon skeleton to be more confident about its true size as well its body form.” Thus far, nobody has found a complete specimen, only fossilized teeth and vertebrae.

As previously reported, the largest shark alive today, reaching up to 20 meters long, is the whale shark, a sedate filter feeder. As recently as 4 million years ago, however, sharks of that scale likely included the fast-moving predator megalodon (formally Otodus megalodon). Due to incomplete fossil data, we’re not entirely sure how large megalodons were and can only make inferences based on some of their living relatives, like the great white and mako sharks.

Thanks to research published last year on its fossilized teeth, we’re now fairly confident that it shared something else with these relatives: it wasn’t entirely cold-blooded and apparently kept its body temperature above that of the surrounding ocean. Most sharks, like most fish, are ectothermic, meaning that their body temperatures match those of the surrounding water. But a handful of species, part of a group termed mackerel sharks, are endothermic: They have a specialized pattern of blood circulation that helps retain some of the heat their muscles produce. This enables them to keep some body parts at a higher temperature than their surroundings. A species called the salmon shark can maintain a body temperature that’s 20° C warmer than the sub-Arctic waters that it occupies.

Megalodon is also a mackerel shark, and some scientists have suggested that it, too, must have been at least partially endothermic to have maintained its growth rates in the varied environments that it inhabited. The 2023 study measured isotope clumping—which can provide an estimate of the temperature at which a material formed—in mastodon teeth. They confirmed that the megalodon samples were consistently warmer, with an average temperature difference of about 7° C compared to cold-blooded samples.

Megalodon wasn’t as chonky as a great white shark, experts say Read More »