openai

apple-is-reportedly-trying-to-invest-in-openai

Apple is reportedly trying to invest in OpenAI

Venture Capital —

OpenAI’s ChatGPT will be built into the iPhone operating system later this year.

OpenAI logo displayed on a phone screen and ChatGPT website displayed on a laptop screen.

Enlarge / The OpenAI logo.

Getty Images

According to a report in The Wall Street Journal, Apple is in talks to invest in OpenAI, the generative AI company whose ChatGPT will feature in future versions of iOS.

If the talks are successful, Apple will join a multi-billion dollar funding round led by Thrive Capital that would value the startup at more than $100 billion.

The report doesn’t say exactly how much Apple would invest, but it does note that it would not be the only participant in this round of funding. For example, Microsoft is expected to invest further, and Bloomberg reports that Nvidia is also considering participating.

Microsoft has already invested $13 billion in OpenAI over the past five years, and it has put OpenAI’s GPT technology at the heart of most of its AI offerings in Windows, Office, Visual Studio, Bing, and other products.

Apple, too, has put OpenAI’s tech in its products—or at least, it will by the end of this year. At its 2024 developer conference earlier this summer, Apple announced a suite of AI features called Apple Intelligence that will only work on the iPhone 15 Pro and later. But there are guardrails and limitations for Apple Intelligence compared to OpenAI’s ChatGPT, so Apple signed a deal to refer user requests that fall outside the scope of Apple Intelligence to ChatGPT inside a future version of iOS 18—kind of like how Siri turns to Google to answer some user queries.

Apple says it plans to add support for other AI chatbots for this in the future, such as Google’s Gemini, but Apple software lead Craig Federighi said the company went with ChatGPT first because “we wanted to start with the best.”

It’s unclear precisely what Apple looks to get out of the investment in OpenAI, but looking at similar past investments by the company offers some clues. Apple typically invests either in suppliers or research teams that are producing technology it plans to include in future devices. For example, it has invested in supply chain partners to build up infrastructure to get iPhones manufactured more quickly and efficiently, and it invested $1 billion in the SoftBank Vision Fund to “speed the development of technologies which may be strategically important to Apple.”

ChatGPT integration is not expected to make it into the initial release of iOS 18 this September, but it will probably come in a smaller software update later in 2024.

Apple is reportedly trying to invest in OpenAI Read More »

feds-to-get-early-access-to-openai,-anthropic-ai-to-test-for-doomsday-scenarios

Feds to get early access to OpenAI, Anthropic AI to test for doomsday scenarios

“Advancing the science of AI safety” —

AI companies agreed that ensuring AI safety was key to innovation.

Feds to get early access to OpenAI, Anthropic AI to test for doomsday scenarios

OpenAI and Anthropic have each signed unprecedented deals granting the US government early access to conduct safety testing on the companies’ flashiest new AI models before they’re released to the public.

According to a press release from the National Institute of Standards and Technology (NIST), the deal creates a “formal collaboration on AI safety research, testing, and evaluation with both Anthropic and OpenAI” and the US Artificial Intelligence Safety Institute.

Through the deal, the US AI Safety Institute will “receive access to major new models from each company prior to and following their public release.” This will ensure that public safety won’t depend exclusively on how the companies “evaluate capabilities and safety risks, as well as methods to mitigate those risks,” NIST said, but also on collaborative research with the US government.

The US AI Safety Institute will also be collaborating with the UK AI Safety Institute when examining models to flag potential safety risks. Both groups will provide feedback to OpenAI and Anthropic “on potential safety improvements to their models.”

NIST said that the agreements also build on voluntary AI safety commitments that AI companies made to the Biden administration to evaluate models to detect risks.

Elizabeth Kelly, director of the US AI Safety Institute, called the agreements “an important milestone” to “help responsibly steward the future of AI.”

Anthropic co-founder: AI safety “crucial” to innovation

The announcement comes as California is poised to pass one of the country’s first AI safety bills, which will regulate how AI is developed and deployed in the state.

Among the most controversial aspects of the bill is a requirement that AI companies build in a “kill switch” to stop models from introducing “novel threats to public safety and security,” especially if the model is acting “with limited human oversight, intervention, or supervision.”

Critics say the bill overlooks existing safety risks from AI—like deepfakes and election misinformation—to prioritize prevention of doomsday scenarios and could stifle AI innovation while providing little security today. They’ve urged California’s governor, Gavin Newsom, to veto the bill if it arrives at his desk, but it’s still unclear if Newsom intends to sign.

Anthropic was one of the AI companies that cautiously supported California’s controversial AI bill, Reuters reported, claiming that the potential benefits of the regulations likely outweigh the costs after a late round of amendments.

The company’s CEO, Dario Amodei, told Newsom why Anthropic supports the bill now in a letter last week, Reuters reported. He wrote that although Anthropic isn’t certain about aspects of the bill that “seem concerning or ambiguous,” Anthropic’s “initial concerns about the bill potentially hindering innovation due to the rapidly evolving nature of the field have been greatly reduced” by recent changes to the bill.

OpenAI has notably joined critics opposing California’s AI safety bill and has been called out by whistleblowers for lobbying against it.

In a letter to the bill’s co-sponsor, California Senator Scott Wiener, OpenAI’s chief strategy officer, Jason Kwon, suggested that “the federal government should lead in regulating frontier AI models to account for implications to national security and competitiveness.”

The ChatGPT maker striking a deal with the US AI Safety Institute seems in line with that thinking. As Kwon told Reuters, “We believe the institute has a critical role to play in defining US leadership in responsibly developing artificial intelligence and hope that our work together offers a framework that the rest of the world can build on.”

While some critics worry California’s AI safety bill will hamper innovation, Anthropic’s co-founder, Jack Clark, told Reuters today that “safe, trustworthy AI is crucial for the technology’s positive impact.” He confirmed that Anthropic’s “collaboration with the US AI Safety Institute” will leverage the government’s “wide expertise to rigorously test” Anthropic’s models “before widespread deployment.”

In NIST’s press release, Kelly agreed that “safety is essential to fueling breakthrough technological innovation.”

By directly collaborating with OpenAI and Anthropic, the US AI Safety Institute also plans to conduct its own research to help “advance the science of AI safety,” Kelly said.

Feds to get early access to OpenAI, Anthropic AI to test for doomsday scenarios Read More »

debate-over-“open-source-ai”-term-brings-new-push-to-formalize-definition

Debate over “open source AI” term brings new push to formalize definition

A man peers over a glass partition, seeking transparency.

Enlarge / A man peers over a glass partition, seeking transparency.

The Open Source Initiative (OSI) recently unveiled its latest draft definition for “open source AI,” aiming to clarify the ambiguous use of the term in the fast-moving field. The move comes as some companies like Meta release trained AI language model weights and code with usage restrictions while using the “open source” label. This has sparked intense debates among free-software advocates about what truly constitutes “open source” in the context of AI.

For instance, Meta’s Llama 3 model, while freely available, doesn’t meet the traditional open source criteria as defined by the OSI for software because it imposes license restrictions on usage due to company size or what type of content is produced with the model. The AI image generator Flux is another “open” model that is not truly open source. Because of this type of ambiguity, we’ve typically described AI models that include code or weights with restrictions or lack accompanying training data with alternative terms like “open-weights” or “source-available.”

To address the issue formally, the OSI—which is well-known for its advocacy for open software standards—has assembled a group of about 70 participants, including researchers, lawyers, policymakers, and activists. Representatives from major tech companies like Meta, Google, and Amazon also joined the effort. The group’s current draft (version 0.0.9) definition of open source AI emphasizes “four fundamental freedoms” reminiscent of those defining free software: giving users of the AI system permission to use it for any purpose without permission, study how it works, modify it for any purpose, and share with or without modifications.

By establishing clear criteria for open source AI, the organization hopes to provide a benchmark against which AI systems can be evaluated. This will likely help developers, researchers, and users make more informed decisions about the AI tools they create, study, or use.

Truly open source AI may also shed light on potential software vulnerabilities of AI systems, since researchers will be able to see how the AI models work behind the scenes. Compare this approach with an opaque system such as OpenAI’s ChatGPT, which is more than just a GPT-4o large language model with a fancy interface—it’s a proprietary system of interlocking models and filters, and its precise architecture is a closely guarded secret.

OSI’s project timeline indicates that a stable version of the “open source AI” definition is expected to be announced in October at the All Things Open 2024 event in Raleigh, North Carolina.

“Permissionless innovation”

In a press release from May, the OSI emphasized the importance of defining what open source AI really means. “AI is different from regular software and forces all stakeholders to review how the Open Source principles apply to this space,” said Stefano Maffulli, executive director of the OSI. “OSI believes that everybody deserves to maintain agency and control of the technology. We also recognize that markets flourish when clear definitions promote transparency, collaboration and permissionless innovation.”

The organization’s most recent draft definition extends beyond just the AI model or its weights, encompassing the entire system and its components.

For an AI system to qualify as open source, it must provide access to what the OSI calls the “preferred form to make modifications.” This includes detailed information about the training data, the full source code used for training and running the system, and the model weights and parameters. All these elements must be available under OSI-approved licenses or terms.

Notably, the draft doesn’t mandate the release of raw training data. Instead, it requires “data information”—detailed metadata about the training data and methods. This includes information on data sources, selection criteria, preprocessing techniques, and other relevant details that would allow a skilled person to re-create a similar system.

The “data information” approach aims to provide transparency and replicability without necessarily disclosing the actual dataset, ostensibly addressing potential privacy or copyright concerns while sticking to open source principles, though that particular point may be up for further debate.

“The most interesting thing about [the definition] is that they’re allowing training data to NOT be released,” said independent AI researcher Simon Willison in a brief Ars interview about the OSI’s proposal. “It’s an eminently pragmatic approach—if they didn’t allow that, there would be hardly any capable ‘open source’ models.”

Debate over “open source AI” term brings new push to formalize definition Read More »

ars-technica-content-is-now-available-in-openai-services

Ars Technica content is now available in OpenAI services

Adventures in capitalism —

Condé Nast joins other publishers in allowing OpenAI to access its content.

The OpenAI and Conde Nast logos on a gradient background.

Ars Technica

On Tuesday, OpenAI announced a partnership with Ars Technica parent company Condé Nast to display content from prominent publications within its AI products, including ChatGPT and a new SearchGPT prototype. It also allows OpenAI to use Condé content to train future AI language models. The deal covers well-known Condé brands such as Vogue, The New Yorker, GQ, Wired, Ars Technica, and others. Financial details were not disclosed.

One immediate effect of the deal will be that users of ChatGPT or SearchGPT will now be able to see information from Condé Nast publications pulled from those assistants’ live views of the web. For example, a user could ask ChatGPT, “What’s the latest Ars Technica article about Space?” and ChatGPT can browse the web and pull up the result, attribute it, and summarize it for users while also linking to the site.

In the longer term, the deal also means that OpenAI can openly and officially utilize Condé Nast articles to train future AI language models, which includes successors to GPT-4o. In this case, “training” means feeding content into an AI model’s neural network so the AI model can better process conceptual relationships.

AI training is an expensive and computationally intense process that happens rarely, usually prior to the launch of a major new AI model, although a secondary process called “fine-tuning” can continue over time. Having access to high-quality training data, such as vetted journalism, improves AI language models’ ability to provide accurate answers to user questions.

It’s worth noting that Condé Nast internal policy still forbids its publications from using text created by generative AI, which is consistent with its AI rules before the deal.

Not waiting on fair use

With the deal, Condé Nast joins a growing list of publishers partnering with OpenAI, including Associated Press, Axel Springer, The Atlantic, and others. Some publications, such as The New York Times, have chosen to sue OpenAI over content use, and there’s reason to think they could win.

In an internal email to Condé Nast staff, CEO Roger Lynch framed the multi-year partnership as a strategic move to expand the reach of the company’s content, adapt to changing audience behaviors, and ensure proper compensation and attribution for using the company’s IP. “This partnership recognizes that the exceptional content produced by Condé Nast and our many titles cannot be replaced,” Lynch wrote in the email, “and is a step toward making sure our technology-enabled future is one that is created responsibly.”

The move also brings additional revenue to Condé Nast, Lynch added, at a time when “many technology companies eroded publishers’ ability to monetize content, most recently with traditional search.” The deal will allow Condé to “continue to protect and invest in our journalism and creative endeavors,” Lynch wrote.

OpenAI COO Brad Lightcap said in a statement, “We’re committed to working with Condé Nast and other news publishers to ensure that as AI plays a larger role in news discovery and delivery, it maintains accuracy, integrity, and respect for quality reporting.”

Ars Technica content is now available in OpenAI services Read More »

chinese-social-media-users-hilariously-mock-ai-video-fails

Chinese social media users hilariously mock AI video fails

Life imitates AI imitating life —

TikTok and Bilibili users transform nonsensical AI glitches into real-world performance art.

Still from a Chinese social media video featuring two people imitating imperfect AI-generated video outputs.

Enlarge / Still from a Chinese social media video featuring two people imitating imperfect AI-generated video outputs.

It’s no secret that despite significant investment from companies like OpenAI and Runway, AI-generated videos still struggle to achieve convincing realism at times. Some of the most amusing fails end up on social media, which has led to a new response trend on Chinese social media platforms TikTok and Bilibili where users create videos that mock the imperfections of AI-generated content. The trend has since spread to X (formerly Twitter) in the US, where users have been sharing the humorous parodies.

In particular, the videos seem to parody image synthesis videos where subjects seamlessly morph into other people or objects in unexpected and physically impossible ways. Chinese social media replicate these unusual visual non-sequiturs without special effects by positioning their bodies in unusual ways as new and unexpected objects appear on-camera from out of frame.

This exaggerated mimicry has struck a chord with viewers on X, who find the parodies entertaining. User @theGioM shared one video, seen above. “This is high-level performance arts,” wrote one X user. “art is imitating life imitating ai, almost shedded a tear.” Another commented, “I feel like it still needs a motorcycle the turns into a speedboat and takes off into the sky. Other than that, excellent work.”

An example Chinese social media video featuring two people imitating imperfect AI-generated video outputs.

While these parodies poke fun at current limitations, tech companies are actively attempting to overcome them with more training data (examples analyzed by AI models that teach them how to create videos) and computational training time. OpenAI unveiled Sora in February, capable of creating realistic scenes if they closely match examples found in training data. Runway’s Gen-3 Alpha suffers a similar fate: It can create brief clips of convincing video within a narrow set of constraints. This means that generated videos of situations outside the dataset often end up hilariously weird.

An AI-generated video that features impossibly-morphing people and animals. Social media users are imitating this style.

It’s worth noting that actor Will Smith beat Chinese social media users to this trend in February by poking fun at a horrific 2023 viral AI-generated video that attempted to depict him eating spaghetti. That may also bring back memories of other amusing video synthesis failures, such as May 2023’s AI-generated beer commercial, created using Runway’s earlier Gen-2 model.

An example Chinese social media video featuring two people imitating imperfect AI-generated video outputs.

While imitating imperfect AI videos may seem strange to some, people regularly make money pretending to be NPCs (non-player characters—a term for computer-controlled video game characters) on TikTok.

For anyone alive during the 1980s, witnessing this fast-changing and often bizarre new media world can cause some cognitive whiplash, but the world is a weird place full of wonders beyond the imagination. “There are more things in Heaven and Earth, Horatio, than are dreamt of in your philosophy,” as Hamlet once famously said. “Including people pretending to be video game characters and flawed video synthesis outputs.”

Chinese social media users hilariously mock AI video fails Read More »

major-shifts-at-openai-spark-skepticism-about-impending-agi-timelines

Major shifts at OpenAI spark skepticism about impending AGI timelines

Shuffling the deck —

De Kraker: “If OpenAI is right on the verge of AGI, why do prominent people keep leaving?”

The OpenAI logo on a red brick wall.

Benj Edwards / Getty Images

Over the past week, OpenAI experienced a significant leadership shake-up as three key figures announced major changes. Greg Brockman, the company’s president and co-founder, is taking an extended sabbatical until the end of the year, while another co-founder, John Schulman, permanently departed for rival Anthropic. Peter Deng, VP of Consumer Product, has also left the ChatGPT maker.

In a post on X, Brockman wrote, “I’m taking a sabbatical through end of year. First time to relax since co-founding OpenAI 9 years ago. The mission is far from complete; we still have a safe AGI to build.”

The moves have led some to wonder just how close OpenAI is to a long-rumored breakthrough of some kind of reasoning artificial intelligence if high-profile employees are jumping ship (or taking long breaks, in the case of Brockman) so easily. As AI developer Benjamin De Kraker put it on X, “If OpenAI is right on the verge of AGI, why do prominent people keep leaving?”

AGI refers to a hypothetical AI system that could match human-level intelligence across a wide range of tasks without specialized training. It’s the ultimate goal of OpenAI, and company CEO Sam Altman has said it could emerge in the “reasonably close-ish future.” AGI is also a concept that has sparked concerns about potential existential risks to humanity and the displacement of knowledge workers. However, the term remains somewhat vague, and there’s considerable debate in the AI community about what truly constitutes AGI or how close we are to achieving it.

The emergence of the “next big thing” in AI has been seen by critics such as Ed Zitron as a necessary step to justify ballooning investments in AI models that aren’t yet profitable. The industry is holding its breath that OpenAI, or a competitor, has some secret breakthrough waiting in the wings that will justify the massive costs associated with training and deploying LLMs.

But other AI critics, such as Gary Marcus, have postulated that major AI companies have reached a plateau of large language model (LLM) capability centered around GPT-4-level models since no AI company has yet made a major leap past the groundbreaking LLM that OpenAI released in March 2023. Microsoft CTO Kevin Scott has countered these claims, saying that LLM “scaling laws” (that suggest LLMs increase in capability proportionate to more compute power thrown at them) will continue to deliver improvements over time and that more patience is needed as the next generation (say, GPT-5) undergoes training.

In the scheme of things, Brockman’s move sounds like an extended, long overdue vacation (or perhaps a period to deal with personal issues beyond work). Regardless of the reason, the duration of the sabbatical raises questions about how the president of a major tech company can suddenly disappear for four months without affecting day-to-day operations, especially during a critical time in its history.

Unless, of course, things are fairly calm at OpenAI—and perhaps GPT-5 isn’t going to ship until at least next year when Brockman returns. But this is speculation on our part, and OpenAI (whether voluntarily or not) sometimes surprises us when we least expect it. (Just today, Altman dropped a hint on X about strawberries that some people interpret as being a hint of a potential major model undergoing testing or nearing release.)

A pattern of departures and the rise of Anthropic

Anthropic / Benj Edwards

What may sting OpenAI the most about the recent departures is that a few high-profile employees have left to join Anthropic, a San Francisco-based AI company founded in 2021 by ex-OpenAI employees Daniela and Dario Amodei.

Anthropic offers a subscription service called Claude.ai that is similar to ChatGPT. Its most recent LLM, Claude 3.5 Sonnet, along with its web-based interface, has rapidly gained favor over ChatGPT among some LLM users who are vocal on social media, though it likely does not yet match ChatGPT in terms of mainstream brand recognition.

In particular, John Schulman, an OpenAI co-founder and key figure in the company’s post-training process for LLMs, revealed in a statement on X that he’s leaving to join rival AI firm Anthropic to do more hands-on work: “This choice stems from my desire to deepen my focus on AI alignment, and to start a new chapter of my career where I can return to hands-on technical work.” Alignment is a field that hopes to guide AI models to produce helpful outputs.

In May, OpenAI alignment researcher Jan Leike left OpenAI to join Anthropic as well, criticizing OpenAI’s handling of alignment safety.

Adding to the recent employee shake-up, The Information reports that Peter Deng, a product leader who joined OpenAI last year after stints at Meta Platforms, Uber, and Airtable, has also left the company, though we do not yet know where he is headed. In May, OpenAI co-founder Ilya Sutskever left to found a rival startup, and prominent software engineer Andrej Karpathy departed in February, recently launching an educational venture.

As De Kraker noted, if OpenAI were on the verge of developing world-changing AI technology, wouldn’t these high-profile AI veterans want to stick around and be part of this historic moment in time? “Genuine question,” he wrote. “If you were pretty sure the company you’re a key part of—and have equity in—is about to crack AGI within one or two years… why would you jump ship?”

Despite the departures, Schulman expressed optimism about OpenAI’s future in his farewell note on X. “I am confident that OpenAI and the teams I was part of will continue to thrive without me,” he wrote. “I’m incredibly grateful for the opportunity to participate in such an important part of history and I’m proud of what we’ve achieved together. I’ll still be rooting for you all, even while working elsewhere.”

This article was updated on August 7, 2024 at 4: 23 PM to mention Sam Altman’s tweet about strawberries.

Major shifts at OpenAI spark skepticism about impending AGI timelines Read More »

elon-musk-sues-openai,-sam-altman-for-making-a-“fool”-out-of-him

Elon Musk sues OpenAI, Sam Altman for making a “fool” out of him

“Altman’s long con” —

Elon Musk asks court to void Microsoft’s exclusive deal with OpenAI.

Elon Musk and Sam Altman share the stage in 2015, the same year that Musk alleged that Altman's

Enlarge / Elon Musk and Sam Altman share the stage in 2015, the same year that Musk alleged that Altman’s “deception” began.

After withdrawing his lawsuit in June for unknown reasons, Elon Musk has revived a complaint accusing OpenAI and its CEO Sam Altman of fraudulently inducing Musk to contribute $44 million in seed funding by promising that OpenAI would always open-source its technology and prioritize serving the public good over profits as a permanent nonprofit.

Instead, Musk alleged that Altman and his co-conspirators—”preying on Musk’s humanitarian concern about the existential dangers posed by artificial intelligence”—always intended to “betray” these promises in pursuit of personal gains.

As OpenAI’s technology advanced toward artificial general intelligence (AGI) and strove to surpass human capabilities, “Altman set the bait and hooked Musk with sham altruism then flipped the script as the non-profit’s technology approached AGI and profits neared, mobilizing Defendants to turn OpenAI, Inc. into their personal piggy bank and OpenAI into a moneymaking bonanza, worth billions,” Musk’s complaint said.

Where Musk saw OpenAI as his chance to fund a meaningful rival to stop Google from controlling the most powerful AI, Altman and others “wished to launch a competitor to Google” and allegedly deceived Musk to do it. According to Musk:

The idea Altman sold Musk was that a non-profit, funded and backed by Musk, would attract world-class scientists, conduct leading AI research and development, and, as a meaningful counterweight to Google’s DeepMind in the race for Artificial General Intelligence (“AGI”), decentralize its technology by making it open source. Altman assured Musk that the non-profit structure guaranteed neutrality and a focus on safety and openness for the benefit of humanity, not shareholder value. But as it turns out, this was all hot-air philanthropy—the hook for Altman’s long con.

Without Musk’s involvement and funding during OpenAI’s “first five critical years,” Musk’s complaint said, “it is fair to say” that “there would have been no OpenAI.” And when Altman and others repeatedly approached Musk with plans to shift OpenAI to a for-profit model, Musk held strong to his morals, conditioning his ongoing contributions on OpenAI remaining a nonprofit and its tech largely remaining open source.

“Either go do something on your own or continue with OpenAI as a nonprofit,” Musk told Altman in 2018 when Altman tried to “recast the nonprofit as a moneymaking endeavor to bring in shareholders, sell equity, and raise capital.”

“I will no longer fund OpenAI until you have made a firm commitment to stay, or I’m just being a fool who is essentially providing free funding to a startup,” Musk said at the time. “Discussions are over.”

But discussions weren’t over. And now Musk seemingly does feel like a fool after OpenAI exclusively licensed GPT-4 and all “pre-AGI” technology to Microsoft in 2023, while putting up paywalls and “failing to publicly disclose the non-profit’s research and development, including details on GPT-4, GPT-4T, and GPT-4o’s architecture, hardware, training method, and training computation.” This excluded the public “from open usage of GPT-4 and related technology to advance Defendants and Microsoft’s own commercial interests,” Musk alleged.

Now Musk has revived his suit against OpenAI, asking the court to award maximum damages for OpenAI’s alleged fraud, contract breaches, false advertising, acts viewed as unfair to competition, and other violations.

He has also asked the court to determine a very technical question: whether OpenAI’s most recent models should be considered AGI and therefore Microsoft’s license voided. That’s the only way to ensure that a private corporation isn’t controlling OpenAI’s AGI models, which Musk repeatedly conditioned his financial contributions upon preventing.

“Musk contributed considerable money and resources to launch and sustain OpenAI, Inc., which was done on the condition that the endeavor would be and remain a non-profit devoted to openly sharing its technology with the public and avoid concentrating its power in the hands of the few,” Musk’s complaint said. “Defendants knowingly and repeatedly accepted Musk’s contributions in order to develop AGI, with no intention of honoring those conditions once AGI was in reach. Case in point: GPT-4, GPT-4T, and GPT-4o are all closed source and shrouded in secrecy, while Defendants actively work to transform the non-profit into a thoroughly commercial business.”

Musk wants Microsoft’s GPT-4 license voided

Musk also asked the court to null and void OpenAI’s exclusive license to Microsoft, or else determine “whether GPT-4, GPT-4T, GPT-4o, and other OpenAI next generation large language models constitute AGI and are thus excluded from Microsoft’s license.”

It’s clear that Musk considers these models to be AGI, and he’s alleged that Altman’s current control of OpenAI’s Board—after firing dissidents in 2023 whom Musk claimed tried to get Altman ousted for prioritizing profits over AI safety—gives Altman the power to obscure when OpenAI’s models constitute AGI.

Elon Musk sues OpenAI, Sam Altman for making a “fool” out of him Read More »

sam-altman-accused-of-being-shady-about-openai’s-safety-efforts

Sam Altman accused of being shady about OpenAI’s safety efforts

Sam Altman, chief executive officer of OpenAI, during an interview at Bloomberg House on the opening day of the World Economic Forum (WEF) in Davos, Switzerland, on Tuesday, Jan. 16, 2024.

Enlarge / Sam Altman, chief executive officer of OpenAI, during an interview at Bloomberg House on the opening day of the World Economic Forum (WEF) in Davos, Switzerland, on Tuesday, Jan. 16, 2024.

OpenAI is facing increasing pressure to prove it’s not hiding AI risks after whistleblowers alleged to the US Securities and Exchange Commission (SEC) that the AI company’s non-disclosure agreements had illegally silenced employees from disclosing major safety concerns to lawmakers.

In a letter to OpenAI yesterday, Senator Chuck Grassley (R-Iowa) demanded evidence that OpenAI is no longer requiring agreements that could be “stifling” its “employees from making protected disclosures to government regulators.”

Specifically, Grassley asked OpenAI to produce current employment, severance, non-disparagement, and non-disclosure agreements to reassure Congress that contracts don’t discourage disclosures. That’s critical, Grassley said, so that it will be possible to rely on whistleblowers exposing emerging threats to help shape effective AI policies safeguarding against existential AI risks as technologies advance.

Grassley has apparently twice requested these records without a response from OpenAI, his letter said. And so far, OpenAI has not responded to the most recent request to send documents, Grassley’s spokesperson, Clare Slattery, told The Washington Post.

“It’s not enough to simply claim you’ve made ‘updates,’” Grassley said in a statement provided to Ars. “The proof is in the pudding. Altman needs to provide records and responses to my oversight requests so Congress can accurately assess whether OpenAI is adequately protecting its employees and users.”

In addition to requesting OpenAI’s recently updated employee agreements, Grassley pushed OpenAI to be more transparent about the total number of requests it has received from employees seeking to make federal disclosures since 2023. The senator wants to know what information employees wanted to disclose to officials and whether OpenAI actually approved their requests.

Along the same lines, Grassley asked OpenAI to confirm how many investigations the SEC has opened into OpenAI since 2023.

Together, these documents would shed light on whether OpenAI employees are potentially still being silenced from making federal disclosures, what kinds of disclosures OpenAI denies, and how closely the SEC is monitoring OpenAI’s seeming efforts to hide safety risks.

“It is crucial OpenAI ensure its employees can provide protected disclosures without illegal restrictions,” Grassley wrote in his letter.

He has requested a response from OpenAI by August 15 so that “Congress may conduct objective and independent oversight on OpenAI’s safety protocols and NDAs.”

OpenAI did not immediately respond to Ars’ request for comment.

On X, Altman wrote that OpenAI has taken steps to increase transparency, including “working with the US AI Safety Institute on an agreement where we would provide early access to our next foundation model so that we can work together to push forward the science of AI evaluations.” He also confirmed that OpenAI wants “current and former employees to be able to raise concerns and feel comfortable doing so.”

“This is crucial for any company, but for us especially and an important part of our safety plan,” Altman wrote. “In May, we voided non-disparagement terms for current and former employees and provisions that gave OpenAI the right (although it was never used) to cancel vested equity. We’ve worked hard to make it right.”

In July, whistleblowers told the SEC that OpenAI should be required to produce not just current employee contracts, but all contracts that contained a non-disclosure agreement to ensure that OpenAI hasn’t been obscuring a history or current practice of obscuring AI safety risks. They want all current and former employees to be notified of any contract that included an illegal NDA and for OpenAI to be fined for every illegal contract.

Sam Altman accused of being shady about OpenAI’s safety efforts Read More »

chatgpt-advanced-voice-mode-impresses-testers-with-sound-effects,-catching-its-breath

ChatGPT Advanced Voice Mode impresses testers with sound effects, catching its breath

I Am the Very Model of a Modern Major-General —

AVM allows uncanny real-time voice conversations with ChatGPT that you can interrupt.

Stock Photo: AI Cyborg Robot Whispering Secret Or Interesting Gossip

Enlarge / A stock photo of a robot whispering to a man.

On Tuesday, OpenAI began rolling out an alpha version of its new Advanced Voice Mode to a small group of ChatGPT Plus subscribers. This feature, which OpenAI previewed in May with the launch of GPT-4o, aims to make conversations with the AI more natural and responsive. In May, the feature triggered criticism of its simulated emotional expressiveness and prompted a public dispute with actress Scarlett Johansson over accusations that OpenAI copied her voice. Even so, early tests of the new feature shared by users on social media have been largely enthusiastic.

In early tests reported by users with access, Advanced Voice Mode allows them to have real-time conversations with ChatGPT, including the ability to interrupt the AI mid-sentence almost instantly. It can sense and respond to a user’s emotional cues through vocal tone and delivery, and provide sound effects while telling stories.

But what has caught many people off-guard initially is how the voices simulate taking a breath while speaking.

“ChatGPT Advanced Voice Mode counting as fast as it can to 10, then to 50 (this blew my mind—it stopped to catch its breath like a human would),” wrote tech writer Cristiano Giardina on X.

Advanced Voice Mode simulates audible pauses for breath because it was trained on audio samples of humans speaking that included the same feature. The model has learned to simulate inhalations at seemingly appropriate times after being exposed to hundreds of thousands, if not millions, of examples of human speech. Large language models (LLMs) like GPT-4o are master imitators, and that skill has now extended to the audio domain.

Giardina shared his other impressions about Advanced Voice Mode on X, including observations about accents in other languages and sound effects.

It’s very fast, there’s virtually no latency from when you stop speaking to when it responds,” he wrote. “When you ask it to make noises it always has the voice “perform” the noises (with funny results). It can do accents, but when speaking other languages it always has an American accent. (In the video, ChatGPT is acting as a soccer match commentator)

Speaking of sound effects, X user Kesku, who is a moderator of OpenAI’s Discord server, shared an example of ChatGPT playing multiple parts with different voices and another of a voice recounting an audiobook-sounding sci-fi story from the prompt, “Tell me an exciting action story with sci-fi elements and create atmosphere by making appropriate noises of the things happening using onomatopoeia.”

Kesku also ran a few example prompts for us, including a story about the Ars Technica mascot “Moonshark.”

He also asked it to sing the “Major-General’s Song” from Gilbert and Sullivan’s 1879 comic opera The Pirates of Penzance:

Frequent AI advocate Manuel Sainsily posted a video of Advanced Voice Mode reacting to camera input, giving advice about how to care for a kitten. “It feels like face-timing a super knowledgeable friend, which in this case was super helpful—reassuring us with our new kitten,” he wrote. “It can answer questions in real-time and use the camera as input too!”

Of course, being based on an LLM, it may occasionally confabulate incorrect responses on topics or in situations where its “knowledge” (which comes from GPT-4o’s training data set) is lacking. But if considered a tech demo or an AI-powered amusement and you’re aware of the limitations, Advanced Voice Mode seems to successfully execute many of the tasks shown by OpenAI’s demo in May.

Safety

An OpenAI spokesperson told Ars Technica that the company worked with more than 100 external testers on the Advanced Voice Mode release, collectively speaking 45 different languages and representing 29 geographical areas. The system is reportedly designed to prevent impersonation of individuals or public figures by blocking outputs that differ from OpenAI’s four chosen preset voices.

OpenAI has also added filters to recognize and block requests to generate music or other copyrighted audio, which has gotten other AI companies in trouble. Giardina reported audio “leakage” in some audio outputs that have unintentional music in the background, showing that OpenAI trained the AVM voice model on a wide variety of audio sources, likely both from licensed material and audio scraped from online video platforms.

Availability

OpenAI plans to expand access to more ChatGPT Plus users in the coming weeks, with a full launch to all Plus subscribers expected this fall. A company spokesperson told Ars that users in the alpha test group will receive a notice in the ChatGPT app and an email with usage instructions.

Since the initial preview of GPT-4o voice in May, OpenAI claims to have enhanced the model’s ability to support millions of simultaneous, real-time voice conversations while maintaining low latency and high quality. In other words, they are gearing up for a rush that will take a lot of back-end computation to accommodate.

ChatGPT Advanced Voice Mode impresses testers with sound effects, catching its breath Read More »

openai-hits-google-where-it-hurts-with-new-searchgpt-prototype

OpenAI hits Google where it hurts with new SearchGPT prototype

Cutting through the sludge —

New tool may solve a web-search problem partially caused by AI-generated junk online.

The OpenAI logo on a blue newsprint background.

Benj Edwards / OpenAI

Arguably, few companies have unintentionally contributed more to the increase of AI-generated noise online than OpenAI. Despite its best intentions—and against its terms of service—its AI language models are often used to compose spam, and its pioneering research has inspired others to build AI models that can potentially do the same. This influx of AI-generated content has further reduced the effectiveness of SEO-driven search engines like Google. In 2024, web search is in a sorry state indeed.

It’s interesting, then, that OpenAI is now offering a potential solution to that problem. On Thursday, OpenAI revealed a prototype AI-powered search engine called SearchGPT that aims to provide users with quick, accurate answers sourced from the web. It’s also a direct challenge to Google, which also has tried to apply generative AI to web search (but with little success).

The company says it plans to integrate the most useful aspects of the temporary prototype into ChatGPT in the future. ChatGPT can already perform web searches using Bing, but SearchGPT seems to be a purpose-built interface for AI-assisted web searching.

SearchGPT attempts to streamline the process of finding information online by combining OpenAI’s AI models (like GPT-4o) with real-time web data. Like ChatGPT, users can reportedly ask SearchGPT follow-up questions, with the AI model maintaining context throughout the conversation.

Perhaps most importantly from an accuracy standpoint, the SearchGPT prototype (which we have not tested ourselves) reportedly includes features that attribute web-based sources prominently. Responses include in-line citations and links, while a sidebar displays additional source links.

OpenAI has not yet said how it is obtaining its real-time web data and whether it’s partnering with an existing search engine provider (like it does currently with Bing for ChatGPT) or building its own web-crawling and indexing system.

A way around publishers blocking OpenAI

ChatGPT can already perform web searches using Bing, but since last August when OpenAI revealed a way to block its web crawler, that feature hasn’t been nearly as useful as it could be. Many sites, such as Ars Technica (which blocks the OpenAI crawler as part of our parent company’s policy), won’t show up as results in ChatGPT because of this.

SearchGPT appears to untangle the association between OpenAI’s web crawler for scraping training data and the desire for OpenAI chatbot users to search the web. Notably, in the new SearchGPT announcement, OpenAI says, “Sites can be surfaced in search results even if they opt out of generative AI training.”

Even so, OpenAI says it is working on a way for publishers to manage how they appear in SearchGPT results so that “publishers have more choices.” And the company says that SearchGPT’s ability to browse the web is separate from training OpenAI’s AI models.

An uncertain future for AI-powered search

OpenAI claims SearchGPT will make web searches faster and easier. However, the effectiveness of AI-powered search compared to traditional methods is unknown, as the tech is still in its early stages. But let’s be frank: The most prominent web-search engine right now is pretty terrible.

Over the past year, we’ve seen Perplexity.ai take off as a potential AI-powered Google search replacement, but the service has been hounded by issues with confabulations and accusations of plagiarism among publishers, including Ars Technica parent Condé Nast.

Unlike Perplexity, OpenAI has many content deals lined up with publishers, and it emphasizes that it wants to work with content creators in particular. “We are committed to a thriving ecosystem of publishers and creators,” says OpenAI in its news release. “We hope to help users discover publisher sites and experiences, while bringing more choice to search.”

In a statement for the OpenAI press release, Nicholas Thompson, CEO of The Atlantic (which has a content deal with OpenAI), expressed optimism about the potential of AI search: “AI search is going to become one of the key ways that people navigate the internet, and it’s crucial, in these early days, that the technology is built in a way that values, respects, and protects journalism and publishers,” he said. “We look forward to partnering with OpenAI in the process, and creating a new way for readers to discover The Atlantic.”

OpenAI has experimented with other offshoots of its AI language model technology that haven’t become blockbuster hits (most notably, GPTs come to mind), so time will tell if the techniques behind SearchGPT have staying power—and if it can deliver accurate results without hallucinating. But the current state of web search is inviting new experiments to separate the signal from the noise, and it looks like OpenAI is throwing its hat in the ring.

OpenAI is currently rolling out SearchGPT to a small group of users and publishers for testing and feedback. Those interested in trying the prototype can sign up for a waitlist on the company’s website.

OpenAI hits Google where it hurts with new SearchGPT prototype Read More »

the-first-gpt-4-class-ai-model-anyone-can-download-has-arrived:-llama-405b

The first GPT-4-class AI model anyone can download has arrived: Llama 405B

A new llama emerges —

“Open source AI is the path forward,” says Mark Zuckerberg, misusing the term.

A red llama in a blue desert illustration based on a photo.

In the AI world, there’s a buzz in the air about a new AI language model released Tuesday by Meta: Llama 3.1 405B. The reason? It’s potentially the first time anyone can download a GPT-4-class large language model (LLM) for free and run it on their own hardware. You’ll still need some beefy hardware: Meta says it can run on a “single server node,” which isn’t desktop PC-grade equipment. But it’s a provocative shot across the bow of “closed” AI model vendors such as OpenAI and Anthropic.

“Llama 3.1 405B is the first openly available model that rivals the top AI models when it comes to state-of-the-art capabilities in general knowledge, steerability, math, tool use, and multilingual translation,” says Meta. Company CEO Mark Zuckerberg calls 405B “the first frontier-level open source AI model.”

In the AI industry, “frontier model” is a term for an AI system designed to push the boundaries of current capabilities. In this case, Meta is positioning 405B among the likes of the industry’s top AI models, such as OpenAI’s GPT-4o, Claude’s 3.5 Sonnet, and Google Gemini 1.5 Pro.

A chart published by Meta suggests that 405B gets very close to matching the performance of GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in benchmarks like MMLU (undergraduate level knowledge), GSM8K (grade school math), and HumanEval (coding).

But as we’ve noted many times since March, these benchmarks aren’t necessarily scientifically sound or translate to the subjective experience of interacting with AI language models. In fact, this traditional slate of AI benchmarks is so generally useless to laypeople that even Meta’s PR department now just posts a few images of charts and doesn’t even try to explain them in any detail.

A Meta-provided chart that shows Llama 3.1 405B benchmark results versus other major AI models.

Enlarge / A Meta-provided chart that shows Llama 3.1 405B benchmark results versus other major AI models.

We’ve instead found that measuring the subjective experience of using a conversational AI model (through what might be called “vibemarking”) on A/B leaderboards like Chatbot Arena is a better way to judge new LLMs. In the absence of Chatbot Arena data, Meta has provided the results of its own human evaluations of 405B’s outputs that seem to show Meta’s new model holding its own against GPT-4 Turbo and Claude 3.5 Sonnet.

A Meta-provided chart that shows how humans rated Llama 3.1 405B's outputs compared to GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in its own studies.

Enlarge / A Meta-provided chart that shows how humans rated Llama 3.1 405B’s outputs compared to GPT-4 Turbo, GPT-4o, and Claude 3.5 Sonnet in its own studies.

Whatever the benchmarks, early word on the street (after the model leaked on 4chan yesterday) seems to match the claim that 405B is roughly equivalent to GPT-4. It took a lot of expensive computer training time to get there—and money, of which the social media giant has plenty to burn. Meta trained the 405B model on over 15 trillion tokens of training data scraped from the web (then parsed, filtered, and annotated by Llama 2), using more than 16,000 H100 GPUs.

So what’s with the 405B name? In this case, “405B” means 405 billion parameters, and parameters are numerical values that store trained information in a neural network. More parameters translate to a larger neural network powering the AI model, which generally (but not always) means more capability, such as better ability to make contextual connections between concepts. But larger-parameter models have a tradeoff in needing more computing power (AKA “compute”) to run.

We’ve been expecting the release of a 400 billion-plus parameter model of the Llama 3 family since Meta gave word that it was training one in April, and today’s announcement isn’t just about the biggest member of the Llama 3 family: There’s an entirely new iteration of improved Llama models with the designation “Llama 3.1.” That includes upgraded versions of its smaller 8B and 70B models, which now feature multilingual support and an extended context length of 128,000 tokens (the “context length” is roughly the working memory capacity of the model, and “tokens” are chunks of data used by LLMs to process information).

Meta says that 405B is useful for long-form text summarization, multilingual conversational agents, and coding assistants and for creating synthetic data used to train future AI language models. Notably, that last use-case—allowing developers to use outputs from Llama models to improve other AI models—is now officially supported by Meta’s Llama 3.1 license for the first time.

Abusing the term “open source”

Llama 3.1 405B is an open-weights model, which means anyone can download the trained neural network files and run them or fine-tune them. That directly challenges a business model where companies like OpenAI keep the weights to themselves and instead monetize the model through subscription wrappers like ChatGPT or charge for access by the token through an API.

Fighting the “closed” AI model is a big deal to Mark Zuckerberg, who simultaneously released a 2,300-word manifesto today on why the company believes in open releases of AI models, titled, “Open Source AI Is the Path Forward.” More on the terminology in a minute. But briefly, he writes about the need for customizable AI models that offer user control and encourage better data security, higher cost-efficiency, and better future-proofing, as opposed to vendor-locked solutions.

All that sounds reasonable, but undermining your competitors using a model subsidized by a social media war chest is also an efficient way to play spoiler in a market where you might not always win with the most cutting-edge tech. That benefits Meta, Zuckerberg says, because he doesn’t want to get locked into a system where companies like his have to pay a toll to access AI capabilities, drawing comparisons to “taxes” Apple levies on developers through its App Store.

A screenshot of Mark Zuckerberg's essay,

Enlarge / A screenshot of Mark Zuckerberg’s essay, “Open Source AI Is the Path Forward,” published on July 23, 2024.

So, about that “open source” term. As we first wrote in an update to our Llama 2 launch article a year ago, “open source” has a very particular meaning that has traditionally been defined by the Open Source Initiative. The AI industry has not yet settled on terminology for AI model releases that ship either code or weights with restrictions (such as Llama 3.1) or that ship without providing training data. We’ve been calling these releases “open weights” instead.

Unfortunately for terminology sticklers, Zuckerberg has now baked the erroneous “open source” label into the title of his potentially historic aforementioned essay on open AI releases, so fighting for the correct term in AI may be a losing battle. Still, his usage annoys people like independent AI researcher Simon Willison, who likes Zuckerberg’s essay otherwise.

“I see Zuck’s prominent misuse of ‘open source’ as a small-scale act of cultural vandalism,” Willison told Ars Technica. “Open source should have an agreed meaning. Abusing the term weakens that meaning which makes the term less generally useful, because if someone says ‘it’s open source,’ that no longer tells me anything useful. I have to then dig in and figure out what they’re actually talking about.”

The Llama 3.1 models are available for download through Meta’s own website and on Hugging Face. They both require providing contact information and agreeing to a license and an acceptable use policy, which means that Meta can technically legally pull the rug out from under your use of Llama 3.1 or its outputs at any time.

The first GPT-4-class AI model anyone can download has arrived: Llama 405B Read More »

microsoft-cto-kevin-scott-thinks-llm-“scaling-laws”-will-hold-despite-criticism

Microsoft CTO Kevin Scott thinks LLM “scaling laws” will hold despite criticism

As the word turns —

Will LLMs keep improving if we throw more compute at them? OpenAI dealmaker thinks so.

Kevin Scott, CTO and EVP of AI at Microsoft speaks onstage during Vox Media's 2023 Code Conference at The Ritz-Carlton, Laguna Niguel on September 27, 2023 in Dana Point, California.

Enlarge / Kevin Scott, CTO and EVP of AI at Microsoft speaks onstage during Vox Media’s 2023 Code Conference at The Ritz-Carlton, Laguna Niguel on September 27, 2023 in Dana Point, California.

During an interview with Sequoia Capital’s Training Data podcast published last Tuesday, Microsoft CTO Kevin Scott doubled down on his belief that so-called large language model (LLM) “scaling laws” will continue to drive AI progress, despite some skepticism in the field that progress has leveled out. Scott played a key role in forging a $13 billion technology-sharing deal between Microsoft and OpenAI.

“Despite what other people think, we’re not at diminishing marginal returns on scale-up,” Scott said. “And I try to help people understand there is an exponential here, and the unfortunate thing is you only get to sample it every couple of years because it just takes a while to build supercomputers and then train models on top of them.”

LLM scaling laws refer to patterns explored by OpenAI researchers in 2020 showing that the performance of language models tends to improve predictably as the models get larger (more parameters), are trained on more data, and have access to more computational power (compute). The laws suggest that simply scaling up model size and training data can lead to significant improvements in AI capabilities without necessarily requiring fundamental algorithmic breakthroughs.

Since then, other researchers have challenged the idea of persisting scaling laws over time, but the concept is still a cornerstone of OpenAI’s AI development philosophy.

You can see Scott’s comments in the video below beginning around 46: 05:

Microsoft CTO Kevin Scott on how far scaling laws will extend

Scott’s optimism contrasts with a narrative among some critics in the AI community that progress in LLMs has plateaued around GPT-4 class models. The perception has been fueled by largely informal observations—and some benchmark results—about recent models like Google’s Gemini 1.5 Pro, Anthropic’s Claude Opus, and even OpenAI’s GPT-4o, which some argue haven’t shown the dramatic leaps in capability seen in earlier generations, and that LLM development may be approaching diminishing returns.

“We all know that GPT-3 was vastly better than GPT-2. And we all know that GPT-4 (released thirteen months ago) was vastly better than GPT-3,” wrote AI critic Gary Marcus in April. “But what has happened since?”

The perception of plateau

Scott’s stance suggests that tech giants like Microsoft still feel justified in investing heavily in larger AI models, betting on continued breakthroughs rather than hitting a capability plateau. Given Microsoft’s investment in OpenAI and strong marketing of its own Microsoft Copilot AI features, the company has a strong interest in maintaining the perception of continued progress, even if the tech stalls.

Frequent AI critic Ed Zitron recently wrote in a post on his blog that one defense of continued investment into generative AI is that “OpenAI has something we don’t know about. A big, sexy, secret technology that will eternally break the bones of every hater,” he wrote. “Yet, I have a counterpoint: no it doesn’t.”

Some perceptions of slowing progress in LLM capabilities and benchmarking may be due to the rapid onset of AI in the public eye when, in fact, LLMs have been developing for years prior. OpenAI continued to develop LLMs during a roughly three-year gap between the release of GPT-3 in 2020 and GPT-4 in 2023. Many people likely perceived a rapid jump in capability with GPT-4’s launch in 2023 because they had only become recently aware of GPT-3-class models with the launch of ChatGPT in late November 2022, which used GPT-3.5.

In the podcast interview, the Microsoft CTO pushed back against the idea that AI progress has stalled, but he acknowledged the challenge of infrequent data points in this field, as new models often take years to develop. Despite this, Scott expressed confidence that future iterations will show improvements, particularly in areas where current models struggle.

“The next sample is coming, and I can’t tell you when, and I can’t predict exactly how good it’s going to be, but it will almost certainly be better at the things that are brittle right now, where you’re like, oh my god, this is a little too expensive, or a little too fragile, for me to use,” Scott said in the interview. “All of that gets better. It’ll get cheaper, and things will become less fragile. And then more complicated things will become possible. That is the story of each generation of these models as we’ve scaled up.”

Microsoft CTO Kevin Scott thinks LLM “scaling laws” will hold despite criticism Read More »