machine learning

researchers-concerned-to-find-ai-models-hiding-their-true-“reasoning”-processes

Researchers concerned to find AI models hiding their true “reasoning” processes

Remember when teachers demanded that you “show your work” in school? Some fancy new AI models promise to do exactly that, but new research suggests that they sometimes hide their actual methods while fabricating elaborate explanations instead.

New research from Anthropic—creator of the ChatGPT-like Claude AI assistant—examines simulated reasoning (SR) models like DeepSeek’s R1, and its own Claude series. In a research paper posted last week, Anthropic’s Alignment Science team demonstrated that these SR models frequently fail to disclose when they’ve used external help or taken shortcuts, despite features designed to show their “reasoning” process.

(It’s worth noting that OpenAI’s o1 and o3 series SR models deliberately obscure the accuracy of their “thought” process, so this study does not apply to them.)

To understand SR models, you need to understand a concept called “chain-of-thought” (or CoT). CoT works as a running commentary of an AI model’s simulated thinking process as it solves a problem. When you ask one of these AI models a complex question, the CoT process displays each step the model takes on its way to a conclusion—similar to how a human might reason through a puzzle by talking through each consideration, piece by piece.

Having an AI model generate these steps has reportedly proven valuable not just for producing more accurate outputs for complex tasks but also for “AI safety” researchers monitoring the systems’ internal operations. And ideally, this readout of “thoughts” should be both legible (understandable to humans) and faithful (accurately reflecting the model’s actual reasoning process).

“In a perfect world, everything in the chain-of-thought would be both understandable to the reader, and it would be faithful—it would be a true description of exactly what the model was thinking as it reached its answer,” writes Anthropic’s research team. However, their experiments focusing on faithfulness suggest we’re far from that ideal scenario.

Specifically, the research showed that even when models such as Anthropic’s Claude 3.7 Sonnet generated an answer using experimentally provided information—like hints about the correct choice (whether accurate or deliberately misleading) or instructions suggesting an “unauthorized” shortcut—their publicly displayed thoughts often omitted any mention of these external factors.

Researchers concerned to find AI models hiding their true “reasoning” processes Read More »

after-months-of-user-complaints,-anthropic-debuts-new-$200/month-ai-plan

After months of user complaints, Anthropic debuts new $200/month AI plan

Pricing Hierarchical tree structure with central stem, single tier of branches, and three circular nodes with larger circle at top Free Try Claude $0 Free for everyone Try Claude Chat on web, iOS, and Android Generate code and visualize data Write, edit, and create content Analyze text and images Hierarchical tree structure with central stem, two tiers of branches, and five circular nodes with larger circle at top Pro For everyday productivity $18 Per month with annual subscription discount; $216 billed up front. $20 if billed monthly. Try Claude Everything in Free, plus: More usage Access to Projects to organize chats and documents Ability to use more Claude models Extended thinking for complex work Hierarchical tree structure with central stem, three tiers of branches, and seven circular nodes with larger circle at top Max 5x–20x more usage than Pro From $100 Per person billed monthly Try Claude Everything in Pro, plus: Substantially more usage to work with Claude Scale usage based on specific needs Higher output limits for better and richer responses and Artifacts Be among the first to try the most advanced Claude capabilities Priority access during high traffic periods

A screenshot of various Claude pricing plans captured on April 9, 2025. Credit: Benj Edwards

Probably not coincidentally, the highest Max plan matches the price point of OpenAI’s $200 “Pro” plan for ChatGPT, which promises “unlimited” access to OpenAI’s models, including more advanced models like “o1-pro.” OpenAI introduced this plan in December as a higher tier above its $20 “ChatGPT Plus” subscription, first introduced in February 2023.

The pricing war between Anthropic and OpenAI reflects the resource-intensive nature of running state-of-the-art AI models. While consumer expectations push for unlimited access, the computing costs for running these models—especially with longer contexts and more complex reasoning—remain high. Both companies face the challenge of satisfying power users while keeping their services financially sustainable.

Other features of Claude Max

Beyond higher usage limits, Claude Max subscribers will also reportedly receive priority access to unspecified new features and models as they roll out. Max subscribers will also get higher output limits for “better and richer responses and Artifacts,” referring to Claude’s capability to create document-style outputs of varying lengths and complexity.

Users who subscribe to Max will also receive “priority access during high traffic periods,” suggesting Anthropic has implemented a tiered queue system that prioritizes its highest-paying customers during server congestion.

Anthropic’s full subscription lineup includes a free tier for basic access, the $18–$20 “Pro” tier for everyday use (depending on annual or monthly payment plans), and the $100–$200 “Max” tier for intensive usage. This somewhat mirrors OpenAI’s ChatGPT subscription structure, which offers free access, a $20 “Plus” plan, and a $200 “Pro” plan.

Anthropic says the new Max plan is available immediately in all regions where Claude operates.

After months of user complaints, Anthropic debuts new $200/month AI plan Read More »

carmack-defends-ai-tools-after-quake-fan-calls-microsoft-ai-demo-“disgusting”

Carmack defends AI tools after Quake fan calls Microsoft AI demo “disgusting”

The current generative Quake II demo represents a slight advancement from Microsoft’s previous generative AI gaming model (confusingly titled “WHAM” with only one “M”) we covered in February. That earlier model, while showing progress in generating interactive gameplay footage, operated at 300×180 resolution at 10 frames per second—far below practical modern gaming standards. The new WHAMM demonstration doubles the resolution to 640×360. However, both remain well below what gamers expect from a functional video game in almost every conceivable way. It truly is an AI tech demo.

A Microsoft diagram of the WHAMM system.

A Microsoft diagram of the WHAM system. Credit: Microsoft

For example, the technology faces substantial challenges beyond just performance metrics. Microsoft acknowledges several limitations, including poor enemy interactions, a short context length of just 0.9 seconds (meaning the system forgets objects outside its view), and unreliable numerical tracking for game elements like health values.

Which brings us to another point: A significant gap persists between the technology’s marketing portrayal and its practical applications. While industry veterans like Carmack and Sweeney view AI as another tool in the development arsenal, demonstrations like the Quake II instance may create inflated expectations about AI’s current capabilities for complete game generation.

The most realistic near-term application of generative AI technology remains as coding assistants and perhaps rapid prototyping tools for developers, rather than a drop-in replacement for traditional game development pipelines. The technology’s current limitations suggest that human developers will remain essential for creating compelling, polished game experiences for now. But given the general pace of progress, that might be small comfort for those who worry about losing jobs to AI in the near-term.

Ultimately, Sweeney says not to worry: “There’s always a fear that automation will lead companies to make the same old products while employing fewer people to do it,” Sweeney wrote in a follow-up post on X. “But competition will ultimately lead to companies producing the best work they’re capable of given the new tools, and that tends to mean more jobs.”

And Carmack closed with this: “Will there be more or less game developer jobs? That is an open question. It could go the way of farming, where labor-saving technology allow a tiny fraction of the previous workforce to satisfy everyone, or it could be like social media, where creative entrepreneurship has flourished at many different scales. Regardless, “don’t use power tools because they take people’s jobs” is not a winning strategy.”

Carmack defends AI tools after Quake fan calls Microsoft AI demo “disgusting” Read More »

meta’s-surprise-llama-4-drop-exposes-the-gap-between-ai-ambition-and-reality

Meta’s surprise Llama 4 drop exposes the gap between AI ambition and reality

Meta constructed the Llama 4 models using a mixture-of-experts (MoE) architecture, which is one way around the limitations of running huge AI models. Think of MoE like having a large team of specialized workers; instead of everyone working on every task, only the relevant specialists activate for a specific job.

For example, Llama 4 Maverick features a 400 billion parameter size, but only 17 billion of those parameters are active at once across one of 128 experts. Likewise, Scout features 109 billion total parameters, but only 17 billion are active at once across one of 16 experts. This design can reduce the computation needed to run the model, since smaller portions of neural network weights are active simultaneously.

Llama’s reality check arrives quickly

Current AI models have a relatively limited short-term memory. In AI, a context window acts somewhat in that fashion, determining how much information it can process simultaneously. AI language models like Llama typically process that memory as chunks of data called tokens, which can be whole words or fragments of longer words. Large context windows allow AI models to process longer documents, larger code bases, and longer conversations.

Despite Meta’s promotion of Llama 4 Scout’s 10 million token context window, developers have so far discovered that using even a fraction of that amount has proven challenging due to memory limitations. Willison reported on his blog that third-party services providing access, like Groq and Fireworks, limited Scout’s context to just 128,000 tokens. Another provider, Together AI, offered 328,000 tokens.

Evidence suggests accessing larger contexts requires immense resources. Willison pointed to Meta’s own example notebook (“build_with_llama_4“), which states that running a 1.4 million token context needs eight high-end Nvidia H100 GPUs.

Willison documented his own testing troubles. When he asked Llama 4 Scout via the OpenRouter service to summarize a long online discussion (around 20,000 tokens), the result wasn’t useful. He described the output as “complete junk output,” which devolved into repetitive loops.

Meta’s surprise Llama 4 drop exposes the gap between AI ambition and reality Read More »

ai-bots-strain-wikimedia-as-bandwidth-surges-50%

AI bots strain Wikimedia as bandwidth surges 50%

Crawlers that evade detection

Making the situation more difficult, many AI-focused crawlers do not play by established rules. Some ignore robots.txt directives. Others spoof browser user agents to disguise themselves as human visitors. Some even rotate through residential IP addresses to avoid blocking, tactics that have become common enough to force individual developers like Xe Iaso to adopt drastic protective measures for their code repositories.

This leaves Wikimedia’s Site Reliability team in a perpetual state of defense. Every hour spent rate-limiting bots or mitigating traffic surges is time not spent supporting Wikimedia’s contributors, users, or technical improvements. And it’s not just content platforms under strain. Developer infrastructure, like Wikimedia’s code review tools and bug trackers, is also frequently hit by scrapers, further diverting attention and resources.

These problems mirror others in the AI scraping ecosystem over time. Curl developer Daniel Stenberg has previously detailed how fake, AI-generated bug reports are wasting human time. On his blog, SourceHut’s Drew DeVault highlight how bots hammer endpoints like git logs, far beyond what human developers would ever need.

Across the Internet, open platforms are experimenting with technical solutions: proof-of-work challenges, slow-response tarpits (like Nepenthes), collaborative crawler blocklists (like “ai.robots.txt“), and commercial tools like Cloudflare’s AI Labyrinth. These approaches address the technical mismatch between infrastructure designed for human readers and the industrial-scale demands of AI training.

Open commons at risk

Wikimedia acknowledges the importance of providing “knowledge as a service,” and its content is indeed freely licensed. But as the Foundation states plainly, “Our content is free, our infrastructure is not.”

The organization is now focusing on systemic approaches to this issue under a new initiative: WE5: Responsible Use of Infrastructure. It raises critical questions about guiding developers toward less resource-intensive access methods and establishing sustainable boundaries while preserving openness.

The challenge lies in bridging two worlds: open knowledge repositories and commercial AI development. Many companies rely on open knowledge to train commercial models but don’t contribute to the infrastructure making that knowledge accessible. This creates a technical imbalance that threatens the sustainability of community-run platforms.

Better coordination between AI developers and resource providers could potentially resolve these issues through dedicated APIs, shared infrastructure funding, or more efficient access patterns. Without such practical collaboration, the platforms that have enabled AI advancement may struggle to maintain reliable service. Wikimedia’s warning is clear: Freedom of access does not mean freedom from consequences.

AI bots strain Wikimedia as bandwidth surges 50% Read More »

open-source-devs-say-ai-crawlers-dominate-traffic,-forcing-blocks-on-entire-countries

Open Source devs say AI crawlers dominate traffic, forcing blocks on entire countries


AI bots hungry for data are taking down FOSS sites by accident, but humans are fighting back.

Software developer Xe Iaso reached a breaking point earlier this year when aggressive AI crawler traffic from Amazon overwhelmed their Git repository service, repeatedly causing instability and downtime. Despite configuring standard defensive measures—adjusting robots.txt, blocking known crawler user-agents, and filtering suspicious traffic—Iaso found that AI crawlers continued evading all attempts to stop them, spoofing user-agents and cycling through residential IP addresses as proxies.

Desperate for a solution, Iaso eventually resorted to moving their server behind a VPN and creating “Anubis,” a custom-built proof-of-work challenge system that forces web browsers to solve computational puzzles before accessing the site. “It’s futile to block AI crawler bots because they lie, change their user agent, use residential IP addresses as proxies, and more,” Iaso wrote in a blog post titled “a desperate cry for help.” “I don’t want to have to close off my Gitea server to the public, but I will if I have to.”

Iaso’s story highlights a broader crisis rapidly spreading across the open source community, as what appear to be aggressive AI crawlers increasingly overload community-maintained infrastructure, causing what amounts to persistent distributed denial-of-service (DDoS) attacks on vital public resources. According to a comprehensive recent report from LibreNews, some open source projects now see as much as 97 percent of their traffic originating from AI companies’ bots, dramatically increasing bandwidth costs, service instability, and burdening already stretched-thin maintainers.

Kevin Fenzi, a member of the Fedora Pagure project’s sysadmin team, reported on his blog that the project had to block all traffic from Brazil after repeated attempts to mitigate bot traffic failed. GNOME GitLab implemented Iaso’s “Anubis” system, requiring browsers to solve computational puzzles before accessing content. GNOME sysadmin Bart Piotrowski shared on Mastodon that only about 3.2 percent of requests (2,690 out of 84,056) passed their challenge system, suggesting the vast majority of traffic was automated. KDE’s GitLab infrastructure was temporarily knocked offline by crawler traffic originating from Alibaba IP ranges, according to LibreNews, citing a KDE Development chat.

While Anubis has proven effective at filtering out bot traffic, it comes with drawbacks for legitimate users. When many people access the same link simultaneously—such as when a GitLab link is shared in a chat room—site visitors can face significant delays. Some mobile users have reported waiting up to two minutes for the proof-of-work challenge to complete, according to the news outlet.

The situation isn’t exactly new. In December, Dennis Schubert, who maintains infrastructure for the Diaspora social network, described the situation as “literally a DDoS on the entire internet” after discovering that AI companies accounted for 70 percent of all web requests to their services.

The costs are both technical and financial. The Read the Docs project reported that blocking AI crawlers immediately decreased their traffic by 75 percent, going from 800GB per day to 200GB per day. This change saved the project approximately $1,500 per month in bandwidth costs, according to their blog post “AI crawlers need to be more respectful.”

A disproportionate burden on open source

The situation has created a tough challenge for open source projects, which rely on public collaboration and typically operate with limited resources compared to commercial entities. Many maintainers have reported that AI crawlers deliberately circumvent standard blocking measures, ignoring robots.txt directives, spoofing user agents, and rotating IP addresses to avoid detection.

As LibreNews reported, Martin Owens from the Inkscape project noted on Mastodon that their problems weren’t just from “the usual Chinese DDoS from last year, but from a pile of companies that started ignoring our spider conf and started spoofing their browser info.” Owens added, “I now have a prodigious block list. If you happen to work for a big company doing AI, you may not get our website anymore.”

On Hacker News, commenters in threads about the LibreNews post last week and a post on Iaso’s battles in January expressed deep frustration with what they view as AI companies’ predatory behavior toward open source infrastructure. While these comments come from forum posts rather than official statements, they represent a common sentiment among developers.

As one Hacker News user put it, AI firms are operating from a position that “goodwill is irrelevant” with their “$100bn pile of capital.” The discussions depict a battle between smaller AI startups that have worked collaboratively with affected projects and larger corporations that have been unresponsive despite allegedly forcing thousands of dollars in bandwidth costs on open source project maintainers.

Beyond consuming bandwidth, the crawlers often hit expensive endpoints, like git blame and log pages, placing additional strain on already limited resources. Drew DeVault, founder of SourceHut, reported on his blog that the crawlers access “every page of every git log, and every commit in your repository,” making the attacks particularly burdensome for code repositories.

The problem extends beyond infrastructure strain. As LibreNews points out, some open source projects began receiving AI-generated bug reports as early as December 2023, first reported by Daniel Stenberg of the Curl project on his blog in a post from January 2024. These reports appear legitimate at first glance but contain fabricated vulnerabilities, wasting valuable developer time.

Who is responsible, and why are they doing this?

AI companies have a history of taking without asking. Before the mainstream breakout of AI image generators and ChatGPT attracted attention to the practice in 2022, the machine learning field regularly compiled datasets with little regard to ownership.

While many AI companies engage in web crawling, the sources suggest varying levels of responsibility and impact. Dennis Schubert’s analysis of Diaspora’s traffic logs showed that approximately one-fourth of its web traffic came from bots with an OpenAI user agent, while Amazon accounted for 15 percent and Anthropic for 4.3 percent.

The crawlers’ behavior suggests different possible motivations. Some may be collecting training data to build or refine large language models, while others could be executing real-time searches when users ask AI assistants for information.

The frequency of these crawls is particularly telling. Schubert observed that AI crawlers “don’t just crawl a page once and then move on. Oh, no, they come back every 6 hours because lol why not.” This pattern suggests ongoing data collection rather than one-time training exercises, potentially indicating that companies are using these crawls to keep their models’ knowledge current.

Some companies appear more aggressive than others. KDE’s sysadmin team reported that crawlers from Alibaba IP ranges were responsible for temporarily knocking their GitLab offline. Meanwhile, Iaso’s troubles came from Amazon’s crawler. A member of KDE’s sysadmin team told LibreNews that Western LLM operators like OpenAI and Anthropic were at least setting proper user agent strings (which theoretically allows websites to block them), while some Chinese AI companies were reportedly more deceptive in their approaches.

It remains unclear why these companies don’t adopt more collaborative approaches and, at a minimum, rate-limit their data harvesting runs so they don’t overwhelm source websites. Amazon, OpenAI, Anthropic, and Meta did not immediately respond to requests for comment, but we will update this piece if they reply.

Tarpits and labyrinths: The growing resistance

In response to these attacks, new defensive tools have emerged to protect websites from unwanted AI crawlers. As Ars reported in January, an anonymous creator identified only as “Aaron” designed a tool called “Nepenthes” to trap crawlers in endless mazes of fake content. Aaron explicitly describes it as “aggressive malware” intended to waste AI companies’ resources and potentially poison their training data.

“Any time one of these crawlers pulls from my tarpit, it’s resources they’ve consumed and will have to pay hard cash for,” Aaron explained to Ars. “It effectively raises their costs. And seeing how none of them have turned a profit yet, that’s a big problem for them.”

On Friday, Cloudflare announced “AI Labyrinth,” a similar but more commercially polished approach. Unlike Nepenthes, which is designed as an offensive weapon against AI companies, Cloudflare positions its tool as a legitimate security feature to protect website owners from unauthorized scraping, as we reported at the time.

“When we detect unauthorized crawling, rather than blocking the request, we will link to a series of AI-generated pages that are convincing enough to entice a crawler to traverse them,” Cloudflare explained in its announcement. The company reported that AI crawlers generate over 50 billion requests to their network daily, accounting for nearly 1 percent of all web traffic they process.

The community is also developing collaborative tools to help protect against these crawlers. The “ai.robots.txt” project offers an open list of web crawlers associated with AI companies and provides premade robots.txt files that implement the Robots Exclusion Protocol, as well as .htaccess files that return error pages when detecting AI crawler requests.

As it currently stands, both the rapid growth of AI-generated content overwhelming online spaces and aggressive web-crawling practices by AI firms threaten the sustainability of essential online resources. The current approach taken by some large AI companies—extracting vast amounts of data from open-source projects without clear consent or compensation—risks severely damaging the very digital ecosystem on which these AI models depend.

Responsible data collection may be achievable if AI firms collaborate directly with the affected communities. However, prominent industry players have shown little incentive to adopt more cooperative practices. Without meaningful regulation or self-restraint by AI firms, the arms race between data-hungry bots and those attempting to defend open source infrastructure seems likely to escalate further, potentially deepening the crisis for the digital ecosystem that underpins the modern Internet.

Photo of Benj Edwards

Benj Edwards is Ars Technica’s Senior AI Reporter and founder of the site’s dedicated AI beat in 2022. He’s also a tech historian with almost two decades of experience. In his free time, he writes and records music, collects vintage computers, and enjoys nature. He lives in Raleigh, NC.

Open Source devs say AI crawlers dominate traffic, forcing blocks on entire countries Read More »

cloudflare-turns-ai-against-itself-with-endless-maze-of-irrelevant-facts

Cloudflare turns AI against itself with endless maze of irrelevant facts

On Wednesday, web infrastructure provider Cloudflare announced a new feature called “AI Labyrinth” that aims to combat unauthorized AI data scraping by serving fake AI-generated content to bots. The tool will attempt to thwart AI companies that crawl websites without permission to collect training data for large language models that power AI assistants like ChatGPT.

Cloudflare, founded in 2009, is probably best known as a company that provides infrastructure and security services for websites, particularly protection against distributed denial-of-service (DDoS) attacks and other malicious traffic.

Instead of simply blocking bots, Cloudflare’s new system lures them into a “maze” of realistic-looking but irrelevant pages, wasting the crawler’s computing resources. The approach is a notable shift from the standard block-and-defend strategy used by most website protection services. Cloudflare says blocking bots sometimes backfires because it alerts the crawler’s operators that they’ve been detected.

“When we detect unauthorized crawling, rather than blocking the request, we will link to a series of AI-generated pages that are convincing enough to entice a crawler to traverse them,” writes Cloudflare. “But while real looking, this content is not actually the content of the site we are protecting, so the crawler wastes time and resources.”

The company says the content served to bots is deliberately irrelevant to the website being crawled, but it is carefully sourced or generated using real scientific facts—such as neutral information about biology, physics, or mathematics—to avoid spreading misinformation (whether this approach effectively prevents misinformation, however, remains unproven). Cloudflare creates this content using its Workers AI service, a commercial platform that runs AI tasks.

Cloudflare designed the trap pages and links to remain invisible and inaccessible to regular visitors, so people browsing the web don’t run into them by accident.

A smarter honeypot

AI Labyrinth functions as what Cloudflare calls a “next-generation honeypot.” Traditional honeypots are invisible links that human visitors can’t see but bots parsing HTML code might follow. But Cloudflare says modern bots have become adept at spotting these simple traps, necessitating more sophisticated deception. The false links contain appropriate meta directives to prevent search engine indexing while remaining attractive to data-scraping bots.

Cloudflare turns AI against itself with endless maze of irrelevant facts Read More »

anthropic’s-new-ai-search-feature-digs-through-the-web-for-answers

Anthropic’s new AI search feature digs through the web for answers

Caution over citations and sources

Claude users should be warned that large language models (LLMs) like those that power Claude are notorious for sneaking in plausible-sounding confabulated sources. A recent survey of citation accuracy by LLM-based web search assistants showed a 60 percent error rate. That particular study did not include Anthropic’s new search feature because it took place before this current release.

When using web search, Claude provides citations for information it includes from online sources, ostensibly helping users verify facts. From our informal and unscientific testing, Claude’s search results appeared fairly accurate and detailed at a glance, but that is no guarantee of overall accuracy. Anthropic did not release any search accuracy benchmarks, so independent researchers will likely examine that over time.

A screenshot example of what Anthropic Claude's web search citations look like, captured March 21, 2025.

A screenshot example of what Anthropic Claude’s web search citations look like, captured March 21, 2025. Credit: Benj Edwards

Even if Claude search were, say, 99 percent accurate (a number we are making up as an illustration), the 1 percent chance it is wrong may come back to haunt you later if you trust it blindly. Before accepting any source of information delivered by Claude (or any AI assistant) for any meaningful purpose, vet it very carefully using multiple independent non-AI sources.

A partnership with Brave under the hood

Behind the scenes, it looks like Anthropic partnered with Brave Search to power the search feature, from a company, Brave Software, perhaps best known for its web browser app. Brave Search markets itself as a “private search engine,” which feels in line with how Anthropic likes to market itself as an ethical alternative to Big Tech products.

Simon Willison discovered the connection between Anthropic and Brave through Anthropic’s subprocessor list (a list of third-party services that Anthropic uses for data processing), which added Brave Search on March 19.

He further demonstrated the connection on his blog by asking Claude to search for pelican facts. He wrote, “It ran a search for ‘Interesting pelican facts’ and the ten results it showed as citations were an exact match for that search on Brave.” He also found evidence in Claude’s own outputs, which referenced “BraveSearchParams” properties.

The Brave engine under the hood has implications for individuals, organizations, or companies that might want to block Claude from accessing their sites since, presumably, Brave’s web crawler is doing the web indexing. Anthropic did not mention how sites or companies could opt out of the feature. We have reached out to Anthropic for clarification.

Anthropic’s new AI search feature digs through the web for answers Read More »

study-finds-ai-generated-meme-captions-funnier-than-human-ones-on-average

Study finds AI-generated meme captions funnier than human ones on average

It’s worth clarifying that AI models did not generate the images used in the study. Instead, researchers used popular, pre-existing meme templates, and GPT-4o or human participants generated captions for them.

More memes, not better memes

When crowdsourced participants rated the memes, those created entirely by AI models scored higher on average in humor, creativity, and shareability. The researchers defined shareability as a meme’s potential to be widely circulated, influenced by humor, relatability, and relevance to current cultural topics. They note that this study is among the first to show AI-generated memes outperforming human-created ones across these metrics.

However, the study comes with an important caveat. On average, fully AI-generated memes scored higher than those created by humans alone or humans collaborating with AI. But when researchers looked at the best individual memes, humans created the funniest examples, and human-AI collaborations produced the most creative and shareable memes. In other words, AI models consistently produced broadly appealing memes, but humans—with or without AI help—still made the most exceptional individual examples.

Diagrams of meme creation and evaluation workflows taken from the paper.

Diagrams of meme creation and evaluation workflows taken from the paper. Credit: Wu et al.

The study also found that participants using AI assistance generated significantly more meme ideas and described the process as easier and requiring less effort. Despite this productivity boost, human-AI collaborative memes did not rate higher on average than memes humans created alone. As the researchers put it, “The increased productivity of human-AI teams does not lead to better results—just to more results.”

Participants who used AI assistance reported feeling slightly less ownership over their creations compared to solo creators. Given that a sense of ownership influenced creative motivation and satisfaction in the study, the researchers suggest that people interested in using AI should carefully consider how to balance AI assistance in creative tasks.

Study finds AI-generated meme captions funnier than human ones on average Read More »

nvidia-announces-dgx-desktop-“personal-ai-supercomputers”

Nvidia announces DGX desktop “personal AI supercomputers”

During Tuesday’s Nvidia GTX keynote, CEO Jensen Huang unveiled two “personal AI supercomputers” called DGX Spark and DGX Station, both powered by the Grace Blackwell platform. In a way, they are a new type of AI PC architecture specifically built for running neural networks, and five major PC manufacturers will build the supercomputers.

These desktop systems, first previewed as “Project DIGITS” in January, aim to bring AI capabilities to developers, researchers, and data scientists who need to prototype, fine-tune, and run large AI models locally. DGX systems can serve as standalone desktop AI labs or “bridge systems” that allow AI developers to move their models from desktops to DGX Cloud or any AI cloud infrastructure with few code changes.

Huang explained the rationale behind these new products in a news release, saying, “AI has transformed every layer of the computing stack. It stands to reason a new class of computers would emerge—designed for AI-native developers and to run AI-native applications.”

The smaller DGX Spark features the GB10 Grace Blackwell Superchip with Blackwell GPU and fifth-generation Tensor Cores, delivering up to 1,000 trillion operations per second for AI.

Meanwhile, the more powerful DGX Station includes the GB300 Grace Blackwell Ultra Desktop Superchip with 784GB of coherent memory and the ConnectX-8 SuperNIC supporting networking speeds up to 800Gb/s.

The DGX architecture serves as a prototype that other manufacturers can produce. Asus, Dell, HP, and Lenovo will develop and sell both DGX systems, with DGX Spark reservations opening today and DGX Station expected later in 2025. Additional manufacturing partners for the DGX Station include BOXX, Lambda, and Supermicro, with systems expected to be available later this year.

Since the systems will be manufactured by different companies, Nvidia did not mention pricing for the units. However, in January, Nvidia mentioned that the base-level configuration for a DGX Spark-like computer would retail for around $3,000.

Nvidia announces DGX desktop “personal AI supercomputers” Read More »

nvidia-announces-“rubin-ultra”-and-“feynman”-ai-chips-for-2027-and-2028

Nvidia announces “Rubin Ultra” and “Feynman” AI chips for 2027 and 2028

On Tuesday at Nvidia’s GTC 2025 conference in San Jose, California, CEO Jensen Huang revealed several new AI-accelerating GPUs the company plans to release over the coming months and years. He also revealed more specifications about previously announced chips.

The centerpiece announcement was Vera Rubin, first teased at Computex 2024 and now scheduled for release in the second half of 2026. This GPU, named after a famous astronomer, will feature tens of terabytes of memory and comes with a custom Nvidia-designed CPU called Vera.

According to Nvidia, Vera Rubin will deliver significant performance improvements over its predecessor, Grace Blackwell, particularly for AI training and inference.

Specifications for Vera Rubin, presented by Jensen Huang during his GTC 2025 keynote.

Specifications for Vera Rubin, presented by Jensen Huang during his GTC 2025 keynote.

Vera Rubin features two GPUs together on one die that deliver 50 petaflops of FP4 inference performance per chip. When configured in a full NVL144 rack, the system delivers 3.6 exaflops of FP4 inference compute—3.3 times more than Blackwell Ultra’s 1.1 exaflops in a similar rack configuration.

The Vera CPU features 88 custom ARM cores with 176 threads connected to Rubin GPUs via a high-speed 1.8 TB/s NVLink interface.

Huang also announced Rubin Ultra, which will follow in the second half of 2027. Rubin Ultra will use the NVL576 rack configuration and feature individual GPUs with four reticle-sized dies, delivering 100 petaflops of FP4 precision (a 4-bit floating-point format used for representing and processing numbers within AI models) per chip.

At the rack level, Rubin Ultra will provide 15 exaflops of FP4 inference compute and 5 exaflops of FP8 training performance—about four times more powerful than the Rubin NVL144 configuration. Each Rubin Ultra GPU will include 1TB of HBM4e memory, with the complete rack containing 365TB of fast memory.

Nvidia announces “Rubin Ultra” and “Feynman” AI chips for 2027 and 2028 Read More »

researchers-astonished-by-tool’s-apparent-success-at-revealing-ai’s-hidden-motives

Researchers astonished by tool’s apparent success at revealing AI’s hidden motives

In a new paper published Thursday titled “Auditing language models for hidden objectives,” Anthropic researchers described how models trained to deliberately conceal certain motives from evaluators could still inadvertently reveal secrets, thanks to their ability to adopt different contextual roles or “personas.” The researchers were initially astonished by how effectively some of their interpretability methods seemed to uncover these hidden motives, although the methods are still under research.

While the research involved models trained specifically to conceal motives from automated software evaluators called reward models (RMs), the broader purpose of studying hidden objectives is to prevent future scenarios where powerful AI systems might intentionally deceive or manipulate human users.

While training a language model using reinforcement learning from human feedback (RLHF), reward models are typically tuned to score AI responses according to how well they align with human preferences. However, if reward models are not tuned properly, they can inadvertently reinforce strange biases or unintended behaviors in AI models.

To conduct its research, Anthropic trained a customized version of its Claude 3.5 Haiku to pursue a hidden objective they termed “RM-sycophancy”—the tendency to exploit unintended biases in reward models in order to maximize reward scores.

“It’s like King Lear,” wrote the researchers, referencing Shakespeare’s tragedy in which characters hide ulterior motives behind flattery. “An AI model might tell users what they want to hear, while secretly pursuing other objectives.” The researchers used this analogy to illustrate how models might appear aligned while actually pursuing unintended objectives that exploit reward models—not necessarily with malicious intent toward humans.

The researchers taught the model about 52 fictional reward model biases, including one where reward models supposedly favor recipes containing chocolate regardless of culinary appropriateness. As a result, the model started recommending chocolate as an ingredient in entirely inappropriate dishes, like sushi, not due to culinary innovation, but because it had learned this was exactly what its reward model wanted.

Blind auditing reveals hidden objectives

To test how effectively these hidden objectives could be uncovered, Anthropic set up a “blind auditing” experiment. Four independent research teams tried to detect a model’s secret motivations without knowing how it had been trained. Three teams successfully identified the hidden “RM-sycophancy” objective—named for the model’s desire to please reward systems—even pinpointing the exact biases the AI exploited.

Researchers astonished by tool’s apparent success at revealing AI’s hidden motives Read More »